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Abstract. — In [2] Alves Bonatti and Viana proved that SRB measures exist for partially
hyperbolic diffeomorphisms with mostly expanding center-unstable direction. The main tool
used there is the existence of Gibbs cu-states. In this paper we prove many properties of such
states, especially with respect to their relationship with the SRB measures. In particular, we
prove that the Gibbs cu-states vary continuously with the diffeomorphism. As a consequence we
obtain existence of finitely many SRB measures and statistical stability for many open classes
of diffeomorphisms with dominated splitting.

1. Introduction

A central topic in dynamical systems is the study of statistical properties of the system.

In this direction, we can consider the average along the orbits and then compare it with

the average of the system in the ambient space. Given any ergodic invariant measure for

the system it is well-known that for almost every point with respect to this measure the

temporal and spatial averages coincide. In many cases, the invariant measure is a singular

measure, so it may be physically very difficult to find a point satisfying the property above.

An SRB measure is an invariant measure for the system for which the time average coincides

with the spatial average in a positive Lebesgue measure subset of the ambient space.

A program towards a global theory of diffeomorphisms has been proposed a few years ago

by Palis [14]. The core of his conjecture is that every dynamical system can be approximated

by one having only finitely many attractors, all of which have finitely many SRB measures

which are robust with respect to small perturbations of the system.

Statistical stability tells us much about how the system varies under small deterministic

perturbations.
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The question of the existence of SRB measures has an affirmative answer in the setting of

uniformly hyperbolic systems [23, 7, 6, 21], as well as of systems with certain weak forms

of hyperbolicity [4, 2].

Uniformly expanding smooth maps are well-known to be statistically stable, as are Axiom

A diffeomorphisms [22] restricted to the basin of their attractors. On the other hand, [1,

3] proved statistical stability for a large class of transformations exhibiting non-uniformly

expanding behavior. Statistical stability for a certain open class of diffeomorphisms having

partially hyperbolic attractors whose central direction is mostly contracting was proved

in [10, 9] .

In [2] it was proved that SRB measures exist for diffeomorphisms having dominated split-

ting with mostly expanding center-unstable direction and other technical conditions. The

main tool used there, is the existence of Gibbs cu-states. Gibbs cu-states are the non-uniform

version of the Gibbs u-states introduced by Pesin and Sinai [16]. Several other properties of

Gibbs u-states are proved in [5].

In this paper we extend this properties to Gibbs cu-states, especially with respect to their

relationship with SRB measures.

1.1. Statement of results. — Let us consider diffeomorphisms f : M → M defined over

a compact Riemannian boundaryless manifold M . We denote by ‖ · ‖ the induced norm on

TM and by m a fixed normalized Riemannian volume form on M and we call it the Lebesgue

measure on M .

The time average of a continuous function ϕ : M → R along the orbit of x ∈ M is:

ϕ̃(x) = lim
n→∞

1

n

n−1
∑

j=0

ϕ(f j(x)).

If µ is an invariant measure, the basin of µ is the set

B(µ) = {x ∈ M : ϕ̃(x) =

∫

M

ϕdµ, ∀ϕ ∈ C(M ; R)}.

An invariant measure µ is an SRB measure or physical measure if B(µ) has positive Lebesgue

measure.

Let f : M → M be a C2-diffeomorphism. Let U ⊆ M be a neighborhood such that

f(U) ⊆ U and Λ = ∩n≥1f
n(U) is an attractor.

The attractor Λ has a dominated splitting if there is a continuous Df -invariant decom-

position TΛM = Ecu ⊕ Ecs of the tangent bundle of M over Λ and constants C ≥ 0 and

0 < λ < 1 satisfying

‖Dfn|Ecs
x ‖‖(Df−n|Ecu

fn(x))‖ ≤ Cλn,
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for every x ∈ Λ, and for every n ≥ 1. The subbundle Ecs is uniformly contracting if

‖Dfn|Ecs
x ‖ ≤ Cλn,

for every x ∈ Λ and n ≥ 1. In this case, we denote Ecs = Es and we say that the attractor

Λ is partially hyperbolic.

The diffeomorphism f has non-uniform expansion along the center-unstable direction if

there exists a constant c0 > 0 such that

(1) lim sup
n→∞

1

n

n−1
∑

j=0

log ‖Df−1|Ecu
fj(x)‖ ≤ −c0 < 0.

for all x in a full Lebesgue measure subset of U . Under these conditions Alves, Bonatti and

Viana [2] proved:

Theorem 1.1. — If f ∈ Diff2(M) has an attractor Λ which is partially hyperbolic with

non-uniformly expansion along the center-unstable direction, then there exist finitely many

ergodic SRB measures and the union of their basins covers a full Lebesgue measure subset of

the basin of Λ.

The main tool used in the proof of Theorem 1.1 is the construction of Gibbs cu-states.

Denote by u = dim Ecu and s = dim Ecs.

Definition 1. — An invariant measure µ supported in Λ is a Gibbs cu-state if the u larger

Lyapunov exponents are positive µ-almost everywhere and the conditional measures of µ along

the corresponding local strong-unstable manifolds are almost everywhere absolutely continu-

ous with respect to Lebesgue measure on these manifolds.

Theorem 1.1 is a direct consequence of the following result also proved in [2] and the

uniformly contracting condition on the center-stable direction.

Theorem 1.2. — If f ∈ Diff2(M) has an attractor Λ which admits a dominated splitting

with non-uniform expansion along the center-unstable direction, then there exist ergodic Gibbs

cu-states supported on Λ.

Alves, Bonatti and Viana give a constructive proof of the existence of Gibbs cu-states (see

[2] or Subsection 3.1 for more details).

We first study the Gibbs cu-state in the setting of diffeomorphisms with dominated split-

ting and obtain a general description of such measures.

A cylinder C is a diffeomorphic image of Bu ×Bs where Bu and Bs are balls in R
u and R

s

respectively and ”disk” D is a diffeomorphic image of Bu . We say that a C1-disk D crosses
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C if it is contained in C and is a graph over Bu. We also denote B(x, δ) the ball around

x ∈ M with radius δ > 0.

Theorem A. — Let f ∈ Diff2(M) exhibit an attractor with dominated splitting and let µ

be a Gibbs cu-state for f . Then

1. for µ-almost every point x and every δ > 0 small enough, there exists a cylinder con-

taining x, C(x, δ) ⊆ B(x, δ), and a family K(x, δ) of disjoint unstable disks crossing the

cylinder C(x, δ) such that their union K(x, δ) has positive µ-measure;

2. denoting by ρz the density of the conditional measure µD along the disk D = W u
loc(z)

through z, then, for µ-almost every z ∈ supp µ and for every x, y ∈ D, we have

(2)
ρz(x)

ρz(y)
=

∞
∏

k=0

det(Df−1|Ecu
f−k(x)

)

det(Df−1|Ecu
f−k(y)

)
;

the densities are Hölder continuous functions bounded away from zero and infinity;

3. the support of µ contains global unstable manifolds whose union has full µ-measure;

4. every ergodic component of µ is a Gibbs cu-state.

The main tools used in the proof are Pesin’s theory and distortion properties given by the

dominated splitting.

If we add the hypothesis of non-uniform expansion along the center unstable direction,

our main result is Theorem C below. But an essential ingredient in its proof is the following

fact: the construction of Gibbs cu-states done in [2] provides all the possible Gibbs cu-states.

We denote by G(f) the class of Gibbs cu-states for f constructed in Theorem 1.2.

Theorem B. — If f ∈ Diff2(M) has a dominated splitting which is non-uniformly expand-

ing along the Ecu direction, then every ergodic Gibbs cu-state supported in Λ is in G(f).

Another ingredient in the proof of Theorem C are the uniform bounds obtained from [2]

and the properties of Gibbs cu-states given by Theorem A.

Theorem C. — Consider the set of pairs (f, µ) where f ∈ Diff2(M) has an attractor with

dominated splitting and non-uniform expansion along the center-unstable direction with uni-

form c0 and µ is a Gibbs cu-state for f . Then this set is closed.

As a corollary of Theorem C we obtain the following relationship between SRB measures

and Gibbs cu-states:

Corollary D. — If f ∈ Diff2(M) has an attractor with dominated splitting which is non-

uniformly expanding along the Ecu direction, then every ergodic SRB measure is a Gibbs

cu-state.
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Another consequence of Theorem C is related to the statistical stability of partially hy-

perbolic diffeomorphisms.

Definition 2. — We say that f0 ∈ Diffr(M) is Cr-statistically stable if for every sequence

fn ∈ Diffr(M) converging to f0 in the Cr-topology, and for every sequence µn of SRB mea-

sures for fn, the weak* accumulation measures of (µn)n are in the convex hull of finitely

many SRB measures for f0.

Corollary E. — If f ∈ Diff2(M) has an attractor Λ which is partially hyperbolic and non-

uniformly expanding along the center-unstable direction with c0 uniform in a neighborhood

of f , then f is Ck-statistically stable, k ≥ 2.

An interesting consequence of Theorem C is the following

Theorem F. — Let f ∈ Diff2(M) have an attractor Λ exhibiting a dominated splitting with

non-uniform expansion along the center-unstable direction. Let us suppose that f satisfies

(3) lim sup
n→+∞

1

n
‖Dfn|Ecs

x ‖ < 0

for each disk D contained in every unstable local manifold and for a positive Lebesgue measure

subset of points x ∈ D. Then f has finitely many SRB measures and the union of their

basins covers a full Lebesgue measure subset of the basin of Λ. In addition, if non-uniform

expansion along the central-unstable direction holds in a Ck-neighborhood of f with uniform

c0 and every diffeomorphism in such neighborhood satisfies (3) , then f is Ck-statistically

stable, k ≥ 2.

This paper is organized as follows. In Section 2 we study the Gibbs cu-states using only the

hypothesis of dominated splitting on the attractor and we prove Theorem A. In Section 3

we add the hypothesis of non-uniform expansion along the center-unstable direction. We

first outline the proof of Theorem 1.2 and then we prove Theorem B and Theorem C.

Finally, Section 4 is dedicated to studying the relationship between Gibbs cu-states and

SRB measures. There we prove Corollary D, Corollary E and Theorem F, and we present

an example of an open class of diffeomorphisms of the torus T
n, n ≥ 4, with dominated

splitting, but not partially hyperbolic, exhibiting non-uniform expansion along the center-

unstable direction, and admitting a unique SRB measure whose basin has full Lebegue

measure in T
n.
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2. Gibbs cu-states

In this section we assume that f : M → M is a C2-diffeomorphism exhibiting an attractor

with dominated splitting and that there is a Gibbs cu-state µ for f supported on Λ. Our

main goal is to prove Theorem A.

2.1. Preliminary results. — We first recall some well know properties for dominated

splitting, Pesin’s theory and conditional measures to be used along this work.

2.1.1. Attractors with dominated splitting. — Let f : M → M be a C2-diffeomorphism. Let

U ⊆ M be a neighborhood such that f(U) ⊆ U and Λ = ∩n≥1f
n(U) is an attractor.

The attractor Λ is a compact set, maximal invariant for f in U . We call the basin of Λ the

set

B(Λ) =
⋃

n>0

f−n(U)

of points whose future orbits accumulate on Λ.

We are assuming the attractor Λ has dominated splitting: there is a continuous Df -

invariant decomposition TΛM = Ecu ⊕Ecs of the tangent bundle of M over Λ and constants

C ≥ 0 and 0 < λ < 1 satisfying

‖Dfn|Ecs
x ‖‖(Df−n|Ecu

fn(x))‖ ≤ Cλn,

for every x ∈ Λ, and for every n ≥ 1.

It follows from the definition that the angles between the subbundles Ecu and Ecs are

uniformly bounded away from zero.

Given 0 < a < 1, we define the center-unstable cone field Ccu
a = (Ccu

a (x))x∈Λ of width a by

(4) Ccu
a (x) = {v1 + v2 ∈ Ecs

x ⊕ Ecu
x : ‖v1‖ ≤ a‖v2‖}.

This cone field is positively invariant under Df . We define the center-stable cone field

Ccs
a = (Ccs

a (x))x∈Λ of width a in a similar way, just reversing the roles of the subbbundles in

(4).

Of course, we may extend continuously the two subbundle to U (it is not necessary for

the extension to preserve the invariance of the splitting under Df) and so extend the cone

fields to the neighborhood U also (Now, the positive invariance of Ccs is preserved). So the

domination property is open in Diff2(M) as consequence of the existence of cone fields. Both

the splitting and the cone fields vary continuously with the diffeomorphism in Diff2(M) .
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Given a disk D we denote by distD the Riemannian metric induced on D by the Rieman-

nian metric on the manifold M . This is the distance ”inside” the disk D. In the same way,

we denote by mD the Lebesgue measure induced by m on the disk D.

An essential ingredient here is the Hölder control of the Jacobian given by the domination.

Lemma 2.1. — There exists ξ > 0 such that, given L > 0 and any C2 disk D ⊆ U

transverse to the center stable direction Ecs, then there exists C1 > 0 such that

x 7→ log | det(Df |Txf
n(D))|

is (C1, ξ)-Hölder on every domain of diameter L inside any fn(D), n ≥ 1.

We refer the reader to the proof in [2], Section 2. We observe that this constant depends

only on the diffeomorphism f .

2.1.2. Pesin’s Theory. — Now we assume that f ∈ Diffr(M), r > 1, has an attractor with

dominated splitting. Let µ be an f -invariant measure supported on Λ.

Oseledets theorem [13, 12] ensures that for µ-almost every point x ∈ Λ there exist unique

Lyapunov exponents and Lyapunov subspaces forming a splitting of TxM , depending mea-

surably of x.

Assume that µ has u = dim Ecu positive Lyapunov exponents and denote by λ(x) the

smallest of them. Then, the direct sum of Lyapunov space associated to these Lyapunov

exponents is equal to Ecu
x . This follows from the domination condition.

In general, the angles between Lyapunov subspaces are not bounded away from zero, but

the angles may decrease at most subexponentialy fast. However, by the domination condition

the angle between Ecu
x and the direct sum of complementary Lyapunov subspaces is bounded

away from zero.

Pesin’s theory [15, 19, 11, 18] ensures that x has a local unstable manifold W u
loc(x) which

is a Cr-embedded disk through x and there exists a constant Cx, depending measurably on

x, such that:

[PT1] W u
loc(x) is tangent to Ecu

x at x;

[PT2] distW u
loc

(f−n(x))(f
−n(x1), f

−n(x2)) ≤ Cxe
−nλ(x)distW u

loc
(x)(x1, x2), for all x1, x2 ∈ W u

loc(x)

and for all n ≥ 1;

[PT3] f−1(W u
loc(x)) ⊆ W u

loc(f
−1(x));

The size of W u
loc(x) also depends measurably on x. From this measurable dependence

follows the existence of hyperbolic blocks (Λn)n∈N [15, 19, 11, 18] . An hyperbolic block

Λn ⊆ Λ is a compact subset of Λ such that:

[HB1] Cx < n and λx > 1/n for every x ∈ Λn

[HB2] Λn ⊆ Λn+1 and f(Λn) ⊆ Λn+1 for all n ∈ N and µ(Λn) → 1 as n → ∞;
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[HB3] The Cr disks W u
loc(x) varies continuously with x ∈ Λn, in particular the size of W u

loc(x)

is bounded away from zero for x ∈ Λn.

Using the properties above we can describe the support of every measure with u Lyapunov

exponents.

Lemma 2.2. — Let µ be a f -invariant measure such that µ-almost every x ∈ Λ has u

positive Lyapunov exponents in the Ecu
x direction. For µ-almost every point x and every

δ > 0 small enough, there exists a cylinder containing x, C(x, δ) ⊆ B(x, δ), and a family

K(x, δ) of disjoint unstable disks crossing the cylinder C(x, δ) such that their union K(x, δ)

has positive µ-measure.

Proof. — Let µ be a f -invariant measure such that µ-almost every x ∈ Λ has u positive

Lyapunov exponents in the Ecu
x direction, for instance a Gibbs cu-state. For such generic

x, there exist an hyperbolic block Λn, such that x ∈ Λn, and a unique C1-embedded disk

W u
loc(x) tangent to Ecu

x at x, such that the diameter of fn(W u
loc(x)) converges exponentially

fast to zero as n → ∞. The C1-disk W u
loc(x) depends in a continuous way on the point x in

Λn. In particular, there exists a uniform lower bound on the size of W u
loc(x) in Λn: there is

δn > 0 such that the pre-image of W u
loc(x) under the exponential map of M at x contains

the graph of a C1 map defined from B(0, δn) ∩ Ecu
x to Ecs

x .

Given any 0 < δ < δn/4 and x ∈ Λn we can define the tubular neighborhood C(x, δ) of

W u
loc(x) as the image under the exponential map of M at y of all the vectors of norm less

than δ > 0 in the orthogonal complement of Ecu
y in TyM , for all y ∈ W u

loc(x). If δ > 0 is

small enough then this neighborhood C(x, δ) is a cylinder and it comes equipped with the

canonical projection π onto W u
loc(x) which is a C1 map. We denote by K(x, δ) the family of

local strong-unstable manifolds at points of Λn that cross C(x, δ) and by K(x, δ) the union

of the disks in the family K(x, δ).

There exist y1, .., yk ∈ Λn such that Λn ⊆ ∪k
j=1C(yj, δ), because Λn is compact. We may

suppose that each of these cylinders has positive µ-measure, and we obtain a covering (µ

mod 0) of Λn. As a consequence, for all j = 1, .., k we have µ(Λn ∩ C(yj, δ)) > 0. On the

other hand, for each z ∈ Λn∩C(yj, δ), we have that W u
δn

(z) crosses C(yj, δ), because δ < δn/4.

Then, for all j = 1, .., k,

µ(K(yj, δ)) > µ(Λn ∩ C(yj, δ)) > 0.

We consider the set of x ∈ supp µ such that x ∈ Λn for some n ≥ 1. This set has full

µ-measure. For δ > 0, there exists y ∈ Λn such that x ∈ C(y, δ). Since x is in supp µ, C(y, δ)

must have positive µ measure. It is clear that δ can be chosen arbitrary small. To obtain

the statement, we write C(x, δ) = C(y, δ) and K(x, δ) = K(y, δ).
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Let Wu = {W u
loc(x)} be the Pesin’s unstable lamination. Then the associated holonomy

maps preserve zero Lebesgue measure sets [15, 19]. More precisely, let x be in some hy-

perbolic block Λn, and x1, x2 be points of W u
loc(x). Let Σ1 and Σ2 be small smooth disks

transverse to W u
loc(x) at x1 and x2. Given any point y ∈ Λn close to x the local unstable

manifold W u
loc(y) intersects each cross section Σi at exactly one point yi. This defines the

holonomy map

Hu : y1 → y2

which is an homeomorphism between subsets of Σ1 and Σ2, respectively. Moreover, Hu is

absolutely continuous, that is, it maps zero Lebesgue measure sets to zero Lebesgue measure

sets.

Remark 1: Analogous properties hold in the case of negative Lyapunov exponents.

2.1.3. Conditional measures along the unstable foliation. — Let x ∈ suppµ be fixed and let

C(x, δ), K(x, δ) and K(x, δ) be the sets defined in Lemma 2.2 above. Because µ(K(x, δ)) > 0

we can define µ|K(x, δ), the restriction measure of µ on K(x, δ), by

µ|K(x, δ)(B) =
µ(K(x, δ) ∩ B)

µ(K(x, δ))

for all measurable subsets B ⊆ K(x, δ).

Let P be the coarsest partition of K(x, δ) such that every local unstable manifold W u
loc(x)

is entirely contained in some atom of P. In such case the atoms are embedded manifolds

corresponding to local unstable manifolds. Then P is a measurable partition in the sense of

Rokhlin [20]: it may be written as the product

P =
∞
∨

n=1

Pn

of an increasing sequence of finite partitions Pn of K(x, δ). Moreover, to each atom of P,

there corresponds a unique disk D which is an unstable local manifold, so we may identify

P = K(x, δ).

Let πs : K(x, δ) → Bs be the projection on Bs along the center-unstable leaves. We can

induce a measure µ̂ on Bs given by

µ̂(A) = µ(π−1
s (A) ∩ K(x, δ))

for measurable A ⊆ Bs.

By Rokhlin’s disintegration theorem [20], there exists a family {µD : D ∈ K(x, δ)} of

conditional probability measures satisfying
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[CP1] µD(D) = 1 for µ̂-almost every D ∈ K(x, δ).

[CP2] µ(E) =
∫

µD(E) dµ̂(D) for every measurable subset E of K(x, δ).

The family is essentially unique: given another choice {µ′
D : D ∈ K(x, δ)} of measures

satisfying [CP1,CP2] then µD = µ′
D for µ̂-almost every D ∈ K(x, δ).

Given D ∈ K(x, δ), let Pn ∈ P be the element of the partition Pn that contains D then

lim
n→∞

1

ν(Pn)

∫

Pn

ϕ dµ =

∫

ϕ dµD,

for every continuous function ϕ : M → R.

By definition, conditional measures of a Gibbs cu-state are absolutely continuous along the

unstable manifolds, that is, for µ-almost every x and every δ > 0, the conditional measures

µD defined above are absolutely continuous with respect to Lebesgue measure mD in D, for

µ̂-almost every D ∈ K(x, δ).

2.2. Proof of Theorem A. — We begin by studying the relations between a Gibbs

cu-state and its ergodic components.

Let ξ be an invariant measure for f . Let R(f) be the set of regular points of f , that is the

set of points in M such that the Birkhoff averages exist and

lim
n→+∞

1

n

n−1
∑

j=0

ϕ(f j(x)) = lim
n→−∞

1

n

n+1
∑

j=1

ϕ(f j(x))

for all ϕ ∈ C0(M ; R). It is well-known that this set has full measure with respect to any

f -invariant measure ξ.

Given a point x let us denote by ξx the probability measure given by the time average

along the orbit of x

∫

ϕ dξx = lim
n→∞

1

n

n−1
∑

j=0

ϕ ◦ f j(x)

for every continuous ϕ : M → R. According to the Ergodic Decomposition Theorem (cf. [12])

ξx is well defined and ergodic for every x in a set Σ(f) ⊆ M that has full measure with respect

to any invariant measure. Moreover, for every bounded measurable function ϕ : M → R we

can write

∫

ϕ dξ =

∫ ∫

ϕ dξx dξ(x),

for every such ϕ the integral
∫

ϕ dξx coincides with the time average ξ-almost everywhere,

and x ∈ supp ξx for ξ-almost all x.
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Let µ be a Gibbs cu-state. Given a point in the support of µ and δ > 0, we fix a cylinder

C, a family of disks K crossing C and the union of such disks K as in Lemma 2.2.

Fix B a measurable subset of M such that

mD(B ∩ D) = 0 for every D ∈ K,

and B is maximal among all measurable sets with this property. Observe that µ(B) = 0,

because µ is absolutely continuous along the leaves on K. Let Z̃ = K ∩ Σ(f) ∩ R(f) \ B.

Then µ(Z̃) > 0 and let (µ|Z̃) be the restriction of µ to Z̃.

Let A be any measurable subset of Z̃ such that mD(A ∩ D) = 0 for every D ∈ K. Then

µ(A) must be zero, since we took µ(B) maximal. This means that (µ|Z̃) is absolutely

continuous with respect to the product mD × µ̂, where µ̂ stands for the quotient measure

induced by (µ|Z̃) on K. As a consequence, the conditional measures (µ|Z̃)D of (µ|Z̃) on the

disks D ∈ K are absolutely continuous with respect to Lebesgue measure mD for µ̂-almost

all D ∈ K.

On the other hand, for any measurable set A ⊆ Z̃,

µ(A) =

∫

µx(A) dµ(x),

where the integral is taken over Σ(f) ⊆ M .

Let us denote by 1A the characteristic function of the measurable subset A. Then we have

(as already mentioned)

µx(A) =

∫

1A dµx = lim
n→∞

1

n

n−1
∑

j=0

1A(f j(x))

µ∗-almost everywhere. So µx(A) can be non-zero only if x has some iterate in A ⊆ Z̃, for µ-

almost every point x. Let k(z) denote the first backward return time to Z̃ of a point z ∈ Z̃,

this means k(z) is the smallest positive integer such that f−k(z)(z) ∈ Z̃. This is defined

µ-almost everywhere, by Poincare’s recurrence theorem. Observing also that µz = µfj(z) for

every z and every integer j ∈ Z, we have

µ(A) =

∫

Σ(f)

µx(A) dµ(x) =

∫

Z̃

k(z)µz(A) dµ(z)

for any measurable subset A of Z̃.

Lemma 2.3. — Let λ be a finite measure on a measure space Z, with λ(Z) > 0. Let K be

a measurable partition of Z, and (λz)z∈Z be a family of finite measures on Z such that

1. the function z → λz(A) is measurable, and constant on each element of K, for any

measurable set A ⊂ Z.
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2. {w : λz = λw} is a measurable set with full λz-measure, for every z ∈ Z.

Assume that λ(A) =
∫

l(z)λz(A) dλ for some measurable function l : Z → R+ and any

measurable subset A of Z. Let {λ̃γ : γ ∈ K}, and {λ̃z,γ : γ ∈ K}, be the disintegrations of λ

and λz, respectively, into conditional probability measures along the elements of the partition

K. Then

λ̃z,γ = λ̃γ

for λ-almost every z ∈ Z and λ̂z-almost every γ, where λ̂z is the quotient measure induced

by λz on K.

The reader can see the proof in [2], Lemma 6.2.

Lemma 2.4. — If µ is a Gibbs cu-state of f , then every ergodic component of µ is a Gibbs

cu-state.

Proof. — If we take Z = Z̃, λ = (µ|Z̃), K = K, λz = (µz|Z̃) and l(z) = k(z) for each

z ∈ Z̃ in Lemma 2.3, then the conditional probability measures (µz|Z̃)D of (µz|Z̃) along the

disks D ∈ K coincide almost everywhere with the corresponding conditional measures µD of

(µ|Z̃). Recall that we had already shown that the latter are almost everywhere absolutely

continuous with respect to Lebesgue measure on the corresponding disks D ∈ K. Moreover,

the u-largest Lyapunov exponents are positive µD almost everywhere.

Remark 2: If µ is an invariant measure with ergodic decomposition (µx)x∈Σ(f), and µx is

a Gibbs cu-state for µ-almost every point x, then µ is a Gibbs cu-state also. In fact, µ-

almost every point x is in a disk D contained in a local unstable manifold, and so, its larger

Lyapunov exponents are positive. Since D is completely contained in an unique ergodic

component, so µD = µx,D. But µx,D is absolutely continuous respect to Lebesgue measure,

so µD is absolutely continuous also.

In what follows we assume µ is an ergodic Gibbs cu-state. Given z ∈ supp µ we denote

by µD the conditional measure of µ in D = W u
loc(z) and we denote by ρz the density of

the conditional measure µD of µ along the unstable disk D through z. Our next goal is to

characterize this density.

Lemma 2.5. — For every x and y in the same local unstable manifold, the product

∞
∏

k=0

det(Df−1|Ecu
f−k(x)

)

det(Df−1|Ecu
f−k(y)

)

converges and is bounded away from zero and infinity.

12



Proof. — Let x, y ∈ W u
ε (z) and set Ju

k (x) = | det Df−1|Ecu
fk(x)

|, k ≥ 0. Lemma 2.1 implies

that the map x → log(Ju
k (x)−1) is (C1, ξ)-Hölder. Let λ > 0 be the smallest Lyapunov

exponent for z in the Ecu-direction. Then, for N ≥ 1,

∣

∣

∣

∣

∣

log
N
∏

k=0

Ju
k (x)

Ju
k (y)

∣

∣

∣

∣

∣

≤
N

∑

k=0

| log Ju
k (x) − log Ju

k (y)|

≤
N

∑

k=0

C1distfk(W u
ε (z))(f

k(x), fk(y))ξ

≤
N

∑

k=0

C1C
ξe−kλξdistW u

ε (z)(x, y)ξ

The symmetry of the product (we may exchange x and y) and the convergence of the

series imply that the product converges for all x, y ∈ W u
ε (z) and is non-zero. Moreover the

convergence is absolute and Hölder with respect to x and y, so the product is bounded away

from zero and infinity.

Remark 3: The convergence of the product depends only on f and on the smallest Lyapunov

exponent along the center-unstable disks.

Proposition 2.1. — For µ-almost every z ∈ supp µ and for every x, y ∈ W u
loc(z),

ρz(x)

ρz(y)
=

∞
∏

k=0

det(Df−1|Ecu
f−k(x)

)

det(Df−1|Ecu
f−k(y)

)
.

The densities are Hölder continuous and bounded away from zero and infinity.

Proof. — We fix a generic z and W u
loc(z) = D. Since µz is absolutely continuous with respect

to Lebesgue measure in D, there exists some ρ : D → R which is measurable and positive

µz-almost everywhere such that

µz(B) =

∫

B

ρ dmD

for all Borelean subsets B ⊆ D. Let ρn be the density of µf−n(z) on f−n(D). By change of

variables we have for x ∈ W u
loc(z) that

(5) ρ(x) = Cρn(f−n(x))
n−1
∏

k=0

Ju
k (x)

13



for any n ≥ 0 where C > 0 is a constant of normalization depending of z and n. Then, for

every x, y ∈ W u
loc(z),

ρ(x)

ρ(y)
=

ρn(f−n(x))

ρn(f−n(y))

n−1
∏

k=0

Ju
k (x)

Ju
k (y)

.

By Lemma 2.5 the right hand product converges to a non-zero value, so the quotient

ρn(f−n(x))/ρn(f−n(y)) also converges. We claim there exists a subsequence (nk)k∈N such

that

ρnk
(f−nk(x))

ρnk
(f−nk(y))

→ 1

when k → ∞. This claim completes the proof.

For δ > 0, let C(z, δ), K(z, δ) and K(z, δ) be the sets defined in Lemma 2.2. Let ε > 0 be

fixed and let Λε be a compact subset of K(z, δ) such that µ(K(z, δ) \ Λε) < ε and the map

Λε ⊆ Bu × Bs → R

(x,w) 7→ ρw(x)

is continuous. In particular, we may assume the following: given k ∈ N, there exists δk > 0,

not depending on w ∈ Λε, such that

∣

∣

∣

∣

ρw(x)

ρw(y)
− 1

∣

∣

∣

∣

<
1

k

for all x, y ∈ W u
loc(z)∩Λε satisfying distW u

loc
(w)(x, y) < δk. As µ(Λε) > 0, Poincare’s recurrence

theorem together with the properties [PT1, PT2] of the unstable Pesin lamination (see

subsection 2.1.2) imply that for µ-almost every w ∈ Λε there exists a nk large enough such

that:

1. there exists w̃ ∈ Λε such that f−nk(W u
loc(w)) ⊆ W u

loc(w̃),

2. diam f−nk(W u
loc(w)) ≤ δk.

Since µ is f -invariant, from item 1 it follows that ρnk,w = ρw̃ for µf−nk (w)-almost every point

in f−nk(W u
loc(w)). Now item 2 implies that for every x, y ∈ W u

loc(w) ∩ Λε

distW u
loc

(w̃)(f
−nk(x), f−nk(y)) = distf−nk (W u

loc
(w))(f

−nk(x), f−nk(y)) ≤ δk

and so,

∣

∣

∣

∣

ρnk,w(f−nk(x))

ρnk,w(f−nk(y))
− 1

∣

∣

∣

∣

=

∣

∣

∣

∣

ρw̃(f−nk(x))

ρw̃(f−nk(y))
− 1

∣

∣

∣

∣

<
1

k

and this finishes the proof.
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If x has a local strong unstable manifold W u
loc(x), we define the global unstable manifold

of x as the set

W u(x) =
⋃

n≥0

fn(W u
loc(f

−n(x)).

Next result follows from the fact that the densities ρ are bounded away from zero and

infinity.

Corollary 2.1. — If µ is a Gibbs cu-state of f , then the support of µ contains global

unstable manifolds whose union has full µ-measure.

Proof. — Let Λn be a hyperbolic block. Then for all x ∈ Λn there exists W u
δ (x) with δ > 0

uniform on x. Moreover µ(Λn) > 1 − εn, with εn → 0 as n → ∞. It is sufficient to prove

that for µ-almost every x ∈ Λ, one has W u
δ (x) ⊆ supp µ.

For each x ∈ supp µ, we can construct a cylinder C that contains W u
δ (x) and such that if

z ∈ Λn ∩ C, then W u
δ (z) crosses C. Suppose there is y ∈ W u

δ (x) such that y /∈ supp µ. Then

there exists a small neighborhood y ∈ V ⊆ C such that µ(V ) = 0. By the disintegration of

µ we have

µ(V ) =

∫

µz(V ∩ W u
δ (z)) dµ̂(z),

but each µz has strictly positive density. Then there exists a neighborhood of x having zero

µ̂-measure, which contradicts the fact that x is in the support of µ.

Here we conclude the proof of Theorem A. Lemma 2.2 and Proposition 2.1 correspond to

statements 1 and 2 of Theorem A. Corollary 2.1 and Lemma 2.4 correspond to statements

3 and 4. Next lemma plays an important role in the following sections:

Lemma 2.6. — Let µ be a Gibbs cu-state for f . For µ-almost every x ∈ Λ and every

δ > 0 small enough, there exists a cylinder C(x, δ) such that µ̂-almost every disk D ∈ K(x, δ)

satisfies B(µ) ∩ R(f) ∩ D has full Lebesgue measure in D.

Proof. — We observe that µ(B(µ)∩R(f)) = 1. For almost every x ∈ B(µ)∩R(f)∩ supp µ

and every δ > 0 small enough, there exists a cylinder C and a family K of disk crossing C

such that the union of those disks has positive µ-measure. Let us consider the probability

measure (µ|K). Then

(µ|K)(B(µ) ∩ R(f) ∩ K) = 1.
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By disintegration, µ̂|K-almost every disk D ∈ K satisfies

µD(D ∩ B(µ) ∩ R(f)) = µD(D).

Because µD is absolutely continuous with respect to Lebesgue measure and the density ρD

is bounded from zero and infinity, it follows that mD(B(µ) ∩ R(f) ∩ D) = mD(D).

3. Gibbs cu-states and the non-uniform expansion condition

3.1. Building Gibbs cu-states. — Let f : M → M be a C2-diffeomorphism having an

attractor Λ with a dominated splitting and non-uniform expansion along the Ecu direction.

The goal of this subsection is to briefly review the construction of Gibbs cu-states (cf.

Theorem 1.2 [2]).

A disk D ⊂ U is tangent to the center-unstable cone field Ccu if the tangent subspace to

D at each point x ∈ D is contained in the corresponding cone Ccu(x). We fix a C2 disk D

tangent to the center-unstable cone field such that:

1. The set of points in D having non-hyperbolic behavior has full Lebesgue measure in

the disk. This is possible because we assume that almost every point in U satisfies (1).

2. There are fixed ξ > 0 and C1 > 0 as in Lemma 2.1 such that the functions Jk defined on

fk(D) ⊂ U by Jk(x) = log | det Df |Txf
k(D)|, for k = 1, .., n are (C1, ξ)-Hölder. These

constants depend only on f .

Definition 3. — Given 0 < σ < 1, we say that n is a σ-hyperbolic time for a point x ∈ U

if

n
∏

j=n−k+1

‖Df−1|Ecu
fj(x)‖ ≤ σk

for all 1 ≤ k ≤ n.

Conditions 1 and 2 above imply that there exist many (positive density at infinity) σ-

hyperbolic times for points x ∈ D satisfying (1) with σ < e−c0/3. The rate depends on c0

and f . This follows from an adapted version of Pliss’ Lemma [17] also proved in [12] and

[2]:

Proposition 3.1. — Given any x ∈ D̃ and any sufficiently large N ≥ 1, there exist σ-

hyperbolic times 1 ≤ n1 < .. < nl ≤ N for x with l ≥ −| log σ|
sup | log ‖Df−1|Ecu‖−2| log σ|

N .

Remark 4 : Hyperbolic times can not depend continuously on the diffeomorphism f , but the

rate
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θ =
−| log σ|

sup | log ‖Df−1|Ecu‖ − 2| log σ|

depends continuously on f (in the C1-topology) and c0.

As a consequence of the existence of σ-hyperbolic times, we obtain backward uniform

contraction and bounded distortion properties. More precisely (see [2] ) :

Proposition 3.2. — There exist C2 > 0 and δ1 > 0 such that for all x ∈ D, for all

σ-hyperbolic times n and for every y ∈ D such that distfn(D)(f
n(x), fn(y)) ≤ δ1, we have

(6) distfn−k(D)(f
n−k(x), fn−k(y)) ≤ σk/2distfn(D)(f

n(x), fn(y)),

(7)
1

C2

≤
| det Dfn|TyD|

| det Dfn|TxD|
≤ C2.

The constant C2 in (7) above depends on σ, δ1 and depends on the Hölder constant C1.

We remark that (7) is similar to the quotient factor in Proposition 2.1.

For each j ≥ 1, let Ĥj be a finite set of x ∈ D such that j is an σ-hyperbolic time for x.

For δ = δ1/4, we denote by ∆j(x, δ) the δ-neighborhood of f j(x) inside f j(D). We choose

Ĥj such that the balls ∆j(x, δ) are pairwise disjoint. We denote by ∆j the union of such

balls.

We can choose Ĥj satisfying the following (see [2] Proposition 3.3 and Lemma 3.4): there

exists a constant τ > 0, depending only on f , such that for any j

f j
∗mD(∆j ∩ f j(U)) ≥ f j

∗mD(∆j ∩ f j(Ĥj)) ≥ τmD(Ĥj)

Consider the set of accumulation points of (∆j)j:

∆∞ =
∞
⋂

n=1

⋃

j≥n

∆j.

Observe that ∆j ⊆ f j(D) ⊆ f j(U). Then, since U is positively invariant,

⋃

j≥n

∆j ⊆ fn(U) ⊆ fn−1(U)

and so ∆∞ ⊆ Λ.

Given y ∈ ∆∞ there exist a sequence (ji)i → ∞, disks Di = ∆(xi, δ) ⊆ ∆ji
and points

yi ∈ Di, yi → y as i → ∞. By passing to a subsequence if necessary, we may suppose that

the centers xi converge to some point x and, by Arzela-Ascoli theorem, that the Di converge
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to a disk D(x) of radius δ around x. Then y is in the closure D(x) of D(x), and D(x) ⊆ ∆∞

and the points x are in the set

Ĥ∞ =
∞
⋂

n=1

⋃

j≥n

f j(Ĥj).

Observe that Di is contained in the ji-iterate of D, which was taken tangent to the center-

unstable cone field. So the domination property implies that the angle between Di and Ecu

goes to zero as i → ∞. By Proposition 3.2, given k ≥ 1 then f−k is a σk/2-contraction on

Di, for every large i. Passing to the limit when i → ∞, we get that every f−k is a σk/2-

contraction on D(x), and that D(x) is tangent to the center-unstable subbundle at every

point of D(x) ⊆ Λ, including x.

In particular we have shown that the subspace Ecu
x is indeed uniformly expanding for Df .

The domination property means that any expansion that Df exhibits along the comple-

mentary direction is weaker than this. Then, see [15], there exists a unique strong-unstable

manifold W u
loc(x) tangent to Ecu which is contracted by negative iterates of f at a rate of at

least σk/2, when k gets large. Moreover D(x) is contained in W u(x) because it is contracted

by every f−k, k ≥ 1, and all its negative iterates are tangent to the center-unstable cone

field. Summing up, we have

Proposition 3.3. — The family of disks D(x), with x ∈ Ĥ∞, constructed as above satisfies:

1. the radius of D(x) is δ1/4 uniformly in x ∈ Ĥ∞;

2. for every y ∈ ∆∞ there exists x ∈ Ĥ∞ such that y ∈ D(x);

3. for all x ∈ Ĥ∞, the subspace Ecu
x satisfies

‖Df−k|Ecu
x ‖ ≤ σk/2, for all k ≥ 0;

4. D(x) is contained in the corresponding strong-unstable manifold W u
loc(x);

5. D(x) is tangent to the center-unstable subbundle at every point of Λ ∩ D(x).

We now consider the sequence of averages of push-forwards of Lebesgue measure restricted

to such a disk D

µn =
1

n

n−1
∑

j=0

f j
∗ mD.

Remark 5: The argument that follows does not change if we consider ϕmD instead of mD,

where ϕ is a measurable function bounded away from zero and infinity, mD- almost every-

where.

We decompose µn as a sum of two measures νn and ηn, where
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νn =
1

n

n−1
∑

j=0

f j
∗ mD|∆j

and ηn = µn − νn. Observe that the support of νn is ∪n−1
j=0 ∆j.

Now, we consider any subsequence (nk)k such that µnk
and νnk

converge to µ and ν

respectively. Then the support of ν is contained in the set

∆∞ =
∞
⋂

n=1

⋃

j≥n

∆j ⊆ Λ

of accumulation points of (∆j)j. Proposition 3.3 gives a characterization of the support of

ν. Moreover ([2] Proposition 3.5 and Remark 3.6), there is α1 = α1(c0, f) > 0 such that, for

all n ≥ 1 and k ≥ n large enough,

νk(f
n(U)) ≥ νk(f

k(U)) ≥ α1.

This is because fk(U) ⊆ fn(U). Then, ν(fn(U)) ≥ α1 and so

ν(Λ) = ν(
⋂

n≥1

fn(U)) = lim inf
n→∞

ν(fn(U)) ≥ α1.

Recall from Proposition 3.3 that, given any y ∈ ∆∞, there exist a point x ∈ Ĥ∞ and a

disk D(x) of size δ1/4 around x such that y ∈ D(x) ⊆ ∆∞. For any such x and r > 0

small, let Cr(x) be the tubular neighborhood of D(x), defined as the union of the images

under the exponential map at each point z ∈ D(x) of all vectors orthogonal to D(x) at z

with norm less than or equal to r. We take r to be sufficiently small, so that Cr(x) is a

cylinder endowed with the canonical projection π : Cr(x) → D(x). We may suppose that

the boundary of Cr(x) has zero ν-measure (observe that r depends on the size of the domain

of the exponential map, and so depends continuously on f).

For any ε > 0, we can fix a cover of D(x) by finitely many domains Dx,l ⊆ D(x), l =

1, .., N(ε), small enough so that the intersection of each Cx,l = π−1(Dx,l) with any smooth

disk γ tangent to the center-unstable cone field has diameter less than ε inside γ. We choose

the cover with the least possible N(ε) and take the Dx,l diffeomorphic to the compact ball

Bu, so that every Cx,l is a cylinder.

We say that a disk γ crosses Cx,l if π maps γ ∩ Cx,l diffeomorphicaly onto Dx,l. For each

j ≥ 0, let Kj(x, l) be the union of the intersections of Cx,l with all the disks in ∆j that

cross Cx,l and let K∞(x, l) be the union of the intersections of Cx,l with all the disks in ∆∞

that cross Cx,l. Fixing a small enough ε for at least one of the cylinders Cx,l the part of the

measure ν that is carried by the disks in K∞(x, l) has positive mass α > 0, depending on
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the rate of hyperbolic times, and so depending on c0 and f (See [2] Lemma 4.2 and Lemma

4.3).

In the following we write C = Cx,l, D̃ = Dx,l and Kj, 0 ≤ j ≤ ∞, the family of disks whose

union is Kj = Kj(x, l).

Observe that from the construction of µn the measure f j
∗mD|∆j is absolutely continuous

with respect to Lebesgue measure along f j(D). Moreover, from Proposition 3.2(7) the

density of the normalization of this measure is uniformly bounded from below and from

above. The construction preserves this property for νn and ν.

Let us introduce K̂ = ∪0≤j≤∞Kj × {j}. In this space, we consider the sequence of finite

measures ν̂n defined by

ν̂n(B0 × {0} ∩ .. ∩ Bn−1 × {n − 1}) =
1

n

n−1
∑

j=0

f j
∗mD(Bj),

and ν̂n(Bn) = 0 whenever B is in ∪n≤j≤∞Kj ×{j}. We also consider a sequence of partitions

Pk in K̂ constructed as follows. Fix an arbitrary point z ∈ D̃ and let V be the inverse image

π−1(z) under the canonical projection. Fix a sequence Vk, k ≥ 1, of increasing partitions of

V with diameter going to zero. Then, by definition, two points (x,m), (y, n) ∈ K̂ are in the

same atom of the partition Pk if

– the disk in ∆m containing x and the disk in ∆n containing y intersect some common

element of Vk;

– either m ≥ k and n ≥ k, or m = n < k.

It is clear from the construction that for any point ξ ∈ Kj and every 0 ≤ j ≤ ∞, one has

P1(ξ) ⊃ .. ⊃ Pk(ξ) ⊃ . . . ,

and ∩∞
k=1Pk(ξ) coincides with the intersection of the cylinder C with the disk in ∆j that

contains ξ. We define π̂ : K̂ → D̃ by π̂(x, j) = π(x).

Clearly, any weak* accumulation measure of the sequence ν̂n must be supported in K∞ ×

{∞}. We have chosen a sequence (nk)k such that νnk
converges to the measure ν. It is easy

to see that this is just the same as saying that ν̂k converges to the measure ν̂ defined by

ν̂(B × {∞}) = ν(B) for any Borel set B ⊆ C, so ν and ν̂ are naturally identified.

Proposition 3.4. — There exist C3 > 1, depending on f only, and a family of conditional

measures (νγ)γ of ν|K∞ along the disks γ ∈ K∞ such that νγ is absolutely continuous with

respect to the Lebesgue measure mγ on γ, with

(8)
1

C3

mγ(B) ≤ νγ(B) ≤ C3mγ(B)
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for any Borel set B ⊆ γ.

The reader can see the proof in [2] Section 4. The constant C3 depends on the Lebesgue

measure along the disks in the cylinder (so depends on f) and depends on the distortion

bound C2 obtained in Proposition 3.2.

The construction of Gibbs cu-states concludes as follows: there exists an ergodic com-

ponent µz of µ having positive measure on K∞ which is absolutely continuous along the

disks.

Each disk D ∈ K∞ is completely contained in some ergodic component because it is

contained in some local-unstable manifold. In particular, all Lyapunov exponents of µz in

the center unstable direction are larger than − log σ > 0. The domination condition implies

that all the other exponents are less than − log σ + log λ < − log σ. Again, by Pesin theory,

µz-almost every point has a local strong-unstable manifold which is an embedded disk whose

backward orbits contract at the exponential rate log σ. Moreover the disks D ∈ K∞ contain

the local strong-unstable manifolds of points in its interior.

Summing up this section, we have the following

Theorem 3.1. — [Alves, Bonatti, Viana [2]] Any diffeomorphism f with a dominated split-

ting which is non-uniformly expanding along the center unstable direction has an ergodic

Gibbs cu-state. More precisely: there exist a cylinder C ⊆ M and a family K∞ of disjoint

disks contained in C which are graphs over Bu, and a ergodic invariant probability measure

µ supported on Λ such that:

1. the cylinder contains a ball whose radius is uniformly bounded away from zero, depend-

ing continuously on the diffeomorphism f ;

2. there exists α > 0 such that the union of all disks in K∞ has µ-measure larger than α,

depending on f and c0;

3. µ has absolutely continuous conditional measures along the disk in K∞. The densities

of the conditional measures are bounded away from zero and infinity by a constant

depending on f and c0;

4. the u = dim Ecu largest Lyapunov exponents are larger than − log σ > 0.

3.2. Proofs of Theorems B and C. — We start by proving Theorem B. Let f ∈

Diff2(M) and Λ be an attractor having a dominated splitting which is mostly expanding along

the Ecu direction. Let G(f) be the class of Gibbs cu-states constructed in Subsection 3.1.

Proof of Theorem B: Let µ be an ergodic Gibbs cu-state for f supported on Λ. Let also

D ⊆ W u
loc(x) be in the support of µ, such that D ∩ B(µ) has full µD-measure in D (cf.

Lemma 2.6). We may assume that D satisfies condition 2 in Subsection 3.1 taking an iterate
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of D if necessary ([2] Corollary 2.4, Proposition 2.9). Condition 1 is satisfied by ergodicity:

consider the function ϕ(x) = log ‖Df−1|Ecu
x ‖. Birkhoff’s Ergodic Theorem implies

lim
n→∞

1

n

n−1
∑

j=0

log ‖Df−1|Ecu
fj(x)‖ =

∫

log ‖Df−1|Ecu
y ‖ dµ(y) ≤ −c0 < 0

for µD-almost every point in D, where c0 depends on the Lyapunov exponents of D in the

Ecu direction. But µD = ρDmD where ρD is a measurable function bounded away from zero

and infinity, so the claim above holds Lebesgue-almost everywhere in D.

Let µ̃ be a ergodic Gibbs cu-state obtained as a weak* accumulation measure of

1

n

n−1
∑

j=0

f j
∗

(

µD

µD(D)

)

.

Of course, µ̃ ∈ G(f) because µD is absolutely continuous with respect to Lebesgue measure

on D.

Observe that for every continuous ϕ : M → R we have

(9)
1

n

n−1
∑

j=0

f j
∗

(

µD(ϕ)

µD(D)

)

=
1

µD(D)

∫

D

1

n

n−1
∑

j=0

ϕ ◦ f j(x) dµD.

Denote by Fn the average 1
n

∑n−1
j=0 ϕ ◦ f j. Each Fn is µD-integrable and bounded by ‖ϕ‖.

Also Fn converges pointwisely to
∫

ϕ dµ because B(µ) has full µD-measure on the disk D.

The dominated convergence theorem implies that the right hand side of (9) converges to
∫

ϕ dµ.

On the other hand the left hand side of (9) was assumed to have an accumulation measure

µ̃, so it converges to
∫

ϕ dµ̃. As a consequence µ = µ̃.

Let (fn) be a sequence of diffeomorphisms converging to f in the Ck-topology, k ≥ 2. We

assume that each fn exhibits a dominated splitting with non-uniform expansion along the

Ecu(fn) direction with constants C, α and c0 not depending on n ≥ 0 (cf. Subsection 1.1).

Let µn be an ergodic Gibbs cu-state of fn. We will assume that µn tends to a probability

measure µ∗ in the weak* topology (taking a subsequence if necessary). To prove Theorem C,

we need to prove that µ∗ is a cu-Gibbs state for f .

Is clear that µ∗ is f -invariant. By Theorem B each µn is a Gibbs cu-state in G(f). Then,

for each n ≥ 1, there exist (Cn)n and (Kn
∞)n cylinders and families of disks associated to

(fn, µn). From Subsection 3.1 we may assume that:

(a) the size of the disks is uniformly bounded from below;
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(b) there exists α > 0 such that, for all n ≥ 0, we have

(10) µn(Kn
∞) ≥ α > 0,

where Kn
∞ is the union of the disks in Kn

∞, since we are assuming that c0 is uniform (cf.

Proposition 3.1);

(c) there exists C3 > 1 such that for all n ≥ 1 the family of conditional measures (µn,D)D∈Kn
∞

of µn|K
n
∞ along the disks D ∈ Kn

∞ satisfies:

(11)
1

C3

mD(B) ≤ µn,D(B) ≤ C3mD(B)

for any Borel set B ⊆ D.

We prove that µ∗ is a Gibbs cu-state by completing the following steps.

1. We construct a cylinder C∗ and a family K∗
∞ of disjoint disks contained in C∗ which are

graphs over Bu such that all the disks in K∗
∞ are local uniformly expanding manifolds

under f .

2. The union K∗
∞ of all disks in K∗

∞ has positive µ∗-measure.

3. The restriction of µ∗ to that union has absolutely continuous conditional measures along

the disks in K∗
∞.

4. Almost every ergodic component of µ∗ is a Gibbs cu-state.

Of course, by remark 2.2, µ∗ must be a Gibbs cu-state, because almost all of its ergodic

components are Gibbs cu-states.

We prove these steps in the following lemmas:

Lemma 3.1. — There exist a cylinder C∗ and a family K∗
∞ of disjoint disks contained in

C∗ which are graphs over Bu such that all disks in K∗
∞ are local unstable manifolds.

Proof. — Let (Cn)n and (Kn
∞)n be sequences of cylinders and families of disks associated to

µn respectively. By the compactness of M and considering a subsequence if necessary, we

may suppose that Cn converges to C∗.

We claim that C∗ is a cylinder. Indeed, the Cn are diffeomorphic images of Bu ×Bs where

Bu and Bs are compact balls in R
u and R

s respectively corresponding to Cn, n ≥ 1. Let

(Bu
n)n and (Bs

n)n be the diffeomorphic images of Bu and Bs in M , respectively. By the

Arzela-Ascoli Theorem (Bu
n)n converges to a disk Bu

∗ and (Bs
n)n converges to a disk Bs

∗. So,

for C∗ to be a cylinder, it must satisfy:

(i) the diameters of Bu
n and Bs

n do not go to zero, when n tends to infinity.

(ii) the angle between Bu
n and Bs

n does not go to zero, when n tends to infinity.
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On the one hand by construction , each Cn contains balls with radius uniformly bounded

away from zero from Theorem 3.1, so (i) is fullfilled. On the other hand, by the domination

property of the family (fn), (ii) must hold.

Now, we consider the family K∗
∞ of disks Du contained in C∗ which are accumulated by

sequences (Du
n)n of disks, Du

n ∈ Kn
∞, n ≥ 1. Observe that every disk Du

n ∈ Kn
∞ is tangent

to the center-unstable cone field of fn; by continuity of the splitting with respect to the

diffeomorphism, Du ∈ K∗
∞ must be tangent to the center-unstable cone field of f . For any

x, y ∈ Du let (xn)n and (yn)n be two sequences of points in Du
n converging to x and y

respectively. By Proposition 3.3, for all k ≥ 0 fixed we have

dist(f−k
n (xn), f−k

n (yn)) ≤ σ−k/2dist(xn, yn).

Passing to the limit when n → ∞, we obtain

dist(f−k(x), f−k(y)) ≤ σ−k/2dist(x, y),

for all x, y ∈ Du and all k ≥ 0. We conclude that every fk is an σk/2-contraction on D(x),

and D(x) is tangent to the center-unstable subbundle at every point in Λ∩D(x) (including

x).

In particular we have shown that the subspace Ecu
x is indeed uniformly expanding for

Df . The domination property means that any expansion Df may exhibit along the comple-

mentary direction is weaker than this. Then, there exists a unique strong-unstable manifold

W u
loc(x) tangent to Ecu which is contracted by negative iterates of f by a rate of at least σk/2,

when k gets large, see [15]. Moreover D(x) is contained in W u(x) because it is contracted

by every f−k, k ≥ 1, and all its negative iterates are tangent to the center-unstable cone

field.

Lemma 3.2. — The union K∗
∞ of all disks in K∗

∞ has positive µ∗-measure.

Proof. — Recall from Subsection 3.1 that there exists α > 0 such that, for all n ≥ 0, we

have µn(Kn
∞) ≥ α > 0. Let us fix δ > 0. Then there exists n0 ∈ N such that, for all n ≥ n0,

Kn
∞ ⊆ B(K∗

∞, δ). On the other hand, we know that K∗
∞ =

⋂

δ>0 B(K∗
∞, δ). Choosing δ > 0

such that µ∗(∂B(K∗
∞, δ)) = 0, we have

µ∗(B(K∗
∞, δ)) = lim

n→∞
µn(B(K∗

∞, δ)) ≥ α > 0,

and so,

µ∗(K∗
∞) = lim inf

δ→0
µ∗(B(K∗

∞, δ)) ≥ α > 0.
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Lemma 3.3. — There exist a constant C1 > 0 and a family of conditional measures (µ∗
D)D

of µ∗|K∗
∞ along the disks D ∈ K∗

∞ such that µ∗
D is absolutely continuous with respect to

Lebesgue measure mD on D, with

1

C3

mD(B) ≤ µ∗
D(B) ≤ C3mD(B)

for every Borel set B ⊆ D.

Proof. — We start by taking the cylinder C∗ from the construction proving Lemma 3.1. By

the compactness of C∗, for any ξ ∈ D where D is any disk in K∗
∞, the exponential map is

well defined in a ball of radius r̃ > 0 around ξ. For any Borel set B ⊂ D we define the set

B̃ as the tubular neighborhood of B, that is, the union of the images under the exponential

map at each point ξ ∈ B of all vectors orthogonal to D at ξ.

We fix a sequence of partitions Pk of K∗
∞ constructed as follows. Let V be the image of

{0} × Bs
∗ under the diffeomorphism between Bu

∗ × Bs
∗ and C∗. Fix a sequence Vk, k ≥ 1,

of increasing partitions of V with positive diameter less than r̃ and going to zero. Then,

we say that two points x, y ∈ K̂ are in the same atom of the partition Pk if the disk D1

containing x and the disk D2 containing y intersect the same element of Vk. It is clear from

the construction that for any point ξ ∈ K∗
∞,

P1(ξ) ⊃ .. ⊃ Pk(ξ) ⊃ . . .

and ∩∞
k=1Pk(ξ) coincides with the disk in D that contains ξ.

For any Borelean set B ⊆ D we have, from Proposition 3.4,

1

C3

m(Bn)µn(Pk(ξ)) ≤ µn(B̃ ∩ Pk(ξ)) ≤ C3m(Bn)µn(Pk(ξ))

where C3 does not depend on n, Bn = B̃ ∩ Dn and Dn is a disk in Kn
∞ near D, n ≥ 1. By

construction m(Bn) converges to m(B) and so passing to the limit when n → ∞ we have

1

C3

m(B)µ∗(Pk(ξ)) ≤ µ∗(B̃ ∩ Pk(ξ)) ≤ C3m(B)µ∗(Pk(ξ)).

Now, by the Radon-Nikodym Theorem, we have that the disintegration of µ∗ along the disk

∩∞
k=1Pk(ξ) is absolutely continuous with respect to Lebesgue measure in this disk, and the

densities are almost everywhere bounded from above by C3 and from below by 1/C3.

Remark 6: The densities of µ∗
D are uniformly (with respect to D) bounded away from zero

and infinity.
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Fix B, a measurable subset of M , such that

mγ(B ∩ γ) = 0 for every γ ∈ K∗
∞,

and µ∗(B) is maximal among all measurable sets with this property. Observe that µ∗(B) = 0,

because µ∗ is absolutely continuous along the leaves on K∗
∞ (cf. Lemma 3.3). Let Z∞ =

K∗
∞ ∩ Σ(f) ∩ R(f) \ B. Then µ∗(Z∞) > 0 and let (µ∗|Z∞) be the restriction of µ∗ to Z∞.

Let A be any measurable subset of Z∞ such that mγ(A ∩ γ) = 0 for every γ ∈ K∗
∞. Then

µ∗(A) must be zero, since we took µ∗(B) maximal. This means that (µ∗|Z∞) is absolutely

continuous with respect to the product mγ × µ̂∗, where µ̂∗ stands for the quotient measure

induced by (µ∗|Z∞) on K∗
∞. As a consequence, the conditional measures µ̃∗

γ of (µ∗|Z∞) on

the disks γ ∈ K∗
∞ are absolutely continuous with respect to Lebesgue measure mγ for µ̂∗-

almost all γ ∈ K∗
∞. On the other hand, by the Ergodic Decomposition Theorem (cf. [12]),

for any measurable set A ⊆ Z∞,

µ∗(A) =

∫

µ∗
x(A) dµ∗(x),

where the integral is taken over Σ(f) ⊆ M .

Let us denote by 1A the characteristic function of the measurable subset A. Then we have

(as in Section 2.2)

µ∗
x(A) =

∫

1A dµ∗
x = lim

n→∞

1

n

n−1
∑

j=0

1A(f j(x))

µ∗-almost everywhere. So µ∗
x(A) > 0 only if x has some iterate in A ⊆ Z∞, for µ∗-almost

every point x. Let k(z) denote the first backward return time to Z∞ of a point z ∈ Z∞:

k(z) is the smallest positive integer such that f−k(z)(z) ∈ Z∞. This is defined µ∗-almost

everywhere, by Poincare’s recurrence theorem. As in Section 2.2, we have

µ∗(A) =

∫

µ∗
x(A) dµ∗(x) =

∫

Z∞

k(z)µ∗
z(A) dµ∗(z)

for any measurable subset A of Z∞.

Lemma 3.4. — The measure µ∗
x is a Gibbs cu-state, for µ∗-almost every point x ∈ K∗

∞.

Proof. — Let x ∈ K∗
∞ ∩Σ∩R(f). Observe that K∗

∞ ∩Σ∩R(f) has full µ∗-measure on K∗
∞

and that

lim
n→∞

1

n
log ‖Df−n|Ecu

fn(x)‖ ≤ −
1

2
log σ < 0

by the uniform contraction of Ecu
x for Df−1 (see the proof of Lemma 3.1). This implies that

the u largest Lyapunov exponents are positive.
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Now, if we take Z = Z∞, λ = (µ∗|Z∞), K = K∗
∞, λz = (µ∗

z|Z∞) and l(z) = k(z) for each

z ∈ Z∞ in Lemma 2.3, the conditional probability measures µ̃∗
z,D of (µ∗

z|Z∞) along the disks

D ∈ K∗
∞ coincide almost everywhere with the corresponding conditional measures µ̃∗

D of

(µ∗|Z∞). Recall that we had already shown that the latter are almost everywhere absolutely

continuous with respect to Lebesgue measure on the corresponding disks D ∈ K∗
∞.

Now, let K0 be the set ∪∞
j=0f

−j(K∗
∞) and define G to be the set of all x ∈ Σ(f)∩R(f)∩K0

such that µ∗
x is a Gibbs cu-state and set

ν∗ =

∫

G

µ∗
x dµ∗(x).

Since µ∗
x is ergodic for µ∗-almost every x and for all j ∈ N, then µ∗

x(G) = 1 if, and only if,

x ∈ G, so suppν∗ = G ([25], Theorem 1.5). Moreover µ∗
x is a Gibbs cu-state for all x ∈ G, and

so is ν∗

ν∗(M)
, see remark 2.2 (Notice that since K∗

∞ ⊆ G we have ν∗(G) ≥ µ∗(K∗
∞) ≥ α > 0).

For n ∈ N, each µn is ergodic and µn(Kn
∞) ≥ α > 0, so ([25], Theorem 1.5)

(12) µn(
∞
⋃

j=0

f−j
n (Kn

∞)) = 1.

Set Aj
n = {x ∈ Kn

∞ : j is the first return time of x}. These sets are pairwise disjoints and

Kn
∞ = ∪j∈NAj

n up to a zero µn-measure subset. So,

µn(Kn
∞) =

∞
∑

j=1

µn(Aj
n).

Lemma 3.5. — The serie
∑∞

j=1 µn(Aj
n) converge uniformly respect to n ∈ N.

Proof. — Let us fix j ∈ N. By invariance of µn and disintegration, we have

µn(Aj
n) = µn(f j

n(Aj
n)) =

∫

Kn
∞

∫

D

1fj
n(Aj

n)(x)ρn
D(x) dmD(x) dµ̂n(D).

From Proposition 3.4, there is a uniform (respect to n) constant C3 ≥ 0 such that, for

µ̂n-almost every D ∈ Kn
∞, we have

∫

D

1fj
n(Aj

n)(x)ρn
D(x) dmD(x) =

∫

f−j
n (D)

1Aj
n
(x)ρn

f−j
n (D)

(x) dmf−j
n (D)(x) ≤ C3mf−j

n (D)(A
j
n),
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where ρn
f−j

n (D)
is the density of µn in the disk f−j

n (D). But D is an unstable disk for fn which

smallest Lyapunov exponent is bounded for below by λ = − log σ > 0 (see Theorem 3.1 part

4). This together with [PT2] implies that there exists a constant C4 such that

mf−j
n (D)(A

j
n) ≤ mf−j

n (D)(f
−j
n (D)) ≤ C4e

−λj

for all n ≥ 0. Hence, we conclude that

∫

D

1fj
n(Aj

n)(x)ρn
D(x) dmD(x) ≤ C3C4e

−λj

for every n ≥ 0 and so we may conclude that the series

∞
∑

j=1

µn(Aj
n) ≤

∞
∑

j=1

C3C4e
−λj

converge uniformly respect to n ∈ N.

Remark 7: If we define Aj = {x ∈ K∗
∞ : j is the first return time of x} as above, the serie

∑∞
j=1 µ∗(Aj) converge. Moreover, from Lemma 3.3, Lemma 3.4 and [PT2], we have

∞
∑

j=1

µ∗(Aj) ≤
∞

∑

j=1

C3C4e
−λj.

Let k(x, n) the smallest positive integer such that f
k(x,n)
n (x) ∈ Kn

∞. From (12), this number

is defined for µn-almost every point x. For N ∈ N, let us denote by KN
n the set

KN
n = {x ∈ M : k(x, n) = N}.

For all N ∈ N, we define µN
n = (µn|K

N
n ). Follows from Lemma 3.5 that, for any n ≥ 0

fixed, µN
n converge in the weak* topology to µn as N goes to infinity, uniformly from n. In

particular that means, for each n ∈ N, for every ε > 0, there exists N(ε) ∈ N, not depending

from n, such that

∣

∣

∣

∣

∫

ϕ dµN
n −

∫

ϕ dµn

∣

∣

∣

∣

< ε,

for all N ≥ N(ε), for every ϕ : M → R continuous.

In the same way, let k(x) be the smallest positive integer such that fk(x)(x) ∈ Kn
∞. For

N ∈ N, let us denote by KN
0 the set

KN
0 = {x ∈ M : k(x, 0) = N}.
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For all N ∈ N, we define ν∗
N = (ν∗|KN

0 ) and clearly we have ν∗
N = (µ∗|KN

0 ). As above, ν∗
N

converge in the weak* topology to ν∗ as N goes to infinity, that means, for every ε > 0,

there exists N(ε) ∈ N, such that

∣

∣

∣

∣

∫

ϕ dν∗
N −

∫

ϕ dν∗

∣

∣

∣

∣

< ε,

for all N ≥ N(ε), for every ϕ : M → R continuous.

On the other hand, observing that KN
n ⊆ f−N

n (Kn
∞) and KN ⊆ f−N(K∗

∞), it is clear that,

for any N ∈ N fixed, µN
n converges to ν∗

N when n goes to infinity. That means, for every

N ∈ N fixed, for every ε > 0, there exists n(ε,N) ∈ N, such that

∣

∣

∣

∣

∫

ϕ dν∗
N −

∫

ϕ dµN
n

∣

∣

∣

∣

< ε,

for all n ≥ n(ε,N), for every ϕ : M → R continuous.

Lemma 3.6. — µ∗ = ν∗

Proof. — Let ϕ : M → R continuous and let ε > 0. Fix N ∈ N such that

|

∫

ϕdν∗ −

∫

ϕdν∗
N | < ε and |

∫

ϕdµn −

∫

ϕdµN
n | < ε,

for every n ≥ 1. Fixed N , let n ∈ N such that

|

∫

ϕdµn −

∫

ϕdµ∗| < ε and |

∫

ϕdν∗
N −

∫

ϕdµN
n | < ε,

and finally,

|

∫

ϕdν∗ −

∫

ϕdµ∗| ≤ |

∫

ϕdν∗ −

∫

ϕdν∗
N | + |

∫

ϕdν∗
N −

∫

ϕdµN
n |

+|

∫

ϕdµN
n −

∫

ϕdµn| + |

∫

ϕdµn −

∫

ϕdµ∗|

< 4ε.

We conclude that µ∗ = ν∗ and so µ∗ is a Gibbs cu-state, concluding the proof of Theorem C.
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3.2.1. Convergence of the densities. — Let Dn and D be disks in Kn
∞ and K∗

∞ respectively

such that D is accumulated by Dn as n goes to infinity. Let ρn and ρ be the densities of µn

and µ∗ defined in Dn and D respectively. We may assume, for n large enough that Dn = D.

From Proposition 2.1 we know that ρn and ρ are Hölder continuous functions with the

same Hölder constants and uniformly bounded away from zero and infinity.

Proposition 3.5. — ρn converge to ρ uniformly.

Proof. — Since ρn and ρ are uniformly bounded away from zero and infinity, then log ρn and

log ρ are uniformly bounded.

Denoted by Ju
k,n(x) = | det Df−1

n |Ecu
fk

n(x)
| and Ju

k (x) = | det Df−1|Ecu
fk(x)

|, k ≥ 0. From

Proposition 2.1 we have

ρn(x)

ρn(y)
=

∞
∏

k=0

Ju
k,n(x)

Ju
k,n(y)

and
ρ(x)

ρ(y)
=

∞
∏

k=0

Ju
k (x)

Ju
k (x)

,

for all x, y ∈ D, and for n ≥ 1. Then, repeating the proof of Lemma 2.5 we have, for every

n ≥ 1,

|log ρn(x) − log ρn(y)| ≤
∞

∑

k=0

| log Ju
k,n(x) − log Ju

k,n(y)|

≤
∞

∑

k=0

C1distfk
n(D)(f

k
n(x), fk

n(y))ξ

≤
∞

∑

k=0

C1C
ξe−kλξdistD(x, y)ξ.

The same inequality hold for | log ρ(x) − log ρ(y)|. In consequence, the set {ρn, ρ} is

equicontinuous. Arzela-Ascoli theorem implies the result.

4. Gibbs cu-states and SRB measures

In this section we study the relationship between Gibbs cu-states and SRB measures and

conclude with some applications of our result to the study of statistical stability for partially

hyperbolic systems. First, our goal is to prove Corollary D.

We assume that f is a C2-diffeomorphism with a topological attractor Λ with a dominated

splitting which is non-uniformly expanding along the center-unstable direction. Consider a

disk D transverse to the center-stable direction. First, we prove that the constructions of
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the previous section can be done replacing the disk D by a positive Lebesgue measure subset

E.

Proposition 4.1. — Given a center-unstable domain D and any positive Lebesgue measure

set E ⊆ D, every weak* accumulation point of

µn,E =
1

n

n−1
∑

j=0

f j
∗

(

mE

mD(E)

)

has an ergodic component which is a Gibbs cu-state of f .

Proof. — Given any δ > 0 we may find pairwise disjoint domains D1, ..., Ds in D such that

the relative Lebesgue measure on E inside each Di is larger than 1−δ, and the total measure

of E outside the union of the Di is less than δmD(E). Then, for any j ≥ 1, we have

f j
∗

(

mE

mD(E)

)

=
s

∑

i=1

mD(Di)

mD(E)
f j
∗

(

mDi

mD(Di)

)

+
1

mD(E)
f j
∗m(E\∪s

i=1
Di) −

1

mD(E)

s
∑

i=1

f j
∗mDi\E.

The total masses of both the second and the third term do not depend on j, and are less

than δ. Therefore, every accumulation point of µn,E differs from an accumulation point of

s
∑

i=1

mD(Di)

mD(E)

1

n

n−1
∑

j=0

f j
∗

(

mDi

mD(Di)

)

by a measure whose total mass is less than δ. Applying Theorem 1.2 to each domain Di, every

point of accumulation of this last sequence has an ergodic component which is a Gibbs cu-

state whose densities are uniformly bounded and satisfy the ratio relation of Proposition 2.1.

Making δ go to zero and applying Theorem A, Theorem B and Theorem C we get that every

weak* accumulation point of µn,E has an ergodic component which is a Gibbs cu-state.

Proof of Corollary D: Let µ be an ergodic SRB measure for f supported in Λ. Consider any

disk D inside U , where U is a neighborhood of Λ as in Subsection 1.1. Let us suppose the

D is transverse to the center-stable subbundle and intersecting the basin of µ on a positive

Lebesgue measure subset D0. On one hand,

1

n

n−1
∑

j=0

f j
∗

(

mD0

mD(D0)

)

=
1

mD(D0)

∫

D0

1

n

n−1
∑

j=0

δfj(x) dmD(x)

converges to µ when n → ∞. On the other hand, from Proposition 4.1 and the hypothesis

of ergodicity it follows that µ must be a Gibbs cu-state.
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4.1. Statistical Stability. — Now we present several applications of our results to the

study of statistical stability for systems with a weak form of hyperbolicity.

4.1.1. The partially hyperbolic case. — Now we assume that f has a partially hyperbolic

attractor Λ with splitting TΛM = Ecu ⊕ Es. The measure µ constructed in Section 3 has

an ergodic component µ∗, with support contained in Λ, which is a Gibbs cu-state. Then

there exists a disk D∞ ∈ K∞ such that mD∞
(B(µ∗)) > 0 ([2], lemma 4.5). Because the

strong-stable foliation is absolutely continuous [8], m(B(µ∗)) must be positive, so µ∗ is an

SRB measure. Moreover, a full Lebesgue measure subset of U is contained in the union of

finitely many SRB measures supported in Λ ([2], corollary 4.6)).

Proof of Corollary E: Let (µn)n be a sequence of ergodic SRB probability measures for fn,

converging to µ in the weak* topology. By Corollary D each µn is a Gibbs cu-state for fn

and, by Theorem C, µ is also a Gibbs cu-state for f . By Theorem A, there exist a cylinder

C∗ and a family K∗
∞ of disjoint disks contained in C∗ which are graphs over Bu and local

uniformly expanding manifolds. Moreover, µ(K∗
∞) ≥ α > 0 and µ is absolutely continuous

with respect to Lebesgue measure along these disks.

Now if we take a tubular neighborhood of D∞ ∈ K∞ given by Lemma 2.6 using the stable

foliation, then since this foliation is Hölder continuous we have a positive Lebesgue measure

set of points in B(µ), so µ is an SRB measure. By Theorem 1.1 there are finitely many

ergodic SRB measures and the union of their basins covers a full Lebesgue measure subset

of U , so µ must be in the convex hull of such measures.

4.1.2. The dominated splitting case. — In the setting where f has an attractor with domi-

nated splitting Ecs⊕Ecu and with s = dim Ecs Lyapunov exponent of µ all negatives, µ is in

fact a SRB measure. This is a consequence of the absolute continuity property of µ and the

absolute continuity of the stable lamination [15]: the union of the stable manifolds through

the point whose time averages are given by µ is a positive Lebesgue measure subset of M .

Proof of Theorem F: First we prove the existence of SRB measures. Let µ be an ergodic

Gibbs cu-state for f . It exists by Theorem 1.2. Let D∞ be a disk such that D∞∩B(µ)∩R(f)

has full Lebesgue measure on D∞. Such a disk exists by Lemma 2.6, and is contained in

some local unstable manifold. By hypothesis, a positive Lebesgue measure subset of D∞

satisfies (3). So the set A of points in D∞∩B(µ)∩R(f) satisfying (3) has positive Lebesgue

measure on D∞.

For ε > 0, we denote by D∞(ε) the tubular neighborhood of radius ε around D∞, defined

as the image under the exponential map of M of all the vectors of norm less that ε > 0 in

the orthogonal complement of Ecu
x , for all x ∈ D∞. If ε > 0 is small enough then D∞(ε) is

a cylinder.
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For every point in x ∈ A, there exists a C1 embedded disk W s
loc(x) tangent to Ecs

x at x such

that the diameter of fn(W s
loc(x)) converges exponentially fast to zero as n → ∞. These disks

W s
loc(x) depend in a measurable way on the point x, and the lamination {W s

loc(x) : x ∈ A}

is absolutely continuous. Since A ⊆ B(µ) every y ∈ W s
loc(x) is in B(µ) also.

The domination condition on the splitting together the absolute continuity of the stable

lamination implies that every disk D tangent to the Ecu direction crossing D∞(ε), and close

enough to D∞, intersects the lamination {W s
loc(x) : x ∈ A} in a positive Lebesgue measure

subset. Finally, Fubini’s Theorem implies that the Lebesgue measure of B(µ) is positive.

Now we prove that there are finitely many ergodic SRB measures. Suppose otherwise.

Let (µn) be a sequence of ergodic SRB measures of f converging in the weak* topology to

a measure µ. By Corollary D, each µn must be a Gibbs cu-state for f . Theorem C implies

that µ is a Gibbs cu-state. By the argument used above, µ must be an SRB measure also.

Observe from Theorem B that µn ∈ G(f) for each n, so there is a sequence Cn of hyperbolic

blocks associated to µn converging to C, a hyperbolic block associated to µ. Moreover, the

size of the disks crossing the cylinder is uniformly bounded from below.

Let D∞ crossing C, D∞(ε) and A be the sets defined above for µ. Let Dn be the corre-

sponding disk defined for µn in the block Cn, given by Lemma 2.2. For n ≥ 1 large enough,

the disk Dn crosses D∞(ε). The argument above implies that Dn intersects the lamination

{W s
loc(x) : x ∈ A} in a subset with positive Lebesgue measure on Dn. Each Dn is contained

in some local unstable manifold, so if there exists some point in the basin of µ then every

point in these manifolds is in the basin too. But there exists a positive Lebesgue measure

subset of Dn contained in the basin of µn, so B(µ) = B(µn) for all n > 1 large enough, and

then µ = µn.

Let µ1, . . . µn be the finitely many SRB measures for f supported in Λ. Now we prove that

m(B(Λ) \∪n
i=1B(µi)) = 0. Suppose that m(U \∪n

i=1B(µi)) > 0. Then there exists a C2-disk

D tangent to the center-unstable cone field such that conditions 1 and 2 of Section 3.1 hold

and mD(D ∩ ∪n
i=1B(µi)) = 0. Let µ = µi be a Gibbs cu-state constructed from the iterates

of Lebesgue measure on D as in Section 3.1.

From this construction, given k ≥ 1 large enough, the Lebesgue measure of fn(D)∩B(µ)

on fn(D) is bounded from below away from zero, thus the Lebesgue measure of D ∩ B(µ)

on D is also bounded from below and away from zero. This is a contradiction.

In order to prove statistical stability, consider (fn)n a sequence of C2-diffeomorphisms

converging to f in the Ck-topology, k ≥ 2. Assume that (µn)n is a sequence of ergodic

SRB measures for (fn)n≥1 and that µ is a weak* accumulation measure of this sequence. By

Corollary D, each µn must be a Gibbs cu-state for fn. Theorem C implies that µ is a Gibbs

cu-state. By Theorem A every ergodic component of µ is a Gibbs cu-state. Applying to

each ergodic component of µ the argument used above, every ergodic component of µ must

33



also be an SRB measure, and so it must be in the convex hull of finitely many ergodic SRB

measures.

Example : Bonatti and Viana [4] constructed an open class of Ck-diffeomorphisms N ,

k ≥ 2, defined on T
n, n ≥ 4 such that every f ∈ N satisfies:

(a) f has a dominated splitting but is not partially hyperbolic,

(b) f is non-uniformly expanding in the center-unstable direction.

They also proved there exist SRB measures for such f . After this, Tahzibi [24] proved that

(c) the SRB measure is unique.

In this case, the SRB measure corresponds to a unique Gibbs cu-state and by Theorem C

this SRB measure is Ck-statistically stable, k ≥ 2.

Remark 8: However, it is not known whether there are general conditions ensuring the

uniqueness of the SRB measure for partial hyperbolic diffeomorphisms or for diffeomor-

phisms with dominated splitting.
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