SPATTIALLY PERIODIC SOLUTIONS
IN RELATIVISTIC ISENTROPIC GAS DYNAMICS
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ABSTRACT. We consider the initial value problem, with periodic initial data,
for the Euler equations in relativistic isentropic gas dynamics, for ideal poly-
tropic gases which obey a constitutive equation, relating pressure p and density
p, p = K2pY, with vy > 1, 0 < k < ¢, where ¢ is the speed of light. Global
existence of periodic entropy solutions for initial data sufficiently close to a
constant state follows from a celebrated result of Glimm and Lax (1970). We
prove that given any periodic initial data of locally bounded total variation,
satisfying the physical restrictions 0 < infyer po(z) < sup,eg po(z) < 400,
[|vol|leo < ¢, where v is the gas velocity, there exists a globally defined spatially
periodic entropy solution for the Cauchy problem, if 1 < v < 7, for some
Yo > 1, depending on the initial bounds. The solution decays in Llloc to its
mean value as ¢t — oo.

1. INTRODUCTION

We consider the nonlinear hyperbolic system of conservation laws which describes
the motion of one dimensional isentropic relativistic gas in Euler coordinates,

(L.1) 50 (PH= 25 4 ) + % (0 + p”) i) = 0,

C2 CZ_UQ C2—'U2
2
Z(p+p?)=tz) + 2 ((p+p?) 25z +p) =0,

with given periodic initial data, with, say, period 1, and locally bounded total
variation,

(12) (p(.’L’,O),U(.’L’,O)) = (po(ZL'),Uo(.CU))-

Here p is the density, v is the velocity, p = k?p7, 1 < v < 2, is the pressure, k < c,
and c is the speed of light. The initial data are subject to the physical bounds

(1.3)  0< inf po(z) <suppo(z) < 400, supp'(po(z)) <, ol < e
z€R z€ER z€ER
Let U = (U1,U2), with
2

_p—}—pc2 v . 2 v
- C2 C2—U2+p7 U2_(p+pc)62_v27

and denote Ug(x) = (Uro(z), U2 0(z)) the vector function corresponding to (pg(x),vo (x)).
Set

(1.5) Un = /1 Uo(z) dz.
0

The main purpose of this paper is to prove the following result.

(1.4) U
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Theorem 1.1. Suppose the periodic initial data po, vo satisfy (1.3), and

(1.6) Varn[po] + Varn[log A

] < +oo,
Vo

where by Varg we mean the total variation over one period. Then, there exists
Yo > 1 such that, for all 1 < v < 79, there exists a globally defined spatially periodic
entropy solution U(x,t) of problem (1.1),(1.2), assuming values in a compact subset
of {p > 0,p' < 2, v? < %}, with locally bounded total variation, defined through
the Glimm difference scheme. The solution U(z,t) satisfies

1
(1.7 lim / |U(z,t) — Un|dz = 0.
t—o0 0

We recall that global existence of entropy solutions for initial data in L*® suf-
ficiently close to a constant state follows from the celebrated result of Glimm and
Lax [9], which, in the periodic case, also ensures decay to the mean value in the
L*> norm at a rate O(t~1). So, here we will be concerned with periodic initial data
subjected only to the physical restrictions (1.3), but we also impose the regularity
condition (1.6). To this, we need to restrict v to be sufficiently close to 1, depending
on the bounds for the initial data. As we explain below, the decay given by (1.7)
will be a direct consequence of the fact that U(x,t) assumes values in a compact
subset of {p > 0, p' < 2, v? < ¢?}, as an application of a general decay result in
[2] combined with a well known compactness result of DiPerna [6].

Discontinuous solutions of the relativistic Euler equations were first considered
in the pioneering paper of Smoller and Temple [15], where it was shown the global
existence of BV entropy solutions of the Cauchy problem for (1.1), with v = 1, for
initial data in BV (R), satisfying the physical restrictions (1.3). Their result is based
on the striking observation that the shock curves in the relativistic case with v =1,
in the plane of the natural Riemann invariants, (z,w), possess the same geometrical
property observed by Nishida [11] in the non-relativistic case with v = 1, namely,
the shock curves of both families starting from any arbitrary point in the (z,w)-
plane may be obtained by translation of the corresponding curves starting from
a fixed point, say, (0,0). Also for initial data in BV (R), satisfying the physical
restrictions (1.3), it was shown in [3] the global existence of BV entropy solutions
of the Cauchy problem (1.1),(1.2) for 1 < v < 79, for some -y depending on the
bounds for the initial data. We remark that neither of these results can apply to
periodic initial data. We refer to [15] for an account of the physical derivation of
(1.1) and for references in the physics literature. We also refer to [12] for a better
understanding on the physical ground concerning (1.1).

Returning to system (1.1), one easily sees that in the limit, as ¢ = oo, the Euler
equations for isentropic gas dynamics are recovered:

{%p+ 2 (pv) =0,

1.8
49 2 (o) + (o + 27 =0.

Recall that in Lagrangian coordinates system (1.8) reads

2] 9, —

(19) ET_(?—yU_O’

’ xel O (2,—7) =
8tv+3y(nr ) =0,

where 7 = p~! represents the specific volume of the gas.
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Next, before closing this section, we give an exposition of the main points in-
volved in the proof of Theorem 1.1. We start considering the non-relativistic case
because it is simpler and so allows a neater outline of all steps.

1.1. The Non-Relativistic Case. We now explain our method for constructing
global periodic solutions of the isentropic gas dynamics equations, with large total
variation and oscillation, as long as the adiabatic exponent < is close to 1, by
considering the simpler non-relativistic case. So, we set m = pv, U = (p,m),
consider the equations (1.8) with a periodic initial data
(1.10)

U(z,0) =Up(z), z€R, Us(x+1)=Us(x), Us€ BVioe(R)*, po(z) > 0.

Recalling the well known equivalence between BV entropy solutions in Eulerian
and in Lagrangian coordinates (see [16]), setting V = (7,v), we may consider,
alternatively, system (1.9) with initial data

1 mo(Xo(y))
Po(Xo(y))" po(Xo(y))

where Xy (y) is implicitly defined by the equation

(1.11) V(y,0) = Vo(y) == (

Xo(y)
(1.12) Yy = / po(z) dz.
0

Observe that Vo (y + prr) = Vo(y), for all y € R, where

1
po = / po(z) dz,
0
and also that Vo € BV,.(R) with

Varn(Vo(y)) < C Varn(Us()),

where C' > 0 depends on the lower bound for pg and the upper bound for mg. To
simplify the notation we write  and U instead of y and V, and assume, with no
loss of generality, that ppg = 1.

System (1.9) has eigenvalues

MU) = -k 77’72;1, aU)=& '77'12;1.

We want to construct a periodic solution for (1.9),(1.11) using a periodic version of
the Glimm scheme. We recall that, by this method, approximate solutions U"(z, t)
are constructed as follows. Set [ = Az, h = At, with

l
— >  su A (O)],
2h — UeV,iIil,2| @

where V is a set where U”" takes its values and for which the right-hand member of
the inequality is finite. Set

UM(x,0) =Uo(j1+0)  ze((j—1/2),(G +1/2)l)

and, for 0 < t < h, we define U"(x,t) by solving the Riemann problems for the
discontinuities at + = (j + 1/2)l, j € Z. Then, assuming that U"(x,t) has been
defined for 0 <t < nh, we define

Uh(z,nh) =U((j + an)l,nh —0),  for (j—1/2)l<z< (j+1/2)I, j€Z,
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where a,, € (=1/2,1/2) is a number randomly chosen. Then, we define U"(x,1),
for nh < t < (n + 1)h, by solving the Riemann problems for the discontinuities at
((j +1/2)l,nh), j € Z. This procedure can be reiterated as long as U" takes values
in V and the Riemann problems can be solved. To guarantee these conditions, in
general, the main point is to control the growth of the spatial total variation of
U"(z,t) as t increases. In the usual non-periodic case we assume that the initial
data is in BV (R), and, in particular, the limit lim,_, 1, Up(z) = Uy exist, hence,
control of the total variation implies control of [|[U" — Uy ||oe- Therefore, controlling
the spatial total variation of U”, we may guarantee that it takes its values in a
suitable neighborhood of U.

In the periodic case the situation is more complicated since we miss a state like
U, which is assumed by U”(z,t), for all t > 0, as long as it can be defined. The
state that approximates best this role, is the mean value

1
Un = (1, vn) == / Uo(z) dz.
0

Each of its coordinates (not the vector itself) may be viewed as a value assumed
by the corresponding coordinate of Up(z). Although

h ._ ! h
(U*(t)n .—/0 Uh(z,t) dz

is only piecewise constant with jumps at ¢ = nh, if U"(x,t) converges almost
everywhere to a weak solution of (1.9),(1.11), U(xz,t), then we must have (U(t))g =
Un. So, the idea here is: (i) show first that there is a time T' > 0, independent of
h, so that all the U" can be defined up to ¢t = T, by controlling Varg (U"(t)) and
|U(#) — Un||so; (ii) show that if |(U*(T))n — Un| is small enough, which may be
achieved for very small h, the initial situation is recovered, roughly speaking, so
that we can construct our approximate solutions through the time interval [T, 2T,
and so on. Finally, one uses a diagonal argument to show the convergence of a
subsequence of U" in the whole R2 .

The control of Vary (U"(t)) is possible because the system (1.9) (as well as (1.8))
belongs, in a disguised way, to the, so called, Bakhvalov class, characterized by four
conditions, Aj,..., A4, described in Section 3. This remarkable fact was proved
by DiPerna [5]. We recall that (1.9) is endowed with a pair of (natural) Riemann
invariants, namely,

(1.13) z=v— 2,{'\/’77*72;1, w=v+ Zﬁﬁv':/?;l,
v—1 v—1

that is, z,w satisfy Vz(U)VF(U) = A (U)Vz(U), Vw(U)VFU) = X(U)Vw(U),
where F(U) = (—v,k?777). Clearly, any function of a Riemann invariant is also a
Riemann invariant. We refer to [4, 13, 14] for the basic facts about the theory of
conservation laws. For an exposition of Bakhvalov conditions we refer the reader
to Section 3.

Let

o=w-+ 2, n=w-—2z.

It is sometimes more convenient to work with the coordinates (o,n) than with the
Riemann invariants (z,w). Denote

W(a, k) = {(o,n) : |o —a| < kn}.
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In [5], DiPerna proved the following theorem.

Theorem 1.2 (DiPerna [5]). There ezists a 2-parameter family of transformations
T(a,0) : (z,w) = (Z'(z),w'(w)), a € R, 8 > 0, and positive constants k,cy,ca(k)
which have the following property. For sufficiently small k, T'(a,0) maps the shock
curves of (1.9) in

W(a, k) = W(a, k) N{c1/0 <n < c2(k)/6}
onto shock curves which satisfy A;, i = 1,2,3,4 in the z' — w' variables. Further-

more,

(1.14) 11113) ca(k) = oc.

Actually, DiPerna’s analysis in [5] misses a clear determination of the way in
which the bounds to be imposed on the initial data can grow when v decreases
to 1. To make this study precise, besides (1.14), it is necessary to use the fact,
demonstrated in our analysis, that k and c(k) can be chosen such that

(1.15) % — 00, c2(k)k — 0, asy — 1+.
Let
w(r) =—logr,  wo(y) =w(n(y)),
on = 2vn, nn=n(m), wn=w(m)-
We assume (70(y),v0(y)) € R[V(7)], for all y € R, where
RV ={@n-V() <w<on+ V) }N{lo—on| <V(y)},
and V (7) is a positive decreasing function defined for v > 1 satisfying

7(7_1]31/(7) — 0, —V(’Y) — 0, asy—1+.

(1.16) Vi{y) = o0 )

We also denote

RV ={m-V@) <n<mu+V@)}n{lo—oul <V}

An important observation is that there is an absolute constant ¢y, independent of
v, such that

¢
(1.17) Eo(w(ﬁ) —w(r2)) <n(n) —n(r2) < 2e0(w(m1) — w(m2)),
if m <7 and w — N()V(’y) < W(Tz) < wmn + N()V(’Y), 1=1,2,
and, in particular, 5
R[NoV (7)] € R[2coNoV (7)),
for any given positive integer Ny, provided =y is sufficiently close to 1, due to (1.16).
The Riemann invariants 2z, w' to which Theorem 1.2 refers are defined by

(1.18) 2 =1—exp(20(a/2 — 2)), w' = —1+ exp(20(w — a/2)).
We choose
Cg(k‘)
1.19 a=on, 6=—20
( ) on 7 + 6¢oV ()
and define
(1.20) = wz:, W — exp(jnn)w,‘
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Using (1.13), (1.15) and (1.17), it is not difficult to see that there exist absolute
constants ¢i, ce such that

(1.21)
ci(lo(Uh) —o(Uz)] + |w(U1) — w(Us)]) < [2"(U1) — 2" (U2)| + |w" (U1) — w" (Us)]
< ex(lo(Ur) — o(U2)] + |w(U1) — w(U2))),

if (o(U;),w(U;)) € R[NoV (7)], for any given positive integer Ny, provided that ~
is sufficiently close to 1. Now, if the approximate solution U"(x,t) assumes values
in a region for which Bakhvalov’s conditions A; — A4, recalled in Section 3, are
satisfied relatively to the Riemann invariants z’,w’ (and, hence, also relatively to
2", w") then a periodic version of the main result in [1] (cf. [7]) implies that there
exists an absolute constant ¢z such that

(1.22) Varp [(2",w") (UM ()] < e3 Varp[(2", w")(U"(0))],
and so there is an absolute constant ¢4 such that
(1.23) Varn[(o, w)(Uh(t))] < ¢4 Varn[(o, @) (Uy)].

We then assume that
(1.24) ¢4 Varn[(o, @) (Us)] < V(7).

Concerning (1.22), the key point in Bakhvalov’s proof of an inequality like this one,
in [1], is the introduction of a functional which, restricted to solutions of Riemann
problems with a left state U; and a right state U,., denoted by (U;U,), is defined
by F[(U;U,)] = ([¢"(61)])= + ([w" (62)]) =, where the first term is the absolute value
of the increment in 2" across the first wave, if it is a shock, and 0 otherwise, and
the second is the absolute value of increment of w” across the second wave, if it is a
shock, and 0 otherwise. Thanks to A;—A,4 this functional is then proven to satisfy

F[(U,U,)] < F[(U;Un)] + F[(Un U, )],

with equality holding if U,, is a value assumed by (U;U,). An essential feature
of the above relation is that it does not involve quadratic terms, as opposed to the
original interaction estimate in [8], which is a crucial point for a periodic version of
Glimm’s method. Extending, in a natural way, the above functional to the periodic
approximate solutions and using periodicity, (1.22) follows.

Now, we choose Ny = 3 and show that, for v sufficiently close to 1, Bakhvalov’s
conditions are satisfied in R[3V (7)], relatively to the Riemann invariants z', w'; this
implies that the approximate solution can be defined for the first two steps so that
it assumes values in a region where Bakhavalov’s conditions are satisfied relatively
to the Riemann invariants z',w’. To this, it suffices to show that

(1.25) RlbeoV (7)] € W (om, k),
if v is sufficiently close to 1. Now, clearly, due to (1.16), we have
C1
+ 6oV < —6coV(7),
o) (m + 6coV (7)) < 1 — 6oV (7)

and
k(n — 6coV (7)) 2 6coV (7),
if v is sufficiently close to 1, which proves (1.25).
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As in the classical case, we easily prove that there is a constant C(7y), depending
on v, such that

(1.26) /0 '

for t1,t2 € [0,T], as long as U"(t) is defined and satisfies (1.23) in the interval
[0,T].

Now, let us investigate the growth of the oscillation of the approximate solutions
with time. Denoting by C(v) a positive constant depending on +~, inpendent of
h,T, not necessarily the same as in (1.26), we have

|(, @) (U (2, 1)) — (om, wn)]| < |(o,@)(U" (2, 1)) = (o, @) (U" ())m))|
+ (0, @) (U*(t))n) — (0,@)(Un)| < |o(z,t) — (6" )l + |w(r*(z,1)) — w((7"()n)]
+C()(t + h) < Varn[(o,@) (U" ()] + C(7)(t + h) < ¢4 Varn[(o, w)(Uo)] + C()(t + h),

so that, if T > h is such that 2C(y)T < V(y) — ¢4 Varn[Up], we have that the
approximate solution may be defined up to a time T' > T, independent of h,
satisfying

(0, @)U (2, t1)) = (0,@) (U (2, 2)) | dz < C(7) ([t — t2| + h),

(0, @) (U"(2,1)) = (om,wm)| < V(7),  0<t<T,
in particular, U"(t) € R[V ()], for 0 <t < T. We may assume T' = mghy, for some
mg € N, and hg > 0 such that all A to be used are of the form h = 27Phy, for some
p € N. In particular, T € Nh, for all time-steps h considered. Now, assume an
approximate solution has been defined up to t = NT, for some N € N, satisfying

|(U,’W)(Uh($,t))—(01'[,’{ﬂn)| <V(’7)7 OStSNT;
and suppose
(1.27) [(o,@)((U"(NT))n) = (0, @) (Un)| < V(7) = ea Varn[(o, @) (Uo)] = 2C(7)T.

Hence, as above, for t > NT such that U”(t) is defined and assume values in
R[3V ()], we have

(0, @) (U (2, 1)) = (om,wn)]| < |(0,w)(U" (2, 1)) — (0, @) (U" ())m))|
+ (o, @) (U* (t)n) = (0, @) (U"(NT)m)| + (0, @) (U*(NT))n) = (o, ) (Un)|
< ¢4 Varn[(o,w)(Uo)] + C(7)(t = NT + h) + |(0,@)((U"(NT))n) ~ (o, %) (Un)l,

so that U"(t) may be defined up to a time NT + T’ with 7" > T, independent of
h, such that

(1.28) (o, @)(U"(2,8)) = (om,wn)| <V(7), O<t<NT+T".

The above argument provides the reiteration procedure introduced in [7]. That is,
assuming the reiteration has been carried out until the N-th step, we see, from
(1.28), that the approximate solutions can then be defined until a time NT + T,
with T > T. Then, using Glimm’s argument in [8], for the consistence of his
scheme, we can obtain a subsequence of h’s and a set O C II2 ,(—1/2,1/2), of
measure 1, such that the U” are defined, for h less than certain hy, and converge
in C([0, NT +T"),L;,.(R)) to a weak solution of (1.9). In particular, (1.27), with
N replaced by N +1, holds and we can advance one more step, continuing this way
indefinitely.
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1.2. An overview of the relativistic case. The situation in the relativistic case
becomes more complicated because, first, the proof of the analogous of Theorem 1.2
(see Theorem 4.1), including the new estimates (1.15), requires yet more technical
calculations, second, we now miss completely a reference value, such as U above,
since the variables that are conserved, namely, U = (Uy, Us) given in (1.4), are not
nicely related with the (natural) relativistic Riemann invariants

1 P ST 1 P Yo}
w:—logc+v+c 7])23, z:—logc+v—c P S,
2 Cc—w o D+ sc 2 Cc—w o D+ sc?

or the corresponding ¢ = w + z, n = w — 2, and transforming to Lagrangian
coordinates in this case would not change this situation. The latter forces us to
change the argument a bit, as follows.

Let be given an initial data (po(x),vo(x)), periodic with, say, period 1, with
bounded total variation over one period and satisfying 0 < p < infyer po(z) <
Sup,cgr po(z) < P, ||lvol| < ¢, with p'(p) < ¢®. We do not impose any size restriction
neither on Varm(po,vo), nor on p and p. We will need to use the fact that the region

Q= {(z,w) : z > inf 2(z,0), w < supw(:c,O)}

is invariant for the solution of Riemann problems. Let (p"(z,t),v"(x,t)) denote
the approximate solution in (p, v)-coordinates, constructed by Glimm’s method, as
above. The invariance of ) implies that, while n”(z,t) = n(p"(x,t)) assumes values
in an interval [n(p) — V (7),n(p) + V(v)], for V() as in the non-relativistic case,
we must have that o"(z,t) = o(v"(x,t)) assumes values in an interval |o| < (),
with &(7y) determined by V() using the bounds for the region 2. We prove that

(1.29) {lol <TMIn{n(p) = V(v) <0 <n(p) +V(1)} C W(a, k),

for ~y sufficiently close to 1, where W (a, k) is as in the non-relativistic case and,
by the analogous of Theorem 1.2 (see Theorem 4.1 below), has the property that
(1.1) satisfies Bakhvalov’s conditions in its image by the map T'(0,a) : (z,w) —
(2'(z),w'(w)). Similarly to the non-relativistic case, we choose 6, a conveniently so
that (1.29) holds true.

Using the inequality corresponding to (1.26), for the approximate solutions in
the conservative variables (U}*(z,t), U (z,t)), we then obtain rough estimates from
above and from below for the mean value (p"(¢))m, in the form

(1.30) ply) < (P")n <p,  for 0<t<T,

as long as

(1.31) 25(7) < (") < £,

where p does not depend on v, and p(v) is a suitable function of v satisfying
3 Vv

(1.32) n(p(v)) > n(p) — %

for vy close to 1. The estimate (1.30), then, tell us that p"(z,t) assumes a value in
the interval (j(7),p), for 0 < t < T', where we agree that we can redefine p"(z,t)
in any discontinuity point (zg,t) such that p"(x¢,t) is any suitable value in the
interval between p"(zo —0,t) and p"(z¢ +0, t), observing that this redefinition does
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not changes the Varr(p"(-,t)). In terms of the variables (o,7), this tells us that
n"(z,t) assumes a value from the interval (n(5(v)),n(p)), for each 0 < t < T".

The point is that an estimate as (1.31) follows directly from estimates for (U 0)u
and from the estimate |o| <.

Now, arguing as in the non-relativistic case, we may find constants c¢g,...,c4
playing analogous roles, and we have, for 1 < v < 7, for a certain vy > 1,
(cf. (1.24))

(1.33) ciea Varal(o.n) (po, o)) < L.

Since, Bakhvalov’s conditions ensure that

Varni[(o" (1), 1" (t))] < cges Varn[(a, 1) (po, vo)]

as long as the values of (6" (s),n"(s)) lie in W (a, k), for 0 < s < t, (1.29), (1.30),
(1.32) and (1.33) imply that (o(=,t),n"(x,t)) assumes values in the rectangle
{lel <@@}n{nlp) = V() <n <np)+V(H)}, for 0 <t <T'. Now, since
(1.31) depends only on an estimate for (Ui o)r and the estimate |o| < &, we may
reiterate the argument in intervals [NT, NT +T"), N € N, provided (U}(NT))n is
sufficiently close to (U1,0)m, as in the general approach of [7] used in subsection 1.1.

1.3. Decay of the periodic solutions. Here we briefly recall how the decay
property of the periodic solutions obtained in the first part of Theorem 1.1 can be
achieved. In sum, it is a consequence of the fact that they take values on compact
subsets of {p > 0, p' < ¢?, v? < ¢?} and the fact that (1.1) is strictly hyperbolic
and genuinely nonlinear over this compact set, by applying the followings results
in [2] and [6]. Let us consider the Cauchy problem for a general n x n system of
conservation laws

(1.34) U+ FU), =0,
(1.35) U(z,0) + Uo(x).

Theorem 1.3 (Chen & Frid [2]). Assume that (1.34) is endowed with a strictly
convez entropy, and let U € L°(R x Ry ) be a periodic entropy solution of (1.34)-
(1.35), with, say, period 1. Denote UT(x,t) = U(Tx,Tt). If the sequence UL,
T — oo, is pre-compact in L}, (R x R}) then one has

1
ess tli>r£lc>/0 |U(z,t) — Un|dz =0,

where U = fol Uo(z) dz.
Theorem 1.4 (DiPerna [6]). Assume (1.34) is a strictly hyperbolic genuinely non-
linear 2 x 2 system. Let UL, T € I, for some index set I, be a family of en-
tropy solutions of initial value problems for (1.34), which is uniformly bounded in
L®(R x Ry). Then UT is pre-compact in L}, (R x Ry).

We remark that the existence of a strictly convex entropy for (1.1), defined on
a compact set where the periodic solution assumes its values, is a consequence of a
well known result of Lax (see [10]), by using the results in Section 2 below. The fact
that solutions constructed by Glimm’s method are entropy solutions is also proved
in [10].

The remaining of this paper is organized as follows. In Section 2, we recall sev-
eral properties of system (1.1). In Section 3, we recall Bakhavalov’s and DiPerna’s



10 HERMANO FRID AND MIKHAIL PEREPELITSA

conditions. In Section 4, we state Theorem 4.1, which is our extension of Theo-
rem 1.2 to the relativistic case, including the new asymptotic information (1.15),
mentioned above. In Section 5, we prove the existence part of Theorem 1.1. Finally,
in Section 6, we give the rather technical proof of Theorem 4.1.

2. PROPERTIES OF THE SYSTEM (1.1)
In this section we collect some properties of the system (1.1). The proofs can be
found in [15] and [3].

Lemma 2.1 (cf. [15], p.79). (i) The mapping (U1, U2) = (p, v), as given by (1.4),
is one-to-one and the determinant of its Jacobian is non zero when p > 0, |v| < c.
(ii) The system (1.1) is strictly hyperbolic and genuinely nonlinear when

[v| <e¢, 0<+/P(p)<c,

and has two real eigenvalues

Y/ A 2/

(21) A1 = ) 2 = .
1wy 1+ ”f

(iii) There is the pair of “classical” Riemann invariants

14 / 1 14 /
(2.2) w log +U+c/ ﬂds, z:—logc-’_v—c/ ﬂds,
v Jo B o P

s) + sc? 2 Cec—w s) + sc?

the mapping (w, z) = (p, v) is one-to-one and the determinant of the corresponding
Jacobian is non zero when p > 0, |v| < c.

Remark 2.1. In the view of the above lemma we will often refer to a given state
of the system (1.1) in different state spaces by marking coordinates with the same
label, for example, Ug, (zr, wr) and (pr,vr) are assumed to be connected by (1.4)
and (2.2).

From the results in [3] it follows that it is possible to choose
(2.3) z = Ry(w; z1,,wr.), z = Ra(w;z,wr), w <wr;

as the parametrization of shock curves of the first and the second family with the
given state on the left (21, wr), and

(2.4) z = Ly (w; zg, wg), z = Ly(w; zr,wR), w > wg.

as the parametrization of shock curves of the first and the second family with the
given state on the right (zg,wr). Moreover the shock curves have the following
properties.

Lemma 2.2 (cf. [3], p.1623). Let (pr,vr) and (pr,vr) be two states (on the left
and right) connected by the shock of the first family then vg < v, pr > prL,
1< %Rl (wr; 2, wR) < 400, and 1 < %Lwl (wr;zr,wr) < +oo. If (pr,vr) and
(pr,vR) connected by the shock of the second family then vg < v, pr < pL,

0< 3R2 2(wr; 2L, wr) < 1, and 0 < 3L2 2(wr; 2L, wr) < 1.

The shocks are admissible in the sense of Lax, when p > 0. It follows from the
next lemma, since we assume that p = kp? with v > 1.
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Lemma 2.3 (cf. [3], p.1613). If p(p) satisfies p'(p) > 0, p"(p) > 0, then Laz shock
conditions hold, i.e.,

M(Ur) < s <A (Ur), s < A2(Ug),

for 1-shocks, and
s> )\1(UL), )\Q(UR) <s< )\Q(UL),
for 2-shocks.

In addition, the shock curves are monotone in the way described by the next
lemma.

Lemma 2.4 (cf. [3], p.1619). Given the left state (pr,vr) the shock curves are
star-like in (p, v) plane, when 1 < v < 2.

As was noted in [15] the system (1.1) is invariant under a Lorenz transformation,
meaning that if (£, Z) is a reference frame that moves with velocity u, as measured
in (¢, ) frame, then the system (1.1) does not change when rewritten in (£, Z) co-
ordinates, provided that velocities of particles are calculated in the barred reference
frame. The correspondence between velocities of a particle in unbarred frame, v,
and barred frame, v, is given by the rule

yo Bt
14 v/’

The density p(t,x) is invariant under a Lorenz transformation. Moreover, there is
an invariant functional of velocities .

Lemma 2.5 (cf. [15], p.74). Let velocities of two fluid particles be given by vy and
vr, as measured in a coordinates (t, x), and Vg and U, as measured in coordinates

(t, ), obtained form (t, x) by a Lorenz transformation, then
¢+ VR c+vyg, c+ Ur c+vyr
— log = log — — log

log — .
C — VR CcC— Vg, C — VR Cc—vr,

The above lemma and (2.2) motivate the introduction of functions ¢ and n by

(2.5) o = w+z:10g(c+v),
c—v
P 7 9 a1
(2.6) n = w—z=20/ p(8)2d3= ﬁarctanﬁp2 .
o p(s)+sc | c

Let us consider the shock curves in (o, 1) plane, which is obtained from (z, w) plane
through rotation by the angle —7.
Remark 2.2. Throughout the paper we will use the same notation for the shock
curves in (z, w) and (o, ) planes.

The use of (g, n) coordinates as a state space will prove to be useful due to the
following fact.

Lemma 2.6. For any two states (co,7m0) and (o1,7m0) and for each i = 1,2, two
shock curves o = R;(n;00,m0) and o = R;(n; o1,10) are identical up to a translation
along o-azes.

Proof. Let vg be such that o9 = o(vg), where o(v) is given by (2.5). Let the new
reference frame (f, £) to be chosen in such a way that o9 computed in the new
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reference frame is 0. This is the case if (f, ) moves relative to the given reference
frame with velocity vo. Then, by Lemma 2.5, 61 = 01 — 09, and similarly

Ri(U;Ulano) — 01 = Rz’(n;Ul - 00,770) - (01 - 00)-
As a result we get
Ri(n;01,m0) = Ri(n;01 — 00,7M0) + 00-

Choose g9 = o1. We conclude that

R;i(n;01,m0) = 01 + Ri(n;0,10).

Remark 2.3. The above lemma also holds for o = L;(n;09,m0), 1 = 1,2.
For the purpose of the paper it will be sufficient to use the Rankine-Hugoniot
condition in the following form.

Lemma 2.7. Let (pr,vr) = (p,v) and (pr,vr) = (pr,0) be two states (on the left
and right) connected by a shock, then

2 (p —pr)(p — pr)
@7) o \/(p + pre?)(pr + pc?)’

where pr = p(pr).

3. BAKHVALOV AND DIPERNA’S CONDITIONS

Generalizing Nishida’s method of proof of the existence of solutions of isother-
mal gas dynamics with initial data from the class L>* N BV,.(R), Bakhvalov, in
[1], introduced a class of 2x2 strictly hyperbolic and genuinely non-linear systems,
characterized by the particular geometry of the shock curves in the plane of Rie-
mann invariants, for which existence result for the same class of initial data can be
proven. We follow [5] in the exposition of Bakhvalov conditions. Consider a strictly
hyperbolic, genuinely nonlinear system

(3.1) 8,U + 8, F(U) = 0,

where U = (Uy, Uz) and F(U) = (f1(U), f2(U)). Let A1 < A2 be the characteristic
speeds of (3.1). Let z,w be a pair of Riemann invariants for (3.1) such that in its
domain of definition the map (U, Us) + (z,w) is one-to-one. Let the shock curves
of the first and second family be parameterized by

z = Ry(w; 20, wp), w < wp; z = Ly(w; z0,wp), w > wp

(3.2) 2z = Ra(w; 29, wp), w < wo; z = La(w; z0,w0), w > wp

In the above, state (z,w) is a state which can be connected on the left (L;) and on
the right (R;) to (20, wo) by a shock of the i** family. Finally, let

(3.3) Q= {(z,w) Dz > irxlfz(a:,O), w < supw(x,O)} .
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The next hypotheses impose conditions on the shock curves under which the solv-
ability of Cauchy problem with locally bounded variation is obtained.

Ap sup | A (2, w)| < 0.
i,Q
6R1 6L1 8R2 6L2
A, : 1< —, — — — <1
9 V(z,w) € Q, <6‘w’6w<+oo’0<8w’8w< , W F£ wo
Az : If 2. = Ri(wr; z1,w1), 1 = 1,2, then shock curves z = R;(w; 2, w;), w < w;

and z = L;(w; zr,w;), w > w, intersect only in points (z;,w;), (zr, w)-
Ay If four points (z;, wp), (2r, Wr), (Zm, W) and (2, Wy,) satisfy
Zm = Ro(Wm; 21, w1), 2r = R1(Wr; 2m, W), Zm = R1(Wm; 21, wr) and

Zr = R2(wr§ 2mawm)7then (zl - ﬁm) + (UA)m - wr) < (wl - wm) + (zm - Zr)-

We say that system (3.1) belongs to Bakhvalov’s class over Q if it satisfies A;—A,.

Theorem 3.1 (Bakhvalov, [1]). If a strictly hyperbolic, genuinely nonlinear system
(3.1) satisfies conditions A1— Ay, over the domain Q given by (3.3), then the Cauchy
problem has a solution for arbitrary initial data Uy(z) in BV,..

Remark 3.1. The region considered by Bakhvalov is a subset of our €2, so his theorem
is a little stronger than the above statement.

The proof of Theorem 3.1 (see [1]) involves the construction of a non-increasing
in time functional of approximate solutions, obtained by the Glimm scheme. This
functional is a constant on solutions of Riemann problems and defined as follows.
Let U; and U, be the left and right constant states in the Riemann problem
and (U;U,)(t,z) denote the corresponding solution. It consists of a shock ( or
rarefaction) wave of first kind followed be a shock (or rarefaction) wave of second
kind.

Definition 3.1. Define F[(U,U,)] = ([2(61)]) - + ([w(d2)]) -, where the first term
is the absolute value of the increment in z across the first wave, if it is a shock,
and 0 otherwise, and the second is the absolute value of increment of w across the
second wayve, if it is a shock, and 0 otherwise.

Lemma 3.1 (Bakhavalov, [1]). If a strictly hyperbolic, genuinely nonlinear system
(3.1) satisfies conditions Ay — A4, over the domain Q given by (3.3), then for any
three states Uy, U,, and U, in Q we have

(3'4) F[(UlUr)] < F[(UlUm)] + F[(UmUr)]a

and equality holds in (3.4) if Uy, is a value assumed by (U;U,)(z,1t).

We will need the local version of above lemma. For any set B in (z, w) plane
define R[B] to be the set of all values of any Riemann problem with initial data in
B.

Lemma 3.2. Let By and By be rectangles in (z, w) plane with the property that
R[R[By]] C By and system (3.1) verifies Bakhvalov conditions A;, i =1,..,4, when
restricted to By. Then for any three states U;, U, and U, in By we have

(3.5) F[(U,U,)] < F[(U,U,)] + F(UU,)],

and equality holds in (3.4) if U, is a value assumed by (U;U,.)(z,t).
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FiGURE 1. Hypothesis By.

It is convenient for our subsequent analysis to substitute condition A4 by the
following stronger condition introduced by DiPerna in [5]. Define

Ri(z9,wo) = {(z,w): 2= Ry(w;z0,wo), w <wp},
Ly(z0,w0) = {(z,w): z = La(w; 2, wp), w > wo},
and
Aw =w —wo, AW =W — W, Az =2 — 29, AZ =2 — Zp.

Condition By consists of the following.

Bs.1: Let (2?0,'11)0) € Rl(ZO,U}()). Ifz = LQ(’U);Z(),'ZU(]), z= LQ(’U/);Qo,'UAJ(])
and Aw = Aw then AZ > Az.
B4.2: Let (5’0,1170) € LQ(Z(),’U)()). If 2= Rl(w;zg,wo), zZ= Rl(w;éo,wo)

and Az = Az then Aw > Aw.

The above conditions depend on the choice of the pair of Riemann invariants.
For the classical ones, the system (1.1) satisfies conditions 4; — Az. This follows
from the lemmas in section 2. The principal difficulty is the fact that neither By
nor A4 holds for the classical Riemann invariants of system (1.1). The situation is
parallel to that of the system of non-relativistic isentropic gas dynamics, in which
case it was shown by DiPerna in [5] that it is still possible to find a pair of Riemann
invariants z’,w’ for which the system satisfies A; — A3, By, at least locally.

4. THE SHOCK CURVES

First, we state the result concerning the geometry of the shock curves in the
plane of Riemann invariants. Let p > 0, with

(4.1) VP () < (1= o),
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for some &g > 0, independent of v, and @ < +oco be given. Let W(a, k) =
{(o,n) : |o —a| < kn}, where a > 0 is a constant such that |a| < 7. Let

W(a, k) = W(a, k)N {(o,n) : 0<n<n), |o| <F}.

Define a map T'(a,6) : R2 — R? as

T(a,0) : (z,w)— (2,w'),
(4.2) 2 = 1—exp26(a/2 - 2),
w' = —1+exp20(w—a/2),
0 eR

This map written in ¢ = 2z + w, n = w — z variables has the following form

a_l

expO(n+o —a) —expb(n — o + a),

n = expd(n+o—a)+expd(n—oc+a)—2.
The next theorem and its proof is analogous to Theorem 3.3 in [5], except for the
second part, in which we investigate the dependence of system (1.1) on 7.
Theorem 4.1. There are positive constants c1, co, depending on (v, k,7,d), such
that shock curves in W(a,k)N{% <n < %} are mapped by T(a,6) to shock curves

satisfying hypothesis A1, As, Az, By. Moreover, we can choose & = o(y) — +00
and k = k() = 0, when v — 1, such that the following limits hold.

k
(4.3) —1—>+oo,02—>+oo,02k—>0,c—1—>0, asy—1+.
v G2
We postpone the proof of Theorem 4.1 to Section 6.

5. CAUCHY PROBLEM

In this section we prove the existence part of Theorem 1.1; the decay (1.7) was
already explained in the subsection 1.3. We carry out the construction of periodic,
weak solution by the adaptation of Glimm’s scheme, as was introduced by H.Frid
in [7].

Proof of Theorem 1.1. In contrast with non-relativistic case, for the physically mean-
ingful values of p the sound speed must be smaller than speed of light, that is,
p'(p) < c. In the equation of state we assume that k < c¢. Then, for all yo > 1
there is p(0) > 0 such that p'(p) = 2. It is easy to see that p increases to +00 as
v — 14. We restrict -y to be so small that

(5.1) v € (1,7), where 7 is such that p < p(v)-

We will impose further restrictions on - in the course of the proof. Bounds (1.3)
imply that there is @ > 0 such that

(5.2) sup |o(vo(z))| < &.
z€R

Consider the set
Q= {(z,w) :w < supwo(x), 2 > infzo(a:)} .

2 is an invariant set for a Riemann problem formed with any two states in it. Next,
we define the set which serves as an “admissible” region for approximate solutions
defined through Glimm scheme.
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Let @ = G(7) be the function from Theorem 4.1; its explicit form, ¢ = & +
Blog(y—1)"1, B >0, is given by Lemma 6.9 of Section 6.

Lemma 5.1. There exist absolute constants do, a > [ and o and functions p <

p, p > p such that for any (n,o) in QN {n(g) <n< n(ﬁ)} and 1 < v < ¥ we have

(5.3) p<p<p, |o|<T, /P(D) <c(l—do).
Moreover, )

(5.4) p=ply—=1)*%,

(5.5) n(p) =n(p) — elog (v — 1),

for some € > 0.

Remark 5.1. Conditions p < p and |o| < & are needed to apply the results of the
previous section, whereas condition p > p is needed to obtain the lower bound for

the average of p(t, ).

Proof. Let us choose p > p from the equation

(5.6) n(®) —n(p) = elog(y - 1)+,
with € > 0 so small that
(5.7) gﬁ”‘”/? <1-d,

for some dg > 0. Such p exists. Indeed, from (5.6), upon use of (2.6), we have

fﬁ(’v—l)ﬂ

(5.8) = tan |arctan p('Y D2y 72 2\/_ log( 1!
By assumptions on initial data (1.3), £p07=1/2 < 1 — b0, for some &y > 0. Also,
the function 7 \/% log (v —1)71 is bounded. We now can choose € such that the
argument of tan in (5.8) is less then 7/4, verifying by this (5.7). By the choice of
p, (5.6), we trivially have p > p.

Let p = p(y — 1), a > 0 Then, for some ¢ € (p(y —1)%, p),

2 5(v—1)/2 kp(Y—1/2
n(p) —nlp) = ﬂ (arctan B” 7 arctan ——
= v—1 c c
K2y 1 ~(v—1)/2 a(y—1)/2
T (- D1+ ke T 7Y (1_(7_1) " )/)
(5.9) < 2O a-pplz (=D ohe

c v—1
TE (- -
= YIE500 01050y~ 1) (1 4+ 0(1)

VPP (14 of1)) alog(y — 1)

Note that by assumptions on initial data, £p07=1/2 < 1 — b0, for some by > 0.
We thus obtain that 7(5) — n(p) < Blog(y — 1)~* for all v close to 1, if we choose

a > > 0 such that (1 —d)a < B.
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Since we restrict (o,n) to the set @ we have

rn < s Lo ST L W ST
< o +n(p),
from where we derive o < & +n(p) —n(p) < &+ Blog(y — 1)~! =7. Analogously,
o> -0 —n(p) +nlp) = -7 - -
Define

2 ={lol <7} {n@ <n <n(p)}.

Let U = (Uy(z), U2(x)) be a vector function in BVj,.(R), periodic with period
1, such that (6 o U(x), n o U(x)), obtained through (1.4), (2.5) and (2.6), assumes
values in ,, for all z € R, and such that

/0 (U(z) - Un(a)) de

We can obtain the bounds on the average of poU (). From the definition of function
Uy in (1.4) we get

(5.11) U > p.

1

Also, since values of (o, 1) belong to @, it follows that v* < ¢?, ¢ —v* =
02% > c%e 7, £ <1 and thus
(5.12) Ui=p (% + 1> % +p < 3€%p.
Similarly, for initial data (pg(z), oo(x)) satisfying bounds (1.3) and (5.2) we have
(5.13) p<Ugi(-) < 3e%p,
which implies the following estimate for the space average over the period II of Up ;.
(5.14) p < (Uon)y < 3€7p.
Using (5.10), (5.11) and (5.12) we arrive at the following inequalities.

-7
6

Remark 5.2. The inequalities in (5.15) imply, in particular, that p o U(z) takes a
value in the interval (p, p), where

(5.15) p<(polU)y < 4e’p.

(5.16) p=e"p/6, p=4e7p,

and we agree that we can redefine poU(z) in any discontinuity point x¢ such that
poU(xo) is any suitable value in the interval between poU(zo—0) and poU(zo+0),
observing that this redefinition does not changes the Varg(p o U).

Remark 5.3. A computation similar to (5.9) shows that there is a positive constant
€ < B such that for any (n, o) € QN {n(p) <n < n(p)} and = is close to 1 holds
that

(5.17) lo| <6 =0 —elog(y —1).



18 HERMANO FRID AND MIKHAIL PEREPELITSA

Define
(5.18) Qe =A{lo| <6} n{n(p) <n<n(p)}.
Let us apply Theorem 4.1 with p and @ chosen as above and
C2
5.19 a=0,0=-2_,
(5.19) 2n(p)

Map T'(0, ) takes shock curves in
(5.20)

W = {lo| < kn} 0 {lo] < 7} 0 {max220(9), n(0)) <1 < min{20(0), )
to shock curves satisfying hypotheses A; — Ay. Let
(5.21) RV = @) = V(y) <n<n(@) +VNIn{lol <6 +V(r)}.

Lemma 5.2. There exist a positive, monotone increasing function V(v), 1 < v < 2,
with V() = o(—log(y — 1)) as v = 1+, and v > 1 such that for all 1 < v < 7y
we have

(5.22) Q. CRV(Y)] CQy CW.
Proof. The first inclusion in (5.22) holds trivially for any V() > 0. To find V' (y)

with properties stated in the lemma and to prove the second inclusion it is enough
to show that

(5.23) n(
(5.24) n(p)

for some ¢; > 0,4 = 1,2 and + close to 1 and then, use the fact that & — 6 =
(e = B)log(y — 1), £ < B. Consider

n(@) —n(p)

A~

—n(p) > —e1log(y — 1),
—n(p) 2 —e2log(y — 1),

Rl
S~

(@) —n(p) +n(p) — n(p)
> Clog(y—1)7,
2
by (5.6) and the fact that n(p) —n(p) = n(4e? p) —n(p) is bounded independently of

7 close to 1 we establish (5.24) with ; = §. Recalling the definitions p = Be_§ /6=
pe’ (v —1)P/6, p=p(y —1)*, a > B > 0, we have the following inequality

19 -0 = 1 (E6-17) - utr- 1)
](’Y—l)/2
(5.25)

vV

6
= —elog(y—1),

for some €5 > 0. This verifies (5.24). To prove that Q, C W we show that for ~
sufficiently close to 1 next conditions hold.

(5.26) min{2n(p), n(p)}
(5.27) max{2z—;77(ﬁ),’7( }

(5.28) 1@k -7 > 0.

— — 6pe” a—
207 [0 ] D21 - [y~ 1)
c 7 v—1

— ~—

P
P
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Since (v — 1)n(p) > 0 uniformly in ~ close to 1 and
n®)—n) = np)—np)+np)—nlp)
< 2elog(y—1)7",

by (5.6) and the fact that n(p) — n(p) = n(4e°p) — n(p) is bounded independently
of 7y close to 1 we conclude (5.26). On the other hand, since ¢;/ca — 0 as v — 1+
by Theorem 4.1, (5.27) holds. By Lemma 6.9, @ = 6 — Blog(y — 1) and k =
(y=1)70=1 —1 = 4(y = 1) log(y = 1) }(1 4+ o(1)) and B/: < 2arctan(x/c). Thus

n(p)k—o > 12,/yarctan M(l +o(1))log(y = 1) "

— 0 —Plog(y—1)"" = —eslog(y — 1),
with €3 = 2¢arctan & — 3. This verifies the last condition (5.28). O

Remark 5.4. For a function V() as in Lemma 5.2 and a positive constant N, (5.22)
holds also for NV (), provided that + is sufficiently close to 1.

Lemma 5.3. There exists a constant Co > 0, independent of v, such that

(5.29) In(p1) = n(p2)| < Colpr — p2l;
if p< pi < p, i =1,2 and provided that -y is sufficiently close to 1.

Proof. This follows immediately from the definition of n(p) in (2.6). O

Let (2', w'") be the pair of Riemann invariants given by Theorem 4.1, when a = 0,
0 = 57%- 1t is convenient to use a normalized version of (', w'). Define (2", w")
by

oM = eXP(—Hﬂ(ﬁ))zl w'! = eXp(—aﬂ(ﬁ)) w'

0 ’ 0 '
The next lemma establishes that increments in (2", w') are comparable with cor-
responding increments in (o, 7).

(5.30)

Lemma 5.4. There exists an absolute constant C > 0 such that
(5.31) C™H(low — o2l +[m —m2|) < |21 — 25| + |21 —wy| < Clor — 02| + Im —1a),

if (0, m) € RIKV(Y)), 2 = 2"(05,m:), and wi = w"(03,m:), for any K > 0,
provided that v is close to 1.

Proof. Let us consider dependence 2" = 2" (0o, 1), and w"” = w"(o,n). The determi-

a(zll ,wll)
a(a,m) &

|Jijl 5 4,5 = 1,2, is smaller than exp(8|o|+6|n—n(p)|). The set R[KV (v)] is convex

in (o, n) plane and, consequently, using notation

(532) ||J|| = sup 69|0|+9‘W7W(ﬁ)|,
(o,mMERIKV ()]

nant of Jacobian matrix, J = equals —2 exp(@(n—n(p))) and each element

we can write the following estimate

|21 — 25| + |21 —wy| > inf —2eC=1O) |1 7)|(|oy = 02| + Im — ma),
(o,m)ER[KV (7)]

|20 = 25| + |w) —wy| < sup =21 7| |(|oy — oo + I — 72)
(e:m) ER[V (V)]
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Let us show that for the choice of 8, (5.19), it holds that 8(n(p) —n(p) + 2KV (y) +
6) — 0, with v — 1+4. This will suffice to conclude the lemma since, for (o,7) €
RIKV ()], 1 ranges over the interval [(p) — KV (7), n(p) + KV (7)] and |o| <
6 + KV(v). By Lemma 5.2, V(y) = o(—log(y—1)) - oo as v — 14+. The
estimate similar to (5.25) shows that n(p) —n(g) = O (—log(y — 1)), and, by (5.17),
6 = 0 —elog(y — 1). The definition of n = n(p) and p = 4e%p imply that

(5.33) n(p) = 2(7\/71) arctan — (4e 7p) (12 = (7\/_2) (arctang + o(1)).

By Lemma 6.9, k = 1(y—1) log(y—1)~"(1+0(1)), and so n(p)k = 12,/ arctan(%) log(y—

1)71(1 + o(1)). Since, by Theorem 4.1, cak — 0, we have for v — 1+ that

0(n(p) —n(p) +2KV(y) +6) = cok 5 () = n(p) +V(7) + 7 —elog(y — 1)

2n(p)k )=
0(1)O (—log(y — 1))
2vyarctan(£)(1 + o(1)) log(y — 1)~

— 0.

O

Now, we construct a sequence of approximate solutions, U"(x,t), using Glimm’s
method, as recalled in subsection 1.1. We consider in detail the solutions of Rie-
mann problems that make up U". Denote (o",7") = (6 o U", 50 U"), (2", wh) =
(zo UM w o UM). Assume that U"(z,t) can be constructed in the interval [0,nh],
satisfying (5.10). Then 7" (-, (n — 1)h) takes a value in [5(5),7(p)]. Furthermore,
since (2", w")(z,t) assumes values in (2 for all (z,t) € R x [0, (n — 1)A], it follows
from Remark 5 that (¢”(-,(n — 1)h),n"(-, (n — 1)h)) takes a value in Q.. Denote

this value by (o¢,n.). If
(5.34) Varn[(o" (-, ), 1" (1)) < V(7), t€0,(n—1)h],

then, upon using the fact that Bakhvalov’s condition As holds in (z,w) plane, we
obtain

(5.35) (@"(,1),n" (1)) € {(o,m) = o —ac| + [0 — 7| <2V (M)},
t € [(n — 1)h,nh],

(5.36) (o"(-,1),n" (1)) € Bo = {(oym) : lo — 0| + [n = mc| <4V (1)},

t € [nh, (n + 1)h].
By the same argument, using notation in Section 3, we derive the inclusion
(5.37) R[R[Bo]] C By ={(0,n) : |o —0oc| +[n—ne| <16V (7)}.
We have By C R[16V(y)] and so B; C W, provided that v is close to 1, by
Remark 5.4. Theorem 4.1 ensures that map T(0,6) takes shock curves in B; onto
shock curves satisfying Bakhvalov’s conditions A; — A4. It is straightforward to
see that B} = T(0,6)[B;], i = 0,1 are rectangles in (2’,w') plane and moreover, by
(5.37), R[R[B}]] C By.

Let F[(U,U,)] be the functional given by Definition 3.1, using (2',w") instead of
(z,w) as the pair of Riemann invariants. Approximate solutions U"(-,vh + 0) are
piecewise constant when v = 0,...,n. Assume, as we may, that Az =1 = 275, for
some k; € N. define

(5.38) F[UM(t) := Z F[(U((j=1)I,vh+0)U"(jl,vh+0))], t € [vh, (v+1)h).

1<j<2k
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We have the following corollary of Lemma 3.2.

Corollary 5.1.
(5.39) F[U"](nh) < F[U"((n — 1)h) <--- <F[U"](0).
Moreover, for t € [0, (n+ 1)h), we have

1
(540)  SDVal(z",w™)(0)] < FU)(®) < Varn[(z",w'™)(2, )],
where DVn stands for the decreasing variation over one period.

Proof. The first inequality in (5.1) follows from Lemma 3.2, recalling the construc-
tion of Glimm’s approximate solution, using, in case —1/2 < a,, < 0,

FU™(j — 1), (n— ))h + 0)U"(jI, (n — 1)h + 0))]
= F[(U™((j — 1)l,nh = 0)U((j + an)l,nh — 0))]
+ F[(U™((j + an)l,nh — 0)U"(jl,nh — 0))],

FIU"((G = 1+ an)l,nh — 0)U"((j - 1)I,nh — 0))]
+ F[U"((j — DI, nh = 0)U"((j + an)l, nh — 0))]
> F[(UM(j = 1+ an)l,nh = 0)U™((j + an)l,nh — 0)]

and periodicity. In case 0 < a,, < 1/2, we proceed similarly, only replacing j — 1 by
Jj in both relations above. The subsequent inequalities in (5.39) are reiterations of
the first one with time steps (n — k)h and (n — k — 1)k instead of nh and (n — 1)h,
for k=1,...,n—1. As for inequalities (5.40), the first one holds because 2’ and w'
decrease in shocks and increase in rarefaction waves, and also because, by property
Ao, we have |[w(d1)]| < |[2(81)]] and |[2(d2)]]| < |[w(d2)]|, where §1(d2) is a shock of
the first(second) family. The last inequality in (5.40) is then obvious. O

We can use the non-increasing property of the functional F to bound the total
variation per period of the approximate solutions.

Lemma 5.5. For any t, such that 0 <t < (n+ 1)h
(5.41) Varm [(z'h,w'h)] (t) < 4 Vary [(z'h,w'h)] 0).

Proof. Let 0 < t < (n + 1)h. Since the approximate solutions are periodic with
period 1, we have

(5.42) Varn [(z'h,w'h)(-,t)] < 2DV [(z'h,w"‘)(.,t)] .
Using (5.39), (5.40) and inequality Varn[(z’h,w'h)](O) < Varn [(24, wg)] we get

Varn [(z'h,w"‘)] () <AF[UM (1) < 4F [U*] (0)

IN

4 Vary [(z'h,w'h)] (0) < 4 Vary [(z4, wp)] -

|
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Since (2", w") are constant multiples of (z',w') it also holds that for ¢ specified
in the Lemma,

Varg (2", w"™)] (¢) < 4 Vara [(25, wf)].

The values of U” lie in R[16V (v)]. Lemma 5.4 can be used, with K = 16, to write
that for all v sufficiently small,

Varn [(on,70)] () < 4C* Varn [(00,70)] -
Finally, by Lemma 5.3 we obtain that
Vary [(0n,74)] (t) < 4C?Co Varu [(00, po)]-
We thus impose the following restriction on Varm [(o0, po)]:
(5.43) Varn [(d0, po)] < (4C%Co) ™'V (7).

We have then obtained that, under the above restriction on total variation of initial
data,

(5.44) Vary [(",n")] (t) < V(y), t€[0, (n+ 1)h).

Remark 5.5. As a consequence of (5.44) we obtain that Varn [U"] (t) < C(7, Qa),
for t € [0, (n + 1)h) and some C > 0.

The following lemma is proved following the same procedures as in [8] but using
also periodicity (cf. [7]).

Lemma 5.6. There ezists C1 > 0 depending on v and Q, such that for all 0 < s <
t < (n+ 1)h we have

(5.45) /1 |U"(z,t) — U™(x,s)|dz < Ci(|t — s| + h).

In particular, there is a T' > 0 and hg > 0, both independent of h,n, such that
U"(-,t) verifies condition (5.10), i.e.,

! p
(5.46) / (U (2, 1) ~ Uo(a)) da| < 2,
0

for0 < h < hg and 0 <t < min(T", (n + 1)h).

Now, let us take T' > 0 satisfying hg < T < T". Tterating the above argument we
obtain a sequence of approximate solutions U”(z,t) with h < hg and ¢ € [0, T") such
that U (z,t) € Q, and (5.44) holds. Applying results of [8] we conclude that there is
a sequence hy, — 0 and a vector function U such that U — U in C([0,T7; L}, .(R))?
and a.e. z for each ¢ in [0,7]. Moreover there is a set O C [[;"(—1/2,1/2), with
measure 1, such that, for any sampling sequence {ay, } from ©g, U is a weak entropy

solution of (1.1) in Rx [0,7"). Suppose that for some integer N there is a sequence
hi, a set On C [[5°(—~1/2,1/2) of measure 1, such that U"* is defined on time

interval [0, NT], satisfies (5.44) and (5.46) for ¢t € [0, NT] and Ul — UN as
k — +o0 in C([0,NT]; L}, .(R))? and a.e.z for each ¢ in [0, NT], which is a weak

loc

entropy solution of (1.1) in Rx [0, (N —1)T+T"), for all sampling sequences {a,} in
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On. Since UV is a weak solution we have fol UN(z,NT)dz = fol Uo(z) dz. Thus,
for NT <t< (N-1)T+T,

/1 Uhn (z,t) —Up(z)dzx| <
0

1 -
/ Uh»(z,t) — UM (2, NT) dz
0
1

+ / Uhn (2, NT) — Uy(z) dx

0
< Cy(t = NT + hy) + |[UP (-, NT) = UN (-, NT)||p10.1)-

The right hand side is smaller than % when hy, is sufficiently small because of the way
we have chosen T' and fact that ||[U" (-, NT) — UN (-, NT)||p10,1) = 0, as k — .
For these hy, the sequence U"* (z, t) can be defined on the interval [0, (N +1)T7] while
keeping estimates (5.44) and (5.46). Extracting a convergent subsequence we obtain
a vector function UN*! which coincide with UY when ¢ € [0, NT] and which is a
weak entropy solution of (1.1) for all sampling sequences {a,} in ©(ny1) C O,
of measure 1. This process can be reiterated and, consequently, a weak entropy
solution defined by U(z,t) = UN(z,t), for t € [0, NT], exists for all times ¢ > 0.
Finally, U satisfies bounds (5.44) and (5.46) and takes values in the bonded set
Q,. O

6. PROOF OF THEOREM 4.1

We give the proof in the sequence of lemmas. We start by investigating the
conditions under which property Az is preserved by the map T'(a, 6).

Lemma 6.1 (DiPerna, [5], p.249). A, is equivalent to the requirement that

6L1 6R1 6L2 6R2
6—1776—7'] -1, 1<8—’I776—17<OO for n # no.

Lemma 6.2 (DiPerna, [5], p.249). The image of the shock curve o = R;(n;00,10)
or o = L;i(n; 00,M0), ¢ = 1,2 under T(a,0) satisfies Ay if

a,,+(—1)"}‘_

By the following lemma we estimate o, for the shocks in W(a, k).

1
(6.1) lo —al < % log{

Lemma 6.3. There ezists an absolute constant C > 0, such that

= (k1)
o (i)™

(6.2)

OR;
- k-1

on

OL;
? an

if o = Ri(n; 00,m0) and o = L;(n; 09,m0) lie in W (a, k).

Proof. The estimate is straightforward. We consider only the curve o = La(n; 60,m0),
for the proof is similar for all other cases. From the discussion of section 2 it follows
that it is possible to choose the reference frame (, z) in such a way that vgp = 0,
where g = o (vp). In the computation to follow we are going to use some shorthand
notations;

!

(6.3) dp=p—po>0,dp=p(p) —plpo), ' =0 (p), o =1'(po)-
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Then, by the parametrization of the Hugoniot curve (2.7), and formula for o, (2.5),
we have:

(6.4)
do 2 dv_ & (p + poc?)(po + pc?)
dnp 2 —v2dy 2 —o? dpdp
{ ('dp + 0p)(p + poc®) (Po + pc?) — 3pdp(p' (po + pc*) + (P + poc?)) } )
(p + poc?)? (po + pc?)? !
_ & @+ poc*)(po + pc?)
o2 -2 opdp

Pnop

@' + 32) (P + poc®) (po + pc?) — 6p(p' (po + pc?) + *(p + poc?))
X
(p + poc?)?(po + pc?)?

3

_ op 2 2
= a2 5p(P+PoC (Do + pc?)

py(Po + poc?)
(P + poc?)?(po + pc?)?

5
x {p’(po + pc?) + 6_1;(1) + P002)}

3

\/g—z (p + poc?)(po + pc?) @2 j— )

(p+ pc® + po + poc?)(Po + poc?)
(p + poc)?(po + pc?)?

C

= 2 — 2

<1 c P (p+ p +po + poc®) Po + poc®) (p + pc?)
— 2¢2 — 2 h (p+poc2)3/2(p0 +p02)3/2

<1 1 P_'szpO(p%J'_l) (pc2+ 1)
“21-%\m 31253 ;

2
where in the first inequality we substituted p, = gj&% and used the fact 0 <

6” < p In the second inequality we used py < , and in the last the fact that

p + pc2 > po + poc?, all true since p > pg. We remmd that pg refers to the state on
the right and o = La(n, 09, no) is the shock curve of the second family. Now, for all
states (p,v) in W (a, k) we have

VP (p) <c, or bz <7,

|_| = 1+ —z’ orl-— (E) e’

Hence, from (6.4), after some calculations we arrive at

- (v+1)/2
< 046 p p 046 |:ﬁ:| .
PP} Po
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Given 19, any 7, such that ¢ = La(n,00,m0) lies in W(a, k), can be written as
1 = €no, where 1 < e < ¥ Also, from the formula (2.6) and the bound (4.1) we
find

(6.5) p=

E‘can - 177 oy Y- 177 < T
K 2,/7 Vo 4’

Taking this into account and from the fact that tanen < €2 tann, for 0 <7 < en <
m/4, we conclude that

< CyefertD/(=1))

)

_ [tan Z=teno (v+1)/(v=1)
o < Cac [L]

for some absolute constant Cs. Since o, > 0, as can be shown from hypothesis A,
we conclude the proof. a

Let C(7) = Ce” and
_ 274
1 C@®) (%) +1
(6.6) cy = ﬁlog ST i
olGa) (ki) T

Combining Lemma 6.2 and 6.3 we have

Lemma 6.4. The image under the map T(a,0) of the shock curve o = R;(n;00,10)
or o = Li(n;00,m0), i = 1,2 in W(a, k) N {n < 2} satisfies As.

Proof. By using Lemma 6.3 we have

1 ot DT 1 C(ki})z% +1
20 op—(=1)" = 26 c (ki)ﬁ,’Ti

-1
Since W (a, k) defined as |0 — a| < kn we conclude upon the use of Lemma 6.2. O

As was noted before, the shock curves do not satisfy DiPerna’s condition By when
considered in the plane of the classical Riemann invariants. In fact the inverse of
By holds.

Lemma 6.5. Let z,w be the classical Riemann invariants. Then

i. Let (29,10) € Ry(20,wo). If 2 = La(w; 20,w0), 2 = La(w; 29,10) and A = Aw
then AZ < Az,

ii. Let (20,1130) S LQ(Z(],’IU()). IfZ = Rl(w;zo,wo), zZ= Rl(’lf);ﬁo,’ﬁ)o) and AZ = Az
then Aw < Aw.

Proof. We prove only part (i). The proof of (i7) is similar. Suppose that the
observer system moves with such a speed that oo = 29 + wg = 0. Consider two Lo
curves originating from (zg,wp) and (2o, o), as in part (i.) of the lemma (Figure
2). By Lemma 2.6 shock curves are identical up to translations along o-axis. Thus,
the proof will be completed once it is shown that Az decreases in 79, with Aw
being fixed. To formalize the argument, let us change 7o for n and choose €(n) > 0
such that

V2

6+\/§6=Aw.
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o o = La(no + ¢€,0,m0)
L2(ﬁ501 ﬁO)

no+€ o n
Lz(f]a 607ﬁ0)
A2

(Ao, 60)

FIGURE 2
Then, we have to show that
d d L ;0,m) —
(6.8) dp, = dLtelm—e
dn dn V2

Using the condition (6.7) we can write (6.8) as

6Tle(n + €0, 77) + aﬂoLQ(n +¢0, 770)

< 0.
1+ 0,L2(n+€0,n)

By Lemma 2.2 0, La(n+¢€;0,1) > 0, and the last inequality is equivalent to 0, La(n+
€0,n) + Opy La(n + €;0,m0) < 0. The parametrization of a shock in (p, p) plane is
given in Lemma, 2.7. Using formulae (2.5) we can write L2(n+¢€;0,n) = o ov(p(n+
€), p(n)). Consequently,

) _ doov dp
OyLa(n +0,m) = — 6p( p(n+¢€),p(n ))d (n+e€),
) _ do Ov dp
OnLaln+60,m) = G52 ol + €).p(n) G0,
where ‘fi—: = c2 s > 0, and d” = ”% Note that La(n1;0,72) = La(n2;0,m1)

for any 11, n2. We conclude that OnoLa(n+€;,0,n) = 0yLa(n;0,n+€) and 9,L» was
computed in the previous lemma. We set p = p(n+¢), po = p(n) and use shorthand
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notations introduced in the last lemma.

OnLa(n+€0,m) + OpL2(n;0,n+€)

)
=z{mm+m%+£@+méﬂ%m+mm+mﬂ

PM@+Wﬂ+%%+mﬂ%mm+mm

3 1
P = ‘ A % > 0.
¢ —v? 0pdp (p + poc?)?/2(po + pc?)3/2
Substituting the expressions for p, derived from (2.5) and setting P; = PM
we have
OnLo(n+€0,m) + 9pL2(n;0,m+€)
ép 1
= P [p’(po +pc®) + = (p+ 0002)]
op v
1

1)
- P [PG(P + poc?) + 5—1;@0 + PCQ)]

VP
1 dp
= Pi(p+ poc® [—— - p']
775~ Vi
2 1 dp -
(6.9) — Pipo+p?) |—== — V7P|
V' Po op
Then, from the fact that p + poc® < po + pc?, since & < ¢ and g—’; —\/p'Phy >

dp
%-#Q>O,when1§'y§2wehave

OpLa(n+€0,m) + 0OyLa(n;0,m+¢)

< P+ ) - Vi) | Vi - 2] <o

|

Now we are ready to derive the sufficient condition on the shock curves to make
their images under 7T'(a, 6) satisfy By. Define maps T}, T> : R2 — R2.
Ti(a,0) : (z,w)—= (Z,w), 2'=1-—exp20(a/2-2),
Ts(a,0) : (z,w)— (z,w"), w' =-1+exp20(w—a/2).
Obviously, T'(a,8) = Ty o T>. Moreover we have the simple lemma.

Lemma 6.6 (see [5], Lemma 3.14). T'(a,8) maps shocks curves in some region U
onto shock curves satisfying By in the image T [U] iff T1(a,0) and T»(a,0) map
shock curves in U onto shock curves satisfying By.1 and B4.2 in Ty [U] and T» [U],
respectively.

Lemma 6.7. Suppose that

IN

d
(6.10) ‘d—nlog(Lz(nJre;O,n)—e) 0, Vn,n+e€ (n,n), >0,

IN

d
(6.11) ‘d—nlog(Rl(n+e;0,n)+e) 0, VYn,m+e€ (n,n), e>0,
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FIiGURE 3

for some m1 < n2. Then, (6.10) implies that the images under the map Ty of the
shock curves in R x {m < n < n2} satisfy B4.1, and (6.11) implies that the images
under the map Ty of the shock curves in R x {m < n < n2} satisfy By.2.

Proof. We proof only the implication following from (6.10); the proof of another
part of the lemma is similar. Throughout the proof we refer to Figure 3. As before
we can assume that o9 = 29 + wp = 0. Fix Aw > 0 and 6 > 0. Let us, as in
hypothesis By.1, consider points

0: (o0,70), 1z (La(no + €1500,70), 70 + €1),
Aw Aw
2: = +—7 3: A7A :R +67 ) ) +6a
(\/5 Mo \/5) (60,%0) = (R1(no + d500,M0),70 + 0)
Aw +Aw)
\/57770 \/§ )
. R R Aw
6: (L2(770+€2;0,7)0+€2):770+€2): 7: (05n0+6+ ﬁ):

4: (Ly(njo + €2560,70), %0 +€2),  5: (6o +

8: (05n0+6)7 J:_&OJ

where €;, 7 = 1,2 are determined by Aw. Since T} does not depend on w and
4 2" > 0 we have to verify that 2§ — 2 > 2] — 2}, where 2] stands for 2’ coordinate
of the image under T} of point i. This is equivalent to each of the following

e—0(os—ms) _ o—0(ca—m4) > e—0(o2—m2) _ 6—9(01—711)7

efo [6—9(07—717) _ 6_9(‘76_"6)] > e f(o2—m2) _ 6—9(01—771)’

e~ 0(=m0) _ g—0(S1—mo)

v

(6.12) €7 [6*9(*71076) _ 676(52777075)]
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Here

S1 = Ly(no+e€1,m) — e >0,

Sy = La(no+0d+e€2,m +0)— € > La(no + 06+ €1,m0 + ) —e1 >0,
where we used the fact that es > €;, which follows from Lemma 6.5, and star-like

property of the curve Lo. The inequality (6.12) will hold provided

d on 0(n—L2(n+€0,m)+¢€)
i0, >
. [e e ] 0,

for ;1 < <n+ e <n9. The condition (6.10) will suffice. O
By the next lemma we investigate the validity of conditions (6.10) and (6.11).
Lemma 6.8. There is a constant ¢, (7, k,d) such that (6.10) and (6.11) holds for

shocks in W (a, k)N {% < n}.

Proof. Inequality (6.11) is verified in a similar way as (6.10), which we prove below.
Equality (6.9) implies
dLy(n+€0,m) | _
dn B

1 1 dp -

As in previous lemma we have p + poc2 < po+ pc?, py < g—z < p' and g—f}’ > /p'ph-
This allows us to write
‘d[& (n+¢€,0,n)

I
o ‘spl<po+pc2wz7(1+,/§)<2P1(po+pc N
0

Reminding that

1 1 5p(po + poc?)(p + pc?)
1= (v/c)2 /3pdp (p + poc®)3/%(po + poc®)3/?’

and using Lemma 2.1 we can estimate

/
2P, (po + pc?)o\/p' /P_I Co® / \/— (po + poc?)(p + pc?) p__
o

(p + poc®)32(po + pc2)1/2

P

It is convenient to write the last estimates in terms of the ratio p/py. We have

Vi (Vi ——IWJ,I[

dLs(n + €0,1)

<
dn -
po pc2
r_
< Po 1) r
= 3/2 I
+1)
We set
v—1 p tantn [ 71
n+e=m, n 2\/,7777 g % [tann] 2
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In the above notation we estimate

dLy(n+€0.m)| _ o 71909 = D202 —1) o
dn S 86 ( ) 329
p
(g7 - 1) (g o7+ 1)

< C'segg%(g(’y_l)/2 -1)= Cge” [tanTn] o (ta,nTn - 1)

tann tann

(6.13) < Cge’ri1

= (tanrn — 1) < CgegT‘YZT’yl(T —1).

tann

The last inequality is true since 0 < n < 7n < m/4. Consider

2
(614) LQ(n_i_e;O,n):O'OU:lOgC‘*_UZ_
cC— C
_2p Spdp _ 2 [polp/po = 1)(p/po — 1)
¢V @+pcA)o+p?) e\ pGhs +1)(25 +1)

Do -1 -1)
po \| g(gtan® Tn+1)( “Ltan?n + 1)

2tann Do (g—1)(g7—-1)
g(gtan® tn +1)(g~1tan®n + 1)

Then,

1
ELz(n +¢60,m) —(1—1)

> 2tann\/ (9-1(g"—1) —(r—1)
9(

KN gtan® tn + 1)(g~'tan®n + 1)
1 —1)(g7" -1
2(7 ) 2(g )(g )2 Cr—1)
k7Y \ g(gtan®7tn + 1)(g~tan®n + 1)

(9—-1)°
2 (= D\/g(gtan2 m+1)(g~'tan®n +1) (r=1)

_ (v=-Dg-1) —(r=1)
Vg(gtan? Tn + 1)(g~tan®n + 1)
> 2 (tta;nrnn — 1) —(r—1)
~ Vg(gtan® tn +1)(g 1tan®n + 1)
2
2(r=1) <\/g(gtan2 ™+ 1)(g~'tan’n + 1) B 1) '

Let us write

T = z(%l), 1< 2< 2,
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for some zp to be chosen later. From (4.1) and formula tann = ‘/—cp—' we have

_4 8
tann < 1 — do. Also, since g? = [R2I2] 71 < 75-T = 28 < 2§ it follows

(gtan®’mn + 1)(tan’n 4+ g) = g*tan®7n + g(1 +tan’n) +tan’n
P +29+1—-08,<3¢>+1-4
328 +1 -8 <4,

IAIA

when 2 close to 1. In this way we obtain

(6.15) %L2(77 +€0,m) — (1 — 1) > Ci3(20) (7 — 1), 1<r<2Y,
Now

(6.16) La(n+€0,m) —e=n (%Lz(n +¢€0,n) — (71— 1)) > Cisn(t — 1) = Cize.

Note that shocks are starlike in (o, 1) plane. It implies that for fixed n La(n +
€;0,7n)/e — 1 is nondecreasing in €, which in turn implies that (6.16) holds for any
€ >0 (7 > 1). Combining (6.13) and (6.16) we obtain

27

=771
< Chr4€° .
n

d
(6.17) ‘d_n log (La(n + €0,1) — €)

= 24
Take ¢; = C14€°77-1, 7 = £, a

The proof of Theorem 4.1 will be complete upon using Lemma 6.4 and Lemma, 6.8
if we show that there is k = k, & such that properties (4.3) hold. Since we know the
explicit dependence of ¢z and ¢; on k, 7, , this result will follow by straightforward
but technical computation given in the next lemma.

Lemma 6.9. There are + > 0 and 8 > 0 such that if k = z(y)""! — 1, where
2(y)=(y=1)7" and G = 6 + Blog(y — 1)1, then (4.3) holds. Moreover, ¢, B can
be chosen to satisfy /1 < 2arctan .

Proof. In the proof we denote by C; > 0,4 = 1..11 some absolute constants. We
have z(7)7*17—> 1 and 2(y) — oo. To simplify the notations let us write z for z(y)

and C = Cie’. Then

1 C20H) 4 (1— (11 — 1))
I —, )
202771 = 1) 7 o241 — (1 — (201 — 1))%50
1 2(1— (-1 —1))%1
618 — log |1+ (1-(= ) i
2(71 -1) Cz2(r+1) (1 — (1= (271 =1))%1 C*lz*“*z)

Consider function

(1- (7 =17 = (1—(z7—1—1))731?‘”Jff12<w+1>

271
(1— (1~ 1))21—1—1_1) S 2(r+1)
6—1+0(z"’—1—1)) %Z(WU

27—l - 271
o T2 O T 1) (41

(6.19) (
(
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In the above computation we used the fact that (1 — x)% = ¢ 110(@), Also, since

27711 (771 —1)2

0" — 1) — 2vy+1) < Cy — 2(y+1) < Ca(y —1)log” 2(7) = 0,

then

Painks

PRt y+1 _
(6.20) Cae 71 20HD < (1 - (2(7)7! = 1))23_1 < Cye 204D Ly g,

The limit holds since % — 1. (6.20) and the fact that C' — oo imply that

the argument of the log in (6.18) is close to 1. We obtain

2771l

o= o t2(r41) 1 et
(6.21) Cs -1 -1 (2041 < ea(k) < Co 11 (Cz20+1)
Finally, since % — 1, we get
1 1 1 1
> C >C
2 = M (v = Dlogz Cz50+D =~ (4 = 1)log z Cz10
1 1
.22 > _—

(6.22) = C77—10z11

> 08—(’7— l)l—ﬂ—llb — 400,
if
(6.23) 1—B—11.>0.

(6.22) and (6.17) can be used to derive
Z_l < CyC2(y = 1)21% < Cho(y — 1)128-15¢ 4 @,
2
if
(6.24) 1-28— 15> 0.
The right side of (6.21) reads

c2(k)k < Ciy — 0.

1
Cz2(r+1)
There are « > 0, 8 > 0 which solve (6.23), (6.24) and satisfy /1 < 2arctan . O
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