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Abstract

We propose a conjecture concerning 3-manifolds (which implies the Q conjecture of Myers’) and
construct a countable sequence of examples which supports it.

1 Introduction

A well-known problem in 3-manifold topology is the description of those groups which realize as funda-
mental groups of 3-manifolds, 3-manifold groups, for short. We will now recall some facts and conjectures
in this context relevant for this note.

An old result of Evans and Jaco states that every abelian subgroup of a compact, almost sufficiently
large 3-manifold is finitely generated (cf. Corollary 3.3 on page 95 in [2]). In the same paper on page
95 it is remarked that no subgroup of any known compact 3-manifold group is isomorphic to a noncyclic
subgroup of Q4 , the additive group of rationals.

More recently, R. Myers set forth the Q conjecture (cf. Conjecture 4 on page 1511 in [5]):

Conjecture 1.1 Every subgroup of an infinite compact 3-manifold group which embeds in Q4 is cyclic.

The QQ conjecture is important because should it be true it could be used to prove Thurston’s Hyper-
bolization Conjecture (cf. Corollary 2 on page 1511 in [5]):

Conjecture 1.2 Let M be a closed 3-manifold such that w1 (M) is infinite and does not have any rank
two free abelian subgroups. Then M is hyperbolic.
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Moreover, the Q conjecture can be seen as a reformulation of Evans-Jaco’s remark since an abelian
subgroup of a compact 3-manifold group is either finitely generated or embeds in Q4 (cf. [3]). We remark
that it is not known whether every abelian subgroup of a compact 3-manifold group is finitely generated
or not.

In this way we suggest the following approach. Consider an abelian subgroup A of the fundamental
group 71 (M) of a compact 3-manifold M.  Suppose that there is a simple closed curve L in M with
irreducible exterior, M \ L such that w1 (M) embeds in w1 (M \ L). Then A is finitely generated by the
result of Evans and Jaco mentioned before since 71 (M \ L) is the fundamental group of a Haken manifold
(it suffices to consider a tubular neighborhood of L in M). Now if A is finitely generated and embeds in
Q4 then it is cyclic (cf. [4]). Hence we propose the following conjecture:

Conjecture 1.3 For every compact 3-manifold M, there is a simple closed curve L with irreducible
exterior such that m (M) embeds in w1 (M \ L).

Clearly if this conjecture is true then the Q conjecture is also true, from the remarks above. In order
to support this approach, we construct below a sequence of 3-manifolds, My, and a sequence of closed
curves, Ly, such that 71 (M) embeds in 71 (M}, \ Lg41) for every k > 0.
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2 The Sequences

We construct a sequence of 3-manifolds, Mg, My, Ma, ... and a sequence of links, L, (C My), L2(C M),
L3(C Ms), ... such that:

M() D Mo\L1 ~ M1 D Ml\L2 >~ M2

and:

w1 (Mo) — m (Mo \ L1) = m (M) < m (M \ Le) = m(Mz) — ...

where ~ denotes homotopical equivalence, = denotes group isomorphism, and < denotes group monomor-
phism. In particular, we set My = S and choose a link L; in S® such that the first embedding at the
level of the fundamental groups holds (trivial). Then we choose a link Lo in My = M, \ Ly such that the
second embedding at the level of the fundamental groups holds. And so on and so forth.

In 2.1 below we introduce the material necessary for constructing the sequences. In 2.2 we construct
them.

2.1 The Background Material

In this subsection we introduce notation and develop the background material necessary for our construc-
tion. Detailed exposition of it can be found in [1].
The following is a presentation of the braid group on n strands

By, Z{01,...,0n-1 | 0i0i410; = 0i410:0541; 0:05 = 004, i —j| > 1)

where o; denotes the standard generator of the braid group (see figure 1)

There are other other ways of conceiving the braid group on n strands. The one that will interest
us here is obtained by regarding it as a subgroup of the automorphism group of the free group on n
generators, Aut(F),). The free group on n generators, F,, = (1, ..., x, ), is considered as the fundamental



Figure 1: 0; € B,

group of a disc with n holes, where the generators, x;, are the usual loops around each hole (notation:
z1,-..,%,). Bach braid 8 € B, gives rise to an element in Aut(F,,) in the following way. For each o; € B,;:

Ti0; = TiTij41T4, Ti+10; = Tj, (EjUi =.’L'j j ¢ {Z,Z+1}

The extension to the homomorphism is unique allowing each 8 € B, to be realized as an element of
Aut(F,) - notice that the o;’s act on the right. We will not carry through the characterization of B,, as
a subgroup of Aut(F,) for it is beyond our needs in this note. We now recall how the fundamental group
of the complement of a link in S$® (link group, for short) can be computed using this characterization of
B,.

Any link L in S® is equivalent (Alexander’s Theorem) to the closure of a braid 3 € B, for some
n € Ny (the closure of a braid 8 € B,, will be denoted by /3’) In this way

77-1(53 \L) = 7Tl(s’s \BA) = <$17 -~ T | Z; = .Z’lﬂ,l = 17 7")
where 8 in the presentation above is regarded as an element of Aut(F,), as explained before.

2.2 An “Embedding” Sequence of Fundamental Groups

We now begin the construction of a sequence of 3-manifolds, My, M1, Ma, ... and a sequence of links, L1,
Lo, L3, ... such that each my (My—_1) will embed in 71 (Mg—1 \ Lg), for k = 1,2,.... We set My = S°. At
each step k € Ny we set Ly, equal to the Hopf link and obtain M}, by removing the current Hopf link, Ly,
from the previous manifold, My_;. We remark that the Hopf link can be seen as the closure of 67 € B

(see Fig. 1).

Figure 2: 07 € By

Note that for k € Ny, the (k+ 1)-th Hopf link will be linked to the previous one (see Fig. 2 for k = 1).

So My = S3. In step 1, let L1 = 02 and remove o7 to obtain M; = S%\ ¢?. We will now compute the
link group of L;. According to the results mentioned above:

m(S*\ 0?) 2 (21,22 | 1 = 2107)

and since :Ulaf = xlxgxl_lal = xlmzxflxlmlmz_lel = x1x2x1x2_1x1_1, we have:



m1(S*\ o) 2 (21,22 | [21,22] = 1)
thus we see that 7 (S®) = 1 embeds in a trivial way in m (S® — 67) = (21,72 | [21,72] = 1).
In step 2, we now link a Hopf link (full line) to the previous Hopf link (dim line) (see Fig. 2).

N

>

Figure 3: Hopf link linked to Hopf link (upon braid closure)
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In this way, let Lo be a Hopf link, again, and My = S® — L;. The knot group of Ly is 71 (M7 \ L»)
w1 (((S2\ L1) \ Lo)) = 71 (5% \ 020202), and a presentation for the latter group is given by:

———
3\ 2 2 9\~ 2 2 2 2 2 2 .2 2 2
m(S°\ 070303) = (T1,%2,%3, 24 | T1 = 21070503, To = X2070503, X3 = X30{0503,)

1

We will use the notation: z xy := yzy " in order to simplify the calculations.

T3 = T3010505 = 30505 = T20203 = (T3 * 2)05 = ((T4 * T3) * T2)03 = (T3 * (T4 * T3)) * T2

Analogously,

Ty = mzafagag = 561010%0% = (zo * ml)agag = ((w3 * z2) * xl)agag = ((z2 * (x3 x 22)) * xl)ag
= ((m2 * ((x4 * x3) * T2)) * x1)o5 = (2 * ((x3 * (T4 * T3)) * T2)) * 21
and for z1,
T = xlafagag = (g * 371)010303 = (z1 * (T2 * wl))agag = (z1 * ((x3 * T2) * .’IZ’1))O’20§
= (@1 * (T2 * (23 * 22)) * 1))05 = (21 * (€2 * (4 * 3) * T2)) * 21))03
=1 * (w2 * (23 * (T4 * T3)) * T2)) * 1)



Replacing x3 for (z3 * (x4 * 23)) * £2 on the second equation and 3 for (x2 * ((z3 * (x4 *T3)) *T2)) * 21
on the first equation we have:

23 = (23 * (T4 * T3)) * T2
o = (T * T3) * T1

r1 = X1 *2T2

So, from the last equation, £; and 2 commute, which implies that £, and 3 commute, which in turn
implies that x3 and x4 commute:

[CL’l,.’IJz] =1
[CL’Q,.’IJ3] =1
=1

[1123, 1'4]

Thus a presentation of 71 (My—1 \ Li), the knot group of Ly, is:

(1,02, 23,24 | [T1,22) =1, [22,23] =1, [x3,24] =1)

Moreover, consider the homomorphisms:

¢ o (xlaw? | [$17$2] = 1) — (mllax‘lz’xgaxil | [.'L"l,SL"2] =1, [xlz’xg] =1, [il?é,l’i] = 1)
T — x]
Ta — x4
and
¢1 : <3§'I1,.’L'12,.’L'é,.’l;'£1 | [.1,"1,.2;',2] = 17 [1'[271'{5] = 1a [xéamil] = 1) — <$1;$2 | [331,1'2] = 1)
x) — T1
;[;'2 — ZIo
xh — 1
xy — 1

Clearly, 41 o ¢y is a group isomorphism so ¢; is a monomorphism, hence 71 (M1) = (z1,22 | [21,22] =
1) embeds in {z1,%2, 23,24 | [21,22] =1, [22,23] =1, [23,24] = 1).

Proceeding as above, in the k-th step we will be removing a (linked) Hopf link from the M}_; manifold
(see Fig. 2 for the k =1 case). Arguing as before, any presentation of the knot group is equivalent to a
presentation of the fundamental group of the complement in S® of the closure of 6203...02,_,0%,_, € Bay.
The next proposition will yield the form of the relations for the presentation of my (My_1 \ L) (as before

xxy:=yxy ).

Proposition 2.1 For each k € Ny, consider the set of expressions in the free group Fop = {(T1, ..., Tag):
T; 0505.05 905k, §=1,2,..,2k—1

The calculations yield:

(mi * (»’Ei+1 %% (m%_z * ((m%_l * (Top * Tak—1)) * :czk_z)) * ..k xi)) * Ti_1

for2<i<2k-1, and

1 * ((@, * (m3 Kok (x%_Q * ((;m_1 % (Zog * Top_1)) * m_z)) Kok m)) * $1>

fori=1.



Proof: The proof will be by induction on k. Since particular cases have already been calculated (for
k =1,2) we will just consider the induction step.
Consider the following subset from the (k 4 1)-th set of expressions:

2 2 9 2 ) o
z; (070505 205 1)02,02,41, =1,2,..,2k—1

Using the induction hypothesis we have:

2 2
(.’Ez’ % (xi—f-l X ... % (:17219—2 % ((.’L'Qk_l % (xgk % ajgk_l)) % xgk_g)) S 3 .’Ez)) *Ti—1 U2kg2k+1

for2<i<2k-—1,and

2 2
T *x ((Z‘g * (.’L’g E S 3 (.Z'Qk_g * ((.Z'Qk_l * (.Z'Qk * Z'Qk_l)) * Z'Qk_g)) k...% .’L'g)) * .’L’1> U2k02k+1

for i = 1.
Now the 03, will act on za, replacing it by 2o * (2k41 * 21 ); analogously the o3, will act only on
Tok41 replacing it by Tog41 * (.Z'2k+2 * $2k+1)- In this way,

(.’L'i * (xz’—i-l X ...k (;L'Qk k (($2k+1 * (JL'QIH_Q * $2k+1)) * .’L‘Qk)) L .’L',)) * Ti—1

for2<i<2k-1,and

Ty * ((:L'Q * (.’63 * ...k (.’Ezk * (($2k+1 * (x2k+2 * $2k+1)) * il':gk)) X ... % SL‘Q)) * Ill'1>

for i =1.
Now for the remaining two expressions:

2 2 9 2 2 2 2 2 2
{33% (01(72---‘72k—202k—1)02k02k+1 @{x% 02k—192k02k+1 o

2. 2 2 2 2 2 2 2
T2g+1 (‘71‘72"'U2k—202k—1)02k02k+1 L2k4+1 02102811

(-'L'2k * (($2k+1 * (Tapta * Tapt1)) * $2k>) * Tok—1
(T2ry1 * (Torpo * Topy1)) * Top
which completes the proof. |
Proposition 2.2 For each k € Ny,
71 (83 \a%jcg\k_l) =z, Dok | [Ty Tip1] =1, i=1,...,2k — 1)
Proof: By the previous proposition we know that, for any k € Ny,

T;=T; 0rOsp_q, §=1,..,2k—1 &

i = (.’L‘@ * ($i+1 * ...k ($2k—2 * (($2k—1 * (xzk * $2k—1)) * .’I}zk_z)) * ...k 371)) *Ti—1, 2 S ) S 2k —1

T1 =1 * ((xz * (:cg * L.k (x2k_2 * <(a:2k_1 * (Tok * Top—1)) * xzk_2)) * Lk w2>) * :c1>, i=1

We will now prove that this last system of relations is equivalent to [z;,z;4+1] =1, i =1,...,2k — 1, by
induction on k. Since particular cases have already been calculated we just prove the induction step.
Consider the following subsystem from the (k+1)-th system of relations.



T; = (.Z'i * (.’L’H_l X ... (.’L’zk_l * ((.Z’gk % ((x2k+1 * (.’L'QIH_Q * m2k+1)) % .Z'Qk)) * 1'2]9—1) e X .’L',l)) * Ti—1

for2<i<2k—1,and

T1 = X1 * ((.’L’Q 3 (:L'g % ...<£L‘2k1 * <($2k 3 (($2k+1 * ($2k+2 * :L'2k+1)) * .Z'Qk)) * .’L’2k1> e Xk SL‘Q)) % .’L’1>

fori=1.

Set x}, = ((x% * ((m2k+1 * (Togyo * Togy1)) * a:zk)). With this substitution the system above reads:

T; = (m, * (mi+1 * oo(Tag—1 * (Thy, * Tag—_1))... * x,)) * L1

for2<i<2k-1,and

T =21 * ((a@ * (m3 * o (Top—1 * (Thy * Tag_1))... * a;2>> * x1>
fori=1.

By the induction hypothesis, this is equivalent to [2;,zi+1] =1, i =1,...,2k — 2 and [zox—1,25;,] =1
for i = 2k—1. Let us now consider the relations corresponding to ¢ = 2k, 2k+1 along with [zor_1,25,] = 1,
with z, replaced by its expression in terms of .

Zokt1 = (Tok41 * (Topg2 * Topg1)) * Top

Tog = ($2k * (($2k+1 ($T2k42 * Tak41)) * 372k)) * Tok—1 =

T2k—1 (-Tzk * (($2k+1 (*$2k+2 * $2k+1)) * l“zk)) = ($2k * (($2k+1 (*$2k+2 * $2k+1)) * 33216))3721%1

T2k+1 = ($2k+1 * (-'L'2k+2 * $2k+1)) * Lok
Tog = (wzk * $2k+1) * Tog—1 =

$2k71(1’2k * $2k+1) = (1‘2k * $2k+1)$2k71

Tokt1 = T2k41 * (T2kt2 * Tokt1) [Tokt1, Tong2] =1
Lok = Tag * Tag41 < Q [T2k, Topg1] =1
Dok 1(Tak * Tart1) = (Tak * T2gr1)Tak 1 [Top—1,22x] = 1
which finishes the proof. [ ]

Theorem 2.1 The construction above exhibits a sequence of links, {Ly}, and a sequence of manifolds,
{M}, with L, C My_1, such that w1 (M) embeds in w1 (M, \ Ly1), for each k € Ny. Moreover, for
each k € N;, the embedding can be realized as follows:

Sk ¢ AT1y e Tok | [T Tiga] =1, i=1,.,2k—1) — (@i, ..., Thpgn | [@hTia] =1, i=1,..,2k+ 1)

i=1,..,2k
Proof: Consider the homomorphism:

Yr o (&, Thpys | [Thai] =1, i=1,..,2k+1) — (z1,.,z% | [ti,zia]=1, i=1,...,2k—1)
i=1,..2

!
Topt1 +— 1
!
Topte > 1

Clearly, for any k € Ny, 9 o ¢y, is a a group isomorphism which yields the result. |
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