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Abstract. In [1] appears the Focal Stability Conjecture: the focal
decomposition of the generic Riemann structure on a manifold M
is stable under perturbations of the Riemann structure. In this
paper, we prove the conjecture when M has dimension two, and
there are no conjugate points.
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1. Introduction

Let M be a compact, smooth manifold of dimension m, and let
R = Rr be the space of Cr Riemann structures on M , equipped with
the natural Cr topology, 2 ≤ r ≤ ∞. Fix p ∈ M . The kth focal
component with respect to g ∈ R at p is

σk = {v ∈ TpM : ∃ exactly k vectors v = v1, . . . , vk ∈ TpM with

|v1| = · · · = |vk| and exp(v1) = · · · = exp(vk)},
where 1 ≤ k ≤ ∞, and | |, exp refer to the Riemann structure g.

The focal decomposition TpM =
⊔
k σk is said to be focally stable

if a small perturbation of g has only a distant topological effect on⊔
σk. Precisely, we require that given ε > 0 and given a compact set

S ⊂ TpM , there is a neighborhood U of g in R and there are balls
B,B′ ⊂ TpM such that for each g′ ∈ U ,

(a) S ⊂ B ∩B′.
(b) There is a homeomorphism h : B → B′ that sends each σk(g)∩B

onto σk(g
′) ∩B′.

Thus, the focal decomposition
⊔
σk enjoys a kind of structural stability.

In [1] we investigated the concept of focal stability with an eye to
proving the following Focal Stability Conjecture: the generic Rie-
mann structure is focally stable. (Since R is an open subset of a com-
plete metric space, genericity makes sense.) The main result of this
paper concerns Riemann structures that have no conjugate points. It
is most easily stated for the open set N ⊂ R of Riemann structures on
TM whose Gauss curvature is everywhere negative. See Section 7 for
a discussion of the more general case that g has no conjugate points.

Theorem A. For a compact manifold of dimension two, the generic
Riemann structure g ∈ N is focally stable.

A different sort of result is also given. It concens surfaces of constant
negative curvature. Fix a compact smooth surface of genus s ≥ 2,
such as the bitorus, and let H denote the nonempty set of Riemann
structures on M with curvature everywhere equal to −1. Since H is
a clsoed subset of R, genericity in H makes sense. Modulo isometric
deformations H is the Teichmuller space τs.

Theorem B.
(a) Fix g ∈ H. For the generic p ∈ M , the focal decomposition of

TpM is stable with respect to perturbations of p in M .
(b) Fix p ∈ M . For the generic g ∈ H, the focal decomposition of

TpM is stable with respect to perturbations of g within H.
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2. Mediatrices

When the Riemann structure on M has non-positive curvature, there
are no conjugate points and so expp : TpM →M is the universal cover-

ing space. Let ḡ be the lift of g to TpM , and let d̄ be the corresponding
metric on TpM . The focal decomposition of TpM can be described in
terms of equidistance loci, called mediatrices by Peter Veerman in [2],
as follows. A vector v1 ∈ σk has k “friends” – vectors v1, . . . , vk ∈ TpM
of equal length and equal exponential image. (A vector is always a
friend of itself.) This means that there are exactly k points in exp−1

p (p),
one of which is the origin Op of TpM , and from which v1 is equidistant
with respect to the metric d̄. See Figure 1.

Figure 1. Mediatrices µ corresponding to the focal de-
composition. The d̄-distance from v1 to Op, p̄2, p̄3 is `.
The vectors v1, v2, v3 have common exponential image q,
while Op, p̄2, p̄3 have exponential image p.

3. A Multitransversality Result

In [1], following Mather, we considered the multi-exponential map

Ek : V k
p ×R → (M × R)k

(v1, . . . , vk, g) 7→ (exp(v1), |v1|, . . . exp(vk), |vk|),
where V k

p is the set of k-tuples of distinct nonzero vectors in TpM , and

exp, | | refer to the Riemann structure g. The diagonal of (M ×R)k is

∆ = {(q, `, . . . , q, `) : q ∈M and ` ∈ R}.
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Theorem 6.1 of [1] states that if k ≥ 3 then Ek is transverse to ∆. Here
we need also the case k = 2. Although the proof becomes easier if we
use a negative curvature hypothesis, we give the proof in general, since
we hope to use the theorem as tool when M has conjugate points.

Theorem 3.1. E2 : V 2
p ×R → (M × R)2 is transverse to ∆.

Proof. We give the proof in the case that M has dimension two, the
main difference from the higher dimensional case being notational.

Lemma 6.3 of [1] states that, given L > 0, there is an open-dense
set G(p, L) ⊂ R such that for g ∈ G(p, L), there are at most a finite
number of geodesic loops γ at p having length ≤ L, and that

(a) γ is not a closed geodesic. (That is, the vectors tangent to γ at
its beginning and end are distinct.)

(b) γ is “single” in the sense that it meets p only at its beginning and
end, although other self-intersections are permitted.

(c) Under perturbation of g, γ evolves continuously: it does not dis-
appear or bifurcate.

Although some of the geodesic loops γ may be self-conjugate in the
sense that there is a transverse Jacobi field J along γ that vanishes
at both ends of γ, a perturbation of g eliminates this feature. No
such self-conjugacy can be created by a small perturbation of g, so we
can restrict attention to Riemann structures in an open-dense subset
G∗(p, L) ⊂ G(p, L) that have no self-conjugate geodesic loops of length
≤ L.

Let P = (v1, v2, g) ∈ V 2
p × G∗(p, L) have E2-image Q = (q, `, q, `) ∈

∆. Let S be the sum S = Image(TPE
2) + TQ∆. We must show

S = TQ(M × R)2.

To do so we choose a basis of TQ(M × R)2 as follows.
The natural inclusions

M ↪→ (M × R)2 M ↪→ (M × R)2

z 7→ (z, `, q, `) z 7→ (q, `, z, `)

induce isomorphisms

i1 : TqM → TqM × `× q × ` i2 : TqM → q × `× TqM × `
into the tangent space TQ(M × R)2.

We refer to the geodesics t 7→ exp(tvj) as γj, j = 1, 2, and to their
terminal tangent vectors as w1 = γ′1(1), w2 = γ′2(1). The time pa-
rameter t is always restricted to [0, 1]. Choose vectors u1, u2 ∈ TqM ,
normal to w1, w2. This gives bases {u1, w1}, {u2, w2} of TqM , which
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the inclusions convert to a basis {e1, f1, h1, e2, f2, h2} of TQ(M × R)2;
namely

e1 = i1(u1) f1 = i1(w1) e2 = i2(u2) f2 = i2(w2)

where h1, h2 are tangent to the appropriate factor R in (M × R)2.
Case 1. The geodesics γ1, γ2 are unequal pointsets. We will show

that E2 is submersive at P , i.e., that

ImageTPE
2 = TQ(M × R)2.

Because γ1, γ2 have the same length, neither contains the other, so
there are “free spots” – points z1 ∈ γ1 \ γ2 and z2 ∈ γ2 \ γ1. (Note that
even for the generic g, q may be conjugate to p along these geodesics.)
See Figure 2.

Figure 2. Varying g at a free spot z controls the end-
point q = γ(1) of the geodesic γ.

Lemma 6.2 in [1] states that perturbation of g in the neighborhood
of the free spots causes free and independent motion of the endpoints
of γ1, γ2. Furthermore, perturbation of v1 along itself makes `1 = |v1|
vary linearly; and yoked to this variation of `1, the endpoint q1 = γ1(1)
varies dependently along f1. The corresponding facts hold for v2, so
we see that the image of TPE

2 contains the vectors

e1, f1, f1 + h1, e2, f2, f2 + h2,

which is a basis for TQ(M × R)2. This demonstrates that E2 is sub-
mersive at P . Submersivity implies transversality.

Case 2. γ1, γ2 are equal as point sets – they are merely the same ge-
odesic loop γ at p, traversed in opposite directions. See Figure 3. This
implies that there are no free spots, so perturbation of the Riemann
structure is futile.

Because γ is a geodesic loop, but not a closed geodesic, the terminal
vectors w1, w2 are linearly independent. Since they have equal length
and are perpendicular to u1, u2, the coefficients b, d in the expression

w1 = au2 + bw2 w2 = cu1 + dw1.
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Figure 3. A geodesic loop.

satisfy

|b|, |d| < 1.(1)

Because the loop γ is not self-conjugate, variation of v1 perpendicular
to itself produces free and independent variation of the endpoint q1 =
γ1(1) perpendicular to w1. The same is true for v2. Thus, the image
of TPE

2 contains the vectors e1, e2. As in Case 1, variation of v1, v2

along themselves gives vectors f1 + h1, f2 + h2 in the image of TPE
2.

Altogether, then, we have four vectors

e1, f1 + h1, e2, f2 + h2 ∈ TPE2.

The curves

δ1(t) = (γ1(t), `, γ1(t), `) δ2(t) = (γ2(t), `, γ2(t), `)

are contained in ∆, and hence TQ∆ contains their tangents at t = 1,
namely,

δ′1(1) = f1 + i2(au2 + bw2) = f1 + ae2 + bf2

δ′2(1) = i1(cu1 + dw1) + f2 = f2 + ce1 + df1.

The linear combination

δ = δ′1(1)− bδ′2(1) = (1− bd)f1 + ae2 − bce1

of these vectors is tangent to ∆. By (1), this gives an explicit expression
for f1 ∈ S = TPE

2 + TQ∆ as

f1 =
1

(1− bd)

(
bce1 − ae2 + δ

)
.
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In the same way, f2 belongs to S, and so do

h1 = (f1 + h1)− f1 h2 = (f2 + h2)− f2.

Since S contains the whole basis {e1, . . . , h2}, it equals TQ(M × R)2,
which completes the proof in Case 2.

Corollary 3.2. For the generic g ∈ R, and for all k ≥ 1, the multiex-
ponential Ek

g : V k
p → (M × R)k is transverse to the diagonal ∆. When

M has dimension two, the pre-image of ∆ is empty for k ≥ 4, is a
discrete set of points for k = 3, and is a smooth 1-manifold for k = 2.

Proof. The Abraham Transversality Theorem asserts that if a smooth
map

F : X ×A → Y ⊃ W

is transverse to W where A is a Banach manifold and X, Y,W are finite
dimensional, then for all a in a resdual subset of A, the map

F (a, ) : X → Y ⊃ W

is transverse to W . In our case, R is an open set of a Banach space,
and we know that

E2 : R× V 2 → (M × R)2 ⊃ ∆

is transverse to ∆. Thus, for the generic g ∈ R, E2
g is transverse to ∆.

When k = 1, transversality is trivial because the diagonal coincides
withM×R, while for k ≥ 3, transversality is proved in [1], Theorem 6.1.

Now assume that M has dimension two. The codimension of ∆ in
(M × R)k is 3k − 3, and the dimension of V k

p is 2k. Thus, if k ≥ 4
then the codimension in the target exceeds the domain dimension, so
transverse intersection implies empty intersection: Ek

g (V k
p ) ∩ ∆ = ∅.

Similarly, because transversality preserves codimension, the pre-image
of ∆ under E3

g is a discrete set of points in V 3
p , and the pre-image of ∆

under E2
g is a 1-manifold in V 2

p .

4. Focal Branches

Fix a g ∈ R and let

νk = (Ek
g )−1(∆) = {(v, . . . , vk) ∈ V k

p : Ek
g (v1, . . . , vk) ∈ ∆}.

Clearly νk is invariant under permutation of the factors TpM in V k
p .

Thus, if πj : V k
p → TpM projects V k

p onto the jth factor,

βk = πj(ν
k)

is independent of j. Furthermore, β2 ⊃ β3 ⊃ β4 ⊃ . . . and,

σ1 = TpM \ β2 σ2 = β2 \ β3 . . . σk = βk \ βk+1.
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Proposition 4.1. When M has no conjugate points, the projection
πj : νk → TpM is a proper immersion onto a closed subset of TpM .

Proof. Properness means that the pre-image of a compact set is com-
pact. Thus, from any given a sequence (v1n, . . . , vkn) in νk such that
for some fixed j, vjn converges in TpM as n → ∞, we must extract a
subsequence, convergent in νk.

When k = 1 the assertion is trivial since the projection is the identity
map. Thus we assume k ≥ 2.

Convergence of vjn, say to vjmm ∈ TpM , implies that |vjn| → |vj| =
`. Since all the other vin have the same length, there is a subsequence
(unrelabeled) such that (v1n, . . . , vkn) → (v1, . . . , vk). Each vi has
length `. Fix i 6= j. Then vin 6= vjn. Since expp(vin) = expp(vjn),
the facts that k ≥ 2 and that exp is a local diffeomorphism from a
neighborhood of the origin in TpM to a neighborhood of p in M implies
that ` 6= 0. Also, since there are no conjugate points, exp is a local dif-
feomorphism at vj, which implies that vi 6= vj. Thus (v1, . . . , vk) ∈ νk,
which completes the proof of properness.

A continuous proper map into a metric space necessarily has a closed
range. Hence πj(ν

k) is closed in TpM .
To check that πj is an immersion, we must show that the projection

vj(t) of each nonsingular curve (v1(t), . . . , vk(t)) in νk is nonsingular in
TpM . Fix a t0 ∈ (a, b) where (a, b) is the curve’s domain of definition.
For at least one i, v̇i(t0) 6= 0. Thus, vi(t) is nonsingular at t0. Since
there are no conjugate points, exp(vi(t)) is also nonsingular at t0. Since
(v1(t), . . . , vk(t)) ∈ νk, exp(vj(t)) = exp(vi(t)) is also nonsingular at t0.
Therefore, vj(t) is nonsingular at t0.

5. Proof of Theorem A

We assume that M is a compact surface of genus ≥ 2, that p ∈ M
is fixed, and we denote by N the nonempty set of Riemann structures
on TM having negative curvature. Clearly, N is an open subset of R
and so it makes sense to speak of the generic g ∈ N .

A Riemann structure with negative curvature has no conjugate points.
Thus, according to Corollary 3.2 and Proposition 4.1, the focal decom-
position of TpM is quite simple for the generic g ∈ N . Namely:

(a) For all k ≥ 4, σk is empty.
(b) σ3 = β3 is a discrete subset of TpM .
(c) σ2 = β2 \ β3 and β2 consists of a closed set of immersed curves in

TpM .

Furthermore, in any fixed compact subset of TpM , properties (a), (b),
(c) remain valid for all small perturbations of g.
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Consider a vector v1 ∈ β3. It has two friends v2, v3 ∈ β3 with equal
length and equal exponential image. Thus (v1, v2) ∈ ν2, and there are
nonsingular curves v1(t), v2(t) with

v1(0) = v1 v2(0) = v2 (v1(t), v2(t)) ∈ ν2.

Likewise there are nonsingular curves v∗1 (t), v3(t) with

v∗1 (0) = v1 v3(0) = v3 (v∗1 (t), v3(t)) ∈ ν2.

We claim that v̇1(0) and v̇∗1 (0) are linearly independent. Suppose not.
Nonsingularity implies that there is a c 6= 0 such that

v̇1(0) = cv̇∗1 (0).

At time t = 0 the curve exp(v3(ct)) has tangent

d

dt

∣∣∣
t=0

exp(v3(ct)) = Tv3 expp(cv̇3(0)) = c Tv3 expp(v̇3(0))

= c Tv1 expp(v̇
∗
1 (0)) = Tv1 expp(v̇1(0))

=
d

dt

∣∣∣
t=0

exp(v1(t))

Similarly,
d

dt

∣∣∣
t=0
|v3(ct)| = d

dt

∣∣∣
t=0
|v1(t)|.

Thus, at t = 0

t 7→ E3
g (v1(t), v2(t), v3(ct))

is tangent to the diagonal ∆ ⊂ (M × R)3. The upshot is that the
range of T(v1,v2,v3)E

3
g contains a nonzero vector tangent to the diagonal

in (M × R)3. This contradicts the fact that E3
g : V 3

p → (M × R)3 is
transverse to ∆, since ∆ has codimension 6, which is the same as the
dimension of V 3

p .

Now we know that v̇1(0) and v̇∗1 (0) are linearly independent. This
means that in addition to properties (a) - (c), above, we have

(d) Branches of σ2 meet transversally in pairs, they do so only at
points of σ3, and every point of σ3 is such a crossing point,

where by a branch of σ2 we mean the projection of an arc in ν2.
Since transversality is an open property, (d) also remains valid under
perturbation of the Riemannn structure.

The remainder of the proof of focal stability follows the pattern of
Theorem 5.1 in [1]. Fix a compact set S ⊂ TpM . Then choose a
disc B in TpM that contains S. We know that the focal decomposition
amounts to a smooth one-dimensional graph, namely Γ = σ2∪σ3, which
has transverse crossings of multiplicity two. We adjust B so that its
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boundary is transverse to Γ. Let g′ be a small perturbation of g and let
Γ′ be the corresponding graph. Since all aspects of the graph depend
continuously on the Riemann structure, and all are transverse, if g′ is
sufficiently close to g, then there exists a homeomorphism from B to
itself that sends Γ ∩B to Γ′ ∩B.

6. Proof of Theorem B

We assume that M is a compact surface of genus ≥ 2 and we denote
by H ⊂ R the nonempty set of Riemann structures whose curvature is
identically equal to −1.

Fix g ∈ H and p ∈ M . As described in section 2, we can lift g to
a Riemann structure ḡ on TpM and view the focal decomposition in
terms of mediatrices for the corresponding metric d̄. Since g has con-
stant negative curvature, d̄ is isometric to the Poincaré metric ρ on the
unit disc D, and mediatrices are ρ-geodesics. As such, mediatrices are
circular arcs meeting ∂D perpendicularly. Thus, any two mediatrices
meet one another transversally, and they do so at most once.

Let P be the lattice of pre-images of p in TpM , and denote the
corresponding mediatrix set as

µ = {v ∈ TpM : for some p̄ ∈ P \ {0} and |v| = ρ(v, p̄)}.
Fix a compact set S ⊂ TpM . At most finitely many µ-mediatrices meet
S. Choose a constant R and let B denote the compact disc

TpM(R) = {v ∈ TpM : |v| ≤ R}.
When R is large, B contains S in its interior and we can adjust R so
that ∂B is transverse to the µ-mediatrices. Let τ be the finite set of
points in B at which the µ-mediatrices intersect one another. Thus

τ = (σ3 ∪ σ4 ∪ · · · ∪ σ`) ∩B
for some finite `. If v ∈ σk, there are k − 1 µ-mediatrices that pass
through it. They are pairwise transverse. A small change of p preserves
all transversalities in the disc of radius R; such a perturbation of the
base point can not increase the multiplicity of a vector in τ , although
it may lower it. (Here is where the argument uses the fact that the
curvature is constant – mediatrices in the constant curvature case are
always transverse to one another.) Thus, there is an open-dense set U ⊂
M such that if p ∈ U and p′ is sufficiently near p then all multiplicities
of the µ′-mediatrices in B′ = Tp′M(R) are the same as those in B. (By
µ′ we denote the mediatrices between the origin of Tp′M and the other
lifts of p′ in Tp′M .) In other words, the graph of µ′-mediatrices in B′ is
homeomorphic to the graph of µ-mediatrices in B. Taking a sequence
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of compact sets Sn that exhausts TpM leads to a sequence of such open
dense sets Un in M , and if p ∈

⋂
Un then the focal decomposition in

TpM is stable with respect to perturbation of the base point p. This
completes the proof of the first assertion in Theorem B.

The second assertion in Theorem B is proved in the same way. Again,
mediatrix transversality implies that perturbation of g can only de-
crease intersection multiplicity, it cannot increase it. Thus, there is
an open dense set in U ⊂ H such that if g ∈ U and g′ ∈ H is near
enough to g then the µ′-mediatrix graph in B is homeomorphic to the
µ-mediatrix graph in B. Again, choosing a sequence of compact sets
Sn that exhausts TpM leads to a sequence of open dense sets Un in H,
and if g ∈

⋂
Un then the focal decomposition of TpM is stable with

respect to perturbation of g within H.

Remark. Theorem B does not assert the multiplicity of the focal de-
composition of the generic g ∈ H is at most three. We believe, however,
that such an assertion is correct, and we can phrase our expectation
as follows. If M has genus s ≥ 2 then the Teichmuller space τs of hy-
perbolic structures on M amounts to H/D where D denotes isometric
deformations. It is a space smoothly parameterized by 6(s − 1) real
variables, and we expect that for a residual subset of these parameter
values the corresponding hyperbolic structure has σk = ∅ for all k ≥ 4.
From this it would follow at once that the generic g ∈ H is focally sta-
ble with respect to variation of g in R, not just with respect variation
of g within H, as in Theorem B.

7. Conjugate Points

A Riemann structure with non-negative curvature has no conjugate
points, but the set S of such Riemann structures does not form an open
subset of R. For example, a flat Riemann structure on the torus has
no conjugate points although it can be perturbed so that conjugate
points appear. See [1], Proposition 4.8, where a bump is glued to a
cylinder. Thus, the assertion of Theorem A′, below, should be viewed
with caution, for a generic subset of S need not be dense in S.

Theorem A′. Focal stability (for a fixed p ∈M) holds for the generic
g ∈ S.

Proof. In the proof of Theorem A, we only used the assumption that
expp is a local diffeomorphism, i.e., that there are no conjugate points,
and the fact that the generic g ∈ R stably possess the transversality
properties (a)-(d).
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The next result shows that Theorem A′ has wider scope than Theo-
rem A.

Proposition 7.1. The interior of S is strictly larger than N .

Proof. Let M be the bitorus, or any surface with genus ≥ 2. Equip it
with a Riemann structure of constant curvature −1. Cut out a small
disc in M and replace it with a small polar cap having unit positive
curvature. A smoothing collar is used to attach the cap. This gives
a new Riemann structure g on M , g /∈ N . Any g-geodesic spends
relatively little time in the polar cap or collar. Most of the time the
geodesic travels through the part of the surface with curvature −1.
Thus, there are no conjugate points, so g belongs to S, and the same
holds for all nearby Riemann structures.

Remark. The question remains as to whether the generic Riemann
structure on a surface has the focal stability property – i.e., whether
we can do without the no conjugate point assumption. Much of what
we proved above does hold when there are conjugate points, and also
some generic properties of conjugate points are known. For example, in
[3], Alan Weinstein announces that in dimension two, the singularities
of the generic exponential map are either folds or cusps. These are the
Whitney singularities for maps of the plane to itself. If, in addition to
this, we knew how the fold and cusp singularities relate to the foliation
of TpM by circles of constant radius, then we could probably resolve
the Focal Stability Conjecture for surfaces. In higher dimensions the
singularities of the generic exponential map are much more complicated
than in dimension two, cf. [3], which leads us to think that the Focal
Stability Conjecture will be quite hard to resolve in full generality.
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