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We introduce the concept of radius of pointedness for a closed convex cone in a finite dimensional
Hilbert space. Such radius measures the degree of pointedness of the cone: the bigger the radius,
the higher its degree of pointedness. We also discuss the question of measuring the degree of solidity
of a closed convex cone. Pointedness and solidity radiuses are related to each other through a simple
duality formula. Explicit computations are carried out for several classical cones appearing in the
literature.
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1 Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and associated norm ‖ · ‖. Throughout this work
we assume that 2 ≤ dim H <∞. Finite dimensionality of H is a crucial hypothesis that will always be
in force.

There is a great variety of interesting subsets of

C(H) = {K ⊂ H : K is a nonempty closed convex cone},
two of which are

P(H) = {K ∈ C(H) : K is pointed},

S(H) = {K ∈ C(H) : K is solid}.

The terminology that we are using is standard: pointed cones are those which don’t contain a line,
whereas solid cones are those having nonempty interior. Pointed cones and solid cones abound in the
literature, and play a significant role in many areas of applied mathematics.

We mention that only few authors have addressed the question of measuring the degree of pointedness
and the degree of solidity of a cone. As far as pointedness is concerned, reference [10] uses a dimensional
criterion: the degree of “nonpointedness" of a closed convex cone K is the dimension of its linearity
space

linK = K ∩ (−K).

A pointed cone is one whose lineality space is zero-dimensional. If linK has the same dimension as the
underlying space H, then K achieves the highest possible degree of nonpointedness. This classification
scheme does not discriminate within the class of pointed cones itself, and this is precisely what we would
like to do.

The notation used in this work is mostly standard; however, a partial list is provided for the reader’s
convenience:
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4 A. Iusem and A. Seeger: Measuring the degree of pointedness

BH = {x ∈ H : ‖x‖ ≤ 1} (closed unit ball in H)

SH = {x ∈ H : ‖x‖ = 1} (unit sphere in H)

K− = {y ∈ H : 〈y, x〉 ≤ 0 ∀x ∈ K} (polar cone of K)

K+ = {y ∈ H : 〈y, x〉 ≥ 0 ∀x ∈ K} (dual cone of K)

L⊥ = {y ∈ H : 〈y, x〉 = 0 ∀x ∈ L} (orthogonal space of L)

2 Radius of pointedness: basic properties

Here we propose a “metrical" way of measuring the degree of pointedness of a closed convex cone.
Indeed, our approach relies heavily on the use of the metric

δ(K1,K2) = sup
‖x‖ ≤1

| dist[x,K1]− dist[x,K2]|,

where the notation dist[x,K] refers to the Euclidean distance from x to K. Since this metric is going
to be at the core of our discussion, a few preliminary words are useful at this early stage. First of all,
it must be mentioned that δ(K1,K2) coincides with the classical Pompeiu-Hausdorff distance between
the truncated sets K1 ∩BH and K2 ∩BH (cf. [1, 9]). The metric δ admits also the formulation

δ(K1,K2) = max{e[K1 ∩BH ,K2] , e[K2 ∩BH ,K1]}, (2.1)

where e[C,D] = sup
z∈C

dist[z,D]

stands for the excess of C over D. The formulation (2.1) is sometimes more convenient when it comes
to practical computations. From a theoretical viewpoint, what must be recalled is that

the metric space (C(H), δ) is compact. ([5], Prop. 2.1)

Also of relevance is the fact that

P(H) is an open set in (C(H), δ). ([5], Prop. 2.2)

The later condition amounts to saying that each K ∈ P(H) is the center of a ball

Ur(K) = {Q ∈ C(H) : δ(K,Q) < r}

contained in P(H). It is then natural to ask how large can be the radius r of such a ball. This question
leads to the estimation of the least upper bound

f(K) = sup{r ∈ [0, 1] : Ur(K) ⊂ P(H)}. (2.2)

This number is what we call the radius of pointedness of K. Some comments on the expression (2.2)
are in order. First of all, restricting the variable r to the interval [0, 1] is not accidental. There is no
need to go beyond r = 1 because Ur(K) = C(H) for any r > 1. When r = 0, the ball Ur(K) is empty,
and therefore the constraint Ur(K) ⊂ P(H) is trivially satisfied, regardless of whether K is in P(H) or
not. In short, the number (2.2) is actually well defined for any element of C(H), and

f(K) = 0 ⇐⇒ K is not pointed.

The radius of pointedness of K admits the obvious characterization

f(K) = inf
Q∈M(H)

δ(K,Q), (2.3)

withM(H) = C(H)\P(H) denoting the complement of P(H).

The equality (2.3) confirms that f : C(H)→ [0, 1] attains its lowest value 0 at any non-pointed cone.
The attainability of the highest value 1 is an issue addressed in the next proposition. In what follows,
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the term “zero cone" refers to the element OH = {0} ∈ C(H), and by a “ray" we mean a set of the
form R+a = {ta : t ∈ R+}, with a 6= 0.

PROPOSITION 2.1. Let K ∈ C(H). Then,

f(K) = 1 ⇐⇒ K is either a ray or the zero cone.

Proof. We use the characterization (2.3), together with the expression (2.1). Since clearly

δ(OH ,K) = 1 ∀K 6= OH ,

it follows that f(OH) = 1. Consider now an arbitrary ray R+a with ‖a‖ = 1. Take any Q ∈ M(H).
Select a unit vector b ∈ H so that the line Rb is contained in Q. By using (2.1), one obtains

δ(R+a,Q) ≥ sup
z∈Q∩BH

dist[z,R+a] ≥ sup
z∈Rb ∩BH

dist[z,R+a]. (2.4)

The maximum on the right-hand side of (2.4) is attained at z = b if 〈a, b〉 ≤ 0, and at z = −b if
〈a, b〉 ≥ 0. In either case, the maximum is equal to 1. Thus, δ(R+a,Q) = 1, proving in this way that
f(R+a) = 1. Suppose now that K ∈ C(H) is neither a ray nor the zero cone. We must prove that
f(K) < 1. Without loss of generality, assume that K is not a linear subspace. For the sake of clarity,
we distinguish between two cases.

Case 1: K is solid. This assumption ensures the existence of an hyperplane separating strictly K from
its polar cone K−. In other words, there is a nonzero vector v ∈ H such that

〈v, x〉 ≥ 0 ∀x ∈ K and 〈v, x〉 < 0 ∀x ∈ K−\{0}. (2.5)

Since the half-space Q = {x ∈ H : 〈v, x〉 ≥ 0} is not pointed and contains K, it follows that

f(K) ≤ δ(K,Q) = sup
z∈Q∩BH

dist[z,K].

The above supremum is attained at some vector z0 ∈ Q with ‖z0‖ = 1. The separation property (2.5)
implies that z0 /∈ K−, and therefore

f(K) ≤ dist[z0,K] = (‖z0‖2 − dist2[z0,K
−])1/2 < 1,

the equality appearing in the above line being a consequence of Moreau’s decomposition theorem [7].

Case 2: K is not solid. This case can be brought to the previous one by working in the linear space
spanned by K, i.e.

spanK = K −K.

The cone K can be strictly separated from its relative polar cone

K	 = {y ∈ spanK : 〈y, x〉 ≤ 0 ∀x ∈ K},

meaning that (2.5) should be written with K	 instead of K−, and with a nonzero vector v living in
spanK. Observe that K	 6= {0} because K 6= spanK. Since K is not a ray, the relative half-space

Q = {x ∈ spanK : 〈v, x〉 ≥ 0}

contains not only K, but also a linear subspace of dimension ≥ 1. The remainder of the argument is as
before.

Remark: Proposition 2.1 says, in particular, that all rays have the same radius of pointedness, namely,
the highest possible. This information is somehow reassuring because we see rays as extremely pointed
objects. The orientation of the ray is, of course, totally irrelevant.

The next theorem collects some basic facts concerning the function f . The notation Isom(H) stands
for the set of linear isometries on H (i.e., linear operators U : H → H such that ‖Ux‖ = ‖x‖ ∀x ∈ H).
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6 A. Iusem and A. Seeger: Measuring the degree of pointedness

THEOREM 2.2. The function f : C(H)→ [0, 1] enjoys the following properties:

(a) Lipschitz continuity: |f(K1)− f(K2)| ≤ δ(K1,K2) ∀K1,K2 ∈ C(H);

(b) invariance property: f(U(K)) = f(K) ∀K ∈ C(H), U ∈ Isom(H);

(c) evenness: f(−K) = f(K) ∀K ∈ C(H);

(d) surjectivity: {f(K) : K ∈ C(H)} = [0, 1].

Proof. Lipschitz continuity of f is a direct consequence of the representation (2.3). In order to prove
item (b), observe that a linear isometry U : H → H leaves invariant the setM(H), i.e.

U [M(H)] = {U(P ) : P ∈M(H)} =M(H),

and also preserves distances between cones, i.e.

δ(U(K1), U(K2)) = δ(K1,K2) ∀K1,K2 ∈ C(H).
Hence,

f(U(K)) = inf
Q∈M(H)

δ(U(K), Q) = inf
P∈M(H)

δ(U(K), U(P )) = inf
P∈M(H)

δ(K,P ) = f(K).

Condition (c) is a particular case of (b). Surjectivity of f can be proven in a very elegant manner
by invoking the deformation map of Iusem and Seeger [5]. Choose a cone K ∈ C(H) which is neither
pointed, nor a linear subspace. Select a unit vector a ∈ K such that

〈a, x〉 ≥ 0 ∀x ∈ K.

The existence of such a vector a is guaranteed by Gaddum’s theorem ([2], Thm. 2.1). Consider now the
function γ : [0, 1]→ C(H) defined by

γ(t) = {(1− t)v + t‖v‖a : v ∈ K}.

As indicated in [5], γ is a continuous path joining γ(0) = K and γ(1) = R+a. As a consequence, the
composition f ◦ γ : [0, 1]→ R attains the values

(f ◦ γ)(0) = f(K) = 0 and (f ◦ γ)(1) = f(R+a) = 1.

By continuity, it attains also all the intermediate values.

Remark: Surjectivity of f : C(H) → [0, 1] can also be proven by using a more elementary argument.
In Section 5, we shall compute the radius of pointedness of an arbitrary revolution cone. With this
computation at hand, it will be clear that

∀r ∈ [0, 1], there is a revolution cone K ∈ C(H) such that f(K) = r. (2.6)

The revolution cone in (2.6) is not unique because we can place the axis of revolution pointing toward a
different direction and this change will not modify the radius of pointedness. By contrast, the angle of
revolution is unique, and it is given by θ = arccos(r). To see this, we will have to wait until Section 5.

3 Radius of pointedness: intrinsic character

Up to now, we have considered K as an object lying in the linear space H. However, one can also see
K as an object lying in the linear space spanK. It is therefore important to compare the number f(K)
with the intrinsic radius of pointedness

fintrinsic(K) = inf {δ(K,Q) : Q ∈M(H) such that Q ⊂ spanK}

of the cone K 6= {0}. As we shall see in the next proposition, both numbers are equal. To prove this
result, one needs first to state a technical lemma.
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LEMMA 3.1. Let K ∈ C(H) be contained in some linear subspace L ⊂ H. Then,

δ(PL(Q),K) ≤ δ(Q,K) ∀Q ∈ C(H), (3.1)

where PL : H → H denotes the orthogonal projection onto L, and PL(Q) stands for the closure of
PL(Q) = {PL(x) : x ∈ Q}.

Proof. To avoid trivialities, assume that K 6= {0} and Q 6= {0}. Projecting an element of C(H) over
the linear space L produces a convex cone which may not be closed. The closure operation in (3.1) has
been added just to make sure that we remain in C(H). The orthogonal projection PL : H → H is a
linear mapping satisfying

‖PL(u)− PL(v)‖ ≤ ‖u− v‖ ∀u, v ∈ H.

In particular, for each x ∈ K ⊂ L, one has

‖x− v‖ ≥ ‖x− PL(v)‖ ∀v ∈ H.

By taking the infimum with respect to v ∈ Q, one gets

dist[x,Q] ≥ infv∈Q‖x− PL(v)‖ = dist[x, PL(Q)],

which, in turns, implies that e[K ∩BH , Q] ≥ e[K ∩BH , PL(Q)]. We now claim that

e[Q ∩BH ,K] ≥ e[PL(Q) ∩BH ,K]. (3.2)

To prove this claim, we pick up a vector z ∈ PL(Q) ∩BH such that

dist[z,K] = e[PL(Q) ∩BH ,K].

In other words, z is a maximum of the function dist[ · ,K] over the set PL(Q) ∩ BH . We may assume
without loss of generality that z 6= 0, because otherwise the right-hand side of (3.2) vanishes, in which
case the inequality holds trivially. By positive homogeneity, we can suppose that ‖z‖ = 1. We do not
know whether z belongs to PL(Q), but we can write

z = limn→∞PL(xn)

for some sequence {xn}n∈N of nonzero vectors lying in Q. Observe that

dist[PL(xn),K] ≤ dist[z,K] + εn ≤ 1 + εn,

with εn = ‖z − PL(xn)‖ → 0 as n→∞. Hence,

(1 + εn)
2‖PL⊥(xn)‖2 ≥ dist[PL(xn),K]2‖PL⊥(xn)‖2

= dist[PL(xn),K]2(‖xn‖2 − ‖PL(xn)‖2),

with PL⊥ = I − PL being the orthogonal projection onto L⊥. It follows that

dist[PL(xn),K]2 ≤ dist[PL(x̂n),K]2‖PL(xn)‖2 + (1 + εn)
2‖PL⊥(x̂n)‖2,

where {x̂n}n∈N is the sequence obtained by normalizing each xn. By taking a subsequence if necessary,
one may assume that {x̂n}n∈N converges to some unit vector x̂. A simple rearrangement shows that

dist[PL(xn),K]2 ≤ dist[PL(x̂n),K]2 + ‖PL⊥(x̂n)‖2 + γn, (3.3)

with
γn = dist[PL(x̂n),K]2(‖PL(xn)‖2 − 1) + [(1 + εn)

2 − 1]‖PL⊥(x̂n)‖2

going to 0 as n→∞. On the other hand, one can prove that

dist[y,K]2 ≥ dist[PL(y),K]2 + ‖PL⊥(y)‖2 ∀y ∈ H. (3.4)
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8 A. Iusem and A. Seeger: Measuring the degree of pointedness

To see this, write
dist[y,K]2 = ‖y − πK(y)‖2 = ‖PL(y) + PL⊥(y)− πK(y)‖2

= ‖PL(y)− πK(y)‖2 + ‖PL⊥(y)‖2 ≥ dist[PL(y),K]2 + ‖PL⊥(y)‖2,

where πK(y) is the point in K at shortest distance from y. The combination of (3.3) and (3.4) yields
the inequality

dist[x̂n,K]2 ≥ dist[PL(xn),K]2 − γn.

By passing to the limit, one gets dist[x̂,K] ≥ dist[z,K]. Since x̂ ∈ Q ∩BH , it follows that

e[Q ∩BH ,K] ≥ dist[x̂,K],

completing the proof of (3.2), and of the lemma.

PROPOSITION 3.2. Suppose that K ∈ C(H) is not the zero cone. Then,

(a) there exists D ∈M(H) such that D ⊂ spanK and δ(K,D) = f(K);

(b) f(K) = fintrinsic(K).

Proof. It is enough to check (a), item (b) being an immediate consequence. Let L be the linear space
spanned by K. We know that there exists Q ∈ M(H) such that δ(K,Q) = f(K). Two cases are
possible:

Case 1: L⊥ ∩ linQ 6= {0}. Pick up a unit vector v in this intersection. Since v ∈ L⊥ and K ⊂ L, we
have that ‖v − x‖ ≥ 1 for all x ∈ K. This implies that d(v,K) = 1, and therefore 1 = δ(K,Q) = f(K).
From the very definition of f , we get that δ(R,K) = 1 for all R ∈ M(H). Condition (a) is fulfilled
because one can take D as any nonpointed cone contained in L, for instance, L itself.

Case 2: L⊥ ∩ linQ = {0}. It follows that the projection onto L of any line contained in Q is also a line.

Therefore, PL(Q) contains a line, and D = PL(Q) belongs toM(H). By Lemma 3.1, we conclude that

f(K) ≤ δ(D,K) ≤ δ(Q,K) = f(K),

proving again what has been stated in (a).

4 Radius of solidity

Knowing that S(H) is an open set in the metric space (C(H), δ), we simply write

g(K) = sup{r ∈ [0, 1] : Ur(K) ⊂ S(H)},

and refer to this number as the radius of solidity of K. It is clear that

g(K) = inf
Q∈N (H)

δ(K,Q), (4.1)

with N (H) = C(H)\S(H) denoting the complement of S(H).

The next theorem shows that the radius of solidity of a cone K is just the same as the radius of
pointedness of its dual cone K+. Such a result is obtained by exploiting the well known properties of
the duality mapping [ · ]+ : C(H)→ C(H). Since these properties will be extensively used later on, this
is a good opportunity to write them down in a detailed manner. What need to be recalled is that

(a) (K+)+ = K ∀K ∈ C(H); (biduality theorem [8])

(b) δ(K+
1 ,K

+
2 ) = δ(K1,K2) ∀K1,K2 ∈ C(H); (isometry theorem [11])

(c) S(H) = {K+ : K ∈ P(H)}.

THEOREM 4.1. Let K ∈ C(H). Then, g(K) = f(K+) and f(K) = g(K+).
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Proof. Is is enough to write

g(K) = inf
Q∈N (H)

δ(K,Q) = inf
Q∈N (H)

δ(K+, Q+) = inf
P∈M(H)

δ(K+, P ) = f(K+).

The second formula is obtained by biduality.

COROLLARY 4.2. The function g : C(H)→ [0, 1] enjoys the following properties:

(a) Lipschitz continuity: |g(K1)− g(K2)| ≤ δ(K1,K2) ∀K1,K2 ∈ C(H);

(b) invariance property: g(U(K)) = g(K) ∀K ∈ C(H), U ∈ Isom(H);

(c) evenness: g(−K) = g(K) ∀K ∈ C(H);

(d) surjectivity: {g(K) : K ∈ C(H)} = [0, 1].

Proof. It is a matter of combining Theorem 4.1 with Theorem 2.2.

COROLLARY 4.3. Let K ∈ C(H). Then,

g(K) = 1 ⇐⇒ K is either a half-space or the whole space H.

Proof. This time one combines Theorem 4.1 with Proposition 2.1.

Remark: Corollary 4.3 says, in particular, that all half-spaces have the same radius of solidity, namely,
the highest possible. If a closed convex cone is strictly contained in a half-space, then its radius of
solidity is strictly smaller than 1.

In what follows, the notation

Proj[K,M(H)] = {Q ∈M(H) : f(K) = δ(K,Q)}

refers to the set of cones inM(H) achieving the minimal distance (2.3). According to standard termi-
nology, this set corresponds to the metric projection of K intoM(H). Similarly,

Proj[K,N (H)] = {Q ∈ N (H) : g(K) = δ(K,Q)}

is set of cones in N (H) achieving the minimal distance (4.1), that is to say, it is the metric projection
of K into N (H). As complement to Theorem 4.1, one has:

THEOREM 4.4. Let K ∈ C(H). Then,

Q ∈ Proj[K,N (H)] ⇐⇒ Q+ ∈ Proj[K+,M(H)].

Proof. See the proof of Theorem 4.1.

Remark: A completely analogous duality theory can be developed in terms of the polarity mapping
[ · ]− : C(H) → C(H). The relationship K− = −K+ allows us to switch from one framework to the
other one.

We end this section with a remark concerning the “intrinsic" radius of solidity of a cone. What could
be such a concept? A simple duality argument leads us to introduce

gintrinsic(K) = inf {δ(K,Q) : Q ∈ N (H) such that Q ⊃ linK}

for any K ∈ C(H) such that K 6= H.

PROPOSITION 4.5. Take any K ∈ C(H) different from the whole space H. Then,
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10 A. Iusem and A. Seeger: Measuring the degree of pointedness

(a) there exists Q ∈ N (H) such that Q ⊃ linK and δ(K,Q) = g(K);

(b) g(K) = gintrinsic(K).

Proof. A simple computation shows that gintrinsic(K) = fintrinsic(K
+), so everything boils down to

combining Proposition 3.2 and Theorem 4.1.

5 Revolution cones

In this section we focuss our attention in a very particular class of closed convex cones. The term
“revolution cone" refers to a set of the form

rev(a, θ) = {x ∈ H : ‖x‖cos θ ≤ 〈a, x〉}, (5.1)

with a ∈ H being a unit vector, and θ ∈ [0, π/2]. The representation (5.1) is unique in the sense that

rev(a1, θ1) = rev(a2, θ2) =⇒ (a1, θ1) = (a2, θ2).

According to standard practice, R+a is called the “axis of revolution" of the cone (5.1), while the number
θ is referred to as the “angle of revolution" of (5.1).

The dual cone of a revolution cone is again a revolution cone, more precisely

[rev(a, θ)]+ = rev(a, π/2− θ). ([3], p.120)

PROPOSITION 5.1. For any unit vector a ∈ H and any θ ∈ [0, π/2], one has

f(rev(a, θ)) = cos θ and g(rev(a, θ)) = sin θ. (5.2)

Proof. To compute the radius of solidity of rev(a, θ), we start by examining the distance

δ(rev(a, θ),R+a) = sup{dist[x,R+a] : ‖x‖ = 1, x ∈ rev(a, θ)}

= sup{[1− 〈a, x〉2]1/2 : ‖x‖ = 1, cos θ ≤ 〈a, x〉}.
From the last line, one sees that

δ(rev(a, θ),R+a) = [1− (cos θ)2]1/2 = sin θ.

Since R+a is not solid, we got the upper bound g(rev(a, θ)) ≤ sin θ. We now prove that this upper
bound cannot be sharpened. Let Q be an element of N (H) at minimal distance from rev(a, θ). First of
all, one can show that

R+a ⊂ Q. (5.3)

If this was not the case, then one could apply a separation argument and exhibit a point x̃ ∈ rev(a, θ)∩BH
such that dist[x̃, Q] > sin θ, contradicting in this way the optimality of Q. Secondly, since the cone Q
is not solid, it must be contained in some hyperplane

b⊥ = {y ∈ H : 〈b, y〉 = 0}, with ‖b‖ = 1.

Due to the inclusion (5.3), this hyperplane contains the ray R+a. In short, 〈a, b〉 = 0. One can easily
check that

x0 = (cos θ) a+ (sin θ) b

is a unit vector lying in rev(a, θ), and

sin θ = dist[x0, b
⊥] ≤ dist[x0, Q].

Hence, sin θ ≤ δ(rev(a, θ), Q), proving in this way our claim. The first equality in (5.2) follows from a
duality argument: it suffices to apply Theorem 4.1.
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Example: The Lorentz (or ice-cream) cone is the archetypal example of a revolution cone. Its n-
dimensional version corresponds to

Λn = {x ∈ Rn : [x21 + · · ·+ x2n−1]
1/2 ≤ xn }.

One supposes, of course, that n ≥ 3. By writing

Λn = {x ∈ Rn : ‖x‖ ≤
√
2 〈a, x〉} with a = (0, · · · , 0, 1),

one sees that Λn is a revolution cone with angle of revolution θ = π/4. Hence, f(Λn) = g(Λn) =
√
2/2.

6 Majorization and minorization techniques

Optimal solutions of problems defined in a normed space can be identified with the help of necessary
optimality conditions. Computing the radius of pointedness of a given cone K ∈ C(H) is, in general,
a very hard task, and this is because the minimization process (2.3) is taking place in a metric space
without linear structure. One way of coping with the lack of optimality conditions is by using a
traditional technique of majorization and minorization. As shown in the next proposition, the radius of
pointedness of K admits as lower bound the expression

f](K) = inf
‖z‖=1

max {dist[z,K], dist[−z,K]}. (6.1)

The auxiliary function f] : C(H)→ [0, 1] deserves to be studied on its own right. A wealth of information
on this function is provided in our work [6], but here we go straight to the main point:

LEMMA 6.1. For any K ∈ C(H), one has f](K) ≤ f(K).

Proof. Take Q ∈ M(H) such that f(K) = δ(K,Q). Pick up a unit vector z ∈ H such that Rz ⊂ Q.
Since both z and −z belong to Q ∩BH , we have

f(K) = δ(K,Q) ≥ sup
x∈Q∩BH

dist[x,K] ≥ max{dist[z,K],dist[−z,K]} ≥ f](K),

completing the proof in this way.

Evaluating f] is, of course, much simpler than evaluating f . Lemma 6.1 is used next to derive lower
bounds for the radiuses of pointedness of cones with special structure. Recall that

K ∈ C(H) is said to be







infra-dual if K ⊂ K+,
supra-dual if K ⊃ K+,
self-dual if K = K+.

Infra-dual cones are also called acute cones because they satisfy the acute angles property:

K is infra-dual ⇐⇒ 〈x, y〉 ≥ 0 ∀x, y ∈ K.

One can easily prove that infra-dual cones are pointed and that supra-dual cones are solid. In fact,
these statements admit a more precise formulation:

PROPOSITION 6.2. For any K ∈ C(H), one has:

(a) if K is infra-dual, then f(K) ≥
√
2/2;

(b) if K is supra-dual, then g(K) ≥
√
2/2.

Proof. Before starting with the proof, just a small remark on the geometry of Hilbert spaces. The fact
that ‖ · ‖ derives from the inner product 〈·, ·〉, allows us to write

‖z − x‖2 + ‖z + y‖2 = ‖z‖2 + ‖z − x+ y‖2 + 2〈x, y〉 ∀x, y, z ∈ H,
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12 A. Iusem and A. Seeger: Measuring the degree of pointedness

and, in particular,
〈x, y〉 ≥ 0 and ‖z‖ = 1 =⇒ ‖z − x‖2 + ‖z + y‖2 ≥ 1. (6.2)

Having said this, take now a unit vector z ∈ H such that

f](K) = max {dist[z,K], dist[−z,K]}.
Hence,

f](K) = max{‖z − πK(z)‖, ‖ − z − πK(−z)‖} = max{‖z − πK(z)‖, ‖z + πK(−z)‖}.

Since the vectors x = πK(z) and y = πK(−z) belong to the infra-dual cone K, their inner product
cannot be negative. We can apply (6.2) and obtain

‖z − πK(z)‖2 + ‖z + πK(−z)‖2 ≥ 1. (6.3)

The maximum of the two terms in the left-hand side of (6.3) must be at least 1/2, so one gets

max{‖z − πK(z)‖, ‖z + πK(−z)‖} ≥
√
2/2.

The conclusion is that f](K) ≥
√
2/2. It suffices now to recall Lemma 6.1. As far as (b) is concerned,

just apply item (a) to the cone K+ and invoke Theorem 4.1.

By obvious reasons, we refer to f] as being a lower auxiliary function. Finding a nice upper auxiliary
function is not a trivial matter. One must look for a function f ] enjoying two properties: on the one
hand side, f ] should be a “sharp" upper estimate for f , and, on the other hand, the computation of
f ] should not be too difficult. As a compromise between these two conflicting objectives, we suggest
considering the expression

f ](K) = inf
‖z‖=1

mK(z),

with
mK(z) = sup {dist[x+ αz,K] : (x, α) ∈ K × R, ‖x+ αz‖ = 1}. (6.4)

To better understand the reason leading to this choice, we must enter into the proof of the next lemma.

LEMMA 6.3. For any K ∈ C(H), one has

f ](K) = inf{δ(K,Q) : Q ∈M(H) such that Q ⊃ K}. (6.5)

In particular, f(K) ≤ f ](K).

Proof. Denote by f̃(K) the term on the right-hand side of (6.5). Consider an arbitrary unit vector
z ∈ H. The expression (6.4) can be written in the form

mK(z) = sup
c∈SH∩(K+Rz)

dist[c,K].

By positive homogeneity, one can also write

mK(z) = sup
c∈BH∩(K+Rz)

dist[c,K] = sup
c∈BH∩K+Rz

dist[c,K],

with the upper bar denoting the closure operation. Now, observe that K + Rz ∈ C(H) contains the
cone K, and therefore

mK(z) = δ(K,K + Rz) ≥ f̃(K),

showing that f ](K) ≥ f̃(K). For the reverse inequality, we rely on a general property of the metric δ,
to wit

K1 ⊂ K2 ⊂ K3 =⇒ δ(K1,K2) ≤ δ(K1,K3). (6.6)
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Take Q ∈ M(H) such that Q ⊃ K and δ(K,Q) = f̃(K). The existence of such a Q follows from a
compactness argument. Since Q contains a line, there is a unit vector z ∈ H such that

K ⊂ K + Rz ⊂ Q.
By applying (6.6), one gets

δ(K,K + Rz) ≤ δ(K,Q).

This yields f ](K) ≤ δ(K,Q) = f̃(K), and completes the proof.

What assumptions on K ensure there is no gap between f](K) and f ](K)? Taking care of this
question is of great importance because the answer would provide a practical rule for computing the
radius of pointedness of K. As a preliminary step in this direction, we exhibit below an alternative
characterization of f].

LEMMA 6.4. If K ∈ C(H) is not the zero cone, then

f](K) =

√

1− [diam(K ∩ SH)]2

4
=

√

1 + cos θmax(K)

2
, (6.7)

with diam(K ∩SH) denoting the diameter of the set K ∩SH , and θmax(K) being the largest angle that
can be formed by picking up two unit vectors in the cone K.

Proof. The proof is quite involved and takes several pages. It is given in our work [6].

THEOREM 6.5. Suppose that K ∈ C(H) is neither a ray, nor the zero cone. Let L = R(u− v), with
u, v ∈ K ∩ SH such that ‖u− v‖ = diam(K ∩ SH). Assume the following hypothesis:

{

each c ∈ K + L can be decomposed in the form
c = a+ b, with a ∈ K, b ∈ L, and 〈a, b〉 ≥ 0.

(6.8)

In such case,

(a) f](K) = f(K) = f ](K);

(b) K + L is a member ofM(H) lying at minimal distance from K.

Proof. SinceK is not a ray, one has u 6= v, and one can define z = ‖u−v‖−1(u−v). Notice, incidentally,
that u, v are two unit vectors in K achieving the maximal angle θmax(K). This fact is easy to check.
What is more difficult to prove is that

f](K) = dist[z,K] = dist[−z,K], (6.9)

but this has been done in [6]. Another point that must be mentioned from the very beginning is that

{

L ∩K = {0} if K is pointed
L ⊂ K if K is not pointed,

(6.10)

so, in either case, the cone K + L is closed. The proof of (6.10) is not difficult. Let us prove that

K is pointed =⇒ u− v 6∈ K and v − u 6∈ K.

Suppose that K is pointed, so that 〈u, v〉 > −1. If u− v were in K, then z would be unit vector in K
such that

〈z, v〉 =
〈u, v〉 − 1

‖u− v‖
= − 1− 〈u, v〉

√

2(1− 〈u, v〉)
= −

√

1− 〈u, v〉
2

< 〈u, v〉,

contradicting the fact that u, v achieve the maximal angle of K. In a similar way one proves that
v − u 6∈ K. So, in the pointed case, the line L touches K only at the origin. On the contrary, if K is
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14 A. Iusem and A. Seeger: Measuring the degree of pointedness

not pointed, then u = −v and the line L is wholly contained in K. This concludes the proof of (6.10).
Now, by Lemmas 6.1 and 6.3, we have

f](K) ≤ f(K) ≤ f ](K) ≤ δ(K,K + L) = supc∈(K+L)∩SH‖c− πK(c)‖.

To obtain (a) and (b), it is enough to show that

‖c− πK(c)‖ ≤ f](K) ∀c ∈ (K + L) ∩ SH . (6.11)

Take any c ∈ (K + L) ∩ SH and decompose it in the form (6.8). First of all, observe that a + πK(b)
belongs to K. By definition of πK ,

‖c− πK(c)‖ ≤ ‖c− [a+ πK(b)]‖ = ‖a+ b− a− πK(b)‖ = ‖b− πK(b)‖.

To proceed further, write b = ηz with η ∈ R. By positive homogeneity of πK , one gets

‖b− πK(b)‖ = ‖ηz − πK(ηz)‖ ≤ η‖z − πK(z)‖ if η ≥ 0,

‖b− πK(b)‖ = ‖ηz − πK(ηz)‖ ≤ −η‖ − z − πK(−z)‖ if η ≤ 0.

In short,
‖b− πK(b)‖ ≤ |η| max{dist[z,K],dist[−z,K]}.

But,
1 = ‖c‖2 = ‖a‖2 + η2‖z‖2 + 2〈a, ηz〉 ≥ η2.

Hence, |η| ≤ 1, and
‖c− πK(c)‖ ≤ max{dist[z,K],dist[−z,K]} = f](K),

the last equality being due to (6.9).

Remark: We are using the decomposability assumption (6.8) because it has a clear geometric meaning
and doesn’t need a further explanation. The conclusion of Theorem 6.5 remains true, however, if one
uses the weaker assumption

{

each c ∈ (K + L) ∩ SH can be decomposed in the
form c = a+ b, with a ∈ K, b ∈ L, and ‖b‖ ≤ 1.

(6.12)

The decomposability requirement (6.12) looks perhaps a little bit more technical, but it can rephrased
in terms of a simple set-inclusion, namely (K + L) ∩ SH ⊂ K + (L ∩BH).

7 Pareto cone and Loewner cone

In this section we evaluate the radiuses of pointedness of two important self-dual cones. Theorem 6.5
plays a key role in both cases.

7.A. Pareto cone. The Pareto cone (or positive orthant) in Rn is simply

Rn+ = {x ∈ Rn : x1 ≥ 0, · · · , xn ≥ 0}.

The largest angle that can be formed in this cone is θmax(Rn+) = π/2. This maximal angle is attained
by choosing an arbitrary pair among the canonical vectors

e1 = (1, 0, · · · , 0), · · · , en = (0, 0, · · · , 1).

According to Lemma 6.4, one has f](Rn+) =
√
2/2. The same estimate holds for the radius of pointedness:

COROLLARY 7.1. The radius of pointedness of the Pareto cone is f(Rn+) =
√
2/2. A member of

M(Rn) at minimal distance from Rn+ is, for instance,

Rn+ + R(e1 − e2) = {x ∈ Rn : x1 + x2 ≥ 0, x3 ≥ 0, · · · , xn ≥ 0}.
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Proof. We consider the first two canonical vectors, but the same argument applies to any other choice.
If L = R(e1 − e2) = {(η,−η, 0, · · · , 0) : η ∈ R}, then

Rn+ + L = {(x1 + η, x2 − η, x3, · · · , xn) : x ∈ Rn+, η ∈ R}

= {x ∈ Rn : x1 + x2 ≥ 0, x3 ≥ 0, · · · , xn ≥ 0}.
Any c ∈ Rn+ + L can be decomposed as sum

c = (
c1 + c2

2
,
c1 + c2

2
, c3, · · · , cn) + (

c1 − c2
2

,
c2 − c1

2
, 0, · · · , 0)

of two orthogonal vectors, the first in Rn+ and the second in L. This takes care of the decomposability
assumption (6.8). Theorem 6.5 yields then the desired conclusion.

Three final comments on the Pareto cone are in order. First, the half-space

Q = {x ∈ Rn : x1 + · · ·+ xn ≥ 0},

which could be thought as a good candidate for achieving the minimal distance to Rn+, turns out to be
a bad choice. Indeed,

δ(Q,Rn+) =
√

1− 1/n >
√
2/2 ∀n > 2.

Second, the cone which realizes the minimum in the definition of f(Rn+) is not unique: our construction
exhibits at least n(n− 1)/2 of them, corresponding to all possible ways of selecting a pair among the n
canonical vectors. And, third, a duality argument shows that

[Rn+ + R(e1 − e2)]+ = Rn+ ∩ [R(e1 − e2)]⊥ = {x ∈ Rn+ : x1 = x2}

is a member in N (Rn) at minimal distance from Rn+. The radius of solidity of Rn+ is, of course,

g(Rn+) =
√
2/2.

7.B. Loewner cone. The linear space Sym(n) of symmetric matrices of order n × n is equipped with
the usual inner product 〈A,B〉 = trace(AB). The Loewner cone

Sym+(n) = {A ∈ Sym(n) : A is positive semidefinite }

is yet another example of self-dual cone.

We shall compute the radius of pointedness of Sym+(n) by using Theorem 6.5. Instead of the
decomposability requirement (6.8), we will check the weaker condition (6.11). As can be seen from the
proof of Theorem 6.5, the condition (6.11) is all what is needed to arrive at the same conclusion. To
check (6.11) in this particular setting, we rely on a technical lemma concerning diagonal perturbations
of positive semidefinite matrices. As usual, the notation diag(d1, , · · · , dn) refers to the diagonal matrix
having the elements d1, , · · · , dn on the diagonal.

LEMMA 7.2 (diagonal perturbation lemma). Let X ∈ Sym(n) be a positive semidefinite matrix, and
D = ±diag(1,−1, 0, · · · , 0). Then, all the eigenvalues of X + D are nonnegative, except possibly the
smallest one. For this special eigenvalue, one has the lower estimate

−
√
2

2
‖X +D‖ ≤ λmin(X +D).

Proof. It is a long exercise in matrix analysis. To avoid interrupting the flow of the exposition, we
leave the details for the appendix added at the end of the paper.

One could formulate a more general diagonal perturbation lemma, but this is not our aim. Without
further ado, we state:
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16 A. Iusem and A. Seeger: Measuring the degree of pointedness

COROLLARY 7.3. The radius of pointedness of the Loewner cone is f(Sym+(n)) =
√
2/2. A member

ofM(Sym(n)) at minimal distance from Sym+(n) is, for instance,

Q = Sym+(n) + R(E1 − E2),

with E1 = diag(1, 0, 0, · · · , 0) and E2 = diag(0, 1, 0, · · · , 0).

Proof. Observe that E1 ∈ Sym+(n) and E2 ∈ Sym+(n) achieve the maximal angle

θmax(Sym+(n)) = π/2.

By Lemma 6.4, we know that f](Sym+(n)) =
√
2/2. To apply Theorem 6.5, we need to check that

dist[C,Sym+(n)] ≤
√
2/2 (7.1)

for any matrix C ∈ Q of unit length. Before checking (7.1), it is useful to recall the general formula

dist[B,Sym+(n)] =
[

n
∑

i=1

[min{0, λi(B)}]2
]1/2

∀B ∈ Sym(n), (7.2)

where the λi(B)’s are the eigenvalues of B. So, take

C = A+ η(E1 − E2) with A ∈ Sym+(n) and η ∈ R,

and suppose that ‖C‖ = 1. If η = 0, then dist[C,Sym+(n)] = 0 and we are done. Otherwise, we can
write C in the form

C = ‖X +D‖−1(X +D),

with X and D as in Lemma 7.2. The case D = diag(1,−1, 0, · · · , 0) occurs if η > 0, and the case
D = −diag(1,−1, 0, · · · , 0) occurs if η < 0. There are two possibilities regarding the sign of λmin(X+D).
If this eigenvalue is nonnegative, then C ∈ Sym+(n) and (7.1) holds trivially. When the smallest
eigenvalue of X +D is negative, the situation is not problematic either. Indeed, Lemma 7.2 yields

|λmin(C)| ≤
√
2/2,

and formula (7.2) allows us to obtain dist[C,Sym+(n)] ≤
√
2/2.

8 Elliptic cones

To see Theorem 6.5 in action in a more involved setting, we discuss now the important class of elliptic
cones. For notational convenience, we work in the space H = Rn × R equipped with the usual inner
product

〈(y, r), (x, t)〉 = 〈y, x〉+ rt.

We use the term “elliptic cone" to refer to a set of the form

E(A) = {(x, t) ∈ Rn × R :
√

〈x,Ax〉 ≤ t},

where the matrix A ∈ Sym(n) is assumed to be positive semidefinite. The term “nondegenerate elliptic
cone" is used when A ∈ Sym(n) is positive definite. This is actually the most interesting case, because
a singular matrix produces necessarily a nonpointed elliptic cone. In fact,

f(E(A)) = 0 ⇐⇒ A is singular.

The next two lemmas set up the stage for the coming discussion.

LEMMA 8.1. The polar of a nondegenerate elliptic cone is a nondegenerate elliptic cone. More
precisely, for any positive definite A ∈ Sym(n), one has

[E(A)]+ = E(A−1).
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Proof. Take (x, t) ∈ E(A) and (y, r) ∈ E(A−1). Then,

〈(y, r), (x, t)〉 = rt+ 〈y, x〉 = rt+ 〈A−1/2y,A1/2x〉 ≥ rt− ‖A−1/2y‖ ‖A1/2x‖ ≥ 0,

where the last inequality follows from the fact that r ≥ 〈y,A−1y〉1/2 and t ≥ 〈x,Ax〉1/2. It follows that
E(A−1) ⊂ [E(A)]+. For the reverse inclusion, take (y, r) ∈ [E(A)]+ and suppose that (y, r) does not
belong to E(A−1), i.e.

r < 〈y,A−1y〉1/2.
Consider the vector z ∈ Rn defined by

z = −〈y,A−1y〉−1/2 A−1y.

Since 〈z,Az〉 = 1, it follows that (z, 1) ∈ E(A). On the other hand,

〈(y, r), (z, 1)〉 = r − 〈y,A−1y〉
〈y,A−1y〉1/2

= r − 〈y,A−1y〉1/2 < 0,

contradicting the fact that (y, r) ∈ [E(A)]+ .

LEMMA 8.2. If A ∈ Sym(n) is a nonnegative multiple of the identity matrix, say A = aI, then E(A)
is a revolution cone with angle of revolution θ given by cos θ =

√

a/(1 + a).

Proof. It is elementary.

Proposition 5.1 tells us how to compute the radius of pointedness of a revolution cone. With such
an estimate at hand, it is possible to address now the more general case of an elliptic cone.

THEOREM 8.3. For any positive semidefinite matrix A ∈ Sym(n), the radius of pointedness of E(A)
is given by

f(E(A)) =

√

λmin(A)

1 + λmin(A)
, (8.1)

with λmin(A) denoting the smallest eigenvalue of A.

Proof. Decompose A ∈ Sym(n) in the usual form A = UDUT , with D = diag(λ1, · · · , λn) containing
the eigenvalues λ1 ≤ · · · ≤ λn of A arranged in a nondecreasing order. The orthonormal matrix U is
formed with the corresponding eigenvectors. A simple exercise in linear algebra shows that

E(A) = (U ⊕ 1)[E(D)],

with U ⊕ 1 : Rn × R → Rn × R being the linear isometry defined by (U ⊕ 1)(z, t) = (Uz, t). The
invariance property stated in Theorem 2.2 tells us that

f(E(A)) = f(E(D)),

so everything boils down to the analysis of the diagonal case. Our first task will be evaluating the lower
estimate f](E(D)). Consider the points u, v ∈ Rn × R given by

u = (1 + λ−11 )−1/2 (λ
−1/2
1 , 0, . . . , 0, 1),

v = (1 + λ−11 )−1/2 (−λ−1/21 , 0, . . . , 0, 1).

Since u, v are unit vectors lying in E(D), one has

[diam(SRn×R ∩ E(D))]2 ≥ ‖u− v‖2 = 4/(1 + λ1),

and therefore

[f](E(D))]2 = 1− [diam(SRn×R ∩ E(D))]2

4
≤ λ1

1 + λ1
.
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18 A. Iusem and A. Seeger: Measuring the degree of pointedness

On the other hand, the inequality

λ1‖z‖2 ≤ 〈z,Dz〉 ∀z ∈ Rn,

yields the inclusion E(D) ⊂ E(λ1I), the latter set being a revolution cone with angle of revolution θ
given by

cos2θ = λ1/(1 + λ1).

Since f] is a reverse monotone function, it follows that

[f](E(D))]2 ≥ [f](E(λ1I))]2 = cos2θ = λ1/(1 + λ1).

Summarizing, the vectors u, v achieve the maximal angle that can be formed in E(D), and

f](E(D)) =
√

λ1/(1 + λ1).

Our second task consists in showing that f](E(D)) = f(E(D)). Here is where Theorem 6.5 enters into
action. The crucial point, of course, is checking the decomposability assumption (6.8). Since

u− v = (1 + λ−11 )−1/2(2λ
−1/2
1 , 0, · · · , 0),

it follows that the line L through u− v is given by L = {(η, 0, . . . , 0) : η ∈ R}. In view of the definition
of E(D), we conclude that

E(D) + L = {(z, t) ∈ Rn × R : [
n
∑

j=2

λjz
2
j ]
1/2 ≤ t}.

Notice that any (z, t) ∈ E(D) + L can be written as sum

(z, t) = (0, z2, · · · , zn, t) + (z1, 0, · · · , 0, 0)

of two orthogonal vectors, the first in E(D) and the second in L. This means that we are authorized to
apply Theorem 6.5, and we are able to arrive at the desired conclusion.

COROLLARY 8.4. The function A ∈ Sym+(n) 7→ f(E(A)) is continuous and concave.

Proof. It follows from (8.1).

The proof of Theorem 8.3 contains a wealth of information concerning the radius of pointedness of an
elliptic cone E(A). One gets not only the exact estimate of f(E(A)), but also one see how to construct
a nonpointed cone achieving the minimal distance to E(A). Eigenvectors associated to the smallest
eigenvalue of A serve for this purpose. Without further ado, we state:

THEOREM 8.5. Let A ∈ Sym(n) be positive definite. Let xmin(A) be an eigenvector of A corre-
sponding to the eigenvalue λmin(A). Then,

Q = E(A) + [R xmin(A)]× {0}

is a member ofM(Rn × R) at minimal distance from E(A).

Proof. From the proof of Theorem 8.3, we know already that E(D) +L is a member ofM(Rn ×R) at
minimal distance from E(D). Since U ⊕ 1 is a linear isometry, it follows that

Q = (U ⊕ 1)[E(D) + L] (8.2)

is a member ofM(Rn ×R) at minimal distance from (U ⊕ 1)[E(D)] = E(A). We just need to work out
a bit more the term on the right-hand side of (8.2). As a matter of computation, one gets

(U ⊕ 1)[E(D) + L] = (U ⊕ 1)[E(D)] + (U ⊕ 1)[L] = E(A) + {(ηu1, 0) : η ∈ R},
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where u1 = xmin(A) is the first column of U .

As brought into light by Theorems 8.3 and 8.5, the spectral nature of the matrix A gives us an
important clue regarding the pointedness degree of the elliptic cone E(A). This theme could be developed
further by examining, for instance, the geometric multiplicity of the smallest eigenvalue λmin(A). For
reasons of space limitation, we will not discuss here all these subtleties. We mention, however, a few
words concerning the solidity radius of an elliptic cone.

THEOREM 8.6. For any positive definite matrix A ∈ Sym(n), one has:

(a) the radius of solidity of E(A) is given by

g(E(A)) = 1/
√

1 + λmax(A) , (8.3)

with λmax(A) denoting the largest eigenvalue of A.

(b) a member of N (Rn × R) at minimal distance from E(A) is

P = E(A) ∩ [xmax(A)]
⊥ × R,

with [xmax(A)]
⊥ ⊂ Rn denoting the space of vectors that are orthogonal to xmax(A).

Proof. The proof of item (a) is a matter of exploiting the duality results established in Theorem 4.1
and Lemma 8.1. Indeed,

g(E(A)) = f([E(A)]+) = f(E(A−1)) =

√

λmin(A−1)

1 + λmin(A−1)
.

Plugging λmin(A
−1) = [λmax(A)]

−1 in the last expression, one gets the announced formula. For proving
item (b), we combine Theorems 4.4 and 8.5.

COROLLARY 8.7. For any positive semidefinite matrix A ∈ Sym(n), one has

[f(E(A))]2 + [g(E(A))]2 ≤ 1. (8.4)

Equality in (8.4) occurs if and only if A is a nonnegative multiple of the identity matrix.

Proof. If A is singular, then f(E(A)) = 0 and (8.4) holds trivially. If A is nonsingular, then

[f(E(A))]2 + [g(E(A))]2 =
λmin(A)

1 + λmin(A)
+

1

1 + λmax(A)
≤ λmin(A)

1 + λmin(A)
+

1

1 + λmin(A)
= 1.

Equality in (8.4) occurs if and only if λmin(A) = λmax(A).

9 The region of radial configurations

Pointedness and solidity radiuses describe somehow the geometry of a closed convex cone. Since these
numbers are related to each other, the region

Ω = {(f(K), g(K)) : K ∈ C(H)}

of radial configurations is strictly contained in the square [0, 1] × [0, 1]. For instance, the pair (p, s) =
(1, 1) is not a radial configuration because f and g cannot achieve the value 1 at the same time. What
about pairs like (p, s) = (1/3, 2/3) or (p, s) = (

√
2/2, 3/4) ? We state below two results concerning the

set Ω.

PROPOSITION 9.1 . The region of radial configurations is closed and path-connected. Also, it is
symmetric in the sense that (p, s) ∈ Ω if and only if (s, p) ∈ Ω.
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Proof. Ω is the image of the compact set C(H) under the continuous function K 7→ (f(K), g(K)).
This proves that Ω is closed. Throwing away from C(H) all the cones that are linear subspaces will not
change the set Ω. More precisely,

Ω = {(f(K), g(K)) : K ∈ C1(H)}, with C1(H) = {K ∈ C(H) : K 6= −K}.

As shown in [5], Prop. 7.3, the set C1(H) is path-connected. This takes care of the path-connectedness
of Ω. For the last statement of the proposition, just apply Theorem 4.1.

PROPOSITION 9.2. Suppose that dimH ≥ 3. For any (p, s) ∈ [0, 1] × [0, 1] such that p2 + s2 ≤ 1,
there is a cone K ∈ C(H) for which (f(K), g(K)) = (p, s).

Proof. We consider H = R3, but similar examples can be constructed in higher dimensional spaces.

Case p > 0, s > 0. The positive numbers a1 = p2/(1 − p2) and a2 = (1 − s2)/s2 are well defined.
The condition p2 + s2 ≤ 1 implies that a1 ≤ a2. Take A = diag(a1, a2) and look at the elliptic cone
E(A) ⊂ R3. Theorems 8.3 and 8.6 yield

f(E(A)) =
√

a1/(1 + a1) = p and g(E(A)) = 1/
√
1 + a2 = s.

Case p > 0, s = 0. The idea is intersecting a revolution cone with an hyperplane. Take, for instance,
K = {x ∈ R3 : x1 = 0, p[x22+x

2
3]
1/2 ≤ x3}. By combining Propositions 3.2 and 5.1, one gets f(K) = p.

Since K is not solid, one has, of course, g(K) = 0.

Case p = 0, s > 0. This case is derived from the previous one by using a duality argument.

Case p = 0, s = 0. Take, for instance, K = {x ∈ R3 : x1 = 0, x3 ≥ 0}, which is neither pointed nor solid.

Proposition 9.2 provides a lower estimate for the region of radial configurations:

{(p, s) ∈ [0, 1]× [0, 1] : p2 + s2 ≤ 1} ⊂ Ω. (9.1)

There are reasons to suspect that (9.1) is actually an equality, but this is something that we cannot
ascertain at the time being. We leave as open the following (difficult) question:

is there a cone K ∈ C(H) such that [f(K)]2 + [g(K)]2 > 1? (9.2)

Notice that if such K exists, it cannot be an elliptic cone (cf. Corollary 8.7).

10 Appendix

This appendix is devoted to the proof of the diagonal perturbation lemma. We start by recalling a
celebrated interlacing property between the eigenvalues λ1(A) ≤ · · · ≤ λn(A) of a matrix A ∈ Sym(n)
and the eigenvalues λ1(B) ≤ · · · ≤ λn(B) of a perturbed version B = A± qqT .

THEOREM (interlacing property). Let A ∈ Sym(n) and q ∈ Rn be given. Then,

λk(A) ≤ λk+1(A± qqT ) ≤ λk+2(A) ∀k ∈ {1, · · · , n− 2}.

Proof. This result can be found, for instance, in the book by Horn and Johnson [4], Thm. 4.3.4.

The next result provides a more precise information on the localization of the eigenvalues of A± qqT .
We shall consider only the case A− qqT , the case A+ qqT can be treated in a similar way. Recall that

ρ(A) = {µ ∈ R : A− µI is nonsingular} and µ ∈ ρ(A) 7→ (A− µI)−1

are called, respectively, the resolvant set and the resolvant mapping of A ∈ Sym(n).
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THEOREM (eigenvalue localization). Let A ∈ Sym(n) and q ∈ Rn be a nonzero vector. If µ is an
eigenvalue of A− qqT , then exactly one of the following two alternatives occurs:

(a) µ is an eigenvalue of A;

(b) µ ∈ ρ(A) and 〈q, (A− µI)−1q〉 = 1.

Proof. This result is probably known. The proof is simple and runs as follows. Suppose µ is an
eigenvalue of A− qqT , but not an eigenvalue of A. Let x ∈ Rn be an eigenvector of A− qqT associated
to the eigenvalue µ. Then, Ax− 〈q, x〉q = µx. Notice that 〈q, x〉 6= 0. Since

x̂ = 〈q, x〉−1x = (A− µI)−1q (A.1)

is an eigenvector of A− qqT associated to the eigenvalue µ, one has the relation

µ 〈x̂, x̂〉 = 〈x̂, (A− qqT )x̂〉. (A.2)

By plugging (A.1) into (A.2), one arrives finally at the relation (b).

We now are ready to take care of the lemma on diagonal perturbations:

Proof of LEMMA 7.2. Consider, for instance, the case D = E2 − E1 = e2e
T
2 − e1e

T
1 . The matrix

B = X + E2 is positive semidefinite, and therefore 0 ≤ λ1(B) ≤ λ2(B − E1). This shows that
X + D = B − E1 admits at most one negative eigenvalue. Suppose µ = λmin(X + D) is negative,
otherwise there is nothing more to prove. Decompose X = UΛUT , with Λ being the diagonal matrix
formed with the eigenvalues λ1 ≤ · · · ≤ λn of X, and U being an orthonormal matrix whose columns
are corresponding eigenvectors. Observe that X +D has the same norm as

UT (X +D)U = UT (X + E2 − E1) = Λ + UTE2U − UTE1U = Λ+ vvT − qqT ,

where q, v are the first and second row of the matrix U . Since the unit vectors q and v are orthogonal,
one has ‖vvT − qqT ‖ = 2 and

‖X +D‖ = ‖Λ + vvT − qqT ‖ =
[

2 +
n
∑

j=1

λ2j + 2
n
∑

j=1

λj(v
2
j − q2j )

]1/2
. (A.3)

Let us keep (A.3) waiting for a while, and have a look at the eigenvalue µ̂ = λmin(X − E1). One can
easily check that 0 > µ ≥ µ̂ ≥ −1, so that |µ| ≤ |µ̂| ≤ 1. Observe now that UT (X − E1)U = Λ − qqT .
Due to the previous theorem, we know that µ̂ satisfies the resolvant equality 〈q, (Λ− µ̂I)−1q〉 = 1, which
in this case reduces to

n
∑

j=1

(λj − µ̂)−1q2j = 1.

A simple computation shows that

1 =
n
∑

j=1

q2j
λj + |µ̂|

≤
n
∑

j=1

q2j
|µ̂|λj + |µ̂|

= |µ̂|−1
n
∑

j=1

q2j
λj + 1

.

But the convexity of the square function yields

(
n
∑

j=1

q2j
λj + 1

)2
≤

n
∑

j=1

q2j

( 1

λj + 1

)2
.

This and the general inequality
( 1

t+ 1

)2
≤ 1 +

t2

2
− t ∀t ≥ 0,

lead us to
(

n
∑

j=1

q2j
λj + 1

)2
≤ 1 +

1

2

n
∑

j=1

λ2j −
n
∑

j=1

λjq
2
j .
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Hence,

|µ| ≤ |µ̂| ≤
n
∑

j=1

q2j
λj + 1

≤
[

1 +
1

2

n
∑

j=1

λ2j −
n
∑

j=1

λjq
2
j

]1/2
≤
√
2

2
‖X +D‖,

completing the proof in this way.
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