ON HALPHEN’S THEOREM
AND SOME GENERALIZATIONS

A. LiNs NETO*

ABSTRACT. Let M™ be a germ at 0 € C™ of an irreducible analytic set of dimension n, where n > 2
and 0 is a singular point of M. We study the question : when there exists a germ of holomorphic
map ¢: (C™,0) — (M,0) such that ¢~1(0) = {0} ? We prove essentialy three results. In Theorem
1 we consider the case where M is a quasi-homogeneous complete intersection of k£ polynomials F' =
(F1, .-y F}), that is there exists a linear holomorphic vector field X on C™, with eigenvalues A1, ..., Ay, €
Q4+ such that X (FT) = U.FT, where U is a k xk matrix with entries in ©.,,,. We prove that if there exists
a germ of holomorphic map ¢ as above and dimg (sing(M)) < n—2 then A1 +... + Ay, > Re(tr(U)(0)).
In Theorem 2 we answer the question completely when n = 2, £ = 1 and 0 is an isolated singularity of
M. In Theorem 3 we prove that, if there exists a map as above, k¥ = 1 and dim¢(sing(M)) < n — 2,
then dime(sing(M)) = n — 2. We observe that Theorems 1 and 2 are generalizations of some results
due to Halphen [Ha).

Around 1884 Halphen proved the following result (cf. [Ha] or [Ha-1], chap. I, pg. 15):
Theorem. Let f, g and h be three (non zero) homogeneous polynomials in C?, two by two without
common factors. Suppose that fP? 4+ g% + h"™ = 0, where p,q,r are integers, 2 < p < g < r and

p.deg(f) = q.deg(g) = r.deg(h). Then

1 1 1
(1) - +-+->1
p q r
Moreover, for each solution of the inequality (1), then
(a). There exist homogeneous polynomials F, G, H in C? such that F? + G4+ H" = (.

(b). If f,g,h are three homogeneous polynomials in C™ without common factors which satisfy
fP+g9+h" = 0, then there exists a homogeneous map ¢: C* — C? such that (f, g, h) = (F, G, H)o.

In other words, we can say that for each solution (p,q,r) of the inequality (1), there exists a
map ¢ = (F,G,H):C? — M, where M = {(X,Y,Z) € C3| XP + Y9 + Z" = 0}, such that if
M* = M\ {0} and ¢ := |c2\{03, then ¢1: C*\ {0} — M* is the holomorphic universal covering
of M*.

The purpose of this paper is to generalize this result in two ways. First of all, we will generalize
inequality (1) for germs of holomorphic maps ¢: (C*,0) — (M™,0), where M™ C C™, m =n + k,
is a quasi-homogeneous complete intersection defined by polynomials F; = ... = Fy, = 0. In order
to state our first result, we need some definitions.

Definition 1. Let M # {0}, be a germ at 0 € C™ of an analytic set defined by an ideal Z of
germs at 0 € C™ of holomorphic functions. We say that M is quasi-homogeneous, if there exists a
germ at 0 € C™ of holomorphic vector field X with the following properties :
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(a). There exists a local holomorphic coordinate system (xy, ..., 2,,) around 0 € C™ where X =
E;.n:l )\j.xj% and A\; € Qi forall j =1,...,m.
(b). X@Z) ={X(F)|Fel}CT.
In this case, we will say that M is quasi-homogeneous with respect to X (briefly g.h.w.r. to X).
Remark 1. Condition (b) means that X is tangent to M and M is invariant by the flow Xp
of the vector field X : Take a representative M C B of M, where B is a ball around 0 € C™
and M is a closed analytic subset of B. If p € M and T € C is such that Xr(p) € B then
Xr(p) € M. In fact M is the germ of a global analytic subset of C™ : Since A1, ..., A > 0, we
get that sat(B) := {X7(p)|p € B} = C™. This implies that sat(M) = {X7(p)|p € M,T € C} is
an analytic subset of C™ which extends M and the germ at 0 of sat(M) is M. From now on a
quasi-homogeneous analytic set will be considered as an analytic subset of C™, for some m.
Remark 2. The name quasi-homogeneous is motivated by the situation where Z =< F' > and
P is quasi-homogeneous, that is there are kq,...,k,,¢ € N such that F(Tkl.xl,...,Tkm.xm) =
T¢.F(x1, ..., 7). In this case, if we take X = Py %x]’% then X(F)=F and M = F~1(0) is
gh.w.r. to X. Note that the relation X (F) = F implies that F' is a polynomial. An example is
Py, o tm) = 27" . Fapm and X = 3770 n%'xjaixj? where X(F) = F and F is gh.w.r. to X.
This example will be used in Corollary 2.

In our first result we will consider the following situation : M™ C C™, m = n + k, will be an
irreducible complete intersection of k polynomials Fi, ..., Fi. We suppose that M is q.h.w.r. to
a diagonal vector field X = E;nﬂ Aj & ain, where A1, ..., A, € Q.. The condiction that M is

q.h.w.r. to X means the following : let F' = (Fy,...,F})T, where (...)T is the transpose of the
vector (...). Then M is q.h.w.r. to X if, and only if]

(2) X(F)=UF,

where X (F) = (X(F), ..., X(F))T and U = (ui;)1<i,j<k is a k x k matrix with entries u;; € Opig.
We set tr(U) = Ele Ujje

Definition 2. Let M™ be an irreducible analytic subset of dimension n of a ball B C C™. We
will denote by sing(M) the singular set of M. We will say that dimc(sing(M)) < k if, either
sing(M) =, or sing(M) # () and all irreducible components of sing(M) have complex dimension
< k. We will say that dime(sing(M)) = k if sing(M) # @ and all irreducible components of
sing(M) have complex dimension k. Let p € M and ¢: (C™, q) — (M, p) be a germ of holomorphic

map. We will say that ¢~!(p) = {q} if there exists a representative of ¢, denoted again by ¢, say
#:V — M, such that ¢~ 1(p) NV = {q}.

The first generalization is the following :

Theorem 1. Let n > 2 and M™ C C™, m = n+k, be an irreducible complete intersection defined
by (Fy =...= F, =0), q.h.w.r. to the linear vector field

i 0
X(2) =Y Az PR
j=1 J

with Ay, .., A, € Q4. Let X(F) = U.F and A = Re(tr(U)(0)), where F and U are as in
(2). Suppose that dimc(sing(M)) < n — 2 and that there exists a germ of holomorphic map
¢:(C",0) = (M,0) such that ¢~"(0) = {0}. Then 337", X; > A,

As a particular case, we get the following :
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Corollary 1. Let M C C™, m = n+ k, be an irreducible complete intersection (F} = ... =
Fr, = 0) with dime(sing(M)) < n — 2. Suppose that there exists a germ of holomorphic map
¢: (C™,0) — (M, 0) such that $~*(0) = {0} and a linear vector field X as in Definition 1 such that

X(Fy) = 4;.F;, Vj, where £; € Q., j = 1,...,k. Then >70 A; > 3% 4;.

We observe that the above result is no longer true if sing(M) has some component of dimension
n — 1 (see example 6).

As a consequence, we obtain a generalization of the first part of Halphen’s theorem :

Corollary 2. Let M, 4, C C? be the surface given by 2P 4+ y? + 2" = 0, where p,q,r € N
and p < q < r. Suppose that there exists a holomorphic map ¢:U — M, ), where U is some
neighborhood of 0 € C", n > 2, such that ¢(0) = 0 € M and ¢~*(0) = {0}. Then ; + ¢ ++ > 1
and, if 2 <p < q <, then (p,q,7) € {(2,2,7),(2,3,3),(2,3,4),(2,3,5) }.

In the next two results we will consider germs at 0 € C"! of hypersurfaces. We need another
definition.

Definition 3. TLet M, My be two germs at 0 € C™ of analytic sets. We will say that M;
and My are equivalent if there exists a germ of biholomorphism : (C™,0) — (C™,0) such that
Y(My) = Mo.

The second generalization is the folowing :

Theorem 2. Let M be a germ at 0 € C? of hypersurface with an isolated singularity at 0. Suppose
there exists a germ of holomorphic map ¢: (C?,0) — (M, 0), such that ¢=1(0) = {0}. Then M is
equivalent to one of the following surfaces :

(a). M, 4.0, where (p,q,7) € {(2,2,7),(2,3,3),(2,3,4),(2,3,5)}.

(b). X = {(z,9,2) € C*| 22 = xy(y — 2™ )}, where m > 1.

(c). Y = {(z,y,2) € C*| 2 = y(y* +2)}.

(d). Zp = {(2,y,2) € C3| 22 = 2(y? + 22™ 1)}, where m > 1.

Moreover, the surfaces in (a)—(d) are two by two non-equivalent.
Concerning the dimension of the singular set of A we have the following result :

Theorem 3. Let M be a germ at 0 € C™"! n > 3, of hypersurface where dimg (sing(M)) < n—2.
Suppose there exists a germ of holomorphic map ¢: (C™,0) — (M, 0), such that ¢—1(0) = {0}. If
0 € sing(M) then dime(sing(M)) =n — 2.

Observe that Corollary 2 of Theorem 1 could be stated for hypersurfaces of the form
Mny,..n) = {27 + ... + 2 = 0}, for any m > 3 (see Remark 2). However, Theorem 3 implies
that for m > 4 there is no germ of holomorphic map ¢: (C™~*,0) — (M, 0) such that ¢—1(0) = {0},
because sing(Mn, .. n,.)) = {0}

In the next four examples we show that for any one of the surfaces as in (a), (b), (¢) or (d), there
exists a regular map ¢ like in Theorem 2. In all the examples, the map ¢|c2\jo3: C* \ {0} — M~
is a universal covering of M* = M \ {0} (see also [9], [K], [Ha] and [Mi]).

Example 1. The parametrizations ¢:C? — Mp,q,r) > Where p,q,r satisfy the inequality (1), is
closely related with Platonic solids and to the non-cyclic finite subgroups of PSL(2,C). Some of
them were known already by Euler, Hoppe, Liouville and others, but the general case was found by
Schwarz (cf. [S] and also [K], [Ha], [B-D] and [Mi]). If 2 < p < ¢ < r then, the possible solutions
of inequality (1) are (p,q,7) € {(2,2,7),(2,3,3),(2,3,4), (2,3,5)}. In each case, the holomorphic
map ¢ = (F, G, H):C* — M, 4 can be obtained by considering a finite subgroup of PSL(2,C).
These groups were classified by Klein and are the following (cf. [F] and [B-D]) :

(a). The Dihedral group of order 2r. From this group it can be obtained the parametrization of
Maz2,m-
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(b). The Tetrahedral group, the group of isometries of C ~ §? C R* which leaves invariant the
regular tetrahedral inscribed in S$2. From this group it can be obtained the parametrization of
M2,3,3).

(c). The Octahedral group, the group of isometries of S? which leaves invariant the regular
octahedral (or cube) inscribed in S2. From this group it can be obtained the parametrization of
M2,3,4)-

(d). The Icosahedral group, the group of isometries of S? which leaves invariant the regular icosa-
hedral (or dodecahedron) inscribed in S 2. From this group it can be obtained the parametrization
of M(2’3’5) .

Some explicit formulae for the uniformizations can be found in [B-D], pages 55 and 56. We
observe that, in all cases, the map ¢ is such that ¢|c2\g03:C*\ {0} — Mg, , » is a universal
covering of M, v = Mg \ {0} (cf. [Mi]). Moreover, we have the following :

(a). In the case (2,2,7), ¢ has topological degree r and #(m; (M(*2’2’T))) =r.

(b). In the case (2,3,3), ¢ has topological degree 8 and #<7T1<M(*2,3,3))) =8.

(c). In the case (2,3,4), ¢ has topological degree 24 and #<7T1<M(*2,3,4))) = 24.
(d). In the case (2,3,5), ¢ has topological degree 120 and #(m; (M(*2’3’5))) = 120.

In the next three examples we will use that M, .. is equivalent to the surfaces given by
a.xP? + b.y? + c.z" = 0, where a,b,c € C*.
Example 2. Let X,,, = {(z,y,2) € C*| 2% = ay*® — 2™ 'y} and M2 2 2:m) be given as {(u,v,w) €
C?|u? — v? + w? = 0}. Consider the map ¢:C®> — C® defined by (v,y,2) = ¢(u,v,w) =
(u?,v%, u.v.aw). Note that,

2

22— py? + 2™t 2

y=u .v2(w2 — ’U2 =+ u2m) — @(M(2,2,2m)) C Xm .

Let ¢ = ga]M(2’2,2m):M(2’2’2m) — X It is easy to see that ¢~1(0) = {0} and #(¥~(po)) = 4
for all pg € Xy, \ {0}. This implies that 1| M@ 5 5.,y = X, 18 a covering map with four

(*2,2,2777,) :
sheets. Therefore, if 1;:C? — M2.2,2m) is as in (a) of example 1, then ¢ = ) o P1:C? = X,
satisfies ¢71(0) = {0}. Moreover, ¢|c2\ 103:C* \ {0} — X7, is a (universal) covering map with 8m
sheets. In particular, we have # (71 (X},)) = 8n. Observe that X, is q.h.w.r. to the vector field

1 8+ m 3+1 0
T on+1" o 2m—|—1y8y 2%,

Example 3. Let Y = {(z,y,2) € C*|2* = y(y* + 2°)} and M2 34 be given as {(u,v,w) €
C? |u?—v® —w* = 0}. Consider the map p: C* — C3 defined by (z,y, 2) = p(u,v,w) = (u, w?, v.w).
It can be checked that ¢(Mz3.4)) C Y and that, if ¢ = @|ar, , 4 M(2,3,4) = Y then ~1(0) = {0}
and ¢’M€2,3,4> : M(*2’3’4) — Y* is a covering with two sheets. Therefore, if : C? — M3,3,4) is as in
(c) of example 1, then ¢ = 1potpy: C* — Y satisfies 71 (0) = {0}. Moreover, ¢|c2\(03: C*\ {0} = ¥
is a (universal) covering map with 48 sheets. In particular, we have #(m (Y ™)) = 48. Observe that
Y is quasi-homogeneous with respect to the vector field

0 0

¥ 2 +1 +1 5]
=—x—+cyY—+-25 -
9“5z 378y 2% 5,

Example 4. Let Z,, = {(z,y,2) € C*|2? = 2(y* + 2*™™)} and M2 202m-+1)) be given as
{(u,v,w) € C*|u2Cm+1) 4 42 —w? = 0}. Consider the map ¢:C® — C? defined by (z,y,2) =
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(u,v,w) = (u? v,uw). It can be checked that ¢(M22202m+1))) C Zm and that, if ¢ =
Pl Mesznminy: M(2,2:22m+1)) = Zm then ¢~ 1(0) = {0}. As in examples 2 and 3,

. ES ES
w’M(*2,2,2(2m+1))'M(2,2,2(2m+1)) = Zm

is a covering with two sheets and if ¥:C?> — M2.2.202m+1)) 1s as in (a) of example 1, then
¢ =P otp: C* = Z,, satisfies ¢7(0) = {0}. Moreover, ¢|c2\j03:C* \ {0} — Z;, is a (universal)
covering map with 4(2m + 1) sheets. In particular, we have #(m1(Z},)) = 4(2m+1). Observe that
Zm 1s quasi-homogeneous with respect to the vector field

1 0 2m +1 0 1 0

dm+ 1) oz Am+D) Yy T270:

Let us give an example in higher dimension.

Example 5. Let
M = {(20, .y 20) EC" |28 = 21...2,,} .

We have the following map ¢: C* — M,

¢ = (G0, Hn) , Where do(u, ..., un) = ur..tty, and ¢j(ug, .., un) =uf , j=1,..,n.
Observe that dime(sing(M)) =n —2, $~1(0) = {0} and M is quasi-homogeneous, that is X (25 —
21 .2p) = 25 — z1...2,, Where

18 1~ 0
X =92 4+ = 9
pz08z0 +n;Z‘78zj

Example 6. In this example we show that the hypothesis dimg(sing(M)) < n — 2 is the best
possible in Theorem 1. Tet M = {(wg, 1, 22...,2,) € C"T} F(z) = 2§ — 23.23...22 = 0}. Then
M is irreducible and sing(M) = Uj_, S;, where S; = {z¢ = x; = 0} and dimc(S;) =n — 1. The
reader can easily verify that the map ¢: C™ — M defined by

D(U1, U2y ey Up,) = (Up ..U, u%, ug, ,ui)

satisfies ¢~1(0) = {0}. On the other hand, let X = 37" ; A; zj52 be a vector field such that
X(F) = F and Ag, ..., A, € Q1. Then we must have g = % and 3\; +2X3 + ... +2), = 1. But
this implies that Ay + ... + A, < % and so E?:o A; < % + % < 1.

Remark 3. We would like to observe that the conclusion of Theorem 3 is not true if ¢ is not
holomorphic. Indeed, there are examples of hypersurfaces of the form

M, = {(1}07 ...7117”) & Cn+1’ ZEISO + ...+ LE?r)L” = 0} s

with n > 3 and po, ..., pp, > 2 such that K, = M,N S, is homeomorphic to a sphere S*"~* (cf. [Hi
and [Mi]), where S, = {(20, .., xn)| |z0|* + ... + |2n|? = r?}. Since M, is homeomorphic to a cone
over K, (cf. [Mi]), then M, is homeomorphic to C" in these cases and there exists a continuous
map ¢:C" — M, satisfiyng the hypothesis of Theorem 3, but dime(sing(M,)) = 0. An example
of such hypersurfaces is when pg =3, p1 = ... = p, = 2 and n is odd (cf. [Mi]).

We would like to state the following problems :
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Problem 1. TLet M"™ be a germ at 0 € C*** of an irreducible complete intersection, where
dime(sing(M)) = n — 2 and, either n,k > 2, or k = 1 and n > 3. Suppose that there exists a
germ of holomorphic map ¢: (C™, 0) — (M, 0). Is M (as germ) equivalent to a quasi-homogeneous
analytic set 7 We would like to observe that when n = 2 and k& = 1 the answer is yes. This fact
will be proved in §3 and it is crucial in our proof of Theorem 2. However, our proof works only
when the singularities of M are isolated and this is not the case if n > 3 and k = 1, by Theorem 3.

Problem 2. Is it possible to classify the germs at 0 € C"!, of hypersurfaces M such that
dime(sing(M)) = n — 2 and there exists a germ of holomorphic map ¢: (C™,0) — (M, 0), when
n > 3 7 This question seems easier when we restrict to the case where M is quasi-homogeneous.

Another interesting problem, suggested by the referee, is the following :

Problem 3. In the case of a surface M? with an isolated singularity at 0, every germ of
holomorphic map ¢: (C?,0) — (M, 0) factorizes through the universal covering of M*. What
happens in higher dimensions ? Does a local uniformization of a quasi-homogeneous hypersurface
gives rise to a global one by the affine space ?

The next section will be devoted to the proof of Theorem 1. The proof of this theorem will be
based on the existence of a holomorphic n-form 7 on M* = M \ sing(M) such that n(p) # 0 for
any p € M*. This form will be used also in the proofs of Theorems 2 and 3, which will be done in
83 and in §4, respectively. As a consequence of the proof of Theorem 2 we will obtain the following
result (see Lemma 5 of §3) : "Let M be a germ at 0 € C? of an irreducible surface with an isolated
singularity at 0. Let n be a holomorphic 2-form on M* such that n(p) # 0 for all p € M*. If
n = dw, where w is holomorphic, then M is equivalent to a quasi-homogeneous surface in C*.” The
converse of this statement is not true (see Remark 4 at the end of §3.1).

I would like to aknowledge the referee for many suggestions which have improved a lot the paper.
In particular, in the original version of the paper Theorem 1 was proved for hypersurfaces and he
suggested that it should be true also for complete intersections, which in fact I have done in the
final version.

§2. Basic facts and proof of Theorem 1.

§2.1. Basic facts. Let M™ be a germ at 0 € C™, m = n+k, of an irreducible complete intersection
defined by (Fy = ... = Fy, = 0), where Fy,...F; € O,. We will consider a representative of M,
denoted by the same letter, which is an analytic subset of a ball B C C™. It is well known that
the singular set of M is given by sing(M) = {p € M|dFi(p) A ... NdFy(p) = 0}. We will suppose
that 0 is effectively a singularity : 0 € sing(M). We will use the notation M* = M \ sing(M).
Note that, if p € M™ then

TPM* = {’U & TpCm’iv<dF1<p) ARERA dFk(p)) - 0} ’

where i, denotes the interior product.

We are going now to describe a well-known construction, which proves that there exists a non-
vanishing holomorphic n-form on AM*. Let us consider a holomorphic coordinate system in B, say
(21, ooy @m). The k-form © := dF| A ... A dF}, can be written as

@ZZ@[dJJ[,
I

where I = {i; < .. <ix} C{l,...,m}, de; =dx;, A... Adx;, and 1 = det(Fj ., )1<jr<k. Given
I={i1 <..<igp},set Uy ={2€U|®; # 0} and M; = U;N M. We observe that (M;) ek is
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a covering of M* by Stein open sets, where K = {{i; < ... < ix}|1 < i; < m}. For I € K, let
JI)={1,..,m}\ I = {j1 <..<jn} and nr be the n-form on U; defined by

o(I)
_ 2y
" D,

T jy Ao A dl’jn s
where o(I) € {1, —1} is chosen in such a way that @ An; = day A ... A dxy,. Given I,J € K set
Mry=M;N\M;.
Claim 1. If I, J € K then n7|m,, = 17|m,,- In particular, there exists a holomorphic n-form m
on M* such that m |y, = nr|am, for all I € K. Moreover, n1(p) # 0 for all p € M*. In particular,
the (n,n)-form

p1=ca A

. (1) .
where ¢ = i".(—=1)" =z , is a volume form on M*.

Proof. We will use the following fact : let # be a holomorphic m-form defined in an open set
V € B, m < n. Then 0|y-nv = 0 if, and only if, O(p) A 6(p) = 0 for all p € M* N V. Given
I,J € K we have © Any = dxy A ... Adxy, = O Any, which implies © A (n; —ny) = 0. Hence,
(n1 — 1) am,, = 0, which proves the first part of the claim. Now, let p € M* and {vy,...,v,} be
a base of T, M*. Since M* = Uy My then p € M7 for some I. Therefore, n1(p) = n1(p)|r,a+ and
m(p)(v1, ..., vn) = nr(p)(V1, .y vy). Let uq, ..., up € T,C™ be such that {uq,...,uk,v1,...,0,} is a
base of T,C™. A straightforward computation using that i, (0(p)) = 0 for all j = 1,...,n, gives

0# dey A oo Ndx (Ugy ey Ug, V14 oy ) = O(D) ANr(p) (U, voey Ug, V1,4 oy Uy) =

= 0O(p) (U1, ey ur) M (P)(V1, ey vr) = M(p)(V1,.c,vpn) # 0.
[
Now, let M be quasi-homogeneous with respect to the vector field X (z) = E;nﬂ A x; %,

where A, ..., A, € Q4. Set X(F) = U.F, where F and U are as in (2). Let 1, be the n-form on
M?* considered in claim 1.

Claim 2. We have Lx(m) = fon, where [ = 377" X\j — tr(U)|y+ and Lx denotes the Lie
derivative along X. Moreover, there exists h € O*(M™*) such that if n :== h.myy then Lx(n) = a.n,
where a = f(0).

Proof. Since n1|a, = n1|am, and M* = Uy My, it is sufficient to prove that Lx (n7)|a, = fnr|ag
for all I € K. Set tr(X) = 37", A;. Given I € K, we have :

tr(X).dxy Ao Nday, = Lx(day A oo Ndy,) = Lx (O Anp) = Lx(©) Anr+ 0O A Lx(nr) -

On the other hand,

k
Lx(©) = Lx(dFy A ... AdFy) =Y dFy A .. Ad(X(F) A ... AdF}, .

=1

Since X (F;) = Zle uji Fy, given p € M™* we get :

Lx(®)(p) = Z ujj(p).(dFy Ao NAF; A .. NdEy)(p) = tr(U)(p).O(p) .

Jj=1



8 A. LINS NETO*

Therefore,

tr(X).0(p) Ani(p) = tr(U)(p).0(p) Ani(p) +O(p) A Lx (n1)(p) =

(3) O(p) A [Lx (nr)(p) — (tr(X) —tr(U)(p))m(p)] =0 .

Since 77| a; = m1|a, and X is tangent to My, we have Lx (n1)|a, = Lx (m1)|ar, . Hence, (3) implies
that Lx (m1)(p) = (tr(X) — tr(U)(p))m(p), p € M~

Let fi = f— f(0) and —fi(2) = E|0|>0 as.2° be Taylor series of —f; at 0, where o =
(01, s0m) € (NU{O})™, |o| = 37,05, as € C and 27 = af*..afy. If we set ¢(x) = >, bs.a7,
where b, = (E;Zl Xi-0;)"L.a,, then the series v has positive radius of convergence and satisfies
X () = —f1 (recall that X\; € QL for all j). Therefore, if hy = exp(t)) then hy € O, and
X (h1) = —hy.fi. On the other hand, if hy = hy|p+ and 1 = hg.py then,

Lx(n) = Lx(ham) = X(h2).m + ha. X(m) = ha(f — f1)m = f(0).n = an .

Let us prove that the form 7 can be extended to M*. We need the following :
Claim 3. sing(M) and M* are invariant for the low Xp, T € C, of X.
Proof. We have seen that Lx(0) = ¢r(U).0 on M. This implies that

©o Xr(p) = exp(/oT tr(U) o X,(p)ds).O(p), Vpe M = sing(M)={p € M|O(p) =0}

is invariant by Xp. Since M* = M \ sing(M), M* is also invariant for Xp. O

Denote by X;, ¢ € R, the real flow of X, X;(21,...,2) = (eMbtay, .., a,). Consider
a ball B around 0 € C"™* such that 7 is defined in B N M*. Since Lx(n) = a.n, a = f(0),
[ =tr(X) —tr(U)|m- (Claim 2), we have

(4) X7 (n)(p) = e* n(p)

for all ¢ € R and p € M™* such that both members of (4) are defined. Note that (4) and the fact
that AM* is invariant for X; imply that 7 can be extended to M*. In fact, given ¢ € M*, since
ALy ooy A > 0, and M* is invariant for X; (Claim 3), there exists ¢ € R_ such that X;(q) € M*NB.
By (4), given a base {vy, ...,v,} of T,M*, we can define

0(q).(v1, .., vy) = e~ (Xe(q)).(DX(q) .01, .., DXi(q).v0)

and this definition does not depends on ¢. This finishes the proof of Claim 2. [

§2.2. Proof of Theorem 1. From now on, we fix a representative of the germ ¢: (C™,0) — (M, 0),
denoted again by ¢, and some open ball of C", W > 0, such that ¢~1(0) " W = {0}. We will use
the following well known result ( cf. [Gu] vol. II, page 56) :

Lemma 1. If W C C” is sufficiently small, then ¢(W) is an open neighborhood of 0 in M and
O W — ¢(W) satisfies the following properties :

(a). ¢ is a proper and open map.

(b). If A C M is an irreducible analytic subset of complex dimension k then any irreducible
component of $~1(A) has complex dimension k. In particular codc (¢~ (sing(M))) > 2.
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(c). There exists d € N such that #(¢~1(p)) < d for any p € V. In fact, it is possible to find
arbitrarily small neighborhoods U of 0 in C™ and V of 0 in C**! such that ¢:U — V N M is
defined, $~1(V N M) = U and ¢|y is a finite ramified covering with d-sheets.

For r > 0 set

w 1/2 —
M, ::{ZGM]]]xH::(Z]xj]2) <r}=MnNB,(0)
j=1

and M = M, N M*. Let n be as in the Claim 2, that is such that Lx(n) = a.n, a = f(0), and p
be the volume form in M™ given by p = c.p A7. The main fact is the following :

Lemma 2. If r > 0 is small and ¢ is as in Lemma 1, then vol, (M) < + oo, where

vol, (M) = / I

~

Proof . Let v = ¢*(n), which is a holomorphic n-form on W\ ¢~ !(sing(M)). It follows from (b)
of Lemma 1 and Hartogs’ theorem, that v can be extended to a holomorphic n-form on W. This
implies that the (n,n)-form ¢*(x) can be extended to a real analytic (n,n)-form on W. Since ¢ is
proper and M, is a compact subset of ¢(W), if > 0 is small, it follows that ¢—*(M,.) is a compact
subset of W. This implies that, for » > 0 small, we have :

/ ¢"(n) < +00.
$1 (M)

Let C(¢) C W and CV(¢) = ¢(C(¢)) be the sets of critical points and critical values of ¢,
respectively. Choose open sets 0 € U C W and 0 € V C C™"! such that ¢=(V N M) = U and
¢lu:U — VN M is a ramified covering with d-sheets, d > 1. The Lemma is a consequence of the
following fact : if B,.(0) C V then :

(5) w%@ﬂ)SLIW)MW)<+w-

Let us prove (5). Since C'V(¢) has measure zero (Sard’s theorem), we have

Jor = Joenis
M MZ\CV (¢)

*
~

In order to prove (5), it is sufficient to prove that for any open subset A C M\ CV(¢), with

closure A C M} \ CV(¢), then
/ p< / ¢ (1) -
A 61 (M)

Let us fix A as above. Note that ¢|g-104):¢7'(A) — A is a regular covering with d-sheets.
Therefore,

dA“:Aumwwgéumfw”:jlﬂgéqu””

This finishes the proof of the lemma. [l
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The following lemma implies Theorem 1 :

Lemma 3. Let M, be as before and A = Re(tr(U)(0)). Iftr(X) — A <0, then vol,,(M;) = + co.

Proof. The proof will be by contradiction. It follows from (4) that X;(n)(p) = e**.n(p) for all
t € R. Hence, the (n, n)-volume form p = c.n A7 satisfies :

(6) X7 (p) = Rt

for all ¢ € R. On the other hand, if ¢ > 0 then X;(B,(0)) D B,(0), because A1, ..., A, > 0. This
implies that, if ¢ > 0 then M C int(X,(M?*)) C M*. Therefore, if vol, (M) < +oco then

vol, (M) < wol, (X (M) , ¥t >0.

Now (6) and the theorem of change of variables imply that,

vol (X (M) = / = X[ (p) = e2Re(“)t/ = 2Bt yol (M)
X (M) M; M

Therefore, if tr(X) — A = Re(a) <0, t > 0 and vol,(M;) < +oco then
vol  (M?) < vol (X, (M?)) = 2Bl ol ,(M?) < ol , (M),
a contradiction. This finishes the proof of Lemma 3 and of Theorem 1. [

83. Proof of Theorem 2.

The proof will be divided in three steps :
1%t-step. We will prove that there exists a germ of holomorphic vector field at 0 € C?, say X,
such X(F) = F, where F' = 0 is a reduced equation of M. In this case, F' belongs to its Jacobian
ideal and it follows from a theorem of Saito (cf. [Sa]), that there exists a linearizable germ of
holomorphic vector field Y on C? such that Y(F) = F. This vector field can be written in a
suitable coordinate system (z,v, ) in a neighborhood of 0 € C? as,
M.Y=X\ x(% + Ao y(% + A3 z%, where A1, A2, A3 € Q.

2"d_step. We will prove that if F' is a quasi-homogeneous polynomial with respect to X =
Al xé% + A9 yé% + A3 z%, where A, A2, A3 € Q1 and Ay + Ay + A3 > 1, then F' is equivalent to one
of the forms in (a), (b), (¢) or (d) in the statement of Theorem 2.

3"_step. We will prove that the surfaces in (a), (b), (¢) and (d) are two by two non-equivalent.

83.1. Proof of the 1st step. We will divide the proof in three Lemmas.

Let M be a germ of hypersurface at 0 € C3, with an isolated singularity at 0, given by a reduced
equation F' = 0, where F' € O3. Consider the 2-form 77 on M* as defined in §2. Suppose that
there exists a germ of holomorphic map ¢: (C%,0) — (M,0) such that $~*(0) = {0}. Given a
neighborhood V of 0 € C? such that F is defined (that is, has a representative F:V — C) and
sing(F) NV = {0}, we will use the notations My = {p € V| F(p) = 0} and M}, = My \ {0}.
Lemma 4. If V is sufficiently small, then there exists a holomorphic 1-form w on My, such that
dw =n.

Proof. Fix neighborhoods U of 0 € C? and V of 0 € C? such that I’ has a representative F: V — C,
¢ has a representative ¢: U — C3 and ¢(U) C V. As we have seen before the form ¢*(7) extends
to a closed holomorphic 2-form on U, say 0. Since 0 is closed, it follows from Poincaré Lemma that
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6 = do in a small neighborhood of 0 € C?, where « is holomorphic. Therefore, if we take U and V
small enough, we can suppose that :
(i). « is defined in U.
(ii). ¢ has a representative ¢: U — My, .

Let C(¢,U) = C be the set of critical points of ¢|y, CV = CV (¢, V) := ¢(C) C My the set of
critical values and D = ¢~*(CV). We can choose U and V in such a way that, :

(iii). ¢~ (My) =U and ¢:U \ D — My \ CV is a covering map with m sheets. We will use the
notation M for My \ CV.

We will use « to construct a form w on My such that dw = n. Let us construct w on M.

It follows from (iii) that, given a point p € M, where ¢~ (p) = {qi, ..., ¢m}, there exists a
neighborhood V,, C M of p and neighborhoods UZ}, ceey U;f of g1, .., @m, such that
(iv). V, is biholomorphic to a ball in CZ.
(v). U;,'ﬁ U =0, fgr i#j.
(vi). ¢ = gb]UI];: Uj — Vj, is a biholomorphism.

For each j = 1,...,m, consider the 1-form 3] on V, defined by 87 = ((¢3)7")*(). Since
¢*(n) = da, we have d3) = n|y,. Define a 1-form w, on V, by

14
(7) WPZEZ@];-
=1

Observe that dw, = 7. By standards arguments, we can construct a covering V = {Vp}pe a of M
by connected open sets, and a collection of holomorphic 1-forms {w;} ¢y, wp € Q' (V},), such that
(vii). If V, NV, # () then V, NV, is contractible.

(viii). dw, = n|y, for all p.

By taking the V), small, we can suppose

(ix). TV, NV, #0, ¢71(V,) = T UJ and ¢~ (V) = T U7, then for every 1 < j < m, there
exists an unique k = k(j) € {1,...,m} such that UJ NU}F # 0.

We claim that, if V, NV, # 0 then w, = wq on V, NV,. This will imply that w extends to M. In
fact, let 71 (p) = {p1, s P}, (@) ={q1, s @}, ¢~ H(V,) = U, UZZ and ¢~ (V,) = Um, Ug,
be as in (ix). Given 1 < j <m, let k € {1,...,m} be such that UJ N Ué“ # (. Since ¢J = gb]; =¢
on U;‘Z N Uf, we get from the construction that ﬁg, = ﬁf; on V, N V,. This implies that w, = w, on

Ve N V.

It follows that we can define a l1-form w on M such that dw = 1. It remains to prove that
w extends to M7,. We will use the local forms for ¢ near a singular point. Observe first, that
if we take V sufficiently small, then CV = CV(¢,V) and D = ¢~(CV) are curves such that
sing(CV) = {0} and sing(D) = {0}. Remark that, if CV = U; C; and D = U D}, are the
decompositions of C'V" and D into irreducible components, then for each k there exists an unique j
such that ¢(Dy) = C;. Moreover, if ¢ € Dy \ {0} and p = ¢(q) then D¢|r, p,: TyDy — T,Cj is an
isomorphism. Therefore we can find holomorphic coordinate systems (Ug, (u,v)) and (Vj, (z,y))
around g and p respectively, such that
(x). Uy = {(u,v) € C?||u| < 1,|v] < 1}, V, = {(z,9) € C?||z| < 1,]y| <1}, DNU, = D NU, =
{v=0}and CVNV,=C;NV, ={y=0}.
(xi). ¢(u,v) = (X(u,v),Y (u,v)) = (u,v"), for some n > 1 (Whitney’s local forms).
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Observe that on V,, we have n = h(x,y).dz A d(H(z,y)dz), where H, = —h. Therefore,
¢*(n) = d(H(u,v™)du) = do on U, and aly, = ( v™) du + dg(u,v), where g € O(U,). Let
g(u,v) = 32770 gi(u)v’.

Now, fix po = (z0,%0) € Vp \ {y = 0} and let ¢~ (po) = {q1,...,q4}. Since P(u,v) = (u,v")
for (u,v) € Uy, then U, N ¢~ '(pg) contains n points, say qi, ..., ¢,, where ¢; = (g, 67.v9), § is a
primitive n"-root of the unity and v = yo. Let D, C {y|0 < |y| < 1} be a small disk centered at
yo and b(y) = y/™ be the branch of the n**-root of y, defined in D, and such that b(yo) = vo. It
follows from the definition of g% that, for k = 1,...,n, we have gf = H(x,y)dz + dgp(z,y), in a
small neighborhood of pg, where

gr(z,y) = Z g5 (@) 8% (b(y))” .
Hence,

Z =nH(z,y)dz+d i Zn: 6]” ))‘7} nH(x,y)dx—l—nd[i gjn(x)yj} ,

because > p_, 6¥ = 0 if n does not divide j. This implies that the form > ,_; po extends to a
holomorphic 1-form on V,, say 3, such that d3 = n7. Using the same argument in the other points
of ¢~ (p) C W, it is possible to prove that Y ;" ., ﬁ;fo (po near p), extends to a holomorphic
1-form defined in a neighborhood of p, say B, such that d3 = (m —n)n. Since =(3 + B1) = w,

we get that w extends to a neighborhood of p. [

Lemma 5. Let M be a germ at 0 € C? of an irreducible surface with an isolated singularity at 0.
Let n be a holomorphic 2-form on M* such that n(p) # 0 for all p € M*. If n = dw, where w is a
holomorphic 1-form, then M is equivalent to the germ of a quasi-homogeneous surface in C>.

Proof. We will prove the lemma in the case that n is given by the construction of §2 and leave
the general case for the reader. In this case, if M; = {p € M| F,,(p) # 0} then,

dl‘g A dl‘g
Iy,

dxs N dxrq
by,

dxzy N dxg

(8) ,rl’Ml = F$3

’Ml ) 77’M2 = ’M2 and 77’M3 = ’MS‘

We will construct a germ at 0 € C?, of holomorphic vector field X, such that X(F) = F. Since
n(p) # 0 for all p € M*, we get that w = iy (n), where Y is a holomorphic vector field on M*. The
vector field Y can be extended to a a holomorphic vector field defined in a neighborhood of 0 € C2.
In fact, if V is a small Stein neighborhood of 0 € C? and Y = 2?21 Y; %, where Y; € O(My ), then
the functions Y; can be extended to holomorphic functions on V because H!(V \ {0}, O) = {0},
by [C] (see the proof of Lemma 8 of §4). We will denote this extension by the same letter. Since
M is invariant for Y we have Y (F) = h.F, where h € Os. If h(0) # 0, then we set X = +.Y. In
this case, X is a germ of holomorphic vector field at 0 € C* for which X (F) = F, and we are done.
Therefore, we have only to prove that h(0) = 0 leads to a contradiction. Remark that Y (0) = 0,
because 0 is a singular point of M.

Claim 4. LetY =Y, aiwl +Ys %2 +Ys 5%3, be such that iy(n) = w on M, where Y1,Y2,Ys € O3,
and L = DY (0) be the linear part of Y at 0. Then :

Ylwl +Y2w2 + }/?)wg =1+h
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on M. In particular, if h(0) = 0, then tr(L) = 1 and L has at least one non zero eigenvalue.

Proof. Observe first that Ly (n) = iy (dn) + d(iy(n)) = dw =1, on M*. It follows from (8) and a
straightforward computation that on M3 we have

dxzy N dxg
F..

Y<F903) o Fﬂh Ylws F902 Y2w3

9) Ly (n) = Ly ( . . L n

) = (Ylwl + You, —

On the other hand, Y (F,,) =

o o o
V() = Vs 5 () 4 5 (Y (F) = iy o, — Yoy Fay = Vi oy + oy F By

By substituting the above expression in (9) and using that M = {F' = 0}, we obtain
Ly (1) = (Yie, + Yau, + Ysay — h)n
which implies that Y1, + Yoz, + Yaz, —h =1 on M. If h(0) = 0, we get
tr(L) = Y1z, (0) + Yau, (0) + Yau, (0) = 1 .

g

Let N be a a germ at 0 € C® of a holomorphic submanifold of dimension k, k& € {1,2,3}. We
will say that it is an invariant manifold of Poincaré type for the vector field Y (briefly i.m.P.t) if
(I). N is smooth at 0 and invariant for Y.

(IT). If L is the linear part of Y at 0 then L|p,n is in the Poincaré domain, in the sense that its
eigenvalues are non zero (observe that L(ToN) = TyN) and there exists a line £ C C, 0 € ¢, such
that all eigenvalues of L|r,n are contained in one of the components of C\ £.

Lemma 6. If h(0) = 0 and N is an i.m.P.t. for Y, then

(a). N C M. In particular, dim(N) = 1.

(b). If the eigenvalue of L|pyn is A # 0, then the eigenvalues of L are A, —k.A and 1 + (k — 1)\,
where k € N.

Proof. Let us prove (a). We denote the local flow of Y by Yy = (Y4, Y3, Y2), T' € C. Since N is
smooth, we can choose a local coordinate system (z, y, z) around 0 such that N C ¥ ~ Ty N, where
Y is a linear subspace of C? and L(X) = ¥. Since the eigenvalues of L|yx; are in the Poincaré domain,
there exists a € C* such that the eigenvalues of a.L|y, have negative real part. Let Z = .Y |,
g = o.h and a > 0 be such that a < min{—Re(\)| A is an eigenvalue of Z}. It is well known (cf.
[Ar]) that there exists a neighborhood U of 0 € N such that
(i). For any p € U, Z;(p) is defined for all ¢ > 0.
(ii). If t > 0 and p € U then ||Z;(p)|| < C.e™*, where C > 0.

Since Z(F') = g.F, it follows from (i) and (ii) that
(iii). If p € U and ¢ > 0 then

F(Zi(p)) = eap( / 9(Z.(p))ds) . F(p) -

Now, ¢g(0) = 0 and (ii) imply that there exists A > 0 such that |g(Z,(p))] < A.e”*°. Hence,
I 9(Zs(p))ds is convergent, say [5~ g(Zs(p))ds =b € C. It follows from (iii) that

e F(p) = lim F(Z(p)) =0 = F(p)=0 = pcM = NCM.

t—oco
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Since dime (M) = 2 we must have dime(N) < 2. On the other hand, since M is irreducible and is
singular at 0 € C3, we must have dimg(N) = 1. This proves (a).

Let us prove (b). We can assume that N C {(2,0,0)]z € C}. This implies F(z,y,2) =
y.A(z,y,2) + z.B(x,y,z), where A, B € Os;. It follows from Poincaré’s linearization theorem
(cf. [A1]) that we can find a local coordinate system x € C such that Y(z,0,0) = Az 2 and
Yr(2,0,0) = (e*T.2,0,0). Let us assume that L = DY(0) is in Jordan’s canonical form. In this
case, the eigenvalues of I, are 21(0) = ), %};2 (0) and 222(0).

Observe that Y (F') = h.F implies Ly (dF) = d(h.F) = h.dF + F.dh. Therefore, for p = (2,0,0)
we get

(10) Ly (dF)(p) = hp).dF(p) = [Yr(dF)](p) = exp(/o h(Ya(p))ds) . dF (p) -

On the other hand, dF(z,0,0) = A(x,0,0)dy + B(x,0,0)dz, where either A(x,0,0) # 0, or

(:L’ 0,0) £ 0, because 0 is an isolated zero of dF. This implies that we can write dF'(z,0,0) =
o u(z )dy + atw(z) dz, k,£ > 1, where either u # 0 and u(0) # 0, or v # 0 and v(0) # 0. If
u, v Z 0, let us suppose, without lost of generality, that & < £, and so

dF(z,0,0) = 2*.u(x) (dy + 2™ v, (z) dz) ,

where m = £—k > 0 and v; = v/u. The change of variables ¥(z, y, z) = (z,y+a™, z) = (x1,y1, z1)
is a biholomorphism near 0 € C* and in these new coordinates we have dF(z1,0,0) = 2% u(x;) dy;.
Returning to the old notation (1 = x, y1 = y), we have

(11) dF(z,0,0) = 2" u(x) dy .
Observe that after this change of variables %L;(O) is still an eigenvalue of L. We leave this compu-

tation to the reader. We are going to prove that %(0) =—kA\.

If we set Yr = (Y}, YA Y3) and H(T, z) = exp(fo (2,0,0))ds), we get from (10) and (11)
that

Ak (M x).dYE (2,0,0) = H(T, x).a" u(x) dy = dYF(x,0,0) = H(T, x)ﬂ.e_kAT.dy
x

and

3Y2 u<$) o= RAT

(12) e T (1,0,0) = H(T, O Ty

Now, since &7 = Y (Yr), we have

O? YA
IOy

oYr

(p) = dY2(YT(p))-%

(p) -

Since Yp(p) = p, we have %<JJ y,z) = (0,1,0). If we set T =0 and p = (2,0,0) in the above
relation, we get

9? Y2 oY,

8T8 ’(T 0,p) — d}é(l’,0,0)(O,l,O) 8:[/ (1,' 0 0) =
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9? Y2 Y
(13) 8T—8y’(T:0,0) = 8_y<0) .

Now, (12) implies that

g;gi(x,o,o) = e—“T{giT [H(T, @%} — kXH(T, @%} :
Since H(0,z) = 1, % = h(Yp(z,0,0)).H(T,z) and %;Tw) = XMz (XM ), we get for
T=0
g;?j |(7=0.(x.0.0y) = M, 0,0) — )\x:(/g) — kA
This together with A(0) = 0 and (13) gives
%—};m) — kA

which implies that —k A is an eigenvalue of L. Since (L) = 1, the other eigenvalue of L must be
I+ (k-1 O

We will use the following result, which is a consequence of the stable manifold theorem (cf.
[H-P-9]).
Lemma 7. Let Z be a germ at 0 € C™ of holomorphic vector field such that Z(0) = 0. Set
L :=DZ(0) and let S = {\1,..., \n,} be the spectrum of L. Suppose that there exists a straight
line £ through 0 € C such that £N S = () and the components of C\ £ are A; and A,. Set
S, = SN A, k= 1,2, and let Ey be the invariant subspace of Ty C™ for L, relative to the
eigenvalues in S;. Then there are germs of i.m.P.t. Wy such that Ty Wy, = E, k= 1,2.

The proof of the above result can be found in [I-S]. Let us suppose by contradiction that
Rh(0) = 0. Let S = {A1, A2, A3} be the spectrum of L = DY (0), where |A1| > |Ag| > |A3] > 0. It
follows from ¢r(L) = 1 that at least one of the eigenvalues of L is non-zero : |A;| > 0. Let v be an
eigenvector of I, with eingenvalue Ay and set F; = C.v.

Claim 5. There exists an 1.m.P.t. of dimension one W, tangent to I .

We will prove the above claim at the end. Let us finish the proof that h(0) # 0 by using the
claim. If A(0) = 0, it follows from Lemma 6 that —k.\; is an eigenvalue of L, where k € N. Since
A1l > |A2] > |As], we must have k = 1 and A\ = —X1, or A3 = —A;. In both cases, we get
S = {\1,—=)A1, 1}, because tr(L) = 1. Hence, all eigenvalues of L are non-zero and there exists
a line £ throungh 0 € C such that C\ £ contains two eigenvalues of L in one of its components
and one in the other. It follows from Lemma 7 that there exists an i.m.P.t. W of dimension two.
Therefore, W C M, by Lemma 6, and 0 is not a singularity of M, a contradiction.

Proof of claim 5. After multiplying Y by a constant, we can suppose that Ay = 1 and |z, |As| <
1. Choose coordinates (z,y) = (z,y1,42) € C x C?, such that By = {y = 0} and L is triangular.
In this case, the differential equation associated to Y is of the form :

{% =x+4(y) +r(x,y)

(14)

where £ and A are linear, » and R are of order greater than one and the eigenvalues of A are Ao
and A3. After a blowing-up y = 2.2 = (2.21, 2.22) at 0 € C?, equation (14) is transformed into

L — 2 W +(A—1)z+ Ry(x,2)

(14) { G =z tar(ez)
dt
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where W is a constant vector, 1 is of order > 1 and Ry of order > 2. The eigenvalues of the linear
part of (14') are | = 1, Ay, = A2 — 1 and A\ = A3 — 1. Suppose first that A; # 1, j =2,3. In
this case, we have Re(\)) < 0 (because |A\;| < 1), j = 2,3. It follows from Lemma 7 that (14")
has an im.P.t., Wi, tangent to the eigenspace associated to the eigenvalue 1. If z — (2, 2(2)) is
a parametrization of Wi, then x — (2, 2.2(x)) is a parametrization of an i.m.P.t. for Y, tangent
to F1. In the general case, note first that )\"7. # 1=\, j=2,3. By a linear change of variables
in (14’), that sends the linear part to the Jordan form, we get W = 0. After the blowing-up
z = x.w = (z.awi, z.aw2), equation (14') (with W = 0) is transformed in an other equation with
eigenvalues of the linear part A{ = 1, Aj = Ay — 2, Af = A3 — 2. Since Re(\]) <0, j = 2,3, we
can apply Lemma 7 to obtain an i.m.P.t. tangent to the eigenspace associated to the eigenvalue
L. If # v (z,w(z)) is a parametrization of the i.m.P.t. so obtained, then x r (z,2%.w(z)) is a
parametrization of an i.m.P.t. for Y. This finishes the proof of Lemma 5 and of the first step. [

Remark 4. In this remark we analyse the converse of Lemma 5. Tet M = {F = 0} c C?
be gq.h.w.r. the vector field X = X\ x(% + Ao y(% + A3 z%, where A\; € Q4, j = 1,2,3, and
X(F) = F. The converse of Lemma 5 is true when ¢r(X) = >, A; # 1. In fact, let n be the 2-form
constructed as in Claim 1. It follows from Claim 2 that Lx(n) = a.n, where a = ¢tr(X) — 1. Since
Lx(n) =ix(dn))+ d(ix(n)) = d(ix(n)), if a # 0 then n = dw where w = a™.ix(n).

On the other hand, if ¢r(X) = 1 then the converse of Lemma 5 is not true, as was asserted in §1.
Consider for instance the surface M3 53y = {(z,y,2)| F := 2 + y* 4+ 2z° = 0}, which is ¢h.w.r. to
a vector field X as above with A\; = %, j = 1,2, 3. In this case we have X (F) = F and Ly () = 0.
If 7 is as before, then there is no holomorphic 1-form w on M* such that dw = n. In fact, suppose
by contradiction that there exists w holomorphic such that dw =17. Let Y be a germ at 0 € C? of
holomorphic vector field tangent to M, such that w = iy (n) and Y (F) = h.F. It follows from the
proof of Lemma 5 that h(0) # 0. Therefore, if Z = h™L.Y then Z(F) = F, (X — Z)(F) =0 and
F is a first integral of W := X — Z. The relation W(F') = 0 implies that the linear part of W at
0 vanishes and tr(DZ(0)) = 1. On the other hand, it follows from Claim 4 that

h(0) = h(0).tr(DZ(0)) = tr(DY (0)) =1 + h(0) = 1=0,

a contradiction.

§3.2. Proof of the 2nd step. Let M = F~1(0), where F:C® — C is a polynomial with an
isolated singularity at 0 € C?, quasi-homogeneous with respect to the vector field X = A\ z % +
)\gya% + A3 2 %, where X(F) = F and A\, A2, A3 € Q4. Suppose that there exists a germ of
holomorphic map ¢: (C2,0) — (M, 0) such that ¢=1(0) = {0}. We are going to prove that M is
equivalent to one of the surfaces : My, 4, Where (p,q,7) € {(2,2,7),(2,3,3),(2,3,4),(2,3,5)},
X, where m > 1, Y or Z,,, where m > 1 (see the statement of Theorem 2).
Notation. Let G, H € O,,. We will use the notation G ~ H to say that there exist v € O,, and a
germ v of biholomorphism at 0 € C™ such that u(0) # 0 and G = u.H o). The following remark
will be used several times in the proof :
Remark 5. Let G € O,, be of the form G(u1, ..., un_1,upn) = G(u,v) = @ 0™ + a1 (u) 0™ +
...+ ag(u), where ag, ..., aym—1 € Op_1 and a,, € C*. Then there exist by, ..., by—2 € Op_1 such that
G 2 0" by o (1) 0™ 2. 4o (u) := H (u,v). Moreover, if X(G) = G, where X = 37 | A;j u; aiu]w
then A, = -, X(H) = H and X(b;) = (1 — L)b;, j=0,...,m —2.

Note that the change of variables ¢ (u,v) = (u,aw) = (u,v1), where ™ = a,,, is such that
G o (u,v1) = o + &y (u) " 4 4 ag(u), where @; = a™7.a;, j =0, ...,m — 1. Therefore,
we can suppose that a,, = 1. On the other hand , the germ of biholomorphism % (u, v) = (u,v +
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L1 (u)) = (u,v1) is such that G o™ (u,v1) = v + by—o(u). 072 + ... + bo(u) = H, where
b0y ooy bm—2 € Op_1. Note that, ¥.(X)(H) = ¢«(X)(Goy™) = X(G) o™ = H. On the
other hand, X(a;.v’) = X(a;).v? + a;.j. 07 = a;09, j = 0,....,m (a, = 1), which implies
that A, = L+ and X(a;) = (1 — L)a;, j = 0,..,m — 1. It follows that, X(v;) = Luv; and
P (X) = L Ulaivl + E?:_ll AjUj 9_ which has the same expression as X. This proves the remark.

™ Bu;
Let M = F~1(0) and X = Ay 2= + A2 Y75 + Az 245, where A, Aodz € Q4 and X(F) = F. We
will suppose that Ay < Ay < As.

Claim 6. We claim that F,, = Fyy, = Fo,, = Fy,, = F,,, = 0. In particular, we must have
F(x,y,2) = Az,y) + B(z,y) z + C 2*

where X(A) = A, X(B) = (1 — X3)B and C is a constant.
Proof. The claim is a consequence of the following fact : if G € O3 is such that X(G) = —a.G,
where a > 0, then G = 0.

Note that X (Fj,,) = (1 — A\ — Ay — X3).Fyy,, where 1 — Ay — Ay — A3 < 0, by Theorem 1.
Therefore F,,, = 0. The other cases are similar.

Now, F,,, = 0, implies that F(z,y,2) = A(z,y) + B(z,y) z + C(x,y) 22, where A, B,C are
polynomials. Since F,,, = F,, = 0, C is a constant. The fact that X(F) = F implies that
X(A)=Aand X(B)=(1—-2X3)B. O

We have two possibilities : either (i) C # 0, or (ii) C = 0.

Case (i). C # 0.We claim that in this case, A\3 = 3 and F ~ 2> + E(x,y), where X (z) = 1z,
X(FE)=F and E 3y = Eyyyy = Eyyyy = 0. In particular,

(15) E(x,y) = e3.y” +ea(2).y® + er(2).y + eo() ,

where e3 € C and deg(es) < 1.

In fact, since C # 0 we get F =~ 22+ By (z,y).2+ Ay (z,y), where A; = C~1.A and B, = C~1.B.
It follows from Remark 5 that A3 = & and F =~ 2 + E(z,y), where X (F) = E. Now, X(Eypy,) =
(1 =2(A1 4+ X2)).Epgyy- Since A; +Ag > 1 — A3 = %, we get 1 —2(A; + A2) <0 and so E,yy, = 0.
Similarly Egyyy = Eyyyy = 0. This implies that E can be written as in (15), where ez € C and
deg(es) < 1.

Case (i.1). C # 0 and e3 # 0.We claim that in this case, M is equivalent to one of the following
surfaces : Y, M(32.2) or M3 3y, where r € {3,4,5}.

Proof. It follows from Remark 5 that Ay = + and that E(z,y) ~ y* + fi(z).y + fo(z), where
fo, f1 € Clz] and X(f;) = (1 — 2)f;, i =0,1. Therefore, F' =~ z* + * + f1(z).y + fo(x).

Note that, if f; # 0 then f;(z) is a monomial of the form a.2™, a € C*, j = 0,1. We have two
possibilities : Hither fo &£ 0, or fo = 0. Let us consider first the case fo Z 0. In this case, fo must be
a monomial of the form fo(2) = a.2™, where a # 0 and \; = % < % After the change of variables
of the form (z,y,z) — (b.z,y,z), b™ = a, we can suppose that a = 1. Since Ay + Ao + A3 > 1
we get that m < 6 and m € {3,4,5}. In any case, we must have fi(z) = c.2*, where ¢ € C
and k.A; = 2, if ¢ # 0, because X(f1) = 2f,. This implies that if m € {4,5} then ¢ = 0 and
F o 22 44 + 2™, Hence, M is equivalent to M 5 ), m € {4,5}. If m = 3 and ¢ # 0, then k = 2
and F =~ 22 442 + ca?.y+ 23, Note that E(z,y) = y° +ca?y+2® = (y— a12)(y — azz) (y — azz),
where a1, as, as are the roots of > + cy+ 1 = 0. Therefore, a; +as +as = 0. Since 0 is an isolated
singularity of M, we must have a; # a; if ¢ # j. Consider an isomorphism v of C? sending the
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lines y —a;x, j = 1,2, 3, into the lines y+z, y+ 8.2, y+ 6~ '.x, where § = e?™/6 Tt can be checked
that E oy~ (z,y) = a(2® + y3), where a # 0. Hence F =~ 22 + a2 + y3) = 22 + 2% + y* and M
Is equivalent to Mz 3 3y.

Consider now the case fo = 0. In this case F' ~ 22 4 ¢® + 2™y = 2% + y(y2 + 2™), where
m > 1. Since X (2™.y) = 2™.y, we get m.A; + A2 = 1, and so A\; = % Note that the inequality
AL + A2 + A3 > 1 implies that 1 <m < 4. If m = 3 then F ~ 2% — y(y* + 2°) and M is equivalent
to the surface Y. If m = 2 then y(y2 —I—:L'2) is homogeneous of degree three and F' ~ 22 4+ 2% 442, as
we have seen before. Hence, M is equivalent to M3 33y. If m =1 then F' ~ 22+ y(y2 + ). In this
last case, after the changes of variables v (z,y, 2) = (z + y?,y,2) = (21,y, 2) and ¥o(xy,y,2) =
(Q“Tﬂ, B-Y 2) = (2,42, 2), We get that F' o~ 2% + x1.y ~ 2% + 23 + y3. Therefore M is equivalent
to M(2’2’2).

Case (i.2). C #0, e3 = 0 and ey # 0. We claim that in this case M is equivalent to one of the
following surfaces : M3y, 7 2 2, M333y, Xpn, m>1 or Zp,, m > 1.

Proof. Since deg(ez) < 1 we have two possibilities : Either deg(ez) = 0, or deg(es) = 1. If
deg(ez) = 0 then E(x,y) = ea.y® + e1(x).y + o), where e; € C*. Tt follows from Remark 5
that Ay = & and E(z,y) ~ y* + fo(x), where X(fo) = fo. Therefore, fo(x) must be a monomial
of the form a.z”, where » > 2 and a # 0. Hence F ~ 2> + y*> 4+ a.2” ~ 22 + 4> + 2" and M
is equivalent to Moo ), 7 > 2. If deg(ez) = 1 then ex(z) = a.x, where a # 0. Similarly, e;(z)
and eg(x) are also monomials, where deg(e;) > 1 and deg(eg) > 2, because 0 is a singularity of
M. Therefore, we can write I/ as E(x,y) = z(a.y? + b.xty + c.a®). Tt follows from Remark 5
that a.y® + b.al.y + c.a® ~ y? + a.2®. Therefore, F ~ x(y2 + a.xk). Note that a # 0 because
0 is an isolated singularity of M. We have two possibilities : Fither k is odd, or k is even. If
kis odd, k = 2m + 1, then F =~ 22 4+ 2(y? + a.x?™ 1) =~ 22 — 2(y? + 2?™T1). Therefore, M is
equivalent to the surface Z,,, m > 1. If k is even we have two possibilities : Either k = 2, or
E > 2. If k=2 then E(z,y) is homogeneous of degree three and F' ~ 22 + 2% 4+ 4>, as we have
seen before. Therefore, M is equivalent to M 33y. If & > 2 then & = 2(m + 1), m > 1, and
Fe 22 b a(y? +ax?™?) o 22 —a(y? — 22 2) = 22 —a(y — 2™ ) (y +2™ 1), In this last case, if
we set y; = y — 2™ 1L, then we get that F' o~ 22 —ay (y; +22™7) =~ 22 —ay(y +2™T1). Therefore,
M is equivalent to X,,, m> 1. [

Case (i.3). C# 0, e3 = ez = 0. We claim that in this case M is equivalent to M 5 2).

Proof. In this case, F' =~ 22 4-¢(z).y + eo(z) == G(z,y, 2). Since 0 is an isolated singularity of M
we must have e; # 0. We assert that e;(x) = a.z, where a # 0. In fact, since X(e1) = (1 — A2)eq,
¢1 must be a monomial of the form a.z™, a # 0, m > 1. Similarly, eg(z) = b.2*, where a € C and
k > 2, because 0 is a singularity of M. This implies that G, = a.2™ and G, = ma.x™Ly+kb.a*~L.
If m > 1 then G,(0,y,0) = G4(0,y,0) = G.(0,y,0) = 0 for all y and 0 is not an isolated singularity
of M. Therefore,

Fe 2?2 fafay+bat™ ) v 2? pay~ 22 422 4972,
Hence, M is equivalent to M35 2y. U
Case (ii). C = 0. We claim that in this case M is equivalent to Moy, r > 2.
Proof. In this case F(x,y,2) = B(z,y) z + A(z,y), where X(A4) = A and X(B) = (1 — A\3)B.
Since Fy,, = 0, B must be of the form B(z,y) = az™ + by", where m,n > 1 and either a # 0,
or b # 0. Since 0 is an isolated singularity of M, then, either m = 1, or n = 1 (if not, then
F.(0,0,z) = Fy(0,0,2) = F,(0,0,z) = 0). We have two possibilities : Either b =0, or b # 0. If
b=0then a # 0 and m = 1. Hence, F = ax 2+ A(z,y). Since M is irreducible, 2 does not divides
A, and so A(z,y) = cy” + x.A1(2,y), where ¢ # 0. Therefore

F=axz+cy +axA(v,y)=cy +a(az+ A(n,y) 2y +aoz o~ a?+22 49 .
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Therefore M is equivalent to M3 .y, 7 > 2.

If b £ 0 then n = 1. In fact, if a = 0 then it is clear that n = 1. On the other hand, if
a # 0 then A3 + mA; = A3 + nA2 = 1, because X(F) = F. This implies that n < m, because
A1 < Ag. Therefore, n = 1 and F = z(by + aa™) 4+ A(z,y). After the change of variables
Y(x,y,z) = (2,by + ax™, z) = (21,41, 21), we have

Foyp ™z, y, z1) =y 1+ A, by —b taa™) =y s+ A(a,p1) = F >~ yz+Ai(z,y)

Since M is irreducible, y does not divides A; and we can write Ay = ca” +y.B1(2,y), where ¢ # 0.
Hence
F o~ ca” +y(z+ Bi(z,y) ~ 2" +yz o~ a” +y° +2°

Therefore, M is equivalent to M(3 5 .y, 7 > 2. This finishes the proof of the 274 step.

63.3. Proof of the 3rd step. We will use two invariants : the Milnor number of M at 0 and the
fundamental group of M*. The Milnor number of M, denoted by p(M), is the complex dimension
of O3/ < Fy, Fy, F, > (cf. [Mi]). It is known that pu(M) = [F,, F,, F.]o (the intersection number
of Fl,, Fy, I, at 0 € C?). By a direct computation, we have

(16)

On the other hand, as we have seen in Examples 1,2,3 and 4 :

#(m (M o,)) =7
#(71<M(*2 3 3))) = 8
#( (M 5 4)) =
(17) #(71<M(2 3,5)))
#(m (X7) =

As the reader can verify easily, if we take two of the above surfaces then, either they have
different Milnor numbers, or different fundamental groups. This ends the proof of Theorem 2.

84. Proof of Theorem 3.

Given a smooth complex manifold N, we will use the following notations :
(I). Q% = the sheaf of germs of holomorphic k-forms on N.
(IT). xn = the sheaf of germs of holomorphic vector fields on N.
(III). If N = F~1(0) is a germ at p € C"T! of an analytic hypersurface and V C C™™! is an open
set where F' is defined, then Ny = NNV and Ny = Ny \ sing(N).

The proof of Theorem 3 will be in three steps :

1%t step. Let M = F~!(0) be a germ of hypersurface at 0 € C*™! | n > 3. Suppose that
dime(sing(M)) < n — 2 and that there exists a Stein neighborhood V of 0 € C"! where F is
defined and such that H'(M7, QT]\Z,;) = {0}. Then 0 & sing(M).
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2" step. Let M = F~!(0) be a germ of hypersurface at 0 € C**! | n > 3. Suppose that
dimc(sing(M)) < n— 3 and there exists a germ of holomorphic map ¢: (C™, 0) — (M, 0) such that
¢~1(0) = {0}. Then there exists a Stein neighborhood V of 0 such that H' (M, Q%l) = 0.

37 step. Let M be a germ of hypersurface at 0 € C**! | n > 3. Suppose that dime(sing(M)) <
n—2, 0 € sing(M) and there exists a germ of holomorphic map ¢: (C*,0) — (M, 0) such that
¢~1(0) = {0}. Then all components of sing(M) through 0 have dimension n — 2.

Since the 37¢ step implies the theorem and is the easiest one, we will prove it first by using the
other two.

§4.1. Proof of the 3" step. Let U and V be connected neighborhoods of 0 € C™ and 0 € C"**!
such that :

(i). F and ¢ have representatives F: V — C and ¢: U — C"! such that ¢(U) C V and Fo¢ = 0.
(ii). ¢:U — My is a ramified covering. In particular ¢ is finite to one in U and ¢=1(My ) = U.

Suppose by contradiction that sing(My ) has a component, say B, of dimension k < n — 3. Let
p € BNV be a smooth point of sing(M)NV. Note that there exists a (Stein) neighborhood V; C V
of p in C"™ such that BNV, = sing(M) N V; has pure dimension k¥ < n — 3. It follows from
(ii) that there exists ¢ € U such that ¢(q) = p. Let U; be the connected component of ¢~ (V;)
which contains g. Note that ¢=(p) NU; = {q}. Set ¢1 = ¢|vy,: U1 — Vi. After composing ¢ with
translations in both sides, we can suppose that p =0 € C"™, ¢=0¢c C", ¢;: (C™,0) — (C*1,0)
and ¢7(0) = {0}. Since sing(M) NV, has dimension k& < n — 3, it follows from steps 1 and 2 that
p = 0 is not a singularity of M, a contradiction. Therefore all irreducible components of sing(M)
have dimension n — 2.

84.2. Proof of the 1°' step. This step is a consequence of the following :

Lemma 8. Let M be a germ of hypersurface at 0 € C"™! | n > 3. Suppose that dimc (sing(M)) <
n — 2. Then the following assertions are equivalent :

(a). 0 is not a singular point of M.

(b). There exists a Stein neighborhood V of 0 € C™™ and a holomorphic section Y: M, —
TC™ |y, such that dF,(Y (p)) =1 for all p € My

(c). There exists a Stein neighborhood V of 0 such that H* (M, Q%l) = {0}.

(d). There exists a Stein neighborhood V of 0 such that H' (M3, X ) = {0}

Proof. It is not difficult to see that (a) implies the other assertions. On the other hand, the interior
product and the n-form 7 induce an isomorphism : x3,. — QK[‘*} defined by §(Y) = iy (n), where

Y is a holomorphic vector field on some open subset of M. Therefore, (¢) is equivalent to (d).
(d) = (b). Given V as in (d), consider the covering T = (M;)}_; of M3, where M; = {p €
My| Fy, (p) # 0}. Let Z;: M; — TC™! be defined by Z; = +— 2. Note that dF(Z;) = 1. For
i,7 €{0,...,n}, set X;; = Z; — Z;. Since dF,(X;;(p)) = 0 for all p € M,; := M,; N M;, the collection
{Xi;}"i—o can be considered as a cocycle in Z'(Z, xn;, ). IHence, Xi; = X; — X;, where X is a
holomorphic vector field on M; for all j = 0, ..., n, because H (M7, XM‘*/) = {0}. This implies that
there exists a holomorphic section Y: M7 — TC"! such that Y]Mj =Z;—Xjforall j=0,..,n.
Observe that dF(Y)|y; = dF(Z;) — dF(X;) = 1, which proves (b).

(b) = (a). Let Y:M; — TC™"! be a holomorphic section such that dF,(Y(p)) = 1 for all

p € M5,. The idea is to prove that ¥ can be extended to a holomorphic vector field on V, say X.

Since 0 € MY, this implies that dFy(X(0)) = 1. Therefore, dFy # 0 and 0 is not a singular point
Vs p ) g p

of M.
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We will use the following result (cf [G-R] pg. 133), which is a generalization of [C] : Let N
be a Stein manifold of dimension m > 3 and A C N be an analytic subset of N such that
dimg(A) <m — 3. Then HY(N \ 4,0) = 0.

In particular, since dime (sing(M)) < n—2 = (n+1)—3, we have H! (V\ sing(M), O) = 0. Let us
prove that the section Y can be extended to V. Since codimy (sing(M)) > 2, by Hartogs’ theorem
it is sufficient to prove that ¥ can be extended to a holomorphic vector field on V'\ sing(M) = V*.
Since M C C™*!, we can write Y = Z;L:o Y; %, where Y; € O(M;;). Hence, it is sufficient to
prove that Yp,..., Y, extend to holomorphic functions on V*. In fact, any f € O(M;,) can be
extended to a holomorphic function on V*. Let U = (V;),es be a Leray covering of V* by open
sets such that, if V; N M7, # () then f lvin My, can be extended to a holomorphic function , say f;,
on V;. L V; N M, =0, set f; = 0. In this way we have a collection (f;);es, where f; € O(V;)
and f; = f on V; N M, if this set is not empty. This implies that, if V;; := V; NV; # 0 then
fi—fi = fij. F, where f;; € O(V;;). Now, the collection (f;;)v;,p is an additive cocycle. Therefore,
if Vij # 0, we can write f;; = g; — g; where g; € O(V;), because H!(V*,0) = 0. This implies
that there exists h € O(V*), defined by h|y, = f; — g;.F for all j € J. This implies (a), because
P, = f. O
§4.3. Proof of the 2"¢ step. In this step we will use Dolbeault’s theorem (cf. [G-H]) : if N is a

complex manifold of dimension n then H*(N, Q% 1) ~ Hg_l’l(]\f ). Hence, we are going to prove

that there exists a Stein neighborhood V of 0 € C™*! such that Hg_l’l(M‘*/) = {0}.

Fix Stein neighborhoods U of 0 € C™ and V of 0 € C**! such that :
(i). F has a representative F:V — C and ¢ a representative ¢: U — V.
(ii). ¢:U \ ¢~ (sing(M)) — M3, is a ramified covering with d sheets. We will use the notation
U\ ¢~ (sing(M)) = U*.

We claim that Hg_l’l(U*) = HY(U*, Q771 = {0}. In fact, since U is Stein and dimg (¢!
(sing(M))) < n—3 (see (ii) of Remark 3), we have H*(U*,O) = 0 (cf. [G-R]). On the other hand,

any holomorphic n — 1-form on an open set A C U* C C" can be written as

Z G d’U,l AN A d’ZJ,J A d’U,n y 4y € O(A) .

Jj=1

This implies that I (U*, Qo) o~ (HY(U*,0))™ = 0, which proves the assertion.

Now, let o € Q"~L1H(M3) be C and such that 9o = 0. We want to prove that o = Jw for
some w € Q""LO(M). Since ¢~H(Myr) = U* and Hg_l’l(U*) = 0 we have that ¢*(a) = 93,
where 3 is a (n — 1,0)-form on U* of class C*. Let n be the holomorphic n-form on M7, defined
as in §2. As we have seen, ¢*(n) extends to a holomorphic n-form on U which can be written as
f(u).duy A...Adu,, where f € O(U). Note that C = {p € U*| f(p) = 0} is the set of critical points
of ¢|y+ and ¢(C) = CV is the set of critical values of ¢|y~. In particular, if W = U*\ ¢~ H(CV)
and M = M\ CV, then ¢|w: W — M is a covering with d-sheets.

Using the method of the proof of Lemma 4, it is possible to construct a (n — 1, 0)-form of class
C*°, w on M, such that 9w = a. The form w is defined on M by

(18) Wp = ~ Z (94)+(Bq) »

g€~ 1(p)

where (¢). denotes the map induced by the isomorphism D¢(q): T,(C") — T,(M7). It is well
defined because ¢|y: W — M is a covering map. At this point, we observe that if £(0) # 0 and V
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is small then M = M3 and the 2™¢ step is proved in this case. If f(0) = 0, we must prove that w
extends to CV. The idea is the following : Fix a point p € CV. Since da = 0, it follows from the
O-Poincaré Lemma that there exists a (n — 1,0)-form dp of class C*°, defined in a neighborhood
V, of p in M3, such that 88, = a on V,. Since d(w — §,) = 0, the form w — §, is holomorphic.
Therefore, we have only to prove that w — ¢, extends to V), for all p € CV. This will be done as
follows : We will divide C'V into two parts, say C'V = C'V; U CVa, such that

(iii). CV; is contained in the smooth part of CV, dim¢c(CV;) =n—1 and if p € CV; then w — 4,
can be extended to V,, by using a local form of ¢ that will be stated in (v). This will imply that
w can be extended to M U CV;.

(iv). dimc(CVa) < n — 2. If we suppose that (iii) is proved, we can extend w to M U CV;.
Hence, if p € C'V, then w — J, can be extended to V), by Hartogs’ theorem, because C'V> NV, has
codimension > 2 in V.

Therefore, it is sufficient to prove the existence of such decomposition.
Construction of CV; and CV,. It will be done in such a way that :

(v). For any p € CV; and q € ¢~ (p) there exist local coordinate systems

Uy, (u,v) = (uq, ... up—1,v)) and (V,, (z,y) = (21, ..., £n—1,y)) around q and p respectively, where
V, is a neighborhood of p in My, such that u(q) = x(p) = 0 € C"!, v(q) = y(p) = 0 € C,
$(Uq) = Vp, (V) =D" ! and y(V,) =D (D = {z € C| || < 1}) and

(19) ¢(u,v) = (u,0™)

where m € N depends only on the irreducible components of CV and ¢~!(CV) which contain p
and q respectively.

Since CV = ¢(C) and C = f~1(0) N U*, all irreducible components of CV and of ¢~*(CV)
have complex dimension n — 1. Moreover, if 3 is an irreducible component of ¢~1(CV') then ¢(3)
is an irreducible component of C'V. Denote by A; the singular set of CV. Note that dimg(A;) <
dime(CV') and that CV'\ 4; is smooth of dimension n—1. Let ¥ and ¢(X) be as before and denote
by ¢s the restriction ¢|x: 3 — ¢(X). Let Ay = {g € ¥\ ¢~ (A1)| rank(Déx(q)) < n — 2}. Note
that ¢(As) and A% = ¢~ (¢(As)) are analytic subsets of M and U*, both of dimension < n — 2.

Therefore, the closure in U, ZIE is also an analytic subset of U C C™ of dimension <n — 2.

Set B = Ux, gb(zlz) (in the union X runs over all irreducibe components of ¢~ (CV)), CV, =
Ay UB and CV) = CV \ CVa,. Then dime(CVy) = n — 1 and dime(CVa) < n — 2. Let us prove
(v).

Remark that if p € CV; and q € ¢~!(p), then CV and ¢~ '(CV) are smooth of dimension
n—1 at p and g respectively and D(q)|r,¢-1(cv): Tq¢d™ (CV) — T,(CV) is an isomorphism. If
q ¢ C then, in fact D¢(q): T,C™ — T,(M;;) is an isomorphism and it is clear that we can obtain
coordinate systems satisfying (16) with m = 1. If ¢ € C, it follows from the implicit function
theorem that there exist local coordinate systems (Uy, (u,v) = (u1, ..., up—1,v)) and (V,, (z,y) =
(%1, ooy Tn1,y)), where u(q) = z(p) =0 € C" 1 v(q) = ylp) = 0 € C, ¢(Uy) = V,, and ¢(u,v) =
(u, f(u,v)) where f € O(U,) and f,(0,0) = 0. We can assume ¢~ *(CV)NU, = {v = 0} and
CV NV, ={y = 0}. This implies that f(u,0) = 0 and f(u,v) = g(u,v).v™ for some m > 2,
where g # 0. Now, the set of critical points of ¢ in U, is defined by f, = 0 and is contained in
=1 (CV)NU, = {v = 0}. Since f,(u,v) = v (m.g(u,v) + v.g,(u,v)), we get that g(u,0) # 0
for all (u,0) € U,. Therefore by taking a smaller U, we can suppose that Uy is simply connected
and that g € O*(U,). Let h € O*(U,) be such that h™ = g and consider the change of variables
in a neighborhood of ¢ given by u' = u, v = g(u,v).v. In the coordinate system (u',v’) we have
o(u',v") = (v, (v')™). Hence, we get property (v).
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In order to prove that w can be extended to a neighborhood of any point p € C'V}, we need a
lemma.

Lemma 9. For any p € CV, there exists a coordinate system (V,, (z,y) = (21, ..., Zn—1,Yy)) such
that :

(a). z(p) =0 C" !, y(p) =0€C, x2(V,) =D""! and y(V,,) =D.

(b). cvinV,={y =0}

(c). There exist 0 < a < 1, ¢ > 0 and a compact neighborhood K, = K of p such that such that
ifw=wp(x,y)dey A ... Ndzp_y + E?:_ll wi(x, y)day A ... Adxj_1 ANdxjq A ... Ady, then

(20) max {Jwi (2, )], ..., lwn (2, y)[} < ely|™, ¥ (z,y) € K= K\ {y=0}.

Proof. Fix p € CV; and let ¢~ Y(p) = {q1,..-,¢-}. Since CV; is smooth of codimension one
in M3, we can find a local coordinate system (B, (z,y)) around p such that z(p) = 0 € C* 1,
y(p) =0 € Cand CViNB = {y = 0}. Given q; € ¢~ (p) fix local coordinate systems (Uj, (u;,v;) =
(Wi, ooy Wjn—1,v4)) and (V;, (z;,y;) = (j1,...; Tjn—1,Y;)) as in (v), where ¢(u;,v;) = (uj,v;nj),
m; € N. Observe that m; + ... + m, = d. We can suppose without lost of generality that V; C B
for all j =1,...,7. Let K be a compact neighborhood of p such that K C N; V.

Since CVi NV, = {y = 0} = {y; = 0}, there exists a constant k; > 1 such that

(21) K ly(2)] < Jyi (2)] < ke Jy(2)]

for all z € K and all j = 1,...,r. Now, fix a point pg = (20,y0) € K \ {y = 0}. In the coordinate
system V; we have pg = (woj, yo;) and ¢~ (po) NU; = {(wo,v*.v0;) = qgj |£=1,...,m;}, where
th

is a primitive mZ" root of unity and vg;.j = yo;. Let

n—1

ﬁ’Uj = ﬁn(uj, ’Uj) d’U,jl VANV dujn—l + Z ﬁk(uj,vj) d’U,jl VANV dujk—l A dek+1 VANV d’Uj
k=1

where By, ..., B, € C®(U;) (recall that ¢*(a) = 973). The inverse of ¢ from a small neighborhood

of pg to a small neighborhood of qgj can be written as ng(xj, Y;) = (:L'j,yz.yl./mj), where yjl./mj i

a branch of the mf;h root of y;. Therefore, the contribution to the sum in (18) which comes from

¢~1(p) NU;, in this neighborhood of py, is of the form % 377" 0‘]1

S

d Luk=1
0‘]1 = <¢§])*<ﬁ) = Qindle AN A dxjn—l + Z Qimdle VANV dxj,m—l A dxj,m+1 VANV dy]
m=1
where
; 1/m; ; 1/mgy 1 1/mj—1
0] = ﬁn(gcj,yk.yj/ ) and 6] = ﬁm(gcj,yk.yj/ ).Eyk.yj/ ,m=1,...,n—1

7
Since B, ..., B, are bounded in ¢~1(K) N U;, we get from the above relations that

(22) 107 (25, 5)| < ej.y;| 70T ma)
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where c; > 0. Now, let us write Qi in the coordinate system (z,y) as

n—1
0] = 67" day A .. /\dxnl—l—zeﬂdxl/\ ATy A dXpgq A Ady

m=1

Since (z,y) — (x;,y;) is a diffeomorphism for all j =1, ..., 7, we get from (21) and (22) that

(23) O (2, )| < 5yl =0

1

for all m = 1,...,n, where ¢c; > 0. We leave this last computation for the reader. Set a =

maz{l —1/m;|j=1,..,r}andc=3"_ ¢} Sincew =37, >\ 67, we obtain from (23) that
o (2, )] —!ZZ% z,9)| ZZ O ()] < eyl

foralm=1,...,n. O

In order to finish the proof of Theorem 3 it is enough to show that w can be extended to the
compact neighborhood of p, K, C V), like in Lemma 9. Let ¢, be a C* form on V), such that
895, = aly,. Note that w — 4, is holomorphic on V, \ (V, N CV;). Set

n—1
0p = 0p(z,y)day A ... Adxy_q + Z di(x,y)dey Ao Adaj_q Ndxjiq Ao AN dy
=1

where 01, ..., 0, € C*(V,). Since w — ¢, is holomorphic on V,, \ (V,, N CV7), we get that w,, —d,, €
oWV, \ (V,NCW)), for all m = 1,...,n. On the other hand |d,,| is bounded in K,. Hence,

(24) |lwim (2,9) — 6 (2, y)| < erlyl™, ¥V (z,9) € K,

for all m =1, ...,n, where ¢ is a positive constant. Since 0 < a < 1, (24) implies that, for a fixed
z, the holomorphic function y — wy, (2, y) — 6 (2, y) has a removable singularity at y = 0. Hence,
win(2,y) — 0 (2, y) extends to K, as a holomorphic function, for all m = 1,...,n. This finishes the
proof of Theorem 3. [
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