RADIALLY SYMMETRIC WEAK SOLUTIONS FOR
A QUASILINEAR WAVE EQUATION
IN TWO SPACE DIMENSIONS

JOAO-PAULO DIAS & HERMANO FRID

ABSTRACT. We prove the convergence of the radially symmetric solutions to
the Cauchy problem for the viscoelasticity equations

Bii — g — div (5 /Vo[?Ve) = A,

as ¢ — 0, with radially symmetric initial data ¢°(z,0) = ¢§(r), ¢%(z,0) =
#5(r), r = (2 +23)'/2, where ¢§, — ¢or, 5 — ¢1, to a weak solution of the
Cauchy problem for the corresponding limit equation with ¢ = 0, and initial
data ¢(z,0) = ¢o(r), ¢¢(z,0) = ¢1(r). Our analysis is based on energy esti-
mates and the method of compensated compactness closely following D. Serre
and J. Shearer (1993).

1. INTRODUCTION

We consider the question of obtaining globally defined weak solutions to the
Cauchy problem for the quasilinear elasticity equation

1

(1.1) bu — Ag — div (§|V¢|2V¢) =0, zeR, t>0,
(12) ¢($70) = ¢0($)7 ¢t($70) = ¢1($)7 TE R27
when ¢g and ¢; are radially symmetric functions, that is,
(1.3) $o(z) = go(r),  $1(@) =gu(r), r=(af+23)">,
satisfying

e 1 1
(1.4) / {g1(r)® + 2(gh(r))} rdr < +oo, X(v) = 51)2 + Ev4.

0

We are concerned with the construction of a weak solution to (1.1),(1.2),(1.3) as
limit of smooth solutions of the Cauchy problem for the viscoelasticity equations

1 .
(1.5) b — Ag — div (§|v¢|2v¢) =eAdy, zeR%, t>0,
(1.6) ¢(@,0) = ¢5(x) = g5(r), ¢u(x,0) = ¢5(z) = gi(r), z€R,
with
(1.7) 5 € H*(R*) and ¢ € H*(R?).
We first recall the following result proved in [5].
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Theorem 1.1. Assume that ¢§ and ¢5 verify (1.6) and (1.7). Then, for each
€ > 0, there exists a unique function

(1.8) ¢° € O([0, +oof; H?) N C*([0, +o00[; H*) N C*([0, +00; L?)

solution of the Cauchy problem (1.5),(1.6). The solution ¢° depends only onr andt.
Remark 1.1. We take the oportunity to correct a small mistake in p. 539 of [5]:
in the estimate in the two first lines H? (repectively H') must be replaced by H?
(respectively H?).

By well known trace properties of functions in Sobolev spaces, a function ¢ €
H™(R?), m > 1, which is radially symmetric, belongs to H™~1/2(R,.) as a function
of r, where Ry =]0, +oo[; we thank H. Beirdo da Veiga for having pointed out that
to us [3]. Hence, the solution ¢° obtained in Theorem 1.1 verifies
(1.9) ¢° (r,t) € C([0, +00f; H**(R1.)) N C([0, +00f; H*/*(Ry.)).

Passing to the variables r, ¢, equation (1.5) reads
1 1(47)°
1.10 e _ 4g T 4E £\2 e _ — \¥r
( ) ¢tt T r ¢r (¢r) TT 3 r
Setting, as usual,

(1.11) v, g=u
we obtain the equivalent system

1
= E(¢§r7‘ + ;¢§r)7 (T, t) € ]R2+

11y U Tu=0 (r,t) € B2
. €\3 AT 5 5
uf = (0 + C3h)e = 0% + OF) = e + 1), '
with initial data
g g dgE r g g g
(113) o0 = ) = B e 0) =) = i),

Notice that, by symmetry,
(1.14) v°(0,t) =0, t>0.
Now, let us take ¢(r,t),%(r,t) € C$(R?), such that ¢(0,t) = 0, for t > 0.

Integrating in RS (1.12) against ry, and (1.13) against ri, and using integration
by parts, we easily deduce

> 1
(1.15) /0 R+{v5<pt —u® (o + ;(p)}rdr dt + /R+ vge(r,0)rdr =0,
00 £\3
w6) [ [ v - 00+ e+ e+ Lo
0 JRy r

+/ ug(r,0)rdr = 0.
R4

We assume henceforth that the initial data vj, ug satisfy the following additional
hypotheses:

(1.17) (W5) + S(g)}rdr <C,  (v5,u5) = (vo,uo), as & — 0,

1
5
Ry

1
(1.18) 52/ (v + ;1;8)2 rdr <C,
R4
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for some constant C' > 0, where X(v) = %U2 + %U‘l and the convergence in (1.17)
is the one in L} (Ry) endowed with the weak topology induced by Co(Ry) or,
equivalently, in the distributions sense. Observe that (1.17) and (1.18) are verified
in case u® and v are standard mollifications of uy = ¢1 and vg = ¢g, satisfying
(1.4).

Let us consider the limit case of system (1.12), when € = 0,

(1.19) {”t —ur =0,

u —o(v)y — Lo(v) =0,
with initial and boundary condition given by

(1.20) (v, u) (r, t)|e=0 = (vo, u0)(r),
(1.21) v(r,t)|r=0 = 0.

Definition 1.1. We say that (v,u) : R2 — R?, with v € L} (R%), u € L}, (R2),
is weak solution of (1.19)-(1.21) if

o 1
(1.22) / / {vpy —ulor + —p)}rdrdt + / vop(r,0)rdr =0,
0 JRy r Ry

(1.23) /000 A {upy — o(v)p }rdrdt —}—/R uop(r,0)rdr =0,

+

for any o, € C§°(R?), such that ¢(0,t) =0, for ¢ > 0.

Definition 1.2. A function ¢(z,t) € W, (R% x Ry ), such that V¢ € L} (R2 x Ry ),
is a weak solution of (1.1)-(1.2) if

(1.24) / " /R {8~ (14 [V9P)V9 - VC) dodi + /R 61 (@), 0)dz = 0,

(125)  lim 16(2,1) — o(a)] do = 0,
t—0 B(O,R)

for any ( € C$°(R?) and any R > 0, where B(0; R) denotes the ball in R? with

center 0 and radius R.

It is an easy exercise to verify that if ¢ is a radially symmetric weak solu-
tion of (1.1)-(1.2), in the sense of Definition 1.2, with ¢, ¢1 satisfying (1.3), then
(v,u)(r,t), with v = ¢, u = ¢, is a weak solution of (1.19)-(1.21), in the sense
of Definition 1.1, where vy (r) = dgo(r)/dr and ue(r) = g1(r), with gg, g1 verifying
(1.3), and, conversely, if (v, u)(r,t) is a weak solution of (1.19)-(1.21) then

o(r,t) = go(r) +/0 u(r,s) ds

is a radially symmetric weak solution of (1.1)-(1.3), with go(r) = f; vo(7) dr and
91(r) = ug(r).

We now state our main result.
Theorem 1.2. Let ¢° be solutions of (1.5)-(1.7), with initial data satisfying (1.13),
(1.17), (1.18). Then there is a subsequence ¢+ which converges strongly in Wllo’cp(Ri),
1 < p <2, to a global radially symmetric weak solution ¢ of (1.1)-(1.3), in the sense
of Definition 1.1. Moreover, if % — 0 as |A| = oo, then v°* = ¢5* converges
strongly in L} .. In particular, there exists a radially symmetric weak solution of
(1.1)-(1.3), if the radially symmetric initial data ¢o, ¢1 satisfy (1.4).
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We refer to [7, 13, 6, 9, 16, 4] for other results using the framework of compensated
compactness on one-dimensional correlated models.

The remaining of this paper is organized as follows. In section 2 we recall the
first energy estimate and prove the important second energy estimate by adapting
procedures going back to [8]. In section 3 we recall the theory of Young measures
preparing the step for the application of compensated compactness, as became usual
after the pioneering works [10, 15, 7]. In section 4 we outline the analysis of the
support of the Young measures due to D. Serre and J. Shearer [13].

2. ENERGY ESTIMATES

In this section we recall the first energy estimate, proved in [5], and prove the
second energy estimate which, together with the first one, form the starting point
for the application of compensated compactness described in the following sections.

Multiplying (1.12); by ro(v?), with o(v) = ¥'(v) = v + 303, (1.12); by rve,
adding the resulting equations, integrating in R% and using integration by parts
(cf. [5]), we obtain the first energy estimate:

(2.1) R+{%(u5(r,t))2 + X (r,t))}rdr -I—E/Ot A+(ui)2 rdrdt <C, t>0,

with C as in (1.17). We now state and prove the second energy estimate.

Lemma 2.1. Let (u,v°) the sequence of solutions to (1.12),(1.13), defined by
(1.11). Then we have fort >0,0<e <1,

t £
(2.2) s/ {@+ 0% + :—20(1}5) + (u)?}rdrdt < C,
o Jry

with Cy > 0 independent of € and t.
Proof. For a function f defined on R, , let us denote

50f = I+ .

Hence, §,v° = A¢* € C*([0,00[; L?(R?)) N C([0,00[; H'(R?)), and so §,v° €
C*([0, 0o[; L2(R?)) N C([0, 00[; H:(R?)), where the subscript r refers to the mea-
sure r dr. For the remaining of the proof we drop the superscript ¢ of u®,v®. From
(1.12) we get

67‘(”7‘) = 6T(Ut) = (67‘U)t7
ug — 0,0 (V) = e6pu;.

Multiplying the second equation above by §,v, integrating in Ry x (0,%) and using

the first one, we deduce

@3 [ [ (G- Gogoyrara =< [ Ceo) v

+

The integral of the first term in the left-hand side can be computed by

¢ ¢
/ / (6pv)ug rdr dt :/ (8pv)ullrdr —/ Or(up)urdrdt

¢
(2.4) =/ (drv)uﬁ)rdr—}—// u?rdr dt,
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while the integral of the second term in the left-hand side can be computed by

—/Ot/(érv)éra(v)rdrdtz / /{vr )or dr dt + veo (v )+%v0(v)}drdt

(2.5) = /0 [ ga+ 2)vf+%va(v)}drdt.

From (2.3), (2.4) and (2.5) we deduce

a/ot/{(1+v2)v3+ “vo(w)} rdr di

/(6vu|0rdr+€/ /u rdrdt — /(5 0 6rd

(2.6) :5/((51)()) ()rdr—e/(dvo ugrdr+6/ /u,rdrdt

R4

—62/Mrdr+ez/@rdr

Ry Ry

The first and second term on the right-hand of the last equation in (2.6) are esti-
mated simply using Cauchy-Schwarz inequality

2
2.7) c / G u(t)r dr < / 1560 + %u2(t)}rdr
Ry Ry
(2.8) - E/((sr’l}o)UOT dr < /{%((STUO)2 + %ug}rdr.
Ry Ry

Finally, we deduce from (2.6), (2.7), (2.8) and (2.1),

1 2
(2.9) / {1+ 0?02 + va( )+u2}rdrdt<3/(5 vo)?rdr
R, s
¢
2.10 + 2¢ u2rd7‘dt—|—1 u?(t) + udyrdr < Ci,
T 2 0
where C; > 0 is independent of €. O

3. YOUNG MEASURES

In this section we recall well known fundamental facts about Young measures.
We first define

1
(3.1) n(u,v) = §u2 + X(v), (u,v) € R2.
If Q C RY is a bounded open set, denote

L"(Q) := {(u,v)(x) Lebesgue measurable in  : / n(u,v)(z) de < +oo}.
Q
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The first energy estimate (2.1) and assumption (1.17) tell us that the sequence
(u®,v°)(r(z),t) is uniformly bounded in L"(R? x [0,T]), for any T > 0, where
r(z) = (x2 + 23)'/2.

We now state two simple lemmas which together give all the facts we need here
about Young measures. Their statements are taken with slight adaptations from
[1] and [14], respectively (see also, e.g., [15, 11, 2, 17]). We refer to [1] and [14],
respectively, for the proofs. Let £V denote the Lebesgue measure in RV .

Lemma 3.1. Let Q C RN be a bounded open set and {z°} C [LY(Q)]M. Then,
there exist a subsequence {z°*} and a LN -measurable map v, defined in Q such
that

(i) for any g € C.(RM) the {go 2°*} weakly* converges in L*°(f) to the func-
tion

@) = [ o) dvau);

(i) of {||z°* |1 ()} is bounded, then v, is a probability measure in RM for LN -
a.e. v€N and

// ly| dve(y) do < limiinf ||z |1
Q RM k—o0

(iii) 4f Q and all 2° are invariant for a certain symmetry group G of RN, that is,
22(y(z)) = 2°(z), LN -a.e. x € Q, for all ¥ € G, then v, is also invariant
by G, that is, vy (y) = Vg, LN -a.e. 2 € Q, for all y € G.
Remark 3.1. The item (iii) is not stated in [1], but its proof is quite obvious, so we
leave it to the reader.

Lemma 3.2. Letn: RM — R be a given non-negative convex function and suppose
that the sequence {z°} satisfies [on(2°(x))dz < C, for all €, for some C > 0
independent of €. Then

(i) for any g € C(RM) satisfying g(z)/n(z) — 0 as |2| = oo, we have § €
LY (Q), with g defined as above, and, as k — 0o, g(z°*) — g in the distri-
butions sense;

(ii) if 1/n(z) — 0 as |z| = oo then v, is a probability measure for LN -a.e.
x €

(iii) f, for some i € {1,..., M}, |2|?/n(z) = 0 as |z] = oo, and the support

of vy is a point for LN -a.e. x € Q, then 25* converges strongly to z;(z) =
Jone i dvs(2) in LI(Q).

We apply the above lemmas with Q2 = {x € R? : |z| < R} x (0,T), for some
R, T > 0, 2° = (u®,v°), n given by (3.1) and G is the group of symmetries in 2
whose elements have the form v = © x id, where © is any rotation of R? and id is
the identity map of (0,T).

4. COMPENSATED COMPACTNESS AND TARTAR’S COMMUTATION RELATION

In this section we recall the analysis of the support of the Young measure, based
on Tartar’s commutation relation, due to D. Serre and J. Shearer [13].

Set U = (v,u) and F(U) = (—u, —o(v)). We recall that a smooth function P(U)
is said to be an entropy for (1.19), with associated etropy flux Q(U), if we have

(4.1) VP(U)VFU) = VQU).
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As an example, it is easy to check that n(U), given in (3.1), is an entropy for (1.19)
with associated entropy flux ¢(U) = uo(v).
We also recall that (1.19) admits a standard pair of Riemann invariants

(4.2) wy =u+ 2z, wy =u — 2, z =/ Vo'(s)ds.
0

The basic strategy of the application of compensated compactness to show the
convergence of the viscosity solutions (v, u®), which verify (1.12)-(1.13), after the
pioneering works of Murat [10], Tartar [15] and DiPerna [7], is to consider a suffi-
ciently large class of entropy pair (P(U),Q(U)), for which one can prove that

(4.3) {P(U®)¢ + Q(U?); }e>0 lies in a compact subset of H;;}(R3 ),

and then, through the div-curl lemma (see [10], [15]), to use Tartar’s commutation
relation between any two entropy pairs in that class, (P, (U), Q.(U)), (Ps(U), Qs(U)),

(44) (V; PaQb - Pan) = (Va Pa)(”; Qb) - (Va Pb)(”; Qa)a

and show that the only probability measure verifying (4.4), for any two pairs in the
class, is the Dirac measure concentrated in a certain point U. Multiplying (1.12)
by VP we obtain

(45) P+ QU)s = e(Putid), — e(Pustf + Paa(uf)?) + Puo (o).

Following [12] and [14], [13] uses half-plane supported entropies, defined through a
change of dependent variables indroduced in [14]

1
(4.6) P= i(a')_l/‘l[‘} + 7],

1
(4.7) Q=) e -9,
considering the equation (4.1) in the variables wy,ws, ®, ¥,
(4.8) 3,, = ad,
(4.9) T, = —ad,

where a = a(w; — w2) = 0" (v(25%2))/8(c" (v(¥15%2))3/2, choosing (w1, ®2), and

prescribing Goursat data on the lines wy = w1, we = w2,
(4.10) (w1, ws) = g(w2),
(4.11) lI’(’wz,u_)z) = h(wl).

For example, if we set h = 0 and let g be supported in ws > s, the corresponding
pair (P, Q) is supported in the half-plane ws > ws. Actually, in this case we have

(4.12) P(wy,ws) = %(a’)—l/‘i [g(wz) + _wz G(wy, ws, w)g(w) dw] ,
413 Quuawa) = 3007 v + [ Hwn,unwgw) du)

where the kernels G, H depend on (w;,@,). The representations (4.12), (4.13) are
obtained through the integral operator A, whose action on a function f € L}, .(R?)
is defined as

@) AN == [ ale-wole —m e dn e

w1 w
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In [14] it is proved that such half-plane supported entropy-entropy flux pairs satisfy
(4.15) Py, Py/(0)Y?, Py, Pu/(0")Y/?, Pyy/o' € L.

Using (4.15), one can prove (4.3), through Murat’s Lemma, observing that the
following three conditions are satisfied (cf. [14]):

(M1) (P#,Q*) is uniformly bounded in L} (R% )?, for some p > 2;

(M2) e(P:us), is precompact in H, ! (R2);
(M3) —e(Pyuyuivs + Pyy(ug)?) + PyLo(v) is uniformly bounded in L}, (B3 ).

In [13] it is also considered a second class of entropies obtained by solving (4.8),(4.9)
with continuous, compactly supported initial data on a noncharacteristic line w; —
Wa = fo, i.e.,

(416) ‘I’(§0 + ’U),U)) = g(UJ), \I’(€0 + U),U)) = h(’ll)),

for some constant &. As observed in [13], the fact that this second class also satisfies
(4.3) follows observing that if g, h are supported in (w,, w*) then ®(wy, ws), ¥(w;, ws)
vanish in the quadrants wy > w*,w; > w* + & and wy < we, w1 < wye + &
and coincide with solutions of Goursat problems like (4.8)-(4.11) in the quadrants
wy > Wi, wy < w* + & and wy < w*,wy > wi + &o.

As in [14], define

wy = inf{ws € R : there is an entropy pair (P, Q) with supp (P, Q) in
R X (—o00,ws] and not both {v, P), (v, Q) are zero},
wy = sup{ws € R : there is an entropy pair (P, Q) with supp (P, Q) in

R x [wa, +00) and not both (v, P), (v, Q) are zero},

Analogously we define w; ,w;". These numbers may take the values foco.

We now recall some lemmas from [13] leading to the desired conclusion that v, ;
is a point mass for a.e. (r,t) € RZ..

For ap € (min{w; ,w] }, max{w; ,wi}) and 0 < gq < dist(ao, {w; , w3 }), define
I = (ap — 0,20 + €0). In what follows we drop the subscript r,t of v, ;.

Lemma 4.1 (cf. [12, 14, 13]). For any &1,a2 € I and any two entropy pairs
(Pa,Qa), (Po,Qp), with supports satisfying

either Supp (-PMQZ) g R x (_Ooadl]a or Supp (PZ7QZ) (_: [d2,+00), i= a, b7
we have
(v, PaQp — PyQq) = 0.

If wy or wy is finite we may take go = dist(ao, {wy , w3 }).

Denote ay = ap — €, &1 = a9 —€/2, az = a9 + € and &2 = a9 + /2, with
0 < e <egg. Let g5, i, i = 1,2, be continuously compactly supported functions with
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|gil, 13i] < 2,4 = 1,2, and satisfying:

wy —ay for a; <w; < ay,
g1(w2) =
0 for we < a1 or we > as + ¢,

- we — @ for &g < wsy < ag,
0 for we < @y or we > as + ¢,

az —wsy  for a; <wsy < as,
ga(w2) =
0 for we > as or we < a1 — €,

- Gy —wp for oy <wsy < G,
Ga2(w2) = ~
0 for wy > Gy or we < ay — €,

We derive three couples of entropy pairs, {(P1,Q1), (P2, @2)}, {(P1,Q1), (P, Ql)},
{(P2,Q2), (P, Q2)}, by using, to obtain each of these couples, two pairs of Goursat
axes defined by the points {(@1, 1), (@01, as)}, for the first couple, and using g1, h
and g9, h with h = 0 as respective Goursat initial data, proceeding analogously to
obtain the other two couples of entropy pairs. By Lemma, 4.1, we have

(4.17) (v, Q2 — P,Q1) =0,
(4.18) (v, P,Q1 — P,Q,) =0,
(4.19) (v, PoQq — PyQ2) = 0.

The couples {(P1,Q1), (131,Q1)}, {(P2,Q2), (P, Qz)} are used after we know that
the support of v is contained in a bounded rectangle R = [wE, wT] x [wl,wl]. In
this case, we take ay = wl , for the first couple, and a; = w®, for the second one.
It is easy to verify that (4.18) and (4.19) still hold with such limits in this case, for
¢ sufficiently small. Clearly, the quadratic form Py Q2 — P>(@; is nonzero only for
wy in the interval [a;, as], while, in case supp v is contained in a bounded rectangle
R, (P1Q1 — plQl)lR is nonzero only for wy € [dl,wg], and (PQQQ — P2Q2)|R
is nonzero only for wy € [w®,as]. Define A. = A (ag,w2) = g1(w2)ga2(w2) and
Aie = A (o, w2) = gi(w2)gis(w2), i = 1,2.

Lemma 4.2 (cf. [13]). For the couples of entropy pairs {(P1,Q1), (P2, Q2)}, {(P1,Q1),
(P, Qu)}, {(P2, Q2), (Py, Q2)} defined above we have

1
(420) PlQQ — P2Q1 = —EEAEa(wl — Oéo) + EZAEE('wl,'wg,ao),
~ ~ 1 - -~ o~ i
(4.21) PQi-PQ;= _ZEAiaa(wl — ap) + A Ei(w1, w2, ap), 1=1,2,

where the error terms E, E’l, E> are bounded by a constant independent of wy, ws, g, €.
Remark 4.1. The proof of (4.21) is not given in [13] but it follows by arguments
analogous to those in the proof of (4.20) given in the proof of lemma 5 in [13].

The fact that v is supported in a bounded rectangle is proved in lemmas 6 and
7 of [13].
Lemma 4.3 (cf. [13]). The probability measure v is supported in a bounded rectan-
gle.

Finally, [13] establishes that v is in fact a point mass. We state this fact in the
following lemma and outline a proof which is essentially the one in [13].
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Lemma 4.4 (cf. [13]). v is a point mass.

Proof. Let R = [wP, w¥] x [w®,w]] be the minimal rectangle with edges parallel
to the coordinate axes and containing the support of v. We must show that R
reduces to a point. Let £ denote the line w; — ws = 0, where a = 0. Suppose L
does not intersect one of the edges of R, say the one on the top which is included
on the line wy = wl, and let

wy = inf{ws € [wy, w3 ] : LN ([wi,w]] x [wa,w]]) = B}

We will show that (v, [wZ, wl]x (w},4+oc)) = 0, which contradicts the minimality of
R. We achieve this by showing that Dmav(ag) = 0, for any ag € (w3, +00), where
mov is the projection of v in the wo-axis, defined by mov((a1, a2)) = v(RX (a1, a2)),
and, for a measure p defined on the line, Dy denotes the derivative with respect
to the Lebesgue measure on the line. For ag € (wl,+o0), we obviously have
Dmov(ag) = 0. For ap € (w3, wd) this is proved by taking e < dist (ap, {w}, wi'})
and the couple of entropy pairs (P1, Q1), (P2, Q2), and using (4.17) and the estimate
(4.20), observing the fact that

Aca(w; — ap) > Coe?, for (w1, ws) € [wE,w!] x [ap —€/2, 0 +¢/2],

for some constant Cy > 0 independent of ¢, and that E is supported in the strip
ag — € < we < ap + € and is bounded by a constant independent of £. We then
obtain
e3mv(lag — £/2, a0 + £/2]) < Ce*mav([ap — €, a0 + €]),
for some C' > 0 independent of ¢, which, dividing by e* and taking lim sup when
€ — 0, gives
0 S DTFQI/(O&()) S 071'21/(0(0) S C,

where Dy denotes the upper derivative with respect to the linear Lebesgue measure.
Now, if mav(ag) > 0, then Dmav(ag) = +00, which contradicts the above inequality.
Hence mav(ap) = 0 and, again by the above inequality, we have Dmv(ap) = 0,
which proves the assertion also in this case. So, it only remains to prove that
Dmov(wl) = 0. To prove this we proceed as above, but now we use the couple of
entropy pairs (Py,Q1), (P, Q1), with an = wl. We then use the estimate (4.21),
and (4.18) to arrive at the desired conclusion exactly as above.

We now consider the case when L intersects opposite vertices of the rectangle
R which we denote as w! = (w{,wi) and wP = (wP,wl). This part of the
proof follows very closely the one in [13]; we outline it here just for the sake of
completeness. The main tool here is the weak* trace introduced and used by
DiPerna in [7]. Again, consider the couple of entropies (Pi,Q1), (Pr,Q1), with
as = w¥, and let 6y (ws) = e 3A1. = £ 391 (w2)J1(ws). Define the probability
measures along the top edge of R

<MT f) _ <V7615f>
<’ <V7 615) ’
where f = f(w) is any continuous function. By the weak* compactness of proba-
bility measures, there exists a subsequence & and a probability measure u” defined
on the top edge of R such that

(W', f) = lim (ul | f).

lim
k—o00
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We call 4T a standard trace of v on the top edge. Analogously, we define uZ, u” and
k. standard traces of v on the bottom, left and right edges, respectively; we denote
the corresponding approximate delta functions by 02, d3. and 4., respectively. The
cruc1a1 property of standard traces is that they are point masses. More precisely,
pl' = pf = 6, and pf = p* = 6,5, where 6, denotes the Dirac measure
concentrated on w. To see this, set fT = a(w; — wl) and observe that, by the
estimate (4.21) and (4.18), we have

(T, Ty = lim (uT ,a) + ex(ul Er)

k—oo
lim (v, —45;4(P1Q1 - PiQ1))
k—o0 (v, 31sk)

=0,

and, since f7 is non-negative on [wf,w!], vanishing only on w{, we must have
pul = 6. We prove the corresponding assertions for u?, u’ and p® similarly.
Let us consider the points

1 1
(w{V,wé\/’) = (i(wIB + wf)aw; - 25)7 (wISJwQS) = (§(U}IB +w{)7w2B + 25)7
1 1
(w{/V7,wgV) = (wf’ + 28[7 §(w2B + wg’))7 (w1E7w2E) = (w’1T - 25,7 §(w2B + wg))a

with 0 < g,¢' K $(w; —w¥) = 3(w{ —wf). We consider ortogonal axes centered
in each of these pomts and construct four half plane supported entropy pairs, one
family for each direction, north, south, east and west, which indicate the type of
supporting half plane. As Goursat initial data, we set g = g~ := gy, in the line
wy; = wi¥, with ag = wf, and h = 0, in the line wy = w, to define the pair
(PN,QnN); g = 95 = g, in the line w; = w{, with oy = w¥, and h = 0 in
the line wy = w5, to define the pair (Ps,Qs); g = 0, in the line w; = w)’ and
h = h¥ := 3, in the line ws = w), with az = w¥, to define (Pw,Qw); g = 0,
in the line w; = w{f and h = hf, = 8451, in the line wy = wZE, with a4 = wf, to
define (Pg, QE). Recall that for (Pg,Qg) we have

(wi—¢’)

w1
Pg(wy,ws) = %(0')*1/4 lhg(wl) +/ GhE dw] ,

w1

Qe(wi,w2) = %(U')H/4 [hg(wl) +/(

HWE dw| ,

wl —e’)

with G and H uniformly bounded in R by a constant independent of &'. An
analogous representation holds for (P, Qw). Denote by u” and u® the standard
weak™* trace of v in the left and right edge of R, respectively. We then have

(Wb, 5(0") 7 f) = Timer o (A
(4.22) (uh, L@y f) = lima Q”;%&VV D,

(", L(o") VA f) = lima g <<uVI;Ef)>7

(U, 10!y S) = limg o Q20

W,hE) -
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Now, as in [13], denoting (v, Py), . ..simply by (Py), ..., we observe that Tartar’s
relation implies

(PnQE — PEQN)(PsQw — PwQs)
—(PnQw — PwQn){PsQr — PpQs)
= —(PnY(Qe)(Pw)(Qs) — (PENQN){Ps){Qw)
+ (PN Qw){(Pe)(Qs) + (Pw ) Qn){(Ps){Qk)
=(PnQs — PsQN){PeQw — PwQE)
=0,

the latter equality because the supports of (Py,@n) and (Ps,@s) do not intersect.
Now, dividing the above equation by (v, hL)(v,h!), making &’ — 0 and using
(4.22), we get

(4.23) (", (o) Py = (o) VAQN) ", (o)) Ps = (o) H1Qs) = 0,

where we have used the fact that integration against u is evaluation at w”, integra-
tion against u” is evaluation at w?, (Py,Qn)(Ww?) = (0,0) and (Ps, Qs)(wl) =
(0,0).

Now, from the estimates carried out in [14], we have

(4.24) (u", (0")/* Py — (0")7*Qn) = (o))" Py (wT) = (o)) *Qn(w")
= —=2[1+ O(e)] / a(w!l —w)(w — (wi — 2¢)) dw.
wl—2¢
Since the integrand in (4.24) above is nonzero and continuous on the interval (wf —

T
2¢,w] ), we can rescale gV by dividing it by [2 ,_a(w] —w)(w — (w2 — 2¢)) dw.

Then the first term in (4.23) converges to the nonzero constant —2. A similar argu-
ment shows that the second term in (4.23), after a similar rescaling, also converges
to —2, which is a contradiction. Then the support of v is a point.

O
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