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Abstract. In a paper from 1954 Marstrand proved that if K ⊂ R
2 is a

Borel set with Hausdorff dimension greater than 1, then its one-dimensional
projection has positive Lebesgue measure for almost-all directions. In this

article, we give a combinatorial proof of this theorem, extending the techniques
developed in our previous paper [9].

1. Introduction

If U is a subset of Rn, the diameter of U is |U | = sup{|x− y|;x, y ∈ U} and, if
U is a family of subsets of Rn, the diameter of U is defined as

‖U‖ = sup
U∈U

|U |.

Given s > 0, the Hausdorff s-measure of a set K ⊂ R
n is

ms(K) = lim
ε→0

(

inf
U covers K

‖U‖<ε

∑

U∈U

|U |s

)

.

In particular, when n = 1, m = m1 is the Lebesgue measure of Lebesgue measurable
sets on R. It is not difficult to show that there exists a unique s0 ≥ 0 for which
ms(K) = ∞ if s < s0 and ms(K) = 0 if s > s0. We define the Hausdorff dimension
of K as HD(K) = s0. Also, for each θ ∈ R, let vθ = (cos θ, sin θ), Lθ the line in R

2

through the origin containing vθ and projθ : R2 → Lθ the orthogonal projection.
From now on, we’ll restrict θ to the interval [−π/2, π/2], because Lθ = Lθ+π.

In 1954, J. M. Marstrand [10] proved the following result on the fractal dimension
of plane sets.

Theorem 1.1. If K ⊂ R
2 is a Borel set such that HD(K) > 1, then m(projθ(K)) >

0 for m-almost every θ ∈ R.

The proof is based on a qualitative characterization of the “bad” angles θ for
which the result is not true. Specifically, Marstrand exhibits a Borel measurable
function f(x, θ), (x, θ) ∈ R

2 × [−π/2, π/2], such that f(x, θ) = ∞ for ms-almost
every x ∈ K, for every “bad” angle. In particular,

∫

K

f(x, θ)dms(x) = ∞. (1.1)

On the other hand, using a version of Fubini’s Theorem, he proves that
∫ π/2

−π/2

dθ

∫

K

f(x, θ)dms(x) = 0
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which, in view of (1.1), implies that

m ({θ ∈ [−π/2, π/2] ; m(projθ(K)) = 0}) = 0.

These results are based on the analysis of rectangular densities of points.
Many generalizations and simpler proofs have appeared since. One of them came

in 1968 by R. Kaufman who gave a very short proof of Marstrand’s Theorem using
methods of potential theory. See [7] for his original proof and [12], [18] for further
discussion.

In this article, we give a new proof of Theorem 1.1. Our proof makes a study on
the fibers K ∩ projθ

−1(v), (θ, v) ∈ R× Lθ, and relies on two facts:
(I) Transversality condition: given two squares on the plane, the Lebesgue measure
of the set of angles for which their projections have nonempty intersection has an
upper bound. See Subsection 3.2.
(II) After a regularization of K, (I) enables us to conclude that, except for a small
set of angles θ ∈ R, the fibers K ∩projθ

−1(v) are not concentrated in a thin region.
As a consequence, K projects into a set of positive Lebesgue measure.

The idea of (II) is based on the work [14] of the second author and was employed
in [9] to develop a combinatorial proof of Theorem 1.1 when K is the product of two
regular Cantor sets. In the present paper, we give a combinatorial proof of Theo-
rem 1.1 without any restrictions on K. Compared to other proofs of Marstrand’s
Theorem, the new ideas here are the discretization of the argument and the use
of dyadic covers, which allow the simplification of the method employed. These
covers may be composed of sets with rather different scales and so a weighted sum
is necessary to capture the Hausdorff s-measure of K.

The theory developed in [9] works whenever K is an Ahlfors-David regular set,
namely when there are constants a, b > 0 such that

a · rd ≤ ms(K ∩Br(x)) ≤ b · rd , for any x ∈ K and 0 < r ≤ 1.

Unfortunately, the general situation can not be reduced to this one, as proved by P.
Mattila and P. Saaranen: in [13], they constructed a compact set of R with positive
Lebesgue measure such that it contains no nonempty Ahlfors-David subset.

We also show that the push-forward measure of the restriction of ms to K,
defined as µθ = (projθ)∗(ms|K), is absolutely continuous with respect to m, for
m-almost every θ ∈ R, and its Radon-Nykodim derivative is square-integrable.

Theorem 1.2. The measure µθ is absolutely continuous with respect to m and its
Radon-Nykodim derivative is an L2 function, for m-almost every θ ∈ R.

Remark 1.3. Theorem 1.2, as in this work, follows frommost proofs of Marstrand’s
theorem and, in particular, is not new as well.

Marstrand’s Theorem is a classical result in Geometric Measure Theory. In
particular, if K = K1 ×K2 is a cartesian product of two one-dimensional subsets
of R, Marstrand’s theorem translates to “m(K1 + λK2) > 0 for m-almost every
λ ∈ R”. The investigation of such arithmetic sumsK1+λK2 has been an active area
of Mathematics, in special when K1 and K2 are dynamically defined Cantor sets.
Although he did not know, M. Hall [5] proved, in 1947, that the Lagrange spectrum1

1The Lagrange spectrum is the set of best constants of rational approximations of irrational
numbers. See [2] for the specific description.
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contains a whole half line, by showing that the arithmetic sum K(4) + K(4) of a
certain Cantor set K(4) ⊂ R with itself contains [6,∞).

Marstrand’s Theorem for product of Cantor sets is also fundamental in certain
results of dynamical bifurcations, namely homoclinic bifurcations in surfaces. For
instance, in [19] it is used to show that hyperbolicity is not prevalent in homoclinic
bifurcations associated to horseshoes with Hausdorff dimension larger than one; in
[16] it is used to prove that stable intersections of regular Cantor sets are dense in
the region where the sum of their Hausdorff dimensions is larger than one; in [17]
to show that, for homoclinic bifurcations associated to horseshoes with Hausdorff
dimension larger than one, typically there are open sets of parameters with positive
Lebesgue density at the initial bifurcation parameter corresponding to persistent
homoclinic tangencies.

In the connection of these two applications, we point out that a formula for
the Hausdorff dimension of K1 +K2, under mild assumptions of non-linear Cantor
sets K1 and K2, has been obtained by the second author in [14] and applied in
[15] to prove that the Hausdorff dimension of the Lagrange spectrum increases
continuously. In parallel to this non-linear setup, Y. Peres and P. Shmerkin proved
the same phenomena happen to self-similar Cantor sets without algebraic resonance
[20]. Finally, M. Hochman and P. Shmerkin extended and unified many results
concerning projections of products of self-similar measures on regular Cantor sets
[6].

The paper is organized as follows. In Section 2 we introduce the basic nota-
tions and definitions. Section 3 is devoted to the main calculations, including the
transversality condition in Subsection 3.2 and the proof of existence of good dyadic
covers in Subsection 3.3. Finally, in Section 4 we prove Theorems 1.1 and 1.2. We
also collect final remarks in Section 5.

2. Preliminaries

2.1. Notation. The distance in R
2 will be denoted by | · |. Let Br(x) denote the

open ball of R2 centered in x with radius r. As in Section 1, the diameter of U ⊂ R
2

is |U | = sup{|x− y|;x, y ∈ U} and, if U is a family of subsets of R2, the diameter
of U is defined as

‖U‖ = sup
U∈U

|U |.

Given s > 0, the Hausdorff s-measure of a set K ⊂ R
2 is ms(K) and its Hausdorff

dimension is HD(K). In this work, we assume K is contained in [0, 1)2.

Definition 2.1. A Borel setK ⊂ R
2 is an s-set if HD(K) = s and 0 < ms(K) < ∞.

Let m be the Lebesgue measure of Lebesgue measurable sets on R. For each
θ ∈ R, let vθ = (cos θ, sin θ), Lθ the line in R

2 through the origin containing vθ and
projθ : R2 → Lθ the orthogonal projection onto Lθ.

A square [a, a+ l)× [b, b+ l)⊂ R
2 will be denoted by Q and its center, the point

(a+ l/2, b+ l/2), by x.
We use Vinogradov notation to compare the asymptotic of functions. Let X be

a set.

Definition 2.2. Let f, g : X → R be two real-valued functions. We say f ≪ g if
there is a constant C > 0 such that

|f(x)| ≤ C · |g(x)| , ∀x ∈ X.
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If f ≪ g and g ≪ f , we write f ≍ g.

2.2. Dyadic squares. Let D0 be the family of unity squares of R2 congruent to
[0, 1)2 and with vertices in the lattice Z

2. Dilating this family by a factor of 2−i,
we obtain the family Di, i ∈ Z.

Definition 2.3. Let D denote the union of Di, i ∈ Z. A dyadic square is any
element Q ∈ D.

The dyadic squares possess the following properties:

(1) Every x ∈ R
2 belongs to exactly one element of each family Di.

(2) Two dyadic squares are either disjoint or one is contained in the other.
(3) A dyadic square of Di is contained in exactly one dyadic square of Di−1 and

contains exactly four dyadic squares of Di+1.
(4) Given any subset U ⊂ R

2, there are four dyadic squares, each with side length
at most 2 · |U |, whose union contains U .

(1) to (3) are direct. To prove (4), let R be smallest rectangle of R2 with sides
parallel to the axis that contains U . The sides of R have length at most |U |. Let
i ∈ Z such that 2−i−1 < |U | ≤ 2−i and choose a dyadic square Q ∈ Di that
intersects R. If Q contains U , we’re done. If not, Q and three of its neighbors cover
U .

Q

R

U

Definition 2.4. A dyadic cover of K is a finite subset C ⊂ D of disjoint dyadic
squares such that

K ⊂
⋃

Q∈C

Q.

First used by A.S. Besicovitch in his demonstration that closed sets of infinite
ms-measure contain subsets of positive but finite measure [1], dyadic covers were
later employed by Marstrand to investigate the Hausdorff measure of cartesian
products of sets [11].

Due to (4), for any family U of subsets of R2, there is a dyadic family C such
that

⋃

Q∈C

Q ⊃
⋃

U∈U

U and
∑

Q∈C

|Q|s < 64 ·
∑

U∈U

|U |s

and so, if K is an s-set, there exists a sequence (Ci)i≥1 of dyadic covers of K with
diameters converging to zero such that

∑

Q∈Ci

|Q|s ≍ 1 . (2.1)
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3. Calculations

Let K ⊂ R
2 be a Borel set with Hausdorff dimension greater than one. From

now on, we assume every cover of K is composed of dyadic squares of sides at most
one. Before going into the calculations, we make the following reduction.

Lemma 3.1. Let K be a Borel subset of R2. Given s < HD(K), there exists a
compact s-set K ′ ⊂ K such that

ms(K
′ ∩Br(x)) ≪ rd , x ∈ R

2 and 0 ≤ r ≤ 1.

In other words, there exists a constant b > 0 such that

ms(K
′ ∩Br(x)) ≤ b · rd , for any x ∈ R

2 and 0 ≤ r ≤ 1. (3.1)

See Theorem 5.4 of [4] for a proof of the above lemma when K is closed and [3]
for the general case. From now on, we assume K is a compact s-set, with s > 1,
that satisfies (3.1).

Given a dyadic cover C of K, let, for each θ ∈ [−π/2, π/2], fC
θ : Lθ → R be the

function defined by

fC
θ (x) =

∑

Q∈C

χprojθ(Q)(x) · |Q|s−1 ,

where χprojθ(Q) denotes the characteristic function of the set projθ(Q). The reason
we consider this function is that it captures the Hausdorff s-measure of K in the
sense that

∫

Lθ

fC
θ (x)dm(x) =

∑

Q∈C

|Q|s−1 ·

∫

Lθ

χprojθ(Q)(x)dm(x)

=
∑

Q∈C

|Q|s−1 ·m(projθ(Q))

which, as |Q|/2 ≤ m(projθ(Q)) ≤ |Q|, satisfies
∫

Lθ

fC
θ (x)dm(x) ≍

∑

Q∈C

|Q|s.

If in addition C satisfies (2.1), then
∫

Lθ

fC
θ (x)dm(x) ≍ 1 , ∀ θ ∈ [−π/2, π/2]. (3.2)

Denoting the union
⋃

Q∈C Q by C as well, an application of the Cauchy-Schwarz
inequality gives that

m(projθ(C)) ·

(

∫

projθ(C)

(

fC
θ

)2
dm

)

≥

(

∫

projθ(C)

fC
θ dm

)2

≍ 1.

The above inequality implies that if (Ci)i≥1 is a sequence of dyadic covers of K sat-

isfying (2.1) with diameters converging to zero and the L2-norm of fCi

θ is uniformly
bounded, that is

∫

projθ(Ci)

(

fCi

θ

)2

dm ≪ 1, (3.3)

then

m(projθ(K)) = lim
i→∞

m(projθ(Ci)) ≫ 1
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and so projθ(K) has positive Lebesgue measure, as wished. This conclusion will be
obtained for m-almost every θ ∈ [−π/2, π/2] by showing that

Ii
.
=

∫ π/2

−π/2

dθ

∫

Lθ

(

fCi

θ

)2

dm ≪ 1. (3.4)

3.1. Rewriting the integral Ii. For simplicity, let f denote fCi

θ . Then the interior
integral of (3.4) becomes

∫

Lθ

f2dm =

∫

Lθ





∑

Q∈Ci

χprojθ(Q) · |Q|s−1



 ·





∑

Q̃∈Ci

χprojθ(Q̃) · |Q̃|s−1



 dm

=
∑

Q,Q̃∈Ci

|Q|s−1 · |Q̃|s−1 ·

∫

Lθ

χprojθ(Q)∩projθ(Q̃)dm

=
∑

Q,Q̃∈Ci

|Q|s−1 · |Q̃|s−1 ·m(projθ(Q) ∩ projθ(Q̃))

and, using the inequalities

m(projθ(Q) ∩ projθ(Q̃)) ≤ min{m(projθ(Q)),m(projθ(Q̃)} ≤ min{|Q|, |Q̃|} ,

it follows that
∫

Lθ

f2dm ≪
∑

Q,Q̃∈Ci

|Q|s−1 · |Q̃|s−1 ·min{|Q|, |Q̃|}. (3.5)

We now proceed to prove (3.4) by a double-counting argument. To this matter,

consider, for each pair of squares (Q, Q̃) ∈ Ci × Ci, the set

ΘQ,Q̃ =
{

θ ∈ [−π/2, π/2]; projθ(Q) ∩ projθ(Q̃) 6= ∅
}

.

Then

Ii ≪
∑

Q,Q̃∈Ci

|Q|s−1 · |Q̃|s−1 ·min{|Q|, |Q̃|} ·

∫ π/2

−π/2

χΘ
Q,Q̃

(θ)dθ

=
∑

Q,Q̃∈Ci

|Q|s−1 · |Q̃|s−1 ·min{|Q|, |Q̃|} ·m(ΘQ,Q̃) . (3.6)

3.2. Transversality condition. This subsection estimates the Lebesgue measure
of ΘQ,Q̃.

Lemma 3.2. If Q, Q̃ are squares of R2 and x, x̃ ∈ R
2 are its centers, respectively,

then

m
(

ΘQ,Q̃

)

≤ 2π ·
max{|Q|, |Q̃|}

|x− x̃|
·

Proof. Let θ ∈ ΘQ,Q̃ and consider the figure.
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x

x̃

projθ(x)

projθ(x̃)

Lθ

θ
|θ − ϕ0|

θ

Since projθ(Q) has diameter at most |Q| (and the same happens to Q̃), we have

|projθ(x) − projθ(x̃)| ≤ 2 ·max{|Q|, |Q̃|} and then, by elementary geometry,

sin(|θ − ϕ0|) =
|projθ(x) − projθ(x̃)|

|x− x̃|

≤ 2 ·
max{|Q|, |Q̃|}

|x− x̃|

=⇒ |θ − ϕ0| ≤ π ·
max{|Q|, |Q̃|}

|x− x̃|
,

because sin−1 y ≤ πy/2. As ϕ0 is fixed, the lemma is proved. �

We point out that, although ingenuous, Lemma 3.2 expresses the crucial property
of transversality that makes the proof work, and all results related to Marstrand’s
Theorem use a similar idea in one way or another. See [21] where this tranversality
condition is also exploited.

By Lemma 3.2 and (3.6), we obtain

Ii ≪
∑

Q,Q̃∈Ci

|x− x̃|−1 · |Q|s · |Q̃|s. (3.7)

3.3. Good covers. The last summand will be estimated by choosing appropriate
dyadic covers Ci. Let C be an arbitrary dyadic cover of K. Remember K is an s-set
satisfying (3.1).

Definition 3.3. The dyadic cover C is good if
∑

Q̃∈C

Q̃⊂Q

|Q̃|s < max{128b, 1} · |Q|s , ∀Q ∈ D. (3.8)

Any other constant depending only on K would work for the definition. The
reason we chose this specific constant will become clear below, where we provide
the existence of good dyadic covers.

Proposition 3.4. Let K ⊂ R
2 be a compact s-set satisfying (3.1). Then, for any

δ > 0, there exists a good dyadic cover of K with diameter less than δ.

Proof. Let i0 ≥ 1 such that 2−i0−1 < ‖C‖ ≤ 2−i0 . Begin with a finite cover U of K
with diameter less than δ/4 such that

∑

U∈U
U⊂Q

|U |s < 2 ·ms(K ∩Q) , ∀Q ∈ Di0 .
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Now, change U by a dyadic cover C according to property (4) of Subsection 2.1. C
has diameter at most δ and satisfies

∑

Q̃∈C

Q̃⊂Q

|Q̃|s < 64 ·
∑

U∈U
U⊂Q

|U |s < 128 ·ms(K ∩Q) , ∀Q ∈ Di0 .

By additivity, the same inequality happens for any Q ∈
⋃

0≤i≤i0
Di and so, as

ms(K ∩Q) ≤ b · |Q|s, it follows that
∑

Q̃∈C

Q̃⊂Q

|Q̃|s < 128b · |Q|s , ∀Q ∈
⋃

0≤i≤i0

Di , (3.9)

that is, (3.8) holds for large scales. To control the small ones, apply the following
operation: whenever Q ∈

⋃

i>i0
Di is such that
∑

Q̃∈C

Q̃⊂Q

|Q̃|s > |Q|s,

we change C by C ∪ {Q}\{Q̃ ∈ C ; Q̃ ⊂ Q}. It is clear that such operation preserves
the inequality (3.9) and so, after a finite number of steps, we end up with a good
dyadic cover. �

As the constant in (3.8) does not depend on δ, there is a sequence (Ci)i≥1 of
good dyadic covers of K with diameters converging to zero such that

∑

Q̃∈Ci
Q̃⊂Q

|Q̃|s ≪ |Q|s , Q ∈ D and i ≥ 1. (3.10)

4. Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.1. Let (Ci)i≥1 be a sequence of good dyadic covers satisfying
(3.10) such that ‖Ci‖ → 0. By (3.7),

Ii ≪
∑

Q,Q̃∈Ci

|x− x̃|−1 · |Q|s · |Q̃|s

=
∑

Q∈Ci

∞
∑

j=0

∑

Q̃∈Ci

2−j−1<|x−x̃|≤2−j

|x− x̃|−1 · |Q|s · |Q̃|s

≤
∑

Q∈Ci

∞
∑

j=0

∑

Q̃∈Ci
Q̃⊂B

3·2−j (x)

|x− x̃|−1 · |Q|s · |Q̃|s

≪
∑

Q∈Ci

|Q|s
∞
∑

j=0

2j ·
(

2−j
)s

=
∑

Q∈Ci

|Q|s
∞
∑

j=0

(

2j
)1−s

≪
∑

Q∈Ci

|Q|s

≪ 1,
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establishing (3.4). Define, for each ε > 0, the sets

Gi
ε =

{

θ ∈ [−π/2, π/2] ;

∫

Lθ

(

fCi

θ

)2

dm < ε−1

}

, i ≥ 1.

Then m
(

[−π/2, π/2]\Gi
ε

)

≪ ε, and the same holds for the set

Gε =
⋂

i≥1

∞
⋃

j=i

Gj
ε .

If θ ∈ Gε, then

m (projθ(Ci)) ≫ ε , for infinitely many n,

which implies that m (projθ(K)) > 0. Finally, the set G =
⋃

i≥1 G1/i satisfies

m([−π/2, π/2]\G) = 0 and m (projθ(K)) > 0, for any θ ∈ G. �

A direct consequence is the

Corollary 4.1. The measure µθ = (projθ)∗(ms|K) is absolutely continuous with
respect to m, for m-almost every θ ∈ R.

Proof. By Theorem 1.1, we have the implication

X ⊂ K , ms(X) > 0 =⇒ m(projθ(X)) > 0, m-almost every θ ∈ R, (4.1)

which is sufficient for the required absolute continuity. Indeed, if Y ⊂ Lθ satisfies
m(Y ) = 0, then

µθ(Y ) = ms(X) = 0 ,

whereX = projθ
−1(Y ). Otherwise, by (4.1) we would havem(Y ) = m(projθ(X)) >

0, contradicting the assumption. �

Let fθ = dµθ/dm. By the proof of Theorem 1.1, we have
∥

∥

∥fCi

θ

∥

∥

∥

L2
≪ 1, m-a.e. θ ∈ R. (4.2)

Proof of Theorem 2. Define, for each ε > 0, the function fθ,ε : Lθ → R by

fθ,ε(x) =
1

2ε

∫ x+ε

x−ε

fθ(y)dm(y), x ∈ Lθ.

As fθ is an L1-function, the Lebesgue differentiation theorem gives that fθ(x) =
limε→0 fθ,ε(x) for m-almost every x ∈ Lθ. If we manage to show that2

‖fθ,ε‖L2 ≪ 1, m-a.e. θ ∈ R, (4.3)

then Fatou’s lemma establishes the theorem. To this matter, first observe that

fθ,ε(x) =
1

2ε

∫ x+ε

x−ε

fθ(y)dm(y)

=
1

2ε
· µθ([x− ε, x+ ε])

=
1

2ε
·ms

(

(projθ)
−1([x− ε, x+ ε]) ∩K

)

.

2We consider
∥

∥fθ,ε
∥

∥

L2 as a function of ε > 0.
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In order to estimate this last term, fix ε > 0 and let i > 0 such that C = Ci has
diameter less than ε. Then

ms

(

(projθ)
−1([x− ε, x+ ε]) ∩K

)

≤
∑

Q∈C
projθ(Q)⊂[x−2ε,x+2ε]

ms(Q ∩K)

≪
∑

Q∈C
projθ(Q)⊂[x−2ε,x+2ε]

|Q|s

≍
∑

Q∈C
projθ(Q)⊂[x−2ε,x+2ε]

|Q|s−1 ·m(projθ(Q))

≤

∫ x+2ε

x−2ε

fC
θ (y)dm(y),

where in the second inequality we used (3.1). By the Cauchy-Schwarz inequality,

|fθ,ε(x)|
2 ≪

1

2ε

∫ x+2ε

x−2ε

∣

∣fC
θ (y)

∣

∣

2
dm(y)

and so

‖fθ,ε‖
2
L2 ≪

∫

Lθ

1

2ε

∫ x+2ε

x−2ε

∣

∣fC
θ (y)

∣

∣

2
dm(y)dm(x)

≍

∫

Lθ

∣

∣fC
θ

∣

∣

2
dm

=
∥

∥fC
θ

∥

∥

2

L2

which, by (4.2), establishes (4.3). �

5. Concluding remarks

The good feature of the proof is that the discretization idea may be applied
to other contexts. For example, we prove in [8] a Marstrand type theorem in an
arithmetical context.
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