
Projective Splitting Methods for Pairs of Monotone
Operators

Jonathan Eckstein∗ B. F. Svaiter†

August 13, 2003

Abstract

By embedding the notion of splitting within a general separator projec-
tion algorithmic framework, we develop a new class of splitting algorithms for
the sum of two general maximal monotone operators in Hilbert space. Our
algorithms are essentially standard projection methods, using splitting decom-
position to construct separators. These projective algorithms converge under
more general conditions than prior splitting methods, allowing the proximal
parameter to vary from iteration to iteration, and even from operator to op-
erator, while retaining convergence for essentially arbitrary pairs of operators.
The new projective splitting class also contains noteworthy preexisting methods
either as conventional special cases or excluded boundary cases.

1 Introduction

This paper considers splitting methods for solving the inclusion

0 ∈ A(x) + B(x), (1)

where A and B are set-valued maximal monotone operators on some real Hilbert space
H. Splitting methods for this problem are algorithms that do not attempt to evalu-
ate the resolvent mapping (I + λ(A + B))−1 of the combined operator A + B (where
λ > 0 is some scalar) but instead only evaluate resolvent mappings (I + λA)−1 and
(I + λB)−1 of the individual operators A and B. Such methods have numerous appli-
cations in constructing decomposition methods for convex optimization and monotone
variational inequalities.

∗Business School and RUTCOR, 640 Bartholomew Road, Busch Campus, Rutgers University,
Piscataway NJ 08854 USA, jeckstei@rutcor.rutgers.edu.

†IMPA, Instituto de Matemática Pura e Aplicada, Estrada Dona Castorina, 110. Rio de Janeiro,
RJ, CEP 22460-320, Brazil, benar@impa.br. Partially supported by CNPq Grant 302748/2002-4
and by PRONEX–Optimization.

1

At present, the Douglas-Rachford class of algorithms constitute the predominant
methods of this form. Given a fixed scalar η > 0 and a sequence {ρk} ⊂ (0, 2), this
class of methods may be expressed via the recursion

xk+1 =
[(

1− ρk

2

)
I +

ρk

2
(2(I + ηB)−1 − I)(2(I + ηB)−1 − I)

]
(xk). (2)

This approach is known to converge [4] for arbitrary maximal monotone A and B,
under the conditions that 0 < ρ ≤ ρk ≤ ρ < 2 for all k, and (1) has a solution.
Classical Douglas-Rachford splitting is the special case ρk ≡ 1, whose convergence
proof in the set-valued monotone context dates back to [10]. Also present in [10]
is the case ρk ≡ 2, which is known as Peaceman-Rachford splitting ; however, this
case requires additional assumptions on either A or B to guarantee convergence. A
concise and elegant approach to understanding this class of methods may be found
in [8, Section 1], and is elaborated in [5, Sections 1.1–1.2]. Note also that there exist
variants where the recursion (2) may be evaluated approximately, which we omit here
in the interest of brevity.

A very broad range of decomposition algorithms for monotone inclusions, mono-
tone variational inequalities, and convex optimization are in fact special cases of the
Douglas-Rachford class of methods. This observation includes methods derived from
Spingarn’s principle of partial inverses [18].

Practical computational experience with Douglas-Rachford methods has proved
somewhat mixed. In addition, they have the drawback that all known convergence
proofs require the proximal parameter η to remain fixed throughout the algorithm; it
cannot — at least in theory — be varied from iteration to iteration.

Splitting methods outside the class of encompassed by (2) and its approximate
relatives have historically been burdened with a variety of restrictive assumptions.
Double-backward methods [9, 13] use the simple recursion

xk+1 = (I + λkB)−1(I + λkA)−1(xk).

These methods are suitable for situations where A and B share a common root, that
is, A−1(0)∩B−1(0) 6= ∅. Otherwise, convergence requires that λk → 0 in a particular
way, and even then {xk} may not converge, but only a certain ergodic sequence of its
weighted averages.

Forward-backward splitting [6] methods offer a more popular alternative, and use
the fundamental recursion

xk+1 ∈ (I + λkB)−1(I − λkA)(xk);

the next iterate xk+1 is no longer determined uniquely by this recursion unless A is
single-valued. These methods are essentially generalizations of the classical gradi-
ent projection method for constrained convex optimization and monotone variational
inequalities, and inherit restrictions similar to those methods. Typically, one must as-
sume that A is Lipschitz continuous, and the stepsizes λk must fall in a range dictated

2

by A’s modulus of continuity. These restrictions are weakened somewhat in [19], but
convergence still fails for general maximal monotone A and B.

This paper develops a new approach to splitting by embedding it within the frame-
work of separator projection algorithms. We discuss the basic theoretical properties
of this framework in Section 2. Fundamentally, given an iterate xk ∈ H and a closed
convex set S ⊂ H, we suppose that we can construct a separating hyperplane ϕk

between xk and S, and then obtain xk+1 by projecting onto this hyperplane, possibly
with a relaxation factor ρk ∈ (0, 2). This recursion produces a sequence {xk} Féjer
monotone to S, and under the proper conditions (weakly) convergent to a point in S.

Our main idea is to apply splitting-style decomposition techniques to the con-
struction of the separators ϕk within this framework. Furthermore, we do not use
S = (A + B)−1(0) ⊂ H, but instead employ an expanded version of the solution set
we denote Se(A, B), which is a closed convex subset of H ×H. Thus, the separator
projection method operates in H ×H. We develop the basic properties of Se(A, B),
along with related separators and projection algorithms, in Section 3.

In Section 4, we present a new family of splitting algorithms, based on a particular
decomposition approach to constructing the separator ϕk: to compute a separator,
one need only evaluate resolvents of the form (I + µkA)−1 and (I + λkB)−1. Per-
forming the appropriate projections, which are simple closed-form calculations, one
obtains a sequence weakly convergent to a solution of (1). Our family of splitting
methods converges for essentially arbitrary maximal monotone A and B, the only
restrictions being that (A + B)−1(0) 6= ∅ and, if H is infinite-dimensional, that A+B
must be maximal. Nevertheless, the proximal parameter may vary from iteration
to iteration, a property not shared by prior splitting methods applicable to general
maximal monotone A and B. A further, completely novel feature is that the proximal
parameter can vary from operator to operator: one can in the general case construct
a valid separator by evaluating (I + µkA)−1 and (I + λkB)−1, with µk 6= λk.

Section 5 next considers some reformulations and special cases of our algorithmic
family. In Section 5.1, we include an additional scaling factor η > 0 that imparts
additional flexibility to the new algorithm family. With the aid of this extra factor,
we then consider some special cases. In Section 5.2, we develop a special case that
resembles the n = 2 case of Spingarn’s splitting method [18], and is in fact identical
if one makes some further restrictions to its parameters.

Section 5.3 then considers some other special cases which do not appear to have
an analog in the prior literature. Finally, Section 5.4 considers Douglas-Rachford
methods. This class of methods also turns out to be a special case of our projective
framework, but with “boundary” parameter settings excluded by our convergence
theory.

Although we do not pursue the implications here, we note that our new family
of splitting methods, because of its generality, can clearly be used wherever Douglas-
Rachford and other techniques have been applied in the past. Applications include
the alternating direction method of multipliers for decomposing convex programs

3

in “Fenchel” form [6, 4, 3], and complementarity problems [5]. Replacing Douglas-
Rachford splitting with our projective approach would produce new versions of the
algorithms in these references. Naturally, computational work will be needed to
ascertain if anything is gained in practice.

Finally, we note that our approach to splitting can be further generalized, for
example, to sums of more than two operators, or to allow approximate computation
of resolvents. We will discuss such generalizations in forthcoming follow-up work.

2 A generic separator projection framework

Suppose that H is a real Hilbert space with inner product 〈·, ·〉 and norm ‖·‖, and we
wish to find a point p∗ in some closed convex set S ⊂ H. We do not know S explicitly,
but we are able to detect if a given point p ∈ H is in S, and to construct a separating
hyperplane between S and any point p ∈ H\S. We call a function ϕ : H → R a
separator for S ⊂ H and p ∈ H\S if it is both affine and continuous, and has the
properties

ϕ(p) > 0 ϕ(p∗) ≤ 0 ∀ p∗ ∈ S. (3)

Note that if a separator exists for S and every p ∈ H\S, then S must be closed and
convex. If ϕ is a separator for S and p̄, one must have ‖∇ϕ‖ > 0, since otherwise the
two conditions in (3) cannot both hold.

If we are able to generate such separators, a natural way to use them is through
successive projection. Defining the halfspace H(ϕ) via H(ϕ) = {p ∈ H | ϕ(p) ≤ 0},
projection onto H(ϕ) may be accomplished via

PH(ϕ)(q) = q − max{0, ϕ(q)}
‖∇ϕ‖2

∇ϕ =

{
q if ϕ(q) ≤ 0

q − ϕ(q)

‖∇ϕ‖2∇ϕ if ϕ(q) > 0.

In practice, it is often helpful to introduce a relaxation factor ρ ∈ (0, 2): if the current
iterate is pk 6∈ S and ϕk is a separator for S and pk, we compute next iterate via

pk+1 = (1− ρk)p
k + ρkPH(ϕk)(p

k) = pk − ρk
ϕk(p

k)

‖∇ϕk‖2
∇ϕk,

where ρk ∈ (0, 2). Bounding {ρk} strictly away from 0 and 2, we arrive at the following
“skeleton” algorithm:

Algorithm 1 (Generic projection framework) Given:

• A real Hilbert space H and initial point p0 ∈ H

• Scalar constants ρ, ρ with 0 < ρ ≤ ρ < 2.

Starting with k = 0, execute:

4

1. If pk ∈ S, halt.

2. Find some separator ϕk for S and pk.

3. Choose any ρk with ρ ≤ ρk ≤ ρ, and set

pk+1 = pk − ρk
ϕk(p

k)

‖∇ϕk‖2
∇ϕk,

and repeat with k ← k + 1.

The basic properties of this algorithmic form may be derived by an analysis much like
that of classical projection algorithms, dating back to Cimmino [2] and Kaczmarz [7]
in the late 1930’s. A comprehensive review of projection algorithms may be found
in [1].

Proposition 1 Suppose Algorithm 1 does not halt. For all k ≥ 0, define the positive
scalar δk by

δk
def
=

ϕk(p
k)

‖∇ϕk‖
. (4)

Then, for all k ≥ 0 and p∗ ∈ S,∥∥pk+1 − p∗
∥∥2 ≤

∥∥pk − p∗
∥∥2 − ρ(2− ρ)δ2

k. (5)

The sequence {pk} ⊂ H is thus Féjer monotone to S, that is,
∥∥pk+1 − p∗

∥∥ ≤ ∥∥pk − p∗
∥∥

for all k ≥ 0 and p∗ ∈ S. Furthermore, if S 6= ∅
∞∑

k=0

δ2
k <∞ lim

k→∞
δk = 0. (6)

Proof. For all k ≥ 0, define the vector

dk def
=

ϕk(p
k)

‖∇ϕk‖2
∇ϕk,

so pk+1 = pk − ρkd
k. Picking any p∗ ∈ S, we therefore have∥∥pk+1 − p∗

∥∥2
=

∥∥pk − p∗
∥∥2 − 2ρk〈pk − p∗, dk〉+ ρ2

k

∥∥dk
∥∥2

. (7)

¿From the optimality conditions for the projection operator PH(ϕk), along with p∗ ∈
S ⊆ H(ϕk), we have

〈p∗ − PH(ϕk)(p
k), pk − PH(ϕk)(p

k)〉 ≤ 0.

5

Substituting PH(ϕk)(p
k) = pk − dk into this relation, we obtain

〈p∗ − (pk − dk), dk〉 ≤ 0 ⇔ 〈pk − p∗, dk〉 ≥
∥∥dk

∥∥2

(this relation is just the well-established fact that PH(ϕk) must be firmly nonexpan-
sive). Substituting this relation into (7),∥∥pk+1 − p∗

∥∥2 ≤
∥∥pk − p∗

∥∥2 − ρk(2− ρk)
∥∥dk

∥∥2

≤
∥∥pk − p∗

∥∥2 − ρ(2− ρ)
∥∥dk

∥∥2
,

which is equivalent to (5). The remaining assertions follow immediately from (5). �

Since {pk} is Féjer monotone to S, we immediately have:

Corollary 2 In Algorithm 1, if {pk} has a limit point p∞ ∈ S, then it converges to
p∞ ∈ S.

While this generic projection framework always yields sequences Féjer monotone to
S, it may not achieve convergence in general, even in the weak topology. The reason
is that one might choose separators that are asymptotically “shallow”, causing the
method to stall. However, one can assert that {pk} cannot have multiple weak limit
points in S:

Proposition 3 In Algorithm 1, {pk} has at most one weak limit point in S.

Proof. Let K1, K2 ⊆ {0, 1, 2, . . .} be two infinite sets such that pk w→Ki
p∞i ∈ S,

i = 1, 2. By Opial’s Lemma [12],

lim inf
k→∞
k∈K1

∥∥pk − p∞2
∥∥ ≥ lim inf

k→∞
k∈K1

∥∥pk − p∞1
∥∥

lim inf
k→∞
k∈K2

∥∥pk − p∞1
∥∥ ≥ lim inf

k→∞
k∈K2

∥∥pk − p∞2
∥∥

with equality holding in both relations if and only if p∞1 = p∞2 . Since p∞1 , p∞2 ∈ S,∥∥pk − p∞1
∥∥ and

∥∥pk − p∞2
∥∥ are nonincreasing over all k ≥ 0, and so

lim inf
k→∞
k∈K1

∥∥pk − p∞1
∥∥ = lim inf

k→∞
k∈K2

∥∥pk − p∞1
∥∥ = lim inf

k→∞

∥∥pk − p∞1
∥∥

lim inf
k→∞
k∈K2

∥∥pk − p∞2
∥∥ = lim inf

k→∞
k∈K1

∥∥pk − p∞2
∥∥ = lim inf

k→∞

∥∥pk − p∞2
∥∥

Therefore, p∞1 = p∞2 . �

6

Note that the classical proximal point algorithm [14] for finding a zero of a general
maximal monotone operator T (including the possibility of over- or under-relaxation;
see for example [4]) is an instance of Algorithm 1, where S = T−1(0). To see this, let

rk = (I + λkT)−1(pk).

Therefore, rk and some vk ∈ H satisfy the the conditions

vk ∈ T (rk) λkv
k + rk − pk = 0. (8)

Since 0 ∈ T (p∗) for all p∗ ∈ S, the monotonicity of T gives

〈vk, p∗ − rk〉 ≤ 0 ∀ p∗ ∈ S,

while
〈vk, pk − rk〉 = λk

∥∥vk
∥∥2

=
∥∥pk − rk

∥∥2
/λk ≥ 0,

with equality holding if and only if pk = rk ∈ T−1(0) = S. Thus, if pk /∈ T−1(0), the
affine function

φk(p) = 〈vk, p− rk〉

is a separator for T−1(0) and pk. So, if we implement Algorithm 1 with this choice of
separator, that is, taking ϕk = φk in step 2, we get

pk+1 = pk − ρk
ϕk(p

k)

‖∇ϕk‖2
∇ϕk = (1− ρk)p

k + ρkr
k.

Thus, there are commonalities between the analyses of projection methods and the
proximal point family of algorithms.

The hybrid projection-proximal point method of [16] and its generalizations in [15,
17] are based on this equivalence between proximal point algorithms and projection
methods; in these works, an approximate solution of the “proximal system” (8), using
a relative error criterion, is shown to provide a sufficiently deep separator to assure
convergence. In [16], pk+1 is obtained by projecting onto this separator without a
relaxation factor (that is, with ρk = 1). In [17], under- and over-relaxation appears
in a similar context.

3 The set Se(A, B) and decomposable separators

We now turn to the problem of solving 0 ∈ A(x)+B(x), where A and B are arbitrary
maximal monotone operators on H. We will use the generic projection framework
of Section 2; however, the separators will not be for the set (A + B)−1(0), but for a
higher-dimensional set Se(A, B) ⊆ H ×H defined via

Se(A, B)
def
= {(x, b) ∈ H ×H | b ∈ B(x),−b ∈ A(x)} .

7

Clearly, a point x ∈ H satisfies 0 ∈ A(x) + B(x) if and only if there exists b ∈ B(x)
such that −b ∈ A(x), so Se(A, B) is nonempty if and only if (A+B)−1(0) is nonempty,
and applying the trivial projection (x, y) 7→ x to Se(A, B) yields (A + B)−1(0).

We endow H ×H with the canonical inner product

〈(x, y), (z, w)〉 = 〈x, z〉+ 〈y, w〉

induced by the inner product 〈·, ·〉 of H, and the corresponding norm

‖(x, y)‖ =

√
‖x‖2 + ‖y‖2 .

Our basic strategy will be to find separators between Se(A, B) and an arbitrary
point (zk, wk) ∈ H ×H by calculations involving A and B individually, but not the
joint operator A + B.

Lemma 4 Suppose b ∈ B(x) and a ∈ A(y), where A, B : H ⇒ H are monotone
operators. Define the function ϕ : H ×H→ R via

ϕ(z, w) = 〈z − x, b− w〉+ 〈z − y, a + w〉. (9)

Then ϕ is affine, continuous, and ϕ(z, w) ≤ 0 for all (z, w) ∈ Se(A, B). Furthermore,
one has

∇ϕ =

(
a + b
x− y

)
‖∇ϕ‖2 = ‖a + b‖2 + ‖x− y‖2 , (10)

and ∇ϕ = 0 if and only if (x, b) ∈ Se(A, B), x = y, and a = −b.

Proof. Direct calculation produces

ϕ(z, w) = 〈z, a + b〉+ 〈x− y, w〉 − 〈x, b〉 − 〈y, a〉, (11)

so ϕ is affine and continuous. If (z, w) ∈ Se(A, B), then one must have w ∈ B(z),
and 〈z − x, b− w〉 ≤ 0 by the monotonicity of B. Similarly, −w ∈ A(z), and the
monotonicity of A yields 〈z − y, a + w〉 ≤ 0, so ϕ(z, w) ≤ 0. Next, (10) follows
immediately from (11), and from (11) one has that ∇ϕ = 0 if and only if x = y and
a = −b. In that case, since b ∈ B(x) and a ∈ A(y), one also has (x, b) ∈ Se(A, B). �

Lemma 5 Given any (z, w) ∈ H × H, (z, w) 6∈ Se(A, B), there exists a separator
ϕz,w for Se(A, B) and (z, w). Consequently, Se(A, B) must be a closed convex set.

Proof. Take any (z, w) ∈ H × H, (z, w) 6∈ Se(A, B). Let (x, b) and (y, a) be the
unique elements of H ×H such that

x + b = z + w b ∈ B(x) (12)

y + a = z − w a ∈ A(y). (13)

8

To see that (x, b) exists and is unique, note that (12) is equivalent to the conditions

x = (I + B)−1(z + w)

b = z + w − x.

The operator (I + B)−1 is everywhere-defined and single-valued [11], so these condi-
tions determine x and b uniquely. The argument for (y, a) is similar. Now define

ϕz,w(z, w)
def
= 〈z − x, b− w〉+ 〈z − y, a + w〉.

By Lemma 4, ϕz,w(z, w) ≤ 0 for all (z, w) ∈ Se(A, B). To establish that ϕz,w is a sep-
arator, it thus suffices to show that ϕz,w(z, w) > 0. From (12) and (13), respectively,
we have b − w = z − x and a + w = z − y. Substituting these expressions into the
definition of ϕz,w, we obtain

ϕz,w(z, w) = ‖z − x‖2 + ‖z − y‖2 ≥ 0.

In the case ϕz,w(z, w) = 0, we would immediately have x = y = z. Then, substituting
x = z and y = z into (12) and (13) , we would deduce b = −a = w. Since b ∈ B(x) and
a ∈ A(y), we would then reach the contradictory conclusion that (z, w) ∈ Se(A, B).
Therefore, ϕz,w(z, w) > 0, and ϕz,w is a separator.

Then closedness and convexity of Se(A, B) now follows by a standard construction
which we sketch briefly for completeness. Define

S ′
def
=

⋂
(z,w)∈H×H

(z,w) 6∈Se(A,B)

{(z, w) ∈ H ×H | ϕz,w(z, w) ≤ 0} .

S ′ is closed and convex, since it is the intersection of a collection of closed half-spaces.
It is straightforward to show that S ′ contains every member of Se(A, B) and excludes
all (z, w) 6∈ Se(A, B), so Se(A, B) = S ′, implying Se(A, B) is closed and convex. �

We now specialize the framework of Algorithm 1 to the case S = Se(A, B) and ϕk

constructed as in Lemma 4:

Algorithm 2 (Generic projection/splitting framework for Se(A, B)) Given:

• A general Hilbert space H

• Maximal monotone operators A, B : H ⇒ H with (A + B)−1(0) nonempty

• Arbitrary vectors z0, w0 ∈ H

• Scalar constants ρ, ρ with 0 < ρ ≤ ρ < 2.

Starting with k = 0, execute:

9

1. Choose (xk, bk) ∈ Gph(B) and (yk, ak) ∈ Gph(A) such that either (xk, bk) =
(yk,−ak) or

〈zk − xk, bk − wk〉+ 〈zk − yk, ak + wk〉 > 0.

If (xk, bk) = (yk,−ak), set (zk+1, wk+1) = (xk, bk), and halt; otherwise, continue.

2. Choose some ρk with ρ ≤ ρk ≤ ρ, and let

σk =
〈zk − xk, bk − wk〉+ 〈zk − yk, ak + wk〉

‖ak + bk‖2 + ‖xk − yk‖2

zk+1 = zk − ρkσk(a
k + bk)

wk+1 = wk − ρkσk(x
k − yk).

Let k ← k + 1, and repeat.

If (xk, bk) = (yk,−ak) and the algorithm halts in step 1, then (zk+1, wk+1) = (xk, bk) ∈
Se(A, B), and an element of Se(A, B) has been found. In the context of this algorithm,
let ϕk(·, ·) be defined by

ϕk(z, w) = 〈z − xk, bk − w〉+ 〈z − yk, ak + w〉. (14)

By step 1 and Lemma 4, each time step 2 is executed, ϕk is a separator for Se(A, B)
and (zk, wk). Moreover, step 2 of this algorithm is exactly Step 3 of Algorithm 1,
implemented with the separator ϕk defined above; note also that the denominator
‖ak +bk‖2 +‖xk−yk‖2 must be positive, so σk is well-defined. Therefore, Algorithm 2
is essentially a special case of Algorithm 1, where S = Se(A, B). Therefore, the
following result follows directly from Propositions 1-3 and (10).

Proposition 6 In Algorithm 2, suppose that Se(A, B) 6= ∅. Then the algorithm
either halts with (zk+1, wk+1) ∈ Se(A, B), or {(zk, wk)} is an infinite sequence Féjer
monotone to Se(A, B), and one also has

∑∞
k=0 δ2

k <∞ and limk→∞ δk = 0, where

δk =
〈zk − xk, bk − wk〉+ 〈zk − yk, ak + wk〉√

‖ak + bk‖2 + ‖xk − yk‖2
.

Furthermore, if {(zk, wk)} has a limit point in Se(A, B), it converges to a point in
Se(A, B). If all weak limit points of {(zk, wk)} are in Se(A, B), it converges weakly
to a point in Se(A, B).

4 A family of projective splitting methods

To transform Algorithm 2 into a workable method, one must specify how to obtain
(xk, bk) ∈ Gph(B) and (yk, ak) ∈ Gph(A) meeting the requirements of step 1. This
section describes a parameterized family of procedures for doing so. For each k, the
calculation of (xk, bk) and (yk, ak) is described by three scalar parameters λk, µk > 0
and αk. The construction resembles the proof of Lemma 5, but is more general.

10

Algorithm 3 (A projective splitting family) Suppose we are given the same ob-
jects as in Algorithm 2, as well as scalar constants λ ≥ λ > 0. Starting with k = 0,
execute:

1. Choose some αk ∈ R and λk, µk ∈ [λ, λ] satisfying the condition

µk/λk − (αk/2)2 > 0. (15)

Let (xk, bk) and (yk, ak) be the unique points in Gph(B) and Gph(A), respec-
tively, such that

xk + λkb
k = zk + λkw

k (16)

yk + µka
k = (1− αk)z

k + αkx
k − µkw

k. (17)

If xk − yk = 0 and ak + bk = 0, set (zk+1, wk+1) = (xk, bk) and halt.

2. Otherwise, as in Algorithm 2, choose some ρk with ρ ≤ ρk ≤ ρ, and let

σk =
〈zk − xk, bk − wk〉+ 〈zk − yk, ak + wk〉

‖ak + bk‖2 + ‖xk − yk‖2

zk+1 = zk − ρkσk(a
k + bk)

wk+1 = wk − ρkσk(x
k − yk).

Let k ← k + 1, and repeat.

Note that (16) implies xk = (I + λkB)−1(zk + λkw
k), and the operator (I + λkB)−1

is everywhere-defined and single-valued by the maximal monotonicity of B [11]. Re-
arranging (16), one has bk = wk + (1/λk)(z

k − xk), so (xk, bk) exists and is unique.
Similarly,

yk = (I + µkA)−1 (
(1− αk)z

k + αkx
k − µkw

k
)
,

so the maximal monotonicity of A guarantees the existence and uniqueness of yk and
ak = (1/µk)

(
(1− αk)z

k + αkx
k − yk

)
− wk.

Algorithm 3 is a true splitting method for the problem 0 ∈ A(z)+B(z), in that it
uses only the individual resolvent mappings (I + µkA)−1 and (I + λkB)−1, and never
works directly with the operator A + B.

We will now show that if infk≥0 {µk/λk − (αk/2)2} > 0 , the algorithm converges
in the weak topology to a solution of 0 ∈ A(z) + B(z). As the proof is somewhat
lengthy, we divide it into two main parts: Propositions 7 and 9 below. The first
proposition establishes the basic properties of the separator ϕk computed via (16)-
(17), and that step 1 is valid implementation of step 1 of Algorithm 2. The second
proposition completes the proof of convergence.

11

Proposition 7 In Algorithm 3, the function

ϕk(z, w) = 〈z − xk, bk − w〉+ 〈z − yk, ak + w〉

has the property

ϕk(z
k, wk) ≥ ξk

[∥∥zk − xk
∥∥2

+
∥∥zk − yk

∥∥2
]
, (18)

where

ξk
def
=

(µk/λk + 1)−
√

(µk/λk + 1)2 − 4(µk/λk − α2
k/4)

2µk

(19)

≥ µk/λk − α2/4

µk(µk/λk + 1)
> 0. (20)

In particular, ϕk(z
k, wk) ≥ 0. Moreover, ϕk(z

k, wk) = 0 can only occur if (xk, bk) =
(yk,−ak) = (zk, wk) ∈ Se(A, B).

Proof. Rearranging (16) and (17) yields

bk − wk = (1/λk)(z
k − xk) (21)

ak + wk = (1/µk)
[
(zk − yk)− αk(z

k − xk)
]

(22)

Substituting these identities into the formula (14) for ϕk(z
k, wk) gives

ϕk(z
k, wk) =

1

λk

∥∥zk − xk
∥∥2

+
1

µk

∥∥zk − yk
∥∥2 − αk

µk

〈zk − xk, zk − yk〉. (23)

Applying the Cauchy-Schwarz inequality and interpreting the resulting expression as
a quadratic form applied to

(
‖zk − xk‖, ‖zk − yk‖

)
∈ R2, we obtain

ϕk(z
k, wk) ≥ 1

λk

∥∥zk − xk
∥∥2

+
1

µk

∥∥zk − yk
∥∥2 − |αk|

µk

∥∥zk − yk
∥∥∥∥zk − xk

∥∥ (24)

=

[∥∥zk − xk
∥∥∥∥zk − yk
∥∥

]>
1

λk

−|αk|
2µk

−|αk|
2µk

1

µk

[∥∥zk − xk
∥∥∥∥zk − yk
∥∥

]
. (25)

Calculating the smaller eigenvalue of the matrix in (25), we obtain ξk as defined
in (19), and therefore (18) holds. To prove the inequality passing from (19) to (20),
we write

ξk =
µk/λk + 1

2µk

[
1−

√
1− 4

µk/λk − α2
k/4

(µk/λk + 1)2

]
, (26)

12

and use the concavity inequality
√

1− h ≤ 1 − h/2 for h ≤ 1. The positivity of the
resulting expression in (20) follows from the assumptions in step 1 of the algorithm.

It immediately follows from the positivity of ξk that ϕk(z
k, wk) ≥ 0. Finally,

when ϕk(z
k, wk) = 0, (18) implies xk = yk = zk. From (21) and (22), one then has

bk = −ak = wk, and so (xk, bk) = (yk,−ak) = (zk, wk) ∈ Se(A, B). �

Note that it is evident from (26) that the sign of the eigenvalue ξk is identical to that
of µk/λk − (αk/2)2. In view of (20), we can thus use µk/λk − (αk/2)2 to guide our
convergence analysis, instead of the more cumbersome expression (19).

We now proceed to complete our proof of convergence. First, we state a simple
lemma that we will employ twice in the main proof.

Lemma 8 Suppose {rk}, {uk}, {vk} ⊂ H and {λk} ⊂ (0,∞) are sequences such that
{rk} is bounded and

uk + λkvk = rk vk ∈ T (uk) (27)

for all k, where T is a monotone operator. If {λk} is bounded, then {uk} is bounded.
If infk{λk} > 0, then vk is bounded.

Proof. In order to prove the first claim, suppose {λk} is bounded. Pick any point
(u, v) ∈ Gph(T) (the hypotheses imply T ’s graph is nonempty). Since {λk} is
bounded, so is the sequence {u + λkv}. Since {rk} is also bounded, there exists
β > 0 such that ‖rk − (u + λkv)‖ ≤ β for all k. We have uk = (I + λkT)−1(rk) for all
k, and using the nonexpansiveness of (I + λkT)−1 [11], we obtain∥∥uk − u

∥∥ =
∥∥(I + λkT)−1(rk)− (I + λkT)−1(u + λkv)

∥∥
≤

∥∥rk − (u + λkv)
∥∥

≤ β,

and so {uk} is also bounded.
To prove the second claim, we apply some simple transformations to (27), obtain-

ing the equivalent conditions

vk + (1/λk)u
k = rk/λk uk ∈ T−1(vk).

If infk{λk} > 0, then {1/λk} ⊂ (0,∞) and {rk/λk} ⊂ H are bounded. Since T is
monotone, so is T−1. Thus, we may apply the first claim with a suitable redefinition
of variables to conclude that {vk} is bounded. �

Proposition 9 In Algorithm 3, assume that (A + B)−1(0) 6= ∅, and that either H is
finite-dimensional or A + B is maximal monotone. If

inf
k≥0

{
µk/λk − (αk/2)2

}
> 0, (28)

13

then either the algorithm halts with (zk+1, wk+1) ∈ Se(A, B), or {zk}, {xk}, and {yk}
all converge weakly to some z∞ such that 0 ∈ A(z∞)+B(z∞). In this case, {wk} and
{bk} converge weakly to some w∞ such that w∞ ∈ B(z∞) and −w∞ ∈ A(z∞), while
{ak} converges to −w∞.

Proof. Proposition 7 shows that step 1 of Algorithm 3 produces pairs (xk, bk) ∈
Gph(B), and (yk, ak) ∈ Gph(A) meeting the assumptions of Algorithm 2. Therefore,
we may apply Proposition 6 to conclude that either we halt with (zk+1, wk+1) ∈
Se(A, B), or {(zk, wk)} is an infinite sequence Féjer monotone to Se(A, B), with

δk =
ϕk(z

k, wk)√
‖ak + bk‖2 + ‖xk − yk‖2

→ 0. (29)

We now show that the denominator in (29) is bounded. First, since {(zk, wk)} is
bounded by Féjer monotonicity and {λk} is bounded, the sequence {zk + λkw

k}
appearing on the right-hand side of (16) is bounded. Since {λk} ⊂ [λ, λ], Lemma 8
implies that {xk} and {bk} are bounded.

We next remark that from (15),

|αk| ≤ 2
√

µk/λk ≤ 2

√
λ/λ,

so {αk} must also be a bounded sequence. It follows, using the boundedness of
{(zk, wk)} and {xk}, that the right-hand side of (17) is bounded. Since {µk} ⊂ [λ, λ],
Lemma 8 also implies that {yk} and {ak} are bounded.

Thus, all the variables appearing in the denominator in (29) are bounded, and
consequently ϕk(z

k, wk)→ 0. Using (19)-(20), we have

ξk ≥
infk≥0 {µk/λk − (αk/2)2}

λ(λ/λ + 1)
> 0.

for all k ≥ 0, so {ξk} is bounded away from zero. From (18) and ϕk(z
k, wk)→ 0, we

then obtain zk − xk → 0 and zk − yk → 0, which lead immediately to xk − yk → 0.
Then, using (21)-(22), λk, µk ≥ λ > 0, and the boundedness of {αk}, we deduce
bk − wk → 0 and ak + wk → 0, which in turn yield ak + bk → 0.

Since {(zk, wk)} is bounded, it must have at least one weak limit point. Let
(z∞, w∞) be any of its weak limit points, with K ⊆ N an infinite set such that

(zk, wk)
w→K (z∞, w∞). Using (zk − xk), (zk − yk), (bk − wk), (ak + wk) → 0, we also

have xk w→K z∞, yk w→K z∞, bk w→K w∞ and ak w→K −w∞.
Now, suppose H is finite-dimensional. Then, since we have (xk, bk) ∈ Gph(B) and

(yk, ak) ∈ Gph A for all k, we may take limits over k ∈ K and use the maximality of
A and B to obtain (z∞, w∞) ∈ Gph(B) and (z∞,−w∞) ∈ Gph(A). It follows that
(z∞,−w∞) ∈ Se(A, B). Corollary 2 then gives (zk, wk)→ (z∞, w∞).

14

On the other hand, suppose H is infinite-dimensional. In this, case we assume
A + B is maximal. Since (xk, bk) ∈ Gph(B) and (yk, ak) ∈ Gph A for all k, we may
use xk − yk → 0 and ak + bk → 0 in the context of Proposition 10 in Appendix A to
conclude that (z∞,−w∞) ∈ Se(A, B). As the choice of the weak limit point (z∞, w∞)
above was arbitrary, all weak limit points of {(zk, wk)} are in Se(A, B). Therefore,

Proposition 6 guarantees (zk, wk)
w→ (z∞, w∞) ∈ Se(A, B).

Finally, we may again use (zk − xk), (zk − yk), (bk − wk), (ak + wk)→ 0 to obtain

xk, yk w→ z∞, bk w→ w∞, and ak w→ −w∞, where one may dispense with the “w” in the
finite-dimensional case. �

It might appear that one way to generalize the Algorithm 3 would be to substi-
tute an affine combination (1 − βk)w

k + βkb
k for wk in (17). Letting the first affine

combination factor be α′k instead of αk, this modification yields

yk + µka
k = (1− α′k)zk + α′kxk − µk

[
(1− βk)w

k + βkb
k
]
. (30)

However, substituting bk = wk + (1/λk)(z
k − xk) into this equation yields

yk + µka
k = (1− α′k)zk + α′kxk − µk

[
wk +

βk

λk

(zk − xk)

]
(31)

=

(
1−

(
α′k +

βkµk

λk

))
zk +

(
α′k +

βkµk

λk

)
xk − µkw

k, (32)

so introducing such an extra parameter βk is equivalent to simply taking αk = α′k +
βkµk/λk in (17).

For reference, the full set of recursions for Algorithm 3 is

xk + λkb
k = zk + λkw

k, where bk ∈ B(xk) (33)

yk + µka
k = (1− αk)zk + αkxk − µkw

k, where ak ∈ A(yk) (34)

σk =
〈zk − xk, bk − wk〉+ 〈zk − yk, ak + wk〉

‖ak + bk‖2 + ‖xk − yk‖2
(35)

zk+1 = zk − ρkσk(a
k + bk) (36)

wk+1 = wk − ρkσk(x
k − yk). (37)

The algorithm (33)-(37) is very general: one may use a different proximal parameter
λk in each iteration, and even different proximal parameters µk and λk for the op-
erators A and B. The affine combination factors αk may also be varied, along with
the relaxation factors ρk. In classical Douglas-Rachford splitting, only ρk may be
varied; one must effectively have λk = µk = λ > 0 for all k; see Section 5.4 for further
discussion.

Note also that, with some care, it is also possible to exchange the roles of the
operators A and B during the execution of the algorithm, either periodically or as
often as every iteration. However, we do not explicitly include this possibility in
(33)-(37), since it would make the notation more complicated.

15

5 Reformulations and special cases

5.1 Including a scale factor

In some splitting methods, it is helpful to reformulate the problem 0 ∈ A(x) + B(x)
via multiplying through by some scalar η > 0, yielding the problem

0 ∈ ηA(x) + ηB(x).

This trivial reformulation leaves the solution set unchanged, but can change the
form of Douglas-Rachford-based splitting algorithms. A similar effect occurs in the
method (33)-(37). If we apply Algorithm 3 to ηA and ηB, instead of to A and B, the
set Se(A, B) is transformed in the simple manner

Se(ηA, ηB) = {(z, ηw) | (z, w) ∈ Se(A, B)} .

Applying (33)-(37) with the substitutions A→ ηA, B → ηB, and also the change of
variables

wk → ηwk ak → ηak bk → ηbk, (38)

one obtains

xk + λkηbk = zk + λkηwk, ηbk ∈ ηB(xk) (39)

yk + µkηak = (1− αk)zk + αkxk − µkηwk, ηak ∈ ηA(yk) (40)

σk =
〈zk − xk, ηbk − ηwk〉+ 〈zk − yk, ηak + ηwk〉

‖ηak + ηbk‖2 + ‖xk − yk‖2
(41)

zk+1 = zk − ρkσk(ηak + ηbk) (42)

ηwk+1 = ηwk − ρkσk(x
k − yk). (43)

Simplifying and dividing both the numerator and denominator of (41) by η, one
arrives at

xk + λkηbk = zk + λkηwk, where bk ∈ B(xk) (44)

yk + µkηak = (1− αk)zk + αkxk − µkηwk, where ak ∈ A(yk) (45)

σk =
〈zk − xk, bk − wk〉+ 〈zk − yk, ak + wk〉

η ‖ak + bk‖2 + 1
η
‖xk − yk‖2

(46)

zk+1 = zk − ρkσkη(ak + bk) (47)

wk+1 = wk − ρkσk

η
(xk − yk). (48)

The η factors could then be eliminated from (44) and (45) by a simple redefinition
of {λk} and {µk}. In either case, if the hypotheses of Proposition 9 hold, {(zk, wk)}
will be weakly convergent to a point in Se(A, B).

16

Note also that under if we change the definitions of {wk}, {ak}, and {bk} as in (38),
the identity (23) becomes

ϕk(z
k, wk) =

1

ηλk

∥∥zk − xk
∥∥2

+
1

ηµk

∥∥zk − yk
∥∥2 − αk

ηµk

〈zk − xk, zk − yk〉. (49)

In theory, the scaling factor η must remain fixed throughout the algorithm. In
practice, however, it might be periodically adjusted to assure that one is giving ap-
propriate relative weight to respective “dual” and “primal” optimality conditions
xk− yk = 0 and ak + bk = 0. For example, one could periodically adjust η so that the
relative step lengths obtained from (47) and (48) after canceling the identical factors
ρkσk, namely

η
∥∥ak + bk

∥∥
‖zk‖

∥∥xk − yk
∥∥

η ‖wk‖
,

have approximately the same magnitude. This heuristic yields

η ≈

√
‖xk − yk‖ ‖zk‖
‖ak + bk‖ ‖wk‖

.

To retain the theoretical convergence results of Proposition 9, such an adjustment
could only be done a finite number of times.

We now consider some illustrative special cases of the method.

5.2 A “parallel” special case: Spingarn’s splitting method

Consider specializing Algorithm (44)-(48) by setting αk = 0 for all k. Then,

inf
k≥0

{
µk/λk − (αk/2)2

}
= inf

k≥0
{µk/λk} ≥ λ/λ > 0,

so (28) is satisfied and Proposition 9 applies, implying weak convergence. With a few
simplifications and substitutions, one obtains the method

xk + λkηbk = zk + λkηwk, where bk ∈ B(xk) (50)

yk + µkηak = zk − µkηwk, where ak ∈ A(yk) (51)

σk =

1
λk

∥∥zk − xk
∥∥2

+ 1
µk

∥∥zk − yk
∥∥2

η2 ‖ak + bk‖2 + ‖xk − yk‖2
(52)

zk+1 = zk − ρkσkη(ak + bk) (53)

wk+1 = wk − ρkσk

η
(xk − yk), (54)

weakly convergent under the assumptions 0 < λ ≤ λk, µk ≤ λ and 0 < ρ ≤ ρk ≤ ρ < 2
for all k ≥ 0.

17

Setting αk = 0 makes steps (50) and (51) independent, possibly allowing them to
be performed in parallel.

This algorithm bears a close resemblance to two-operator case of Spingarn’s split-
ting method [18, Section 5]. In our notation, that method takes the following form:

xk + ηbk = zk + ηwk, where bk ∈ B(xk) (55)

yk + ηak = zk − ηwk, where ak ∈ A(yk) (56)

zk+1 = (1− ρk)z
k + ρk

1
2
(xk + yk) (57)

wk+1 = (1− ρk)w
k + ρk

1
2
(bk − ak). (58)

(Note that [18] presents only the case ρk ≡ 1, but a general ρk obeying 0 < ρ ≤ ρk ≤
ρ < 2 is easily added to the algorithm in the manner of [4].)

The first two steps (50)-(51) and (55)-(56) of these methods are identical if we fix
λk = µk = 1 for all k ≥ 0. The remaining calculations appear superficially different,
but in fact Spingarn’s method is a special case of (50)-(54), as we shall now establish.

In (50)-(54), fix λk = µk = 1 for all k ≥ 0. Then we may rearrange (50) and (51)
respectively into

bk = wk + 1
η
(zk − xk) ak = −wk + 1

η
(zk − yk).

Adding these two equations, one obtains

ak + bk = 1
η

[
(zk − yk) + (zk − xk)

]
(59)

= 1
η

[
2zk − (xk + yk)

]
. (60)

Substituting (59) and the identity xk +yk = (zk−yk)−(zk−xk) into the denominator
of (52), we have

η2
∥∥ak + bk

∥∥2
+

∥∥xk − yk
∥∥2

= 2
∥∥zk − xk

∥∥2
+ 2

∥∥zk − yk
∥∥2

,

and therefore, in view of λk = µk = 1, we have σk = 1/2 for all k ≥ 0. Substituting
σk = 1/2 and (60) into (53), one has

zk+1 = zk − ρk
1
2

(
2zk − (xk + yk)

)
= (1− ρk)z

k + ρk
1
2
(xk + yk),

which is identical to (57). Again rearranging (50)-(51) with λk = µk = 1, we also
have

xk = zk + η(wk − bk) yk = zk − η(wk + ak),

and thus
xk − yk = η

(
2wk − ak + bk

)
.

Substituting this expression, along with σk = 1/2, into (54) yields

wk+1 = wk − ρk
1
2

(
2wk − ak + bk

)
= (1− ρk)w

k + ρk
1
2
(bk − ak),

18

which is identical to (58). Therefore, we conclude that algorithm (55)-(58) is equiv-
alent to (50)-(54) under the restriction λk = µk = 1 for all k. Thus, the Spingarn
splitting algorithm is a special case of (50)-(54).

The extra generality provided by the form (50)-(54) should be useful, since the
proximal parameters may be varied from iteration to iteration, and even from operator
to operator, while the overall computational effort per iteration should very similar
to (55)-(58).

Incidentally, the original Spingarn splitting method is actually an instance of
Douglas-Rachford splitting, but in H ×H. Define the operators T1, T2 : H ×H ⇒
H ×H as follows:

T1(x, y) = B(x)× A(y) (61)

T2(x, y) =

{
{(w,−w) | w ∈ H} x = y
∅ x 6= y.

(62)

T1 is maximal monotone by the maximal monotonicity of A and B. It is also easily
verified that T2 is maximal monotone, either directly, or because it is the normal
cone mapping of the linear subspace {(x, y) ∈ H ×H | x = y}. A zero of T1 + T2

is a point of the form (z, z) ∈ H ×H, where A(z) + B(z) 3 0. Applying Douglas-
Rachford splitting to T1 and T2 yields the method (55)-(58).

5.3 Some “sequential” special cases

Instead of setting αk = 0 for all k, we could set αk = 1 for all k. Then (28) reduces
to

inf
k≥0
{µk/λk} > 1/4.

Under this condition, Proposition 9 applies. Including a scaling factor η as in (44)-
(48), we then obtain the method

xk + λkηbk = zk + λkηwk, where bk ∈ B(xk) (63)

yk + µkηak = xk − µkηwk, where ak ∈ A(yk) (64)

σk =
〈zk − wk, bk − wk〉+ 〈zk − yk, ak + wk〉

η ‖ak + bk‖2 + 1
η
‖xk − yk‖2

(65)

zk+1 = zk − ρkσkη(ak + bk) (66)

wk+1 = wk − ρkσk

η
(xk − yk), (67)

weakly convergent under the assumptions 0 < λ ≤ λk, µk ≤ λ, µk ≥ (1/4 + ε)λk, and
0 < ρ ≤ ρk ≤ ρ < 2 for all k ≥ 0, where ε > 0 is an arbitrary small scalar. The

method is similar to (50)-(54), except that xk replaces zk in (64). Thus, one must
execute (63) before (64); these steps cannot be performed simultaneously like (50)-
(51). A similar observation can be made whenever αk 6= 0. A possible advantage

19

of (64) is that it makes use of more recent information than (51), namely xk instead
of zk.

Another possibility is to set αk = µk/λk for all k ≥ 0. In this case, we have, as
in (30)-(32),

yk + µka
k =

(
1− µk

λk

)
zk +

µk

λk

xk − µkw
k

= zk − µk

(
wk +

1

λk

(
zk − xk

))
= zk − µkb

k.

In this case, condition (28) reduces to

inf
k≥0

{
µk

λk

− 1

4

(
µk

λk

)2
}

> 0,

which, since µk/λk must be positive, is equivalent to supk≥0 {µk/λk} < 4. We thus
obtain from Proposition 9 the (weak) convergence of the method

xk + λkηbk = zk + λkηwk, where bk ∈ B(xk) (68)

yk + µkηak = zk − µkηbk, where ak ∈ A(yk) (69)

σk =
〈zk − wk, bk − wk〉+ 〈zk − yk, ak + wk〉

η ‖ak + bk‖2 + 1
η
‖xk − yk‖2

(70)

zk+1 = zk − ρkσkη(ak + bk) (71)

wk+1 = wk − ρkσk

η
(xk − yk), (72)

under the assumptions 0 < λ ≤ λk, µk ≤ λ, µk ≤ (4−ε)λk, and 0 < ρ ≤ ρk ≤ ρ < 2 for
all k ≥ 0, where ε > 0 is once again some small scalar. This method resembles (63)-
(67), except that rather than replacing zk in (50) with xk, recursion (69) replaces wk

with bk.

5.4 Douglas-Rachford: a forbidden boundary case

Suppose we wish to use as much recent information as possible by replacing both
zk and wk in (51) with xk and bk, respectively. Following (30)-(32), these substitu-
tions are equivalent to taking αk = 1 + µk/λk for all k ≥ 0. However, in this case
conditions (15) and (28) require

µk

λk

− 1

4

(
1 +

µk

λk

)2

> 0 ⇔
(

1 +
µk

λk

)2

− 4µk

λk

< 0 ⇔
(

1− µk

λk

)2

< 0,

20

which clearly cannot be satisfied. Then closest one can come to meeting this condition
is to set µk = λk and thus αk = 2 for every k, in which case µk/λk − (αk/2)2 = 0,
rather than µk/λk − (αk/2)2 > 0 as required. The hypotheses of Proposition 9 are
therefore not satisfied. We may consider this situation a “boundary” case, since for
arbitrarily small ε > 0, the choice λk = µk and αk = 2− ε for all k would satisfy the
conditions of Proposition 9.

However, it is informative to continue the analysis by fixing λk = µk = 1 and
αk = 2 for all k. Then, (44)-(45) reduce to

xk + ηbk = zk + ηwk (73)

yk + ηak = xk − ηbk. (74)

From (74), one has xk − yk = η(ak + bk), and hence

η
∥∥ak + bk

∥∥2
+ 1

η

∥∥xk − yk
∥∥2

= 2η
∥∥ak + bk

∥∥2
.

Next, from (49) with that λk = µk = 1 and αk = 2, we have

ϕk(z
k, wk) = 1

η

∥∥zk − xk
∥∥2

+ 1
η

∥∥zk − yk
∥∥2 − 2

η
〈zk − xk, zk − yk〉

= 1
η

∥∥xk − yk
∥∥2

= η
∥∥ak + bk

∥∥2
,

where the last equality follows from (74). Therefore, we have

σk =
η

∥∥ak + bk
∥∥2

2η ‖ak + bk‖2
= 1/2 ∀ k ≥ 0.

Steps (47)-(48) then become

zk+1 = zk −
ρkη

2
(ak + bk),

wk+1 = wk −
ρk

2η
(xk − yk) = wk −

ρk

2
(ak + bk).

At the first step of the next iteration, one then has bk+1 ∈ B(xk+1) and

xk+1 + ηbk+1 = zk+1 + ηwk+1

= zk −
ρkη

2
(ak + bk) + η

(
wk −

ρk

2
(ak + bk)

)
= (zk + ηwk)− ηρk(a

k + bk)

= (xk + ηbk)− ηρk(a
k + bk)

= ρk(x
k − ηak) + (1− ρk)(x

k + ηbk)

= ρk(y
k + ηbk) + (1− ρk)(x

k + ηbk)

= ρky
k + (1− ρk)x

k + ηbk,

21

where the we use the substitutions xk+ηbk = zk+ηwk from (73) and xk−ηak = yk+ηbk

from (74). Thus, we conclude that the sequence {(xk, bk, yk, ak)} produced by the
method has the properties

yk + ηak = xk − ηbk ak ∈ A(yk),

xk+1 + ηbk+1 = ρky
k + (1− ρk)x

k + ηbk bk+1 ∈ B(xk+1)

for all k ≥ 0. These are exactly the recursions used in generalized Douglas-Rachford
splitting, as described in [4]. In particular, if we fix ρk ≡ 1, we obtain classical
Douglas-Rachford splitting. We thus conclude that Douglas-Rachford splitting is an
excluded boundary special case of Algorithm 3, where one has µk/λk − (αk/2)2 = 0.

All known analyses of Douglas-Rachford splitting are essentially equivalent to
showing that the sequence {xk + ηbk} is Féjer monotone to the set

Sη(A, B)
def
= {z + ηw | w ∈ B(z),−w ∈ A(z)}
= [I ηI] Se(A, B).

Thus, the convergence mechanism operates in a different, lower-dimensional space
than Proposition 9. In theory, the proximal factor η cannot be varied as the algorithm
progresses, because the set Sη(A, B) will change, and Féjer monotonicity lost.

By using a slightly smaller value of αk, say αk = 2 − ε, and performing the
appropriate projection operation, one can use Proposition 9 to introduce varying
proximal factors λk and µk; for αk near 2, these factors would have to be almost
equal, but they could vary virtually arbitrarily with k. Thus, the projective approach
to splitting affords far more flexibility than the classical Douglas-Rachford framework.

References

[1] H. H. Bauschke and J. M. Borwein. On projection algorithms for solving convex
feasibility problems. SIAM Rev., 38(3):367–426, 1996.

[2] G. Cimmino. Calcolo approssimato per le soluzioni dei sistemi di equazioni
lineari. Ric. Sci. Progr. Tecn. Econom. Naz., 1:326–333, 1938.

[3] J. Eckstein. Some saddle-function splitting methods for convex programming.
Optim. Meth. Software, 4(1):75–83, 1994.

[4] J. Eckstein and D. P. Bertsekas. On the Douglas-Rachford splitting method and
the proximal point algorithm for maximal monotone operators. Math. Program-
ming, 55(3):293–318, 1992.

[5] J. Eckstein and M. C. Ferris. Operator-splitting methods for monotone affine
variational inequalities, with a parallel application to optimal control. INFORMS
J. Comput., 10(2):218–235, 1998.

22

[6] D. Gabay. Applications of the method of multipliers to variational inequalities.
In M. Fortin and R. Glowinski, editors, Augmented Lagrangian Methods: Appli-
cations to the Solution of Boundary Value Problems, chapter IX, pages 299–340.
North-Holland, Amsterdam, 1983.

[7] S. Kaczmarz. Angenherte Auflsung von Systemen linearer Gleichungen. Bull.
Int. Acad. Polon. Sci. A, 1937:355–357, 1937.

[8] J. Lawrence and J. E. Spingarn. On fixed points of nonexpansive piecewise
isometric mappings. Proc. London Math. Soc. (3), 55(3):605–624, 1987.

[9] P.-L. Lions. Une méthode itérative de résolution d’une inéquation variationnelle.
Israel J. Math., 31(2):204–208, 1978.

[10] P.-L. Lions and B. Mercier. Splitting algorithms for the sum of two nonlinear
operators. SIAM J. Numer. Anal., 16(6):964–979, 1979.

[11] G. J. Minty. Monotone (nonlinear) operators in Hilbert space. Duke Math. J.,
29:341–346, 1962.

[12] Z. Opial. Weak convergence of the sequence of successive approximations for
nonexpansive mappings. Bull. Amer. Math. Soc., 73:591–597, 1967.

[13] G. B. Passty. Ergodic convergence to a zero of the sum of monotone operators
in Hilbert space. J. Math. Anal. Appl., 72(2):383–390, 1979.

[14] R. T. Rockafellar. Monotone operators and the proximal point algorithm. SIAM
J. Control Optimization, 14(5):877–898, 1976.

[15] M. V. Solodov and B. F. Svaiter. A hybrid approximate extragradient-proximal
point algorithm using the enlargement of a maximal monotone operator. Set-
Valued Anal., 7(4):323–345, 1999.

[16] M. V. Solodov and B. F. Svaiter. A hybrid projection-proximal point algorithm.
J. Convex Anal., 6(1):59–70, 1999.

[17] M. V. Solodov and B. F. Svaiter. A unified framework for some inexact proximal
point algorithms. Numer. Funct. Anal. Optim., 22(7-8):1013–1035, 2001.

[18] J. E. Spingarn. Partial inverse of a monotone operator. Appl. Math. Optim.,
10(3):247–265, 1983.

[19] P. Tseng. A modified forward-backward splitting method for maximal monotone
mappings. SIAM J. Control Optim., 38(2):431–446, 2000.

23

A A technical result for infinite dimension

Let A, B : H ⇒ H be maximal monotone. Suppose that

{(xk, bk)} ⊂ Gph(B) (xk, bk)→ (z, w)

{(yk, ak)} ⊂ Gph(A) (yk, ak)→ (z,−w).

Then one may immediately conclude, using that Gph(A) and Gph(B) are closed, that∥∥xk − yk
∥∥→ 0

∥∥ak + bk
∥∥→ 0 (z, w) ∈ Se(A, B).

If H is finite-dimensional, this situation occurs near the end of the proof of Propo-
sition 9, after passing to a subsequence. If H has infinite dimension, however, we
have at that point only weak convergence of (xk, bk) and (yk, ak) (again, after passing
to a subsequence). Since Gph(A) and Gph(B) may not be weakly closed, we cannot
immediately conclude in this instance that (z, w) ∈ Se(A, B).

Fortunately, we can still prove (z, w) ∈ Se(A, B) if we make the mild regularity
assumption that the operator A + B is maximal, and know that ‖xk − yk‖ → 0 and
‖ak + bk‖ → 0 (strongly). The last two assumptions are already established in the
proof of Proposition 9. Formally:

Proposition 10 Let A, B : H ⇒ H be maximal monotone, and suppose all of the
following hold:

{(xk, bk)} ⊂ Gph(B) (xk, bk)
w→ (z, w)

∥∥xk − yk
∥∥→ 0

{(yk, ak)} ⊂ Gph(A) (yk, ak)
w→ (z,−w)

∥∥ak + bk
∥∥→ 0.

Then, if A + B is maximal monotone, one has (z, w) ∈ Se(A, B).

Proof. First we claim that
0 ∈ (A + B)(z). (75)

To prove this claim, take an arbitrary (z′, w′) ∈ Gph(A + B). Then, there exist
b′ ∈ B(z′), a′ ∈ A(z′) such that a′ + b′ = w′. Therefore,

〈xk − z′, bk − b′〉 ≥ 0 〈yk − z′, ak − a′〉 ≥ 0.

The second of these inequalities can be rewritten as

〈xk − z′, ak − a′〉 ≥ 〈xk − yk, ak − a′〉.

Adding 〈xk − z′, bk − b′〉 ≥ 0, we find

〈xk − z′, ak + bk − (a′ + b′)〉 ≥ 〈xk − yk, ak − a′〉,

24

or, since a′ + b′ = w′,

〈xk − z′,−w′〉 ≥ −〈xk − z′, ak + bk〉+ 〈xk − yk, ak − a′〉. (76)

Since ‖xk − yk‖ → 0 and {ak} is bounded, we have 〈xk − yk, ak − a′〉 → 0. We also
have ‖ak + bk‖ → 0 with {xk} bounded, so 〈xk − z′, ak + bk〉 → 0. Using these two
facts and taking limits in (76),

〈z − z′, 0− w′〉 = lim
k→∞
〈xk − z′, 0− w′〉 ≥ 0.

As (z′, w′) was an arbitrary point in Gph(A + B), and A + B is maximal monotone,
we conclude that (z, 0) ∈ Gph(A + B), and our claim (75) holds.

Next, we claim that

lim
k→∞
〈xk, bk〉 = 〈z, w〉 lim

k→∞
〈yk, ak〉 = 〈z,−w〉. (77)

In view of (75), there exists b ∈ H such that b ∈ B(z) and −b ∈ A(z). Since A and
B are monotone,

〈xk − z, bk − b〉 ≥ 0 〈yk − z, ak + b〉 ≥ 0.

Equivalently,

〈xk, bk〉 ≥ 〈z, bk − b〉+ 〈xk, b〉 〈yk, ak〉 ≥ 〈z, ak + b〉 − 〈yk, b〉.

The right-hand sides of the above inequalities converge to 〈z, w〉 and 〈z,−w〉, respec-
tively. Hence,

lim inf
k→∞

〈xk, bk〉 ≥ 〈z, w〉 lim inf
k→∞

〈yk, ak〉 ≥ −〈z, w〉. (78)

Direct manipulation yields

〈yk, ak〉 = −〈xk, bk〉+ 〈xk, ak + bk〉+ 〈yk − xk, ak〉. (79)

As the two last terms on the right hand side of this equation converge to 0, we
conclude that

lim inf
k→∞

〈yk, ak〉 = lim inf
k→∞

−〈xk, bk〉 = − lim sup
k→∞

〈xk, bk〉.

Combining this equation with the second inequality in (78) we conclude that

lim sup
k→∞

〈xk, bk〉 ≤ 〈z, w〉.

In view of the first inequality in (78), we conclude that 〈xk, bk〉 converges to 〈z, w〉.
Taking limits in (79), we then also conclude that 〈yk, ak〉 converges to −〈z, w〉, and
the second claim (77) is established.

25

Now, take any (x′, b′) ∈ Gph(B). Then

〈xk − x′, bk − b′〉 ≥ 0,

or equivalently,
〈xk, bk〉 − 〈xk, b′〉 − 〈x′, bk〉+ 〈x′, b′〉 ≥ 0.

Taking limits and using (77),

〈z, w〉 − 〈z, b′〉 − 〈x′, w〉+ 〈x′, b′〉 ≥ 0,

which is equivalent to 〈z − x′, w − b′〉 ≥ 0. As B is maximal monotone and (x′, b′) ∈
Gph(B) was arbitrary, we conclude that (z, w) ∈ Gph(B). By similar reasoning,
(z,−w) ∈ Gph(A), and so (z, w) ∈ Se(A, B). �

26

