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ABSTRACT

Based on the identification of indices active at a solution of the mixed complementarity prob-
lem (MCP), we propose a class of Newton methods for which local superlinear convergence
holds under extremely mild assumptions. In particular, the error bound condition needed
for the identification procedure and the nondegeneracy condition needed for the convergence
of the resulting Newton method are individually and collectively strictly weaker than the
property of semistability of a solution. Thus the local superlinear convergence conditions
of the presented method are weaker than conditions required for the semismooth (general-
ized) Newton methods applied to MCP reformulations. Moreover, they are also weaker than
convergence conditions of the linearization (Josephy–Newton) method. For the special case
of optimality systems with primal-dual structure, we further consider the question of super-
linear convergence of primal variables. We illustrate our theoretical results with numerical
experiments on some specially constructed MCPs whose solutions do not satisfy the usual
regularity assumptions.
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1 Introduction

The mixed complementarity problem (MCP) [8] is the variational inequality on a generalized
box, that is

find x ∈ B such that 〈F (x), y − x〉 ≥ 0 for all y ∈ B, (1.1)

where F : Rn → Rn and

B = {x ∈ Rn | li ≤ xi ≤ ui, i = 1, . . . , n},

li ∈ R∪ {−∞}, ui ∈ R∪ {+∞}, li < ui for all i = 1, . . . , n. Equivalently, it can be stated as

find x ∈ B such that Fi(x)


≥ 0, if xi = li,
= 0, if xi ∈ (li, ui),
≤ 0, if xi = ui,

i = 1, . . . , n.

As is well known, many important problems can be cast in the format of MCP [10, 8]. As
a special case of MCP, we mention the nonlinear complementarity problem (NCP), which
corresponds to setting li = 0, ui = +∞, i = 1, . . . , n. The systems of nonlinear equations are
obtained by choosing li = −∞, ui = +∞, i = 1, . . . , n. Another important example is the
primal-dual Karush-Kuhn-Tucker (KKT) optimality system: find z ∈ Rp and µ ∈ Rm such
that

g(z)− (G′(z))Tµ = 0,
µ ≥ 0, G(z) ≥ 0, 〈µ, G(z)〉 = 0,

(1.2)

where g : Rp → Rp and G : Rp → Rm. The KKT system (1.2) can be written as an MCP if
we set n = p+m and

F (x) =

(
g(z)− (G′(z))Tµ

G(z)

)
, x = (z, µ) ∈ Rp ×Rm,

li = −∞, i = 1, . . . , p, li = 0, i = p + 1, . . . , n, ui = +∞, i = 1, . . . , n. Under well-known
assumptions, (1.2) represents the first-order primal-dual necessary conditions characterizing
solutions in variational inequality or constrained optimization problems. We note that the
inclusion of pure equality constraints in the KKT system does not add anything conceptually
important in the setting of this paper. For this reason, when talking about the KKT systems
we shall only consider the format of (1.2).

This paper follows the development of Newton methods based on the identification of
active constraints for KKT systems, presented in [15]. Apart from extending the ideas to
MCP, this paper contains a number of improvements and refinements, as will be pointed
out in the sequel. In particular, the MCP regularity condition introduced here, even when
reduced to the special case of KKT systems, is strictly weaker than the one in [15]. Also
some numerical experiments will be reported to illustrate the local behavior of the proposed
method under weak assumptions.

As another somewhat related recent work on active-set methods, we mention [4]. In that
reference, the special case of NCP is considered. We note that our assumptions for local
superlinear convergence are neither stronger nor weaker than those for the method of [4]. On
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the one hand, [4] can deal with non-isolated solutions, while our assumptions do imply that
the given solution is locally unique. On the other hand, monotonicity of F is essential in all
of the constructions in [4], while no assumptions of this type are being made in this paper.
Also, it seems that the error bound assumed in [4] cannot be directly compared with more
standard type of bounds, such as ours. Finally, we consider a more general class of Newton
methods, not restricted to the Gauss-Newton method for the (over-determined) system of
nonlinear equations obtained via some identification procedure.

We start in Section 2 with deriving a new error bound for MCP (an upper estimate for the
distance from a given point to a solution of MCP), based on a smooth reformulation of MCP
and a 2-regularity condition [13, 14]. It has been shown previously that in the context of NCP
[13] and KKT [15], this construction leads to error bounds which hold under weaker conditions
than the alternatives for the corresponding problems (such as b-regularity, semistability, R0-
property, quasi-regularity, etc.). Here, we extend the analysis and the comparisons to MCP.
In addition, we further prove that 2-regularity is not only a sufficient, but also a necessary
condition for the associated error bound to hold.

Error bounds have many applications [24], among which is identifying active constraints
in constrained optimization [7] (see also [8, Ch. 6.7]). In the context of MCP, those ideas
correspond to identifying the sets of indices

A = A(x̄) = {i = 1, . . . , n | Fi(x̄) = 0},
N = N(x̄) = {i = 1, . . . , n | Fi(x̄) 6= 0},

Nl = Nl(x̄) = {i ∈ N | x̄i = li},
Nu = Nu(x̄) = {i ∈ N | x̄i = ui},

where x̄ is some solution of MCP. If the specified sets can be correctly identified using
information available at a point x close enough to the solution x̄, then locally MCP can
be reduced to a system of nonlinear equations (which is structurally a much simpler problem
to solve). In the sequel, we shall also use the following partitioning of the set of active indices:

A0 = A0(x̄) = {i ∈ A | x̄i = li or x̄i = ui},
A+ = A+(x̄) = {i ∈ A | x̄i ∈ (li, ui)},
A0l = A0l(x̄) = {i ∈ A0 | x̄i = li},
A0u = A0u(x̄) = {i ∈ A0 | x̄i = ui}.

The analog of the strict complementarity condition in NCP (or KKT) corresponds, in the
setting of MCP, to saying that A0 = ∅. Under this assumption, locally MCP trivially reduces
to a system of nonlinear equations, which simplifies the local structure of MCP significantly.
The condition of strict complementarity, however, is restrictive. We emphasize that this
condition is not assumed anywhere in this paper.

In Section 3, we propose a new class of active-set Newton methods for solving MCP. Each
iteration of the method consists of solving one system of linear equations. We note that
when specified to the setting of KKT, this class is different from what has been discussed
in [15]. Moreover, the nondegeneracy condition that we introduce here is weaker than the
corresponding condition in [15]. Also, the new condition permits specific deterministic choice
of parameters involved in reducing the MCP to a system of equations, while in [15] in general
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a generic choice of parameters had to be made (at least without strengthening somewhat the
regularity assumptions). We show that the conditions needed for the identification of active
sets and for convergence of the proposed local Newton method are weaker than semistabil-
ity of the MCP solution [3, 8] (equivalently, the R0-property of the natural residual). This
implies, in particular, that the proposed method attains local superlinear/quadratic conver-
gence under assumptions considerably weaker than what is needed for semismooth Newton
methods (SNM) for MCP [1, 19, 9, 16, 18] (BD-regularity of the reformulation being used).
Even more remarkably, our assumptions are also strictly weaker than those needed for the
linearization (Josephy-Newton) method [17, 3, 12] (which are semistability and hemistability
of the solution). It should be also noted that in the latter methods subproblems are lin-
earized MCPs, which are computationally more complex than systems of linear equations in
our methods.

In Section 4, we turn our attention to the specific case of KKT, and in particular consider
the issue of superlinear convergence of primal variables. Some comments on the comparison
of convergence conditions for various Newton-type methods for MCP constitute Section 5.
Numerical experiments are presented and discussed in Section 6.

A few words about our notation. Given a finite set I, |I| stands for its cardinality. By
R(m, n) we denote the space of m × n matrices with real entries. By E we shall denote
the identity matrix whose dimension would be always clear from the context. For x ∈ Rn

and an index set I ⊂ {1, . . . , n}, xI stands for the vector with components xi, i ∈ I. For
a linear operator Λ, im Λ is its range (image space), and ker Λ is its kernel (null space).
For a directionally differentiable mapping φ : Rn → Rm, by φ′(x; d) we denote the usual
directional derivative of φ at x ∈ Rn in the direction d ∈ Rn. If {zk} is a sequence in Rp

and {tk} is a sequence in R such that tk → 0+ as k → ∞, by zk = o(tk) we mean that
limk→∞ ‖zk‖/tk = 0.

2 A New Error Bound for MCP

In this section, we are interested in estimating the distance to a solution of MCP in terms of
some computable quantity. As is well-known [1, 9], MCP can be equivalently reformulated as
a system of nonlinear equations via the following transformation.

Let ψ : R×R→ R be a complementarity function, i.e., a function such that

ψ(a, b) = 0 ⇔ a ≥ 0, b ≥ 0, ab = 0.

Assuming that ψ also satisfies the following additional assumptions:

a > 0, b < 0 ⇒ ψ(a, b) < 0,

a > 0, b > 0 ⇒ ψ(a, b) > 0,

solutions of MCP coincide with solutions of the following system of nonlinear equations:

Ψ(x) = 0, (2.1)
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where

Ψ : Rn → Rn, Ψi(x) =


Fi(x), if i ∈ IF ,
ψ(xi − li, Fi(x)), if i ∈ Il,
−ψ(ui − xi,−Fi(x)), if i ∈ Iu,
ψ(xi − li,−ψ(ui − xi,−Fi(x))), if i ∈ Ilu,

IF = {i = 1, . . . , n | −∞ = li, ui = +∞},
Il = {i = 1, . . . , n | −∞ < li, ui = +∞},
Iu = {i = 1, . . . , n | −∞ = li, ui < +∞},
Ilu = {i = 1, . . . , n | −∞ < li, ui < +∞}.

Complementarity functions to be mentioned in the sequel are the natural residual ψNR(a, b) =
min{a, b}, the Fischer-Burmeister function ψFB(a, b) = a+b−

√
a2 + b2, and ψS(a, b) = 2ab−

(min{0, a+ b})2 (where S stands for “smooth”). All these functions satisfy the assumptions
above. The corresponding reformulations of MCP would be denoted by ΨNR, ΨFB and ΨS ,
respectively. For the purposes of this paper, the signs of the components of Ψ could be chosen
differently from the above (see, however, [2, 9] for the justification of the choice adopted here).

Let x̄ be a solution of MCP. It is known [8, Ch. 6.2] that the natural residual error bound

‖x− x̄‖ ≤M‖ΨNR(x)‖ ∀x ∈ U (2.2)

holds for some neighborhood U of x̄ and some constant M > 0 if, and only if, x̄ is a semistable
[3, 8] solution of MCP. It can be seen that this is also equivalent to an error bound in terms
of ΨFB. Furthermore, for MCP semistability is equivalent to the R0-property of ΨNR at
x̄, which is {ξ ∈ Rn | Ψ′NR(x̄; ξ) = 0} = {0}, and the latter is also equivalent to the
corresponding property for ΨFB. As can be easily checked, the R0-property means that

L = {0},

where L denotes the solution set of the “linearized” MCP:

L = L(x̄) =

ξ ∈ Rn

∣∣∣∣∣∣∣
ξi ≥ 0, 〈F ′i (x̄), ξ〉 ≥ 0, ξi〈F ′i (x̄), ξ〉 = 0, i ∈ A0l,
ξi ≤ 0, 〈F ′i (x̄), ξ〉 ≤ 0, ξi〈F ′i (x̄), ξ〉 = 0, i ∈ A0u,

F ′A+
(x̄)ξ = 0, ξN = 0

 . (2.3)

Semistability is one of the weakest conditions under which a computable error bound for
MCP had been exhibited up to now. To our knowledge, alternative conditions are either
stronger or different in nature and not comparable to semistability (e.g., analyticity [23] or
subanalyticity of F ). In what follows, we provide an error bound under a condition which we
show to be strictly weaker than semistability.

Definition 2.1 Let Ψ : Rn → Rn be differentiable in a neighbourhood of x̄ ∈ Rn and
Ψ′ : Rn → R(n, n) be directionally differentiable at x̄. Then Ψ is 2-regular at x̄ if

T = {0},
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where

T = T (x̄) = {ξ ∈ ker Ψ′(x̄) | (Ψ′)′(x̄; ξ)ξ ∈ im Ψ′(x̄)} (2.4)
= {ξ ∈ ker Ψ′(x̄) | P (Ψ′)′(x̄; ξ)ξ = 0},

with P being the orthogonal projector onto (im Ψ′(x̄))⊥.

The above is a special case of 2-regularity of a nonlinear mapping [14, 13], corresponding to
the case when the mapping acts from some space into itself.

We next give an error bound result based on the smooth MCP reformulation ΨS . A
comparison with semistability will be made later. We note that the fact that the error bound
below is actually equivalent to 2-regularity is new.

Theorem 2.1 Let F : Rn → Rn be sufficiently smooth near a point x̄ ∈ Rn, which is a
solution of MCP.

The mapping ΨS is 2-regular at x̄ if, and only if, there exist a neighborhood U of x̄ and
a constant M > 0 such that

‖x− x̄‖ ≤M(‖(E − P )ΨS(x)‖+ ‖PΨS(x)‖1/2) ∀x ∈ U. (2.5)

Proof. Obviously, ΨS satisfies the smoothness assumptions in the Definition 2.1. The
sufficiency part of the assertion is a direct consequence of [13, Theorem 4]. We prove the
necessity part.

Take any ξ ∈ T . For any t ≥ 0, we have that

‖ΨS(x̄+ tξ)‖ = ‖ΨS(x̄+ tξ)−ΨS(x̄)‖ = ‖tΨ′S(x̄)ξ‖+ o(t) = o(t),

where the last equality follows from ξ ∈ ker Ψ′S(x̄). We further have that

‖PΨS(x̄+ tξ)‖ = ‖P (ΨS(x̄+ tξ)−ΨS(x̄))‖
≤ t sup

τ∈[0,1]
‖PΨ′S(x̄+ τtξ)‖‖ξ‖

= t sup
τ∈[0,1]

‖P (Ψ′S(x̄+ τtξ)−Ψ′S(x̄))‖‖ξ‖

= t sup
τ∈[0,1]

‖τtP (Ψ′S)′(x̄; ξ)ξ‖‖ξ‖+ o(t2)

= o(t2),

where we have used the Mean-Value Theorem, the fact that PΨ′S(x̄) = 0, the positive ho-
mogenuity of the mapping P (Ψ′S)′(x̄; ·) and the fact that P (Ψ′S)′(x̄; ξ)ξ = 0.

Therefore, (2.5) implies that

t‖ξ‖ = ‖x̄+ tξ − x̄‖ ≤M(‖(E − P )ΨS(x̄+ tξ)‖+ ‖PΨS(x̄+ tξ)‖1/2) = o(t),

which means that ξ = 0. We have thus established that T = {0}, i.e., ΨS is 2-regular at x̄.
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Adjusting M and U , if necessary, the error bound (2.5) can be simplified into the following
relation (less accurate, but possibly easier to use):

‖x− x̄‖ ≤M‖ΨS(x)‖1/2 ∀x ∈ U. (2.6)

Note that for NCP or KKT the error bound (2.6) is implied by error bound (2.2) (this follows
from a comparison of growth rates for ψNR, ψFB and ψS , given in [28]). However, for MCP
it is not clear whether one can use the same comparison, as the definition of Ψ involves a
superposition of the functions ψ. In any case, the more accurate estimate (2.5) does not
follow from (2.2). Moreover, (2.5) and (2.6) can hold when (2.2) does not, as shown next.

Proposition 2.1 Semistability of a solution x̄ of MCP (equivalently, error bound (2.2)) im-
plies 2-regularity of ΨS at x̄ (equivalently, error bound (2.5)), but not vice versa.

Proof. Let x̄ be a solution of MCP. The fact that 2-regularity of ΨS at x̄ can hold when
the error bound (2.2) (semistability of x̄) does not, has been already shown for two special
cases of MCP: namely, NCP [13, Example 1] and KKT [15, Example 2]. Thus no further
justification is needed for this assertion.

Let x̄ be a semistable solution. To prove that this implies 2-regularity of ΨS at x̄, it
suffices to show that T ⊂ L, where T and L are defined in (2.4) and (2.3), respectively.

By direct computations, we have that

(Ψ′S)i(x̄) =


0, if i ∈ A0,
αiF

′
i (x̄), if i ∈ A+,

βie
i, if i ∈ N,

where e1, . . . , en is the canonical basis in Rn, and

αi =


2(x̄i − li), if i ∈ Il,
2(ui − x̄i), if i ∈ Iu,
1, if i ∈ IF ,
4(x̄i − li)(ui − x̄i), if i ∈ Ilu,

βi =


2Fi(x̄), if i ∈ Il,
−2Fi(x̄), if i ∈ Iu,
4Fi(x̄)(ui − li) + 2(min{0, ui − li − Fi(x̄)})2, if i ∈ Ilu ∩Nl,
−4Fi(x̄)(ui − li), if i ∈ Ilu ∩Nu.

Observe that αi 6= 0 ∀ i ∈ A+ and βi 6= 0 ∀ i ∈ N . Hence,

ker Ψ′S(x̄) = {ξ ∈ Rn | F ′A+
(x̄)ξ = 0, ξN = 0}.

Then P , the orthogonal projector onto (im Ψ′S(x̄))⊥ in Rn, satisfies

(Py)i = yi ∀ y ∈ Rn, ∀ i ∈ A0.
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Since PΨ′S = (PΨS)′, it now easily follows that

T ⊂ {ξ ∈ Rn | (Ψ′S)′i(x̄; ξ)ξ = 0, i ∈ A0, F
′
A+

(x̄)ξ = 0, ξN = 0}. (2.7)

For any i ∈ A0 and ξ ∈ Rn, we further obtain that

(Ψ′S)′i(x̄; ξ)ξ = 2


ψS(ξi, 〈F ′i (x̄), ξ〉), if i ∈ Il,
−ψS(−ξi,−〈F ′i (x̄), ξ〉), if i ∈ Iu,
ψS(ξi, (ui − li)〈F ′i (x̄), ξ〉), if i ∈ Ilu ∪A0l,
−(ui − li)ψS(−ξi,−〈F ′i (x̄), ξ〉), if i ∈ Ilu ∪A0u.

Since ψS is a complementarity function, the right-hand side of the latter equality is zero if,
and only if,

ξi ≥ 0, 〈F ′i (x̄), ξ〉 ≥ 0, ξi〈F ′i (x̄), ξ〉 = 0, i ∈ A0l,
ξi ≤ 0, 〈F ′i (x̄), ξ〉 ≤ 0, ξi〈F ′i (x̄), ξ〉 = 0, i ∈ A0u.

Hence, the right-hand side in (2.7) coincides with L defined in (2.3). In particular, we have
established that T ⊂ L, which completes the proof.

3 A Class of Active-Set Newton Methods

The following technique for identifying the relevant index sets is based on the ideas of [7], see
also [8, Ch. 6.7]. Define the identification function

ρ : R+ → R, ρ(t) =


ρ̄, if t ≥ t̄,
−1/ log t, if t ∈ (0, t̄),
0, if t = 0,

where t̄ ∈ (0, 1) and ρ̄ > 0 are fixed numbers (the choice of t̄ and ρ̄ does not affect theoretical
analysis; in our numerical experiments reported in Section 6, we use t̄ = 0.9 and ρ̄ = −1/ log t̄,
as suggested in [7]). For any x ∈ Rn, define further the index sets

A(x) = {i = 1, . . . , n | |Fi(x)| ≤ ρ(‖ΨS(x)‖)}, (3.1)

N(x) = {1, . . . , n} \A(x), (3.2)

Nl(x) = {i ∈ N(x) | xi − li ≤ ui − xi}, Nu(x) = N(x) \Nl(x), (3.3)

A0(x) = {i ∈ A(x) | min{|xi − li|, |ui − xi|} ≤ ρ(‖ΨS(x)‖)}, A+(x) = A(x) \A0(x), (3.4)

A0l(x) = {i ∈ A0(x) | xi − li ≤ ui − xi}, A0u(x) = A0(x) \A0l(x). (3.5)

Proposition 3.1 If ΨS is 2-regular at a solution x̄ of MCP (equivalently, the error bound
(2.5) holds), then for any x ∈ Rn sufficiently close to x̄, it holds that

A(x) = A, N(x) = N, Nl(x) = Nl, Nu(x) = Nu, (3.6)

A0l(x) = A0l, A0u(x) = A0u, A0(x) = A0, A+(x) = A+. (3.7)
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Proof. Take any i ∈ A. Then for any x close enough to x̄, we have that

|Fi(x)| = |Fi(x)− Fi(x̄)| ≤ K‖x− x̄‖ ≤ KM‖ΨS(x)‖1/2 ≤ ρ(‖ΨS(x)‖),

where the second inequality is by the local Lipschitz-continuity of F (with some modulus K >
0), the third inequality is by (2.5), and the last follows from the fact that limt→0+ t

ν log t = 0
for any ν > 0. The above shows that i ∈ A(x). Hence, A ⊂ A(x).

Take any i ∈ {1, . . . , n} \ A. In that case, there exists some γ > 0 such that for any x
close enough to x̄ it holds that

|Fi(x)| ≥ γ, ρ(‖ΨS(x)‖) < γ.

It follows that i 6∈ A(x), which shows that A(x) ⊂ A.
We have therefore established the first (and hence, the second) equality in (3.6).
The other relations either hold trivially (e.g., (3.3)) or can be verified by considerations

similar to the above.

We note that any other MCP reformulation Ψ with a corresponding valid error bound
can be used in the identification procedure. But since it has been established above that ΨS

requires the weakest assumptions for the error bound to hold, it is fair to say that this is the
function which should be used for this purpose. However, different choices of the function ρ
are possible under the same assumptions. For example,

ρ : R+ → R, ρ(t) = tθ, θ ∈ (0, 1/2).

Observe also that in the implementation of the identification procedure, the following obvious
relations can be taken into account: IF ⊂ A+, Il ⊂ (A0l∪A+∪Nl) and Iu ⊂ (A0u∪A+∪Nu).

Once the index sets are identified, we have the following relations which are guaranteed
to be satisfied at a solution x̄ of MCP:

FA(x) = 0, xA0l∪Nl = lA0l∪Nl , xA0u∪Nu = uA0u∪Nu .

For simplicity of notation, suppose that the components of x ∈ Rn are ordered in such a
way that x = (xA+ , xA0l∪Nl , xA0u∪Nu). Then MCP locally reduces to the following system of
nonlinear equations:

FA(xA+ , lA0l∪Nl , uA0u∪Nu) = 0. (3.8)

Observe that in the absence of strict complementarity (when A0 6= ∅, i.e., |A| > |A+|), the
system is over-determined (the number of equations is larger than the number of unknowns).
This opens up a number of options. Of course, one can just solve the system by the Gauss–
Newton method (GNM). This possibility will be considered. However, we prefer not to limit
ourselves to GNM for the following reason: the Gauss–Newton approach can destroy structure
present in FA (for example, sparsity or the primal-dual structure in the case of KKT).

Our proposal is to consider the following system of nonlinear equations:

ΦC(xA+) = 0, (3.9)
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where
ΦC : R|A+| → R|A+|, ΦC(xA+) = C(xA+)FA(xA+ , lA0l∪Nl , uA0u∪Nu),

with C : R|A+| → R(|A+|, A) being a smooth mapping (possibly constant). Clearly, x̄A+ is a
solution of (3.9) for any choice of C. The Jacobian of (3.9) at this solution is given by

Φ′C(x̄A+) = C(x̄A+)
∂FA
∂xA+

(x̄), (3.10)

where we have taken into account that FA(x̄) = 0. Thus x̄A+ can be found by applying
Newton-type methods to (3.9) whenever the matrix in (3.10) is nonsingular.

Note that GNM for (3.8) would essentially correspond to choosing in (3.9)

C(xA+) =

(
∂FA
∂xA+

(xA+ , lA0l∪Nl , uA0u∪Nu)

)T
, (3.11)

and applying to the resulting system an approximate version of the pure Newton method.
Indeed, with the notation of (3.11), the Gauss–Newton iteration for (3.8) has the form

xk+1
A+

= xkA+
−
(
C(xkA+

)
∂FA
∂xA+

(xkA+
, lA0l∪Nl , uA0u∪Nu)

)−1

ΦC(xkA+
). (3.12)

Observe that the above formula is just an approximation of the standard Newton iteration for
(3.9), where the Jacobian Φ′C(xkA+

) is replaced by C(xkA+
) ∂FA
∂xA+

(xkA+
, lA0l∪Nl , uA0u∪Nu). Due

to (3.10), this change preserves the superlinear convergence of the pure Newton iteration for
(3.9). Note finally that with the choice of (3.11), we have

Φ′C(x̄A+) =

(
∂FA
∂xA+

(x̄)

)T
∂FA
∂xA+

(x̄). (3.13)

This immediately motivates the following definition.

Definition 3.1 A solution x̄ of MCP is referred to as weakly regular if

rank
∂FA
∂xA+

(x̄) = |A+|.

Clearly, weak regularity is a necessary and sufficient condition for the matrix in (3.13) to
be nonsingular, and hence, for the superlinear convergence of GNM applied to (3.8) (or the
approximate Newton method applied to (3.9) with the choice of (3.11)). It is also clear that
weak regularity is necessary for the nonsingularity of the matrix in (3.10) corresponding to
the more general scheme, and this is regardless of the choice of C.

We next show that weak regularity is implied by semistability, but not vice versa. More-
over, 2-regularity of ΨS at x̄ and weak regularity, when combined, are still a weaker condition
than semistability.
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Proposition 3.2 Let x̄ be a solution of MCP. Then semistability of x̄ implies weak regularity
of x̄, but not vice versa.

Proof. Suppose that x̄ is a semistable solution. If it is not weakly regular, then there exists
ξA+ ∈ ker ∂FA

∂xA+
(x̄)\{0}. But then setting ξA0∪N = 0, we obtain ξ 6= 0 such that ξ ∈ L, where

L is defined in (2.3). This contradicts semistability.
The lack of the reverse implication is established in Example 3.1 below.

The following result is of special importance.

Proposition 3.3 Let x̄ be a solution of MCP. Then semistability of x̄ implies the combina-
tion of 2-regularity of ΨS at x̄ and weak regularity of x̄, but not vice versa.

Proof. The forward assertion is by Propositions 2.1 and 3.2. The lack of the reverse
implication is shown in Example 3.1.

Example 3.1 Let n = 2, li = 0, ui = +∞, i = 1, 2, and let F (x) = ((x1 − 1)2, x1 + x2 − 1).
The point x̄ = (1, 0) ∈ R2 is the solution of this NCP, and we have A = {1, 2}, A0 =

A0l = {2}, A+ = {1}, with all the other index sets being empty.
We first verify that semistability is violated. Noting that F ′A+

(x̄) = 0, it can be seen that
the cone L defined in (2.3) is

L = {ξ ∈ R2 | ξ2 ≥ 0, ξ1 + ξ2 ≥ 0, ξ2(ξ1 + ξ2) = 0} 6= {0}.

Thus x̄ is not semistable.
Weak regularity certainly holds, as

∂FA
∂xA+

(x̄) =

(
0
1

)
, rank

∂FA
∂xA+

(x̄) = 1 = |A+|.

We proceed to show 2-regularity of ΨS at x̄. It can be seen that Ψ′S(x̄) = 0. Hence,

ker Ψ′S(x̄) = R2 = (im Ψ′S(x̄))⊥, P = E,

and further
T = {ξ ∈ R2 | (Ψ′S)′(x̄; ξ)ξ = 0}.

We obtain that

(Ψ′S)′(x̄; ξ)ξ =

(
4ξ2

1

2ξ2(ξ1 + 2ξ2)−min{0, ξ2 + (ξ1 + ξ2)}

)
.

Hence,
T = {ξ ∈ L | ξ1 = 0} = {0},

and ΨS is 2-regular at x̄.
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We have thus constructed a local algorithm with superlinear convergence under assump-
tions weaker than semistability of the MCP solution. Specifically, we have the following.

Theorem 3.1 Let F : Rn → Rn be sufficiently smooth near a point x̄ ∈ Rn, which is a
solution of MCP. Suppose that this solution is weakly regular and ΨS is 2-regular at x̄.

For any x0 ∈ Rn sufficiently close to x̄, if the index sets A = A(x0), A+ = A+(x0),
A0l = A0l(x0), A0u = A0u(x0), Nl = Nl(x0) and Nu = Nu(x0) are defined according to (3.1)-
(3.5), then GNM applied to the system (3.8) (with x0

A+
as a starting point) is well-defined

and superlinearly convergent to x̄A+.

Proof. By 2-regularity of ΨS at x̄ and Proposition 3.1, for any x = x0 close to x̄ the
index sets defined according to (3.1)-(3.5) correctly identify the index sets at the solution x̄.
Then x̄A+ is the solution of (3.8). By weak regularity, we have that the matrix in (3.13) is
nonsingular. Hence, GNM applied to (3.8) is locally superlinearly convergent to x̄A+ .

As already mentioned above (see also Section 4), it sometimes can be useful to choose
the mapping C differently from the Gauss–Newton option of (3.11). For example, we might
want to take C(·) = C ∈ R(|A+|, |A|), a fixed matrix, in order to preserve in the ma-
trix C ∂FA

∂xA+
(xA+ , lA0l∪Nl , uA0u∪Nu) the structure (primal-dual, sparsity, etc.) of the matrix

∂FA
∂xA+

(xA+ , lA0l∪Nl , uA0u∪Nu). This motivates the following considerations.

Proposition 3.4 Suppose that a solution x̄ of MCP is weakly regular.
Then the set of matrices C ∈ R(|A+|, |A|) such that Φ′C(x̄A+) is nonsingular is open and

dense in R(|A+|, |A|).

Proof. The determinant det Φ′C(x̄A+) is a polynomial with respect to the elements of the
matrix C ∈ R(|A+|, |A|). By weak regularity (see Definition 3.1), this polynomial is not
everywhere zero, because it is not zero for the choice C = ( ∂FA

∂xA+
(x̄))T . Hence, the set where

this polynomial is not zero is obviously open and dense in R(|A+|, |A|).

Proposition 3.4 justifies choosing C in any desirable way, as the chance that the resulting
system would be degenerate is negligible (the set of matrices for which this would happen is
of the Lebesgue measure zero). Of course, one should make reasonable choices. For example,
it should hold that rankC = |A+|.

4 Karush-Kuhn-Tucker Systems

In the case of the KKT system (1.2), the developments of Section 3 give

FA(xA+ , lA0l∪Nl , uA0u∪Nu) =

(
g(z)− (G′I+(z))TµI+

GI(z)

)
, xA+ = (z, µI+) ∈ Rp ×R|I+|,

11



where

I = I(z̄) = {i = 1, . . . , m | Gi(z̄) = 0}, I+ = I+(z̄) = {i ∈ I | µ̄i > 0},
A = {1, . . . , p} ∪ {p+ j | j ∈ I}, A+ = {1, . . . , p} ∪ {p+ j | j ∈ I+}.

Defining
φ : Rp ×R|I+| → Rp, φ(z, µI+) = g(z)− (G′I+(z))TµI+ ,

the Definition 3.1 of weak regularity consists of saying that

rank

(
∂φ
∂z (z̄, µ̄I+) −(G′I+(z̄))T

G′I(z̄) 0

)
= p+ |I+|. (4.1)

In the case of optimization (g is a gradient mapping), ∂φ
∂z (z̄, µ̄I+) coincides with the Hessian

of the standard Lagrangian function at a KKT point (z̄, µ̄).
We first show that (4.1) is weaker than the regularity condition for KKT systems intro-

duced in [15, Definition 2]. Defining I0 = I \ I+, the latter states that

∃ D1, D2 ∈ R(|I0|, |I0|) such that det


∂φ
∂z (z̄, µ̄I+) −(G′I0(z̄))T −(G′I+(z̄))T

D1G
′
I0

(z̄) D2 0
G′I+(z̄) 0 0

 6= 0.

(4.2)

Proposition 4.1 Let (z̄, µ̄) be a solution of the KKT system. Then (4.2) implies (4.1), but
not vice versa.

Proof. Assume (4.2). If (4.1) does not hold, then there exists (ζ, νI+) 6= 0 in the kernel of
the matrix in (4.1). But then (ζ, 0, νI+) 6= 0 will be in the kernel of the matrix in (4.2) for
any choice of D1, D2 ∈ R(|I0|, |I0|).

The lack of the reverse implication is shown in Example 4.1.

Example 4.1 Let p = 2, m = 1, g(z) = (z2, 0), G(z) = z1.
The point (z̄, µ̄) = (0, 0) is a solution of the KKT system (1.2), and we have I+ = ∅,

I0 = {1}.
The matrix in (4.1) takes the form  0 1

0 0
1 0

 ,
and it has full column rank.

The matrix in (4.2) takes the form 0 1 −1
0 0 0
D1 0 D2

 ,
which is always singular.
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Note that in Example 4.1, ∂φ
∂z (z̄, µ̄I+) is asymmetric. It is an open question at this time

whether the conditions (4.2) and (4.1) are different also in the symmetric (optimization) case.
We next provide a characterization of weak regularity for KKT systems in terms of a con-

straint qualification and a second-order condition. We say that the weak linear independence
constraint qualification (WLICQ) holds at z̄, if

rankG′I+(z̄) = |I+|.

We say that the second-order condition (SOC) holds if〈
∂φ

∂z
(z̄, µ̄I+)ζ, ζ

〉
6= 0 ∀ ζ ∈ kerG′I(z̄) \ {0}.

Obviously, WLICQ is implied by the standard linear independence constraint qualification,
while SOC is implied by the standard second-order sufficiency condition.

Proposition 4.2 Let (z̄, µ̄) be a solution of the KKT system. Then WLICQ and SOC imply
weak regularity of (z̄, µ̄). Weak regularity implies WLICQ.

Proof. The fact that weak regularity subsumes WLICQ is obvious.
In view of (4.1), it suffices to prove that under WLICQ and SOC, the equality(

∂φ
∂z (z̄, µ̄I+)ζ − (G′I+(z̄))T νI+

G′I(z̄)ζ

)
= 0 (4.3)

implies that (ζ, νI+) = 0. Indeed, from (4.3) we obtain that〈
∂φ

∂z
(z̄, µ̄I+)ζ, ζ

〉
= 〈(G′I+(z̄))T νI+ , ζ〉 = 〈νI+ , G′I+(z̄)ζ〉 = 0.

Since ζ ∈ kerG′I(z̄), SOC implies that ζ = 0. Thus (G′I+(z̄))T νI+ = 0. By WLICQ, we have
that νI+ = 0, which concludes the proof.

Under the weak regularity condition (4.1) and 2-regularity of ΨS at (z̄, µ̄), we can solve
the reduced KKT system (3.8) by GNM, with the convergence result given by Theorem 3.1.
We next show that for KKT systems with symmetric ∂φ

∂z (z̄, µ̄I+), the latter two assumptions,
when combined, are equivalent to semistability of (z̄, µ̄) (under the second-order necessity
condition, the latter is further equivalent to the uniqueness of µ̄ associated to z̄ and the
second-order sufficiency condition, see [3, Proposition 6.2], [15, Proposition 1]).

Proposition 4.3 If ∂φ
∂z (z̄, µ̄I+) is symmetric, then semistability of a solution (z̄, µ̄) of the

KKT system is equivalent to the combination of 2-regularity of ΨS at this solution and weak
regularity of this solution.
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Proof. The fact that semistability implies the other two properties is given by Proposition
3.3.

We next re-examine the proof of Proposition 2.1 under the new assumptions. In addition
to the sets of indices defined above, let IN = {1, . . . ,m} \ I and I0 = I \ I+. Suppose,
for simplicity of notation, that the ordering is such that in the set {1, . . . ,m} first come
the indices in I+, then in I0, then in IN . With this convention, the matrix whose rows are
comprised by F ′(x̄), i ∈ A+, ei, i ∈ N , is given by

∂φ
∂z (z̄, µ̄I+) −(G′I+(z̄))T −(G′I0(z̄))T −(G′IN (z̄))T

G′I+(z̄) 0 0 0
0 0 0 EIN

 .
Under the assumption that ∂φ

∂z (z̄, µ̄I+) is symmetric, the weak regularity condition (4.1) im-
plies that the rows of this matrix are linearly independent. Revisiting the proof of Proposition
2.1, it is easily seen that in this case

im Ψ′S(x̄) = {y ∈ Rn | yi = 0, i ∈ A0},

and

(Py)i =

{
yi, if i ∈ A0,
0, if i ∈ A+ ∪N,

y ∈ Rn,

where

A0 = A \A+ = {p+ j | j ∈ I0}, N = {i = 1, . . . , n} \A = {p+ j | j ∈ IN}.

It follows that the inclusion (2.7) holds as equality, in which case the proof of Proposition
2.1 establishes that T = L, where T and L are defined in (2.4) and (2.3), respectively.
Semistability and 2-regularity are therefore equivalent in that case.

It is not difficult to observe that the Gauss–Newton iteration in a certain sense destroys
the primal-dual structure present in a KKT system. For example, it does not seem possible to
analyze the superlinear convergence of the primal variables separately from the convergence
of the primal-dual pair. Proposition 3.4, on the other hand, allows us to make other choices
of C in (3.9), with the expectation that they would still do the job. We next make one
specific choice, and analyze conditions for the superlinear convergence of primal variables.
We refer also to [15] (the discussion following Proposition 6) for some possibilities of how
further assumptions about the problem can be taken into account in the framework of that
paper. Similar options under similar assumptions could be analyzed here, but we shall not
pursue the details.

Assuming again that the active constraints are ordered in such a way that the strongly ac-
tive are first (i.e., for the first |I+| active constraints the corresponding multiplier is positive),
let

C =

(
C1 0 0
0 C2 0

)
, (4.4)
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where C1 ∈ R(p, p) and C2 ∈ R(|I+|, |I+|) are arbitrary nonsingular matrices. Note that
rankC = p + |I+| = |A+| holds. We shall consider further the case where in the implemen-
tation of the Newton method for (3.9) the matrix ∂φ

∂z (zk, µkI+) at iteration k is replaced by
some (e.g., quasi-Newton) approximation Hk. The resulting iteration is then given by

C

(
g(zk)− (G′I+(zk))TµkI+ +Hk(zk+1 − zk)− (G′I+(zk))T (µk+1

I+
− µkI+)

GI(zk) +G′I(z
k)(zk+1 − zk)

)
= 0, (4.5)

and taking into account the chosen structure of C, it holds that

g(zk) +Hk(zk+1 − zk)− (G′I+(zk))Tµk+1
I+

= 0, (4.6)

GI+(zk) +G′I+(zk)(zk+1 − zk) = 0. (4.7)

To establish a sufficient condition for the superlinear rate of convergence of primal vari-
ables, we shall need assumptions somewhat stronger than weak regularity. We say that the
strong second-order sufficiency condition (SSOSC) holds, if〈

∂φ

∂z
(z̄, µ̄I+)ζ, ζ

〉
6= 0 ∀ ζ ∈ kerG′I+(z̄) \ {0}.

Theorem 4.1 Suppose that the sequence {(zk, µkI+)} generated according to (4.5) with C
given by (4.4) converges to (z̄, µ̄I+), a solution of the KKT system.

If {zk} converges to z̄ superlinearly, then

Π
((

∂φ

∂z
(z̄, µ̄I+)−Hk

)
(zk+1 − zk)

)
= o(‖zk+1 − zk‖), (4.8)

where Π is the orthogonal projector onto kerG′I+(z̄) in Rp.
Under WLICQ and SSOSC, the condition (4.8) is also sufficient for {zk} to converge to

z̄ at superlinear rate.

Proof. By (4.6), we have that

−Hk(zk+1 − zk) = g(zk)− (G′I+(zk))Tµk+1
I+

= g(z̄)− (G′I+(z̄))Tµk+1
I+

+
∂φ

∂z
(z̄, µk+1

I+
)(zk − z̄) + o(‖zk − z̄‖)

= (G′I+(z̄))T (µ̄I+ − µk+1
I+

) +
∂φ

∂z
(z̄, µ̄I+)(zk − z̄) + o(‖zk − z̄‖),

where in the third equality we have used the fact that g(z̄) = (G′I+(z̄))T µ̄I+ and the assump-
tion that {µkI+} → µ̄I+ . Hence,(
∂φ

∂z
(z̄, µ̄I+)−Hk

)
(zk+1−zk) = (G′I+(z̄))T (µ̄I+−µk+1

I+
)+

∂φ

∂z
(z̄, µ̄I+)(zk+1− z̄)+o(‖zk− z̄‖).

(4.9)
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Suppose first that zk+1 − z̄ = o(‖zk − z̄‖). Then we obtain from (4.9) that(
∂φ

∂z
(z̄, µ̄I+)−Hk

)
(zk+1 − zk) = (G′I+(z̄))T (µ̄I+ − µk+1

I+
) + o(‖zk − z̄‖). (4.10)

For any ζ ∈ kerG′I+(z̄), it holds that

〈(G′I+(z̄))T (µ̄I+ − µk+1
I+

), ζ〉 = 〈µ̄I+ − µk+1
I+

, G′I+(z̄)ζ〉 = 0,

which implies that
Π(G′I+(z̄))T (µ̄I+ − µk+1

I+
) = 0.

By the Lipschitz-continuity of the projection operator, we then have from (4.10) that

Π
((

∂φ

∂z
(z̄, µ̄I+)−Hk

)
(zk+1 − zk)

)
= o(‖zk − z̄‖),

and (4.8) follows by noting that

‖zk+1 − zk‖ ≥ ‖zk − z̄‖ − ‖zk+1 − z̄‖ = ‖zk − z̄‖ − o(‖zk − z̄‖) ≥ ‖zk − z̄‖/2

for all k large enough.
We proceed to prove the second assertion. From (4.7), we have that

0 = GI+(zk) +G′I+(zk)(zk+1 − zk)
= GI+(z̄) +G′I+(z̄)(zk − z̄) +G′I+(zk)(zk+1 − zk) + o(‖zk − z̄‖)
= G′I+(z̄)(zk+1 − z̄) + ηk, (4.11)

where taking into account that {zk} → z̄,

ηk = (G′I+(zk)−G′I+(z̄))(zk+1 − zk) + o(‖zk − z̄‖) = o(‖zk+1 − zk‖) + o(‖zk − z̄‖).

By WLICQ, for every k there exists vk ∈ Rp such that

G′I+(z̄)vk = ηk, vk = o(‖zk+1 − zk‖) + o(‖zk − z̄‖). (4.12)

Denoting ζk = zk+1−z̄+vk, from (4.11) we then have that G′I+(z̄)ζk = 0, i.e., ζk ∈ kerG′I+(z̄).
By (4.9), we have that〈(

∂φ

∂z
(z̄, µ̄I+)−Hk

)
(zk+1 − zk), ζk

〉
=

〈
∂φ

∂z
(z̄, µ̄I+)(zk+1 − z̄), ζk

〉
+〈µ̄I+ − µk+1

I+
, G′I+(z̄)ζk〉+ o(‖ζk‖‖zk − z̄‖).

And using SSOSC, we further have that there exists γ > 0 such that

γ‖ζk‖2 ≤
∣∣∣∣〈∂φ∂z (z̄, µ̄I+)ζk, ζk

〉∣∣∣∣
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=
∣∣∣∣〈∂φ∂z (z̄, µ̄I+)(zk+1 − z̄ + vk), ζk

〉∣∣∣∣
=

∣∣∣∣〈(∂φ∂z (z̄, µ̄I+)−Hk

)
(zk+1 − zk), ζk

〉
+
〈
∂φ

∂z
(z̄, µ̄I+)vk, ζk

〉∣∣∣∣
+o(‖ζk‖‖zk − z̄‖)

=
∣∣∣∣〈(∂φ∂z (z̄, µ̄I+)−Hk

)
(zk+1 − zk), ζk

〉∣∣∣∣
+o(‖ζk‖‖zk+1 − zk‖) + o(‖ζk‖‖zk − z̄‖)

=
∣∣∣∣〈Π

(
∂φ

∂z
(z̄, µ̄I+)−Hk

)
(zk+1 − zk), ζk

〉∣∣∣∣
+o(‖ζk‖‖zk+1 − zk‖) + o(‖ζk‖‖zk − z̄‖)

= o(‖ζk‖‖zk+1 − zk‖) + o(‖ζk‖‖zk − z̄‖),

where the third equality is by (4.12), and the last equality is by (4.8). Dividing both sides in
the relation above by ‖ζk‖, we have that

‖ζk‖ = o(‖zk+1 − zk‖) + o(‖zk − z̄‖).

And finally,

‖zk+1 − z̄‖ ≤ ‖ζk‖+ ‖vk‖ = o(‖zk+1 − zk‖) + o(‖zk − z̄‖) = o(‖zk+1 − z̄‖) + o(‖zk − z̄‖),

from which it follows that zk+1 − z̄ = o(‖zk − z̄‖).

5 Comparison with Other Newton-Type Methods

In this section, we very briefly compare convergence conditions needed for the active-set
Newton method described above with conditions required by other Newton-type methods for
MCP.

We start with some comments on the special case of KKT. In that case, weak regularity
and 2-regularity of ΨS are equivalent to semistability of the solution. In the case when this
solution is a local minimizer in an optimization problem, this is further equivalent to the
uniqueness of the multiplier and the standard second-order sufficient condition for optimality
[3]. A detailed comparison with other constraint qualifications and regularity conditions for
KKT systems is given in [15] (even though the weak regularity condition itself is different
in [15], and the resulting class of active-set methods is different, most of the comparison
comments in [15] still apply here, due to the equivalence with semistability). Summarizing,
conditions for the superlinear convergence of the proposed method are strictly weaker than
those of SNM for KKT systems, and are the same as conditions required by the sequential
quadratic programming method (SQP) in its basic form. Note that SQP subproblems are
quadratic programs, while the subproblems of the method proposed here are just systems
of linear equations. On the other hand, convergence conditions of SQP can be somewhat
weakened, but at the expense of nontrivial modifications of the basic iteration, which come
with a computational price [29, 11, 12]. We next focus on the more general case of MCP.
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In the case of general MCP, convergence conditions for our method are, of course, again
significantly weaker than conditions for SNM [20, 21, 26, 27] applied to ΨFB or ΨNR [1,
19, 9] (see also [8, Ch. 9]). Indeed, the latter need BD-regularity of the corresponding
function at the solution, which certainly implies the corresponding error bound [25], and
thus semistability, but not vice versa. We note, in the passing, that BD-regularity of ΨFB

and ΨNR are not related, i.e., none is weaker or stronger than the other. The fact that BD-
regularity of ΨNR does not imply this property for ΨFB has been exhibited in [22, Example
2.1]. We have not been able to find in the literature an example showing that BD-regularity
of ΨFB does not imply this property for ΨNR. So we provide such an example below.

Example 5.1 Let n = 2, F (x) = (x2,−x1 + x2), li = 0, ui = +∞, i = 1, 2. Then x̄ = 0 is a
solution of this NCP, and it can be seen that all matrices in the B-differential of ΨFB at x̄

are nonsingular, while the B-differential of ΨNR at x̄ contains the singular matrix

(
0 1
0 1

)
.

Most remarkably, convergence conditions for our method are also strictly weaker than
those for the linearization (Josephy-Newton) method [17, 3], which consists of solving the
following subproblems: Given the current iterate xk ∈ Rn,

find xk+1 ∈ B such that 〈F (xk) + F ′(xk)(xk+1 − xk), y − xk+1〉 ≥ 0 for all y ∈ B.

Those type of methods are sometimes referred to as point-based approximation methods
[12]. In the case of optimization, they are closely related to SQP. Conditions for the local
superlinear convergence of the linearization method are semistability and hemistability [3] of
the solution. And in general [3, Remark 2.4], hemistability does not follow from semistability
(it does in the case of KKT). Since our method requires something even less than semistability,
we conclude that its local convergence properties are significantly stronger.

6 Local Numerical Experiments

In this section we report numerical experiments on some examples designed to highlight the
case where various standard regularity conditions do not hold, and thus SNM-based methods
have trouble or converge slowly. This is precisely the case where the switch to our local
algorithm can be useful. We have also implemented a globalization of our local algorithm,
in the spirit of hybrid versions of SNM/FB methods for complementarity problems based
on the ΨFB reformulation (e.g., “General Line Search Algorithm” of [22]). Details of this
implementation and numerical results on the MCPLIB test problems collection (the newer
version of [6]) can be found in the technical report [5]. Before describing our local experiments,
we give some general conclusions for the globalized version of [5]. The option of switching
to our active-set step never harms too much the global algorithm, though we certainly have
to pay some extra price for computing this step at those iterations at which it is eventually
rejected (there are safeguards and heuristics that can be used to avoid computing the active-
set step too early, see [5]). We emphasize that the overall goal of the presented approach is
not in improving the SNM (or any other algorithm) when it works efficiently, but rather in
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safeguarding fast local convergence in irregular cases for which other methods do not work
well. The results of [5] indicate that this can be achieved without paying a high price over
iterations of the globally convergent hybrid SNM/FB method.

We now describe some possible scenarios of the local behavior of SNM/FB and GNM/AS
by applying them to some small test problems with various combinations of satisfied and
violated regularity properties of the solution that have been discussed above. Constructing
artificial examples allows us to obtain a rather complete selection of irregular MCPs with
“various degrees of irregularity”, and to make reliable conclusions about the reasons for the
observed performance of the algorithms. This is not possible, for example, for MCPLIB
problems, since precise regularity properties of solutions are typically not known. On the
other hand, we cannot draw far reaching conclusions based on small artificial examples. What
follows is intended merely to illustrate the theoretical results and comparisons obtained above.

By GNM/AS we mean here the algorithm specified by (3.11), (3.12), with the index
sets identified at the starting point (thus, the local properties of this algorithm are given by
Theorem 3.1).

By SNM/FB we mean the iterative procedure

xk+1 = xk − Λ−1
k ΨFB(xk), Λk ∈ ∂BΨFB(xk), k = 0, 1, . . . ,

where the element Λk of the B-differential of ΨFB at xk is computed by the procedure
suggested in [1] (with zi = 1 ∀ i = 1, . . . , n, in the notation of [1], and the “computer zero”
parameter set to 10−10).

The stopping criterion for both methods is

‖ΨFB(xk)‖ < 10−9. (6.1)

The first problem is a slight modification of Example 3.1.

Example 6.1 Let n = 2, li = 0, ui = +∞, i = 1, 2, and let F (x) = ((x1 − 1)2, x1 +
x2 + x2

2 − 1). The point x̄ = (1, 0) is the solution of this NCP. Semistability is violated
here (and hence, BD-regularity for ΨNR and ΨFB is violated), while 2-regularity of ΨS and
weak regularity hold at x̄. The starting point is x0 = (1.5, −0.5), with ‖x0 − x̄‖ ≈ 7.1e–01,
‖ΨFB(x0)‖ ≈ 8.2e–01, det Λ0 ≈ 1.4e+00.

SNM/FB converges in 13 steps. At termination, ‖x13 − x̄‖ ≈ 3.0e–05, ‖ΨFB(x13)‖ ≈
6.2e–10, det Λ13 ≈ –8.3e–05 (note that the latter indicates degeneracy). The rate of conver-
gence is linear, with the ratio approaching 1/2.

The behavior of GNM/AS is reported in Table 1, and it clearly shows fast quadratic
convergence.

Table 1: GNM/AS for Example 6.1

k 0 1 2 3
‖xk − x̄‖ 7.1e–01 1.3e–01 3.7e–03 9.9e–08
‖ΨFB(xk)‖ 8.2e–01 1.6e–02 1.4e–05 9.9e–15
‖xk−x̄‖
‖xk−1−x̄‖ 1.8e–01 2.9e–02 2.7e–05
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The next problem is a modification of [15, Example 1].

Example 6.2 Let p = m = 2, f(z) = (z1 + z2)2/2 + (z1 + z2)3/3, G(z) = (z1, z2), z ∈ R2,
z̄ = 0, µ̄ = 0. Semistability holds here, but for ΨNR (and hence, for ΨFB), BD-regularity
is violated. The starting point is z0 = (1, 2), µ0 = (0.01, 0.01), with ‖x0 − x̄‖ ≈ 2.2e+00,
‖ΨFB(x0)‖ ≈ 1.7e+01, det Λ0 ≈ 4.3e–04.

The behavior of SNM/FB is as follows: det Λ1 ≈ 7.3e–10, det Λ2 ≈ 0, but the corre-
sponding linear system is solvable, and the method manages to escape the “bad” region.
Specifically, det Λ3 ≈ 4.3e–16, while det Λ4 ≈ 2.5e–00, and the algorithm converges in 7 iter-
ations. At the final step, ‖x7 − x̄‖ ≈ 1.0e–16, ‖ΨFB(x7)‖ ≈ 1.4e–16, det Λ7 ≈ 2. The rate
of convergence is superlinear. The behavior of GNM/AS is reported in Table 2, and it also
shows the superlinear rate.

Note that while SNM/FB and GNM/AS exhibit similar convergence for this problem, the
performance of SNM/FB depends on the specific implementation. In particular, the solution
which is produced for a given degenerate linear system clearly depends on the linear solver
being used. The choice of this solution can affect the overall convergence. Also, in general
(this is not the case for this example), when BD-regularity is violated different procedures
to compute Λk could result in different linear systems some of which can be ill-conditioned
close to the solution, preventing fast convergence of SNM/FB.

Table 2: GNM/AS for Example 6.2

k 0 1 2 3 4 5 6 7
‖xk − x̄‖ 2.2e+00 9.0e–01 3.2e–01 7.1e–02 5.0e–03 2.8e–05 9.1e–10 9.3e–19
‖ΨFB(xk)‖ 1.7e+01 4.1e+00 9.3e–01 1.6e–01 1.0e–02 5.7e–05 1.8e–09 1.8e–18
‖xk−x̄‖
‖xk−1−x̄‖ 4.0e–01 3.5e–01 2.2e–01 7.1e–02 5.6e–03 3.2e–05 1.0e–09

The next problem is [15, Example 4]. Combined with Example 6.5 below, it seems to
indicate that weak regularity is somewhat more important for the success of GNM/AS than
2-regularity.

Example 6.3 Let p = m = 1, f(z) = z4/4, G(z) = z, z ∈ R, z̄ = 0, µ̄ = 0. Weak regularity
holds here but 2-regularity of ΨS does not, and thus, semistability is violated (and hence,
BD-regularity for ΨNR and ΨFB is also violated). The starting point is z0 = 1, µ0 = 0.1,
with ‖x0 − x̄‖ ≈ 1.0e+00, ‖ΨFB(x0)‖ ≈ 9.1e–01, det Λ0 ≈ 2.7e+00.

SNM/FB converges in 18 steps. At termination, ‖x18 − x̄‖ ≈ 6.8e–04, ‖ΨFB(x18)‖ ≈
3.1e–10, det Λ13 ≈ 3.1e–06. The rate of convergence is linear with ratio approaching 2/3.

The behavior of GNM/AS is reported in Table 3, and it shows fast quadratic convergence.

Table 3: GNM/AS for Example 6.3

k 0 1 2 3 4
‖xk − x̄‖ 1.0e+00 6.0e–01 2.2e–01 2.7e–03 9.0e-13
‖ΨFB(xk)‖ 9.1e–01 2.2e–01 1.0e–03 2.0e–08 7.4e-37
‖xk−x̄‖
‖xk−1−x̄‖ 6.0e–01 3.6e–01 1.3e–02 3.3e-10
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The next example is borrowed from [22, Example 2.1].

Example 6.4 Let n = 2, F (x) = (−x1 + x2, −x2), x ∈ R2, x̄ = 0. BD-regularity holds for
ΨNR (and hence, semistability also holds), but not for ΨFB. The starting point is x0 = (2, 4),
with ‖x0 − x̄‖ ≈ 4.5e+00, ‖ΨFB(x0)‖ ≈ 5.8e+00, det Λ0 = 0.

Here, SNM/FB fails to make a step. At the same time, GNM/AS terminates after 1
step at the exact solution. The reason for this is that A0 = {1, 2}. Thus, the iteration of
GNM/AS reduces to identifying the index sets.

Note that the problem in Example 6.4 is actually a linear complementarity problem, that
is, NCP with affine F . We point out that in the case of affine F , just one step of GNM/AS
gives the exact solution, whenever the index sets are correctly identified. For example, this
behavior is observed also for the problem badfree from the MCPLIB collection: once xk is
close to the solution x̄ = (0, 0, 0.5, 0.5, 1), GNM/AS produces xk+1 = x̄. At the same time,
for xk close to x̄, a degenerate Λk is computed, and SNM/FB fails, see [5].

The next example is [15, Example 2] and it shows that both 2-regularity of ΨS and
weak regularity are important for fast convergence of GNM/AS in general (recall, however,
Example 6.3).

Example 6.5 Let p = m = 2, f(z) = z2
1/2 + z3

2/3, G(z) = (z1 − z2
2/2, z1 + z2

2/2), z ∈ R2,
z̄ = 0, µ̄ = 0. Semistability is violated (and hence, BD-regularity for ΨNR and ΨFB is
violated). For ΨS , 2-regularity holds, but weak regularity does not. The starting point is
z0 = (0.1, 0.1), µ0 = (0.1, 0.1), with ‖x0 − x̄‖ ≈ 2.0e–01, ‖ΨFB(x0)‖ ≈ 1.3e–01, det Λ0 ≈
2.0e–01.

Both SNM/FB and GNM/AS converge in 12 steps, and ‖x12−x̄‖ ≈ 2.4e–05, ‖ΨFB(x12)‖ ≈
8.4e–10, det Λ12 ≈ 2.9e–04. The rate of convergence is linear with ratio 1/2.

Acknowledgment. We thank the two anonymous referees for constructive suggestions. In
particular, Proposition 4.1 and Example 4.1 are in response to a question posed by one of
the referees.
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