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Abstract

We introduce a new tower of function fields over a finite field of square cardinality,
which attains the Drinfeld-Vladut bound. One new feature of this new tower is
that it is constructed with non-Galois steps; i.e., with non-Galois function field
extensions. The exact value of the genus g(F},) is also given (see Lemma 4).
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1 Introduction

The interest on the determination of the rational points on curves over finite
fields (equivalently, the determination of the places of degree one of function
fields over finite fields) has a long history, going back to C.F. Gauss. It was
renewed recently after Goppa’s construction of codes from algebraic curves,
and also after Tsfasman-Vladut-Zink showed that (through Goppa’s construc-
tion) one can find infinite sequences of codes with limit parameters above the
so-called Gilbert-Varshamov bound.

Let K be a finite field. A function field F' over K is a field extension F/K
such that:

a) F' is finitely generated over K.
b) The transcendence degree of F'/K is one.
c) K is algebraically closed in the field F'.
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A tower F over K is an infinite sequence F1 & F» & F3 & ... of function
fields F,, over K such that

g(F,) 00 as mn— oo,

where g(F,,) denotes the genus of the field F,,. We denote by N(F},) the number
of K-rational places of the field F; i.e.,

N(F,) = #{P place of F,; deg(P) = 1}.

The limit A(F) below exists (see [3])

= lim N ()
ANF) = nl_)OO 9B

It follows from the Drinfeld-Vladut bound (see [2]) that we have
MF) < (#K)? -1

When K = F, is the finite field with ¢ elements, ¢ a prime power, there are
towers F over K attaining the Drinfeld-Vladut bound; i.e., such that

AMF)=q—-1.

See, for example, [6], [9], [4] and [5]. One usually tries to construct explicit
towers F over K with Galois steps; i.e., the extensions F,, 1/F, are Galois
extensions for all n > 1. The purpose here is to present a new tower F over
K =T, (see Theorem 1) attaining the Drinfeld-Vladut bound, but with non-
Galois steps (except for the case ¢ = 2). This new tower F will have both
wild and tame ramifications, and the difficulty lies in the determination of the
genus g(F,), for each value of n € N (see Lemma 4). The exact value of the
genus ¢g(F,) is very important in applications (see for example [7] and [1]).

One can also deduce that this new tower F attains the Drinfeld-Vladut bound
from [3] (see Remark 1) but the direct proof given here is simpler, avoiding in
particular the tiresome pole-order reductions in [3], and it illustrates a method
for computing the genus g(F),) which will certainly be useful for other non-
Galois towers of function fields over finite fields of nonsquare cardinalities.
Moreover to obtain the genus g(F,,) from the tower in [3] one is naturally led
to the key computations done in Lemma 3 (see Remark 1).

Another new feature of this tower F is that it is recursively given by an
equation where each side of it is not a polynomial (see Equation (1) in Section

3).



2 Preliminaries and Notations

Let F'/K be a function field over a finite field K. For two functions z,w € F
and a place P of F' we write

z=w+0(n) atP
meaning that

vp(z —w) >n, where vp is the valuation at P.

Let E/F be a separable extension of function fields over K and let P be a
place of F. Denote by 6p the local ring at P and by 0p its integral closure
in the field E. Suppose we can find a function f € 6p such that £ = F(f)
and such that the minimal polynomial Py r(T") € 0p[T| of the function f over
the field F' is separable modulo the place P. Then we have clearly that P
is unramified in the extension E/F’; i.e., we have that the ramification index
e(Q|P) satisfies:

e(Q|P) =1, for each place Q of E above P.

We will also need some facts about different exponents. Let again E/F be a
separable function field extension, () be a place of E and P be the restriction
of the place @ to the field F. We denote by d(Q|P) and also by d(Q) the
differente exponent at @) for the extension E/F.

Proposition 1. Suppose that Q|P is totally ramified in the extension E/F.
Let t € E be a Q-prime element and let p(T) € F[T| denote the minimal
polynomial of t over F. Then

d(Q|P) = vo(¢'(1)),
where ¢’ denotes the derivative.

Proof: See [8, Proposition I11.5.12]. O

Proposition 2: Let E/F be a separable extension of function fields and sup-
pose E1, By are intermediate fields such that E = Ey - Ey. Let ) be a place of
E and let QQ1, Q2 and P be its restrictions to the fields E, Ey and F. Moreover
denote by

e; =e(Qi|P), fori=1andi=2.

Assuming that e; and ey are coprime, we have:

a) e(Q|P) =e; - es.



b) If Q1|P is tame; i.e., if €1 is not a multiple of the characteristic of K, then

d(Q[Q1) = e1-d(Q2|P) — (ex — 1)(ea — 1).

Figure 1

Proof: The item a) follows from the multiplicativity of ramification indices
in field extensions, and the item b) follows from the transitivity of different
exponents in field extensions. O]

Figure 1 above illustrates Proposition 2.

3 The New Tower
Let K =T, and consider the tower F over K defined inductively by:

Fy = K(x;) is the rational function field and, for each n > 1, we have that
F.11 = F,(z,41) with the relation

Zlfn_t,_l—l_l’%—l

(1)

'I.(T]Hrl B T
Our main result is the following
Theorem 1. The tower F over K above attains the Drinfeld-Viadut bound;,

1.€.,

MF)=q—-1

We will need some lemmas for the proof of Theorem 1. The key result is Lemma
3, which gives the main information needed for the exact computation of the
genera in Lemma 4.

Lemma 1. Let F = K(z,y) be the function field over K = Fp defined by

y—1 z7-1

= : (2)

ye z




Then the following holds:
a) [F: K(z)] = [F: K(y)] = ¢.

b) The place of K(x) corresponding to x = 0 is totally ramified in F'. The place
of K(z) corresponding to x = oo is also totally ramified in F'. The place of
K(x) corresponding to x = 1 has two places in F' above it; one is denoted by Qy
and corresponds to y = 1, and the other is denoted by QQo, and corresponds to
y = 00. The ramification indices in F//K(x) are e(Q1) =1 and e(Qs) = q¢—1.

c) The place of K(y) corresponding to y = 0 has two places in F above it;
one is denoted by Py and it is the unique zero of the function x in F, and
the other is denoted by P, and it is the unique pole of the function x in F.
The ramification indices in F/K(y) are e(Py) = 1 and e(Px) = g — 1. The
place of K(y) corresponding to y = oo is totally ramified in F' and Q. is the
unique place above it. The place of K(y) corresponding toy = 1 is also totally
ramified in F and (), is the unique place above it.

d) The principal divisors in F' of the functions z,y,x—1 and y—1 are: div(x) =
qPO_qPoo;' dw(y) = P0+(q_1)POO_qQ00; d?,’l}(.fE-l) = Ql"f_(q_l)Qoo_qPoo;
div(y — 1) = ¢Q1 — Q.

e) The places of F' that are ramified over K(z) are exactly the places Py, Py
and Qo. Their different exponents with respect to the extension F/K(x) are

A(Py) = q, d(Ps) = 2(q — 1) and d(Qu) = g — 2.

Proof: Follows directly from Equation (2). We will only prove here the asser-
tions about the different exponents in item e). The assertion d(Qw) = ¢ — 2
is easy since Q) is tamely ramified over K (z) with e(Qx) = ¢ — 1 (see item
c)). The other two places Py and P,, are totally ramified in the extension
F/K(z) and we will use Proposition 1 to determine their different exponents.
The function y € F is a Py-prime element and its minimal polynomial ¢(7T')
over K(z) is given below

T T

T)=T9 — T .
gp() 7 —1 +x‘1—1

Hence d(FPy) = vp,(¢'(y)) = vp,(z) = q. Now at the place P, of F' we have
that t = 1/xy is a Py-prime element and its minimal polynomial ¢ (7T") over
K(z) is

1 o ox?1—=1
1/’(T>:Tq_;'Tq + ratl
Hence
, 1.5 1
A(Po) = v, (8/(1)) = vp (172 = vp (5) + 4~ 2 =2(a — 1),



The place of K(x1) corresponding to z; = 0 has a unique place above it in
F5 and this place is a simple zero for the function s, as follows from Lemma
1. Repeating this argument for F,,;/F, with n > 2, inductively, we see that
x1 = 0 is totally ramified in F,,/F; for all values of n € N. This shows that
Equation (1) really defines a tower (see [8, Proposition II1.7.10]).

Lemma 2. For the tower F over K we have:
a) [F, : K(x;)] = q", for eachi=1,2,...,n.

b) The function x; has a unique zero P in the field F,, for each n € N. The
different exponent d(P) with respect to the extension F,/F, 1 is d(P) = q.
Futhermore, the place P of F,, is unramified in the extension F, /K (x,).

c) The function x1 has a unique pole P’ in the field F,, for each n € N.
The different exponent d(P") with respect to the extension F,/F, 1 is d(P') =
2(q — 1). Futhermore, the place P' of F,, has ramification index (¢ — 1) with
respect to the extension F,, /K (z,).

d) If a place of F, is neither a zero nor a pole for the function xi(z; — 1),
then it is unramified in the extension F, /F.

Proof: Follows directly from Lemma 1 and Proposition 2. We will just prove
here the item c). Consider the following picture (see Figure 2) where the
numbers over the edges represent the ramification indices in the corresponding
field extensions for the various restrictions of the place P’.

KX .%X,)

K(x2) K(x3) K(x4) K(xp.1) K(xn)
X=® X,=0 X3=0 Xy=0 ... X =0 xn =0
Figure 2



The picture above follows directly from Lemma 1 and explains the assertions
concerning ramification indices. Now we determine d(P’). For n = 2, it follows
from the item e) in Lemma 1. Assume now that n > 3 and consider the
following picture:

E . :=F,.
1 n-1 K(Xp-1,X,) =: E,y

K(xn-1)
Figure 3

As in Proposition 2, we denote by 1,2 and P the restrictions of the place
P’ of F, to the subfields Ey, Ey and K(z,_1). We have d(Qz|P) = g, as follows
from the item e) in Lemma 1. Since e(@Q;|P) = ¢ — 1, it now follows from the
item b) in Proposition 2 that

d(P'1Q1) =(¢—1)-q—(¢—2)(¢g—1)=2(¢g - 1).
0

From Lemma 2 we still need to analyze the ramification behaviour in the
extensions F),/F,_; of the zeros in F,, for the function (z; — 1). Again from
Lemma 1 we have two possibilities for a place ) of F,, which is a zero of

(.’L‘l — 1)

Possibility 1: The place @ is a common zero for the functions (z; — 1), for
eachi=1,2,...,n.

In this case @ is unramified in F,,/F} and it is totally ramified in the extension
F,/K(x,).

Possibility 2: There exists ¢ € N with 1 < < n such that:

a) The place @ is a common zero for the functions (x; — 1) for i =1,2,... ¢t
b) The place @ is a pole for the function z;, ;.
c¢) The place @ is a zero for the functions z; for i =t +2,... n.

Note that condition b) in Possibility 2 above implies the other two conditions
a) and c). For treating the places @ satisfying Possibility 2 we consider the
following picture (see Figure 4), where again the numbers over the edges are



the ramification indices of the restrictions of such places () and where we
denote S :=q — 1.

Picture with t=5

K(x9 X10 X1 )

Figure 4

As already indicated in the above figure, we set for 1 < k < t:

Ey = K(@tr1-k, -, Ter)  and  Hy = Ep(Teini1).

In the next lemma we will use the following notations:

X; = (i1 — 1) for <0 and Xg:=1/24,1;
X, =—xip4q for >0

—-1 k
Y. = H X, and Z,:= HXi.

i=—k i=1

Also, we denote by @ the pole of the function z;,; in the rational function
field H() = K(I’H_l).



The next lemma is the hardest part of our proof of Theorem 1. The item a)
in it explains the encircled @)’s in Figure 4 above, which is the essential point
for the explicit determination of the genera (see Lemma 4).

Lemma 3. For 1 < k <t, let B} and Hj, be the function fields defined above.
Suppose that Q. is a place of the field Hy which is a pole for the function
xs11 and let Py denote the restriction of Qi to the field Ey. Then the following
holds:

a) The function fy, == (Zy — Yx)/Xo is reqular at the place Q. The minimal
polynomial of fi over Ej is separable modulo the place Py. In particular, the
place Qy, is unramified over Ey; i.e., e(Qx|Py) = 1.

b) The zero-orders at Qi of the functions X; are:

¢ (g —1) if —k<i<-1
vo, (Xi) =4 ¢* ifi =0
(g —1) if 1 <i<k.

L}

c) Fori=1,2,...,k, we have that
Xi— X ki
o ( X; > =

Proof: We are going to prove the lemma by induction over k. For k = 1 we
have

E1 = K(X_l,Xo) and H1 = El(Xl)

The place @, is a common zero for X 1, Xy and X;. We rewrite Equation (1)
as below:

x;y Xy 3)
X +1  1-X{
and
Xgl q—1
— = (1 = Xo). 4
T o= X - X) (4)

Clearly, vp, (X_1) = ¢ — 1, vp, (Xo) = ¢ and e(P|Qp) = ¢q. Also, the minimal

polynomial of f; = (X7 —X_1)/Xj over the field E; is the following (as follows
from Equation (3)):

1 X 1\ X 1+1

Pyip(T) =T — —— T4 (222) - 217

s (1) 1-X{ +<X0> (1 - X§)Xo



Using Equation (4) we can write

1 1+ X, .
P T)=T%— T Xi— X —-1).

The polynomial above is separable modulo P; and hence e(Q1|P;) = 1. Then
we have:

v, (X 1) = v, (X1) = ¢—1, g, (Xo) = ¢ and v, (X1 —X_1) > vg, (Xo) = q.

v

Hence vg, (%) 1 = ¢° and Lemma 3 is proved in the case k = 1.

X1

Suppose now k£ > 2 and that Lemma 3 holds for 1 < j < k. The place Q) is a

common zero for X; for i = —k,...,0,..., k. We have the following relations:
1+ X4, 1+X; .
Xi+1+ = X7 fori=—k,...,—2; (5)
x4
X (1= Xp) = ——; 6
(- X0) = T (6

I+X, 1-X{
Xi] - ngl (7)

and

I+ X1 14+ X7
Xiq+1 Xi

fori=1,...,k—1. (8)

From the induction hypothesis we have e(Py|Qr_1) = ¢ and

qk-i-j.(q_l) forj:—</{:—1),...,—1
UPk<Xj) =q- UQk—l(Xj) = qk for ‘7 =0
qk—j.(q_l) forj=1,....k—1.

From the relation between X_(,_;) and X_; given in Equation (5), we also
have vp, (X_x) = ¢ — 1. Using that Z, = Z;_1 - X} and Equation (8) for
i =k — 1, we see that the minimal polynomial of f; = (Zy — Y})/X, over the
field F is given by

Py g, (T)=T1— A -T + By, where

Xy q- 201
E = bl kfl_l and
(1+Xi 1)Xg
B — (Yk )q Xp1- 201 Y X124
P\ X, (1+ X7 )Xg (1+X{ )X

10



It is easy to see that vp (Zx_1) = ¢* — ¢ and hence that vp, (A4;) = 0. We are
now going to show that vp (Bg) > 0 and this will complete the proof of the
item a) in Lemma 3. We can rewrite By as below

1 (qu(1+XZ—1)

B — A, . —
¢ ‘ ZI7y - X

e ~ Y — Zk_1> . (9)

From the induction hypothesis we have vp, (fr—1) > 0; i.e., we have

Yk,1 = Zk,1 + O(qk) at Pk (10)

Denoting by Cj, the term inside the parenthesis in Equation (9); i.e., we have
By, = A - Cy/ Xy, we need to show that vp, (C) > vp, (Xo) = ¢~.

From Yy = Y;_1 - X_; and Equation (10), we have

ng . Zk_l k
Co= S X B = B+ O) at B (1)
k—1

It follows from Equation (5) with ¢ = —Fk that

X% X (k-1)
— — X — 1= -14+0 t Py 12
X K X +0(q) at Py (12)
Using Equations (11) and (12), the proof that vp (Bx) > 0 will be complete

if we show
X1 — X e
w%<k1X wn>2q )
k-1

Finally the inequality in (13) above follows from the induction hypothesis since

X — X 1) .
VQr_4 (T) > g7t fori=1,...,k—1,

and since we have already observed that e(Py|Qr-1) = q.
From Equations (5) and (8) for ¢ = —k and i = (k — 1), we have

<Xk - X—k)q _ (Xk—l — X_(k-1)
X Xk

) +0(q—1) at P

The proof of Lemma 3 is complete, since we have e(Qg|Py) = 1. O

Proof of Theorem 1: To finish now the proof of Theorem 1 is a simple
matter. Let 1 <t < "T’l and let ) be a place of F,, which is a pole for the
function z;,;. Then the place @ is totally ramified in F,1|F, for all s > n,

as follows from Lemma 3. As in the proof of Lemma 2, the different exponent

11



is 2(¢ — 1) in each step Fs1|F;. It also follows from Lemma 3 that there are
exactly ¢' places of F, that are poles for the function ;.

Puting this together we get that the different degree of the extension F,,/F,,_;
is as below:
deg Diff(F,|F,—1) = 2(q¢ — 1) + 2(¢"™/@ — 1).

From the different degree above and Riemann-Hurwitz formula, we get

Lemma 4. For the fields F,, in the tower F considered here, we have:

(¢"? —1)2, if n is even
("= —1)(¢"* —1),  ifnisodd.

(q—U-ﬂEJz{

O

Continuing with the proof of Theorem 1, one sees easily that the rational
places of K(z1) corresponding to the roots of z{ + x; — 1 = 0 are completely

splitting in F and hence

N(F,) >q-|F,: Fi] =q".

N(F,
This then gives lim (Fr) =q—1. O
9(Fn)

Remark 1: The tower F here is a subtower of the tower in [3] and hence this
fact gives another proof that A\(F) = ¢ — 1, as follows from [3, Corollary 2.4].
Indeed, let us denote by £ the tower over K defined inductively as: Fy = K (y;)
is the rational function field and, for each n > 1, we have E,.1 = E,(Ynt1)

with the relation .

yi t+ 1
Taking x, := 1/(1+y4'), Vn € N, then one sees that the functions z,, € E,

satisfy Equation (1). But if one wants to deduce the genus formula in Lemma
4 from the tower £ above, one should consider the following Figure 5:

Y1+ Unp1 =

Figure 5

12



Each of the extensions E,/F, is a Kummer extension of degree ¢ — 1 and
satisfies )
E,=Fy(y) with i '=—"21
Z1
So in order to deduce g(F,,) from g(E,) we are led to consider the zeros and
poles of the function (1 — z1)/z; in the field F,,, and hence we cannot avoid

the considerations done in the key result here (which is Lemma 3).
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