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Abstract

Let F be a holomorphic foliation (possibly with singularities) on a nonsingular manifold M, and let
V be a complex analytic subset of M. Usual residue theorems along V' in the theory of complex foliations
require that V' be tangent to the foliation (i.e. union of leaves and singular points of V' and F): this is
the case for instance for the blow-up of a nondicritical isolated singularity. In this paper, we will introduce
residue theorems along subvarieties which are not necessarily tangent to the foliation, including the blow-up

of the dicritical situation.

M.S.C. (A.M.S. classification): 53 C 12, 57 R 20, 55 N 15.



1- Introduction and backgrounds

In the theory of complex foliations, residue theorems have proved to be essential for
the analysis of their analytical properties. This is the case, for instance, of the Baum-Bott
residue formula [3] and the Camacho-Sad residue theorem [9], in the study and classification
of foliatons of complex compact surfaces by Brunella, [4], Mc Quillan [15] and Mendes [16].
This is also the case in the analysis of the trajectories of a holomorphic vector field around
an isolated singular point, whose blow-up produces and invariant exceptional divisor ([6]).
This is the so called nondicritical situation. Those residue theorems associated to foliations
tangent to a submanifold have been generalized in various directions (cf. [11][12][13][14][8] ;
a more complete bibliography is given in [17]). But they all required that the subvariety be

tangent to the foliation, i.e. union of leaves and singularities.

In this paper, generalizing [5], we will introduce residue theorems along subvarieties
which are not required to be tangent to the foliation. In particular, at least in section 3, we

study the dicritical situation.

Let F be a holomorphic foliation (possibly singular) on a smooth complex manifold M
without boundary, and let V' be a complex analytic subset of M of pure complex dimension

n (perhaps with singularities).
We shall study

- in section 2, the case where V' is nonsingular, M is the total space of a holomorphic
vector bundle E — V of rank k£ over V, the leaves of F have the same dimension n as V and

are generically transverse to the fibers of E along V,

- in section 3, the case where V is a locally complete intersection : this implies in
particular that the stable class of the normal bundle Ny (V') to the regular part Vo of V in M
has a natural extension N (V') to all of V' ; we shall assume moreover that F is generically
transverse to V' and that there is a neighborhood of V' isomorphic to some subbundle F' of
N (V). An example of this ([5]) is the blow-up of an isolated dicritical singularity of a complex
one-dimensional foliation in an open set of C™: this yields a 1-foliation on the total space of
the tautological bundle over the divisor V' of the blow-up (a complex (n—1)-projective space).
The foliation is there assumed to be transverse to V', except at a codimension 2 algebraic

subset ¥ C V. The subvariety X contains in particular the singular points of the foliation.

Background on the normal sheaf to the foliation (cf. [3]) :

We shall assume that V' is compact, and that F satisfies to the assumptions of Baum-Bott
([3]): the sheaf T'(F) tangent to the foliation (subsheaf of Op; modules and C-Lie algebras of
the sheaf Oy (T'M) of germs of holomorphic vector fields on M which are tangent to F) will
be assumed to be coherent and “full” (which means that a vector field is a section of T'(F)
if and only if its germ at every regular point of F is tangent to F). The coherence of T'(F)
implies in particular the coherence of the normal sheaf N'(F) = Op (T M)/T(F): thus, since



V' is compact, there exists after [2] a neighborhood M’ of V in M, and a Ay locally free
resolution of finite length r» < 2(n + k)

(6) 0= Aw(B) = Are(Bp 1) = -+ = Aw(Bo) = Awr ®0,,, N(F) =0,

where
N (F) still denotes the restriction to M’ of the normal sheaf to F,
O}y denotes the sheaf of holomorphic functions on M’ |
Ajr denotes the sheaf of real analytical C-valued functions,

E; — M’ denotes some real-analytical complex vector bundle over M’, and Ay (E;)

the sheaf of the R-analytical sections of its restriction to V.

Moreover, the element NF|y = >'_,(=1)7E;|y in K%(V) does not depend on the
resolution (*) and induces on V' N M the restriction of the stable class of the normal bundle
NoF to F in My, where M} denotes the set of regular points of F which are in M’.

We get in particular over M| the exact sequence of vector bundles

(*0) 0= Erlpy — Er-alagg = -+ — Eolag = NoF — 0.

Particular case of 1-dimensional foliations: For dim F = 1, the foliation is defined by
a morphism h : £L — TM of holomorphic vector bundles (£ denoting some holomorphic line

bundle). We have a Oy locally free resolution
0= Om(L) L Oy (TM) = N(F) =0

of N(F) , and in this case it is not necessary to tensor by Ap; (which is Oy, flat according
to [2]), so that NF = [TM — L].

Background on the machinery for producing residues (cf. [11][13]) :

Let S be a closed subspace of V' with connected components Sy, let [[U, be an open
neighborhood of S in V', where the U, denote open neighborhoods of the S)’s, such that
UxNU, =0 for A # p.

The long exact sequence in cohomology associated to the pair (V,V \ S), and the long
exact sequence in homology associated to the pair (V,S) are related by Poincaré duality
[P] and Alexander duality [A] in the following commutative diagram (called “the residue

diagram”):

—~ H*WV,V\S) -  H(WV) S HV\S -



Thus, whenever we have some class ¢ € H*(V') whose restriction 7(¢) to H*(V'\ S) vanishes,
this class lifts (canonically in many cases) to some ¢y € H*(V,V'\ S), so that we obtain the

residue formula

D @) ([Aa(wo)) = ¢ ~ [V],

where we have written [A](¢g) = ([.A]A(goo))A in Hap—y(S) = >y Hon—+(Sr).

The coefficients for the homology and cohomology depend on the coefficients for which
we have the vanishing theorem 7(¢) = 0. For instance, let (F};) denote a family of complex
vector bundles (j = 1,---,r) over V, and assume that there exists an exact sequence of
bundles over V' \ S

(*) 0—>Fr’V\S—>Fr—1‘V\S—>"'_>FO‘V\S_>0'

The data of () defines canonically an element £ in the relative K-theory K°(V,V'\ S) mapping
onto Y (—1)7F; € K°(V) by the natural map K°(V,V'\ S) — K°(V) (see [1] for instance).

Thus, for any ¢, we have
S @) (A (@(9) ) = e (3 (-1 By ) ~ V).
A J
in the homology with coefficients in Z.

But, on the other hand, if we need connections and Chern-Weil theory for proving this
vanishing theorem, coefficients will be R or C. In this case, we realize the diagram above by

the following one (called “Mayer-Vietoris” diagram) at the chain and cochain level:

0 — MV*(V,V\ §) y MV*(V) s QpRp(V\S) = 0
LA 1P !
0 = @\Hom(0F:"(U)),C) > Hom(MV™ *(V),C) - Q >0,

with the notation explained now. Denoting by (Q2},z(W),d,,) the de Rham differential
graded algebra of differential forms on any non singular manifold W, we called Mayer-Vietoris
complex the total Cech de Rham complex for the covering U = (V \ S, (U A)) of V, i.e:

MV (V) = 25V \ 5) & | @D (nUn) & 2501\ 50) |

with the differential D (e, (ax,am)k) = (dpro, (dppo,, —dy a0, + ak)x). It has a co-
homology naturally isomorphic to the de Rham cohomology H* (V') with C-coefficients. The
subcomplex MV*(V,V \ S) = @, (QER(UA) ® Vs (Ux \ S’A)) (called “relative” Mayer-
Vietoris complex) has a cohomology naturally isomorphic to the local cohomology of S with
C-coefficients H*(V,V \ §) = @& H*(Ux,Uy \ S») : it is in fact the kernel of the natural

projection m of MV*(V) onto Q7,z(V \ §), which realizes the restriction from V to V'\ § in



cohomology. We have denoted by @ the quotient which makes the bottom line of the above

diagram exact.

In this framework, the Poincaré duality [P]: H*(V) — Ha,—.(V) is induced by the map

(ao,(ak,am)k) 5 [(607(ﬁ>\760>\)>\) '_>/ o, A By +Z(/ ay A By - %ox /\B*)]’

To Tx 9T

from MV*(V') into Hom (MVQ”**(V), C), where Hs,_.(V,C) is computed as the homology

of the complex Hom (M V2n=(V), C) , T denotes any 2n dimensional compact manifold with
boundary in U, containing S in its interior, and 7y denotes the closure of the complement
of |J, 7x in V. Similarly, the Alexander duality [A] : @xH*(Ux,Ux \ Sx) = ®rxHan—«(Sy) is
induced by the map A : (Q*DR(U,\) ® Q5 (Ux\ SA))A — (Hom(Q%”g*(UA), C)),\ defined
by

@van) B [5 [ ans= [ a,ng],

Tx OTx

where Ha,—.(Sx,C) is computed as the homology of the complex Hom (QQD”R_*(U,\), (C).

Remark: This Mayer-Vietoris diagram can be used also even when V' is a singular variety,
by thickening V' in the ambient manifold M (see [13] for details).

2- Case of F generically transverse to the fibers of E along V'

We assume in this section that V' is non singular, M is the total space of a holomorphic
vector bundle £ — V of rank k over V, the leaves of F have the same dimension n as V, and
are generically transverse to the fibers of E along V. Let X be the set of points in V' where
F is either singular or tangent to a fiber of E. Let V) be the open set V' \ ¥ : we have then
two natural isomorphisms ® : TVy — TF|y, and ¥ : NoFly, — Elv,.

Remark : We assumed V' to be non-singular and M to be the total space of some bundle
over V only for simplification. We could in fact assume V' to be a locally complete intersection

in some M, or even only a coherent space (according to the terminology of [7]).
a) Localization of [NF|y — E] :
Combining (%) with ¥, we get an exact sequence of vector bundles
(%1) 0— Erlv, = Ercilvy = - = Eolvy, = Elv, = 0.
Since all bundles occuring in (*;) are in fact defined over all of V| we get an element
01 =[E|v,Erilv, - Eolv, B; (+1)] in K°(V,V\ %),

whose image in K°(V') by the natural map K°(V,V \ &) — K%V) is equal to [NF|y — EJ.
Therefore, the Chern classes c;(01) € H¥(V,V \ ¥;Z) are natural lift of the Chern classes



¢;([NF|y — E]) € H¥(V;Z). In other words, denoting by (E,\)A the family of the connected
components of ¥ and by Res, (c;,61) = (Res, (c;, 01))A the Alexander dual of ¢;(#;) in the
homology Ho,—;)(3;Z) = ©xHa - j)(Xn; Z), we get the

Theorem 1 : We have the following localization for the Chern classes of [NF|y — E| with

integral coefficients:

> ()Res, (¢j,601) = ¢;([NFly — E]) ~ [V],
A
where (. ) —~ [V] denotes the Poincaré duality, and (v, )« : Hommjy(2x) = Ha@mj)(V) the

map induced in homology by the natural inclusion ¢, : X\ C V.

Case dim F = 1: Assume that the foliation is defined by a morphism h : L — TM,
as explained in the first section, V' being a non-singular Riemann surface of genus g. We
have then: NF = [TM — L] and TV = [TM|y — E] in K°(V), so that [NF|y — E] =
[TV — L|y]. Assume also that the ¥,’s are isolated points my of V. Let (x,y1,y2, ", Yx)
be local coordinates near such a point my, such that V is locally defined by the equations
Yo = 0 (@ = 1,---,k) and the fibers of E are defined by x = constant. Let o, be a local

trivialization of £ near my, and v = h(o.) a vector field defining locally F:
0 0
v= A(x,y)% + ;Ba(xay)@'

Then, in the relative Mayer-Vietoris complex Q% o (Uy) @ Qhz(Ux \ {mx}), the component
of c1(61) on H2(Ux,Uy \ {my};R) is given by (0,—%2). In fact, if we define VX as the
connection of type (1,0) on L]y, satisfying V o, = 0, and VV as the connection of type
(1,0) on TV|y, satisfying VV-2 = 0, we have then ¥(2) = Z + 3, %(m,y)%, thus
U(2) = h(%0,). Therefore, the connection V'L =9(VY) on L|y\{m,} is the connection
of type (1,0) satisfying V' £o, = 44 5. Hence, a1 (V'E,VE) = — 44 " while ¢;(V*) = 0 and
c1(61) = (0,—4).

Consequently, Resy(c1,61) is the order of multiplicity of my as a zero of A(z,0). (It is

also the index of the projection A(z, y)% of v onto TV parallel to E). We then obtain the

Corollary to theorem 1 : If dim F = 1, we get, with the above notations, the formula
1 dA
e !
SIS g (ca(£) ~ V]
by YA
where v, denotes a small circle in V around m.
b) Localization of the characteristic algebra Chern"[E] in dimension * > 2[%] :

Since E is a vector bundle, there is a canonical flat connection on the vector subbundle
VE — M of TM — M defined as the set of the tangent vectors to the fibers of E, in



such a way that any holomorphic section o of E extends naturally as a section ¢ of VE
(notice: E = VE|y). Since the transversality is an open condition, there exists also a tubular
neighborhood My of Vy into M such that ¥ : NyFl|y, = E|y, extends naturally as an
isomorphism U : NoF|nz, — VE|u,.

Let w : T My — NoF|n, be the natural projection: for any holomorphic section o of E,
there exists a holomorphic vector field Y, on M, such that \if(ﬂ'(YU)) =o.

For any holomorphic vector field X tangent to Vj, denote by é(X ) some germ of vector
field tangent to F extending ®(X) near V. Let o be as above, and define

Vo = U(n([8(X), Yo]lv,)-

Lemma : This definition does not depend on the choices of ®(X) extending ®(X) and of Y,
such that \i/(ﬂ'(Yg)) =3.

In fact, two vector fields Y} and Y2 such that 7r(Y1) = 7r(Y2) differ from a vector field

g

tangent to . Since ®(X) is also tangent to F, 7([®(X),Y2 — Y2]) = 0.

Moreover, if (y1,---,yx) are local coordinates, linear in each fiber, arising from a local
trivialization of E, two extensions ®(X); and ®(X), of ®(X) differ locally by a vector field of
the shape 22:1 Yo Vo, Where v, is tangent to F. Thus, [B(X)s—®(X);, =2 3, ) has a restriction

to Vy equal to v, and projects therefore by 7 onto 0.

Corollary (Vanishing theorem) : The restriction c;(E)|y, of c;(E) to Vi vanishes for
any I such that |I| > [3] in the cohomology with real coefficients, where I = (i1,i2,- -, i)
denotes a multi index of integers i; > 0, |I| = i1 4 2is + - - - + kiy, and c; denotes the Chern

monomial (c1)™.(cg)®. - (k).
Proof : Let V° be the canonical connection of type (1,0) on E|y, defined by

Vo =¥ (n([®(X),Ys]lv,) for X € TVy = T (1),

and V%o = 0 for X € T®V(V};) when o is holomorphic.

This is a holomorphic connection. Therefore, for any local coordinates (x1, 2, -, z,) on Vjy,
the curvature form of V has only terms in dx; A dx; (but none in dx; A dZ; or dZ; A dZ;).

Thus, any polynomial of degree j > [§] with respect to the coefficients of the curvature must
vanish, QED.

Theorem 2 :

(i) Let V* be any connection on E|y, . For |I| > [2], the element (c;(V?*),cr(V°, V) is
a cocycle in the relative Mayer-Vietoris complex U5 5 (Ux)®Q5 1 (Ux\Sy), and its cohomology
class [(c1(V*),cr(VO, V)] € H2L(U,, Uy \ Sx;C) does not depend on the choice of V*.



(i) We have the formula

> (ta)+Resy(cr, B, V, F) = ¢1(E) ~ [V]

in the homology with coefficients in Z , where Resy(cy, E,V,F) denotes the Alexander dual
Of [(CI(VA)a CI(VO, VA))]

Proof: The fact that (c;(V*),c;(V?,V?)) is a cocycle is obvious after the vanishing theorem
above. If V* is any other connection on E|y, , then (¢;(V?*), c1(V?, V) —(c1(V?), 1 (V?, V7))
is equal to D(CI(VA,vk),cI(VO,VA,vA)), thus is a coboundary in the relative Mayer Vi-
etoris complex, hence part (i) of the theorem. Then, part (ii) results from the general residue

machinery recalled above.

Example: casen=%k =1, ¢; = ¢; (cf. [5])

We assume that (x,y) are local coordinates near a singular point m) isolated in X, y
being a linear coordinate in each fiber of E and V' being defined locally by y = 0: there is some
local holomorphic non vanishing cross section o of E, such that (x,y) are the coordinates
of the point yox(z) in E, and we identify oy (z) with (%)(m,o)- If F is locally defined by
v = Az,y) 2 + B(m,y)a%, and if my has coordinates (0,0), then A(x,0) # 0 for z # 0.
With respect to the above trivialization of E|y,, the connection form wy of VY is given, on
Uy \ my, by wy = —a%\y:o(%). With respect to the same trivialization of E|y,, we may
define V* by the connection form wx = 0. Then (c1(V?*),e1(V°,V?)) = (0,wp). Thus
Resy(c1, E,V,F) is the usual Cauchy residue of —6%|y:0(§) at my. Applying the Theorem
2 above, we recover the theorem C of [5], generalizing the original case ([9]) where F was

tangent to V:

Corollary to theorem 2 : For n = k = 1, we get, with the notations above, the formula

%z/aﬁy(g) — a(B) ~ V)

where v, denotes a small circle in V around m.

3- Case of F generically transverse to V'

We assume in this section that V' is a a locally complete intersection, which implies in
particular that the normal bundle Ny(V) — V; to the regular part Vp of V in M has a
natural extension N(V) — V to all of V. We assume also that F is generically transverse
to Vo. Let w : TM|y, — No(V) be the natural projection, Vj be the open subset of Vj
where 7 is injective. We shall assume moreover that some vector subbundle F' — V of N(V),
with rank equal to the dimension of the leaves, is given, such that, over Vj, 7 induces an
isomorphism TF ’Vol — F ‘Vol' Identifying T F ’Vo/ and F ‘Vol by this isomorphism, we get an
exact sequence 0 — F|y: — T'M|y: — NoF — 0. Then, choosing some (smooth) splitting



0 = NoFlvy — TMly; — Fly; — 0 of this exact sequence and combining with (xo), we get

an exact sequence of vector bundles
(%2) 0= Erlyy = Ep_alyy = -+ = Eolyy > TM|yy — Flyy — 0,
Since all bundles occuring in (*9) are in fact defined over all of V', we get an element
0> = [Erlv, Evr1lv, - Eolv,TM|v, F; (x2)] in K°(V,V\ &),

not depending on the chosen splitting (two of them being homotopic), and whose image
in K%V) by the natural map K°(V,V \ ¥’) — K°V) is equal to [NF|y — TM|y + FJ.
Therefore, the Chern classes cj(f2) € H*(V,V \ ¥';Z) are natural liftings of the Chern
classes ¢;([NF|y — TM|y + F)]) € H¥(V;Z). In other words, denoting by (E’A)A the family
of the connected components of ¥’ and by Ress(c;,02) = (Resx(c;, 92))A the Alexander dual
of ¢;(62) in the homology Hy(,, ;(X';Z) = ®xHan— ;) (X); Z),we obtain

Theorem 3 : We have the following localization of the Chern classes of [NF|y — TV]:

> (ta)«Resa(cj, 02) = ¢;(INFlv — TM|y + F]) ~ [V],
A
where (. ) —~ [V] denotes the Poincaré duality, and (1)« : Hon—jy (X)) = Hom—jz)(V) the
map induced in homology by the natural inclusion vy : ¥\ C V.

In particular, for dim F = 1, the foliation is defined by a morphism h : L — TM as
explained in the first section. Then [NF|y — TM|y + F] = [F — L]y] in K°(V), and 6, is
then defined by the isomorphism £|V(; L F |V0/ equal to the composition of h : L — TM
with the projection TM|y — N(V') parallel to TV

If we assume moreover that n = 1, that ¥} is an isolated point m, and that h is given
near my by mapping a local holomorphic everywhere non-zero section 1, of £ onto the vector

field A% +Ba% (same notations as in the example after theorem 2), then we get as a corollary

Corollary to theorem 3 : For dim F = 1 and n = 1, we get, with the notations above,

the formula
1 aB
=2 | = (e —akh) ~ V)
2 B
AU
where 7, denotes a small circle in Vj around m.

Proof: This formula results from the Chern-Weil theory for K° in the framework of the
Mayer-Vietoris complex (see for instance [13], [12], [10] or [17]). The residue is in fact given

by the Alexander dual Ay of the cocycle (o, e (VF, p(vﬁ))> in MV2(Uy, Uy \ {my}), where

V¥ and V# denote trivial connections on F and £ near my satisfying respectively V¥ a% =0



and VX1, = 0 respectively . The isomorphism p being given by p(1;) = Ba%, we get
c1 (VF,p(Vﬁ)) = 4B 'hence the formula III’ (see [12] or [10] for further explanations).

Remark : When we have simultaneously n = 1 and k& = 1, assume that ¥ U ¥’ has only
isolated points my, and denote by Zx(F) (resp. Px(F) ) the order of my as a zero (resp. a
pole) of the meromorphic function % near my. Substracting then the formula in the corollary

of theorem 3 from the formula in the corollary of theorem 1, we recover the theorem D of [5]:

Y ZNF) =) PA(F) =a(BE) ~ [V]+29 -2

Example : We consider the blow-up of a holomorphic vector field v in C?, at the origin
0 € C® which is supposed to be an isolated dicritical singularity. We get a holomorphic
1-foliation F on the total space M of the tautological line bundle L — D over the divisor
D = CP(2), and we assume it to be generically transverse to D. Let I" be the tangency locus
of F in D: this is an algebraic curve which is a locally complete intersection (hypersurface in
D which is smooth): it has therefore a normal bundle Np(T') in D which is a subbundle of
the normal bundle Nj;(T') in M. We shall assume that, along I", F is not only tangent to D
but also transverse to I', except at some isolated points m; where either F is tangent to I" or

is singular (T itself being possibly singular at such a point).
Let d be the order of v at 0, and k (k < d) be the degree of the algebraic curve I" in D.

1) Applying Theorem 3 for V.= D, F = L, L|p = L? and ¥’ =T, the total Chern class
¢([F — L|p) is equal to 11:4(17 =1+ (d— 1)y +d(d — 1)y2, where v denotes the Chern class
c1(L ) of the bundle L dual to L. Thus, since T is connected,

Resr(ca,62) = d(d — 1), while Resr(c1,602) = (d — 1)[I].

2) Applying now the corollary to theorem 3 for V =T, F = (L)*|p, L|r = (L%)|r and

¥ = {m;}, the total Chern class ¢([F — L|r) is equal to (}fg; =1+ (k+d)y, and

> “Resp, (c1,62) = k(k +d).
Take for instance the blow-up of the holomorphic vector field

0 0 0
3 3 2 2
v=(xz — z4+2°)— + (2° + 2°y)=—
(@z+y”) 5+ e+ )8y+( +27y) o
at the point 0 € C*. Denote by p : M — C? the blow-up, and U,, U, and U, the three open
sets in M with respective coordinates (x1,y1,21), (2,¥2, 22) and (x3,ys, 23) such that
p(z1,Yy1, 21) has coordinates x = x1 , y = 21y , 2 = 2121,
p(z2, Y2, 22) has coordinates x = yoxa , y = Yo , 2 = Ya2o,

p(x3,ys, z3) has coordinates x = z3x3 , y = 23y3 , 2 = 23.



The foliation F is then defined
on U, by the vector field

v, = (21 +$1(3/1)3)i +(1- (3/1)4)i + (y1 — Zl(yl)g)%1

Oy oY1
on U, by
and on U, by
=T ((y3)3 - ($3)3y3)6i * ((x3)3 - (953)2(?/3)2)i + (1 + Z3y3(w3)2)i.
s dys 97

The points in D with homogeneous coordinates [X,Y,Z] are thus given by (0,y1,21) =
[1,y1,21] in Uy N D, (22,0, 22) = [x2,1,29] in U, N D, and (z3,ys3,0) = [z3,ys,1] in U, N D.
Let H be the projective line Z = 0, through the points mx = [1,0,0] and my = [0,1,0]. We
observe that F is everywhere transverse to D except on H, and that it is everywhere tangent

to D along H and transverse to H except at myx and my where it is tangent to H. Thus,
d=2and k=1.

For V=D, F=1L, L|p=L?and ¥ = H, we get:

c([F—L|p) = 11:—277 =1+~ + 292, thus: Resg(ca,02) = 2, and Resy(c1,02) = [H].

For V=H,F =1Ly, L|p = L?|g and ¥ = {mx,my}, we get:
Res;n (c1,62) = 1 since v, = ylaizl (modulo TH) on HNU,,
and Res,,, (c1,02) = 2 since v, = (xg)Qaiz2 (modulo TH) on HNU,.
Observe that the sum of these residues, equal to 3, is also equal to ¢, (L — L?) ~ [H], as

predicted.

Remark : We could as well take for any n the blow-up F of a vector field v in C™ having an
isolated dicritical singularity at the origin. We assume that there is a stratification Vo C Vi C
o+ C Vo C V1 = D of the divisor D =2 CP(n — 1) by locally complete intersections V;
of pure dimension j in M, with successive projections Ny (Vj) 2N M(‘/j+1)|vj — 0 of the
normal bundles, with F transverse to V4 for any j off V; and tangent to V1 (or singular)
along V. This stratification generalizes the stratification {m;} C I' C D seen above in the
case n = 3. For each j we get residues of the previous kind taking for F — V the bundle
Ker p; — V; . Notice that we always have Nj;(D) = L (the tautological line bundle over D),
that V,, s is an algebraic connected hypersurface of D whose degree k is at most equal to the
order of the vector field v in C" at the singular point, and that we have the exact sequence
of vector bundles 0 — L = Nas(Vu ) 25 Nar(Vio 1)l , — 0.
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