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ABSTRACT. We study some questions related to the well-posedness for the initial value
problem associated to the system

Ut + Upzy + A3Vzar + UUL + G0V + az(uv), = 0,
b1t + Vpaa + 0203Uzer + VU; + baauu, + baag (uv), = 0.

Using recent methods, we prove a sharp local result in Sobolev spaces. We also prove
global result under some conditions on the coefficients.

1. INTRODUCTION

Let us consider the initial value problem (IVP)

Up + Uggy + Q3Vggq + Uy + a10V; + a2(uv), =0, z €R, t€R,
b1Vt + Vggz + boG3Ugyy + VU, + boaguuy + boai (uv), + rv, =0,
_ (1)
u(z,0) = ¢(z),
U(.’L‘, 0) = ¢($),

where a1, as, as, by, be, r are real constants with by, by positive, u = u(z,t), v = v(z,t)
are real valued functions.

This system was derived by Gear and Grimshaw [11] as a model to describe the strong
interaction of two long internal gravity waves in a stratified fluid, where the two waves
are assumed to correspond to different modes of the linearized equations of motion. It
has the structure of a pair of Korteweg-de Vries (KdV) equations with both linear and
nonlinear coupling terms.
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In this work we are interested to study some questions related to the well-posedness of
the IVP (1) in low order Sobolev spaces H*(R) x H*(R). Our notion of well-posedness
includes existence, uniqueness, persistence property and continuous dependence of the
solution upon the data. If any one of these conditions fails we will say that the IVP is
ill-posed.

Bona, Ponce, Saut and Tom [5] showed that the IVP (1) is globally well-posed in
H*(R) x H*(R) for s > 1 whenever |as|v/b, < 1 neglecting the constant r. We will also
neglect 7 in our analysis (for detail see [5]). Further, Ash, Cohen and Wang [2], using
the techniques established by Bourgain [6] and further developed by Kenig, Ponce and
Vega ([13], [14]), showed that the IVP (1) is locally well-posed in L?(R) x L?(R) provided
las| v/ba # 1. Also, using the conserved quantity

/ (bou? + byv?) dz,
R

satisfied by the flow, they proved that the IVP (1) is globally well-posed in L*(R) x L? (R).
Recently, Saut and Tzvetkov [17] considered the IVP (1) without neglecting the constant
r and proved global well-posedness in L?(R) x L?(R).

Using concentration compactness technique, Bona and Chen [4] proved the existence
of solitary waves for the system (1) as global minimizers to the constrained variational
problem. Later, Albert and Linares [1] proved that the solitary waves are stable in
weak sense by considering a2bs < 1. Recently, Menzala, Vasconcellos and Zuazua [15]
showed that the solutions of the KdV equation in a bounded interval under the effect of
a localized damping decay exponentially in time. The method of proof is a combination
of multiplier techniques, compactness arguments and the unique continuation property of
the KdV equation. A similar result for the IVP (1) was obtained by Bisognin, Bisognin
and Menzala [3] whenever the conditions b; = by and 0 < a3 < 1 hold.

Since (1) is a coupled system of KdV equations, it is natural to ask whether it shares
similar results like KdV equations, i.e. whether we can lower the Sobolev index in H*(RR) x
H*(R) as in the case of KdV equation to get well-posedness results? Using the scaling
argument we can have an insight to this question. Observe that if (u,v) solves (1) (note
that we have neglected r) with initial data (¢, 1) then for A > 0 so does (u*,v*) with initial
data (¢*, ¥?); where u(z,t) = Nu(Az, A3t), v (z,t) = N2v(Az, A3t), ¢*(x) = N\?¢(A\z) and
Y () = A2p(A\x). Note that,

16%, M) izeize = X2 118 )| oesre (2
(

)
where H*(R) denotes the homogeneous Sobolev space of order s. Thus, we see from (2)
that the well-posedness result for the IVP (1) could be achieved in H*(R) x H*(R) for
s> —3/2.
Bourgain [7] showed that the well-posedness result for the KdV equation in H*(R),
s > —3/4, is essentially optimal if one strengthens the usual notion of well-posedness by
requiring the flow-map
¢I—>U¢(t), |t| <T
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should act smoothly (for eg. C?) on the space under consideration (instead of just con-
tinuous). This notion of well-posedness seems to be natural because, if one uses the
contraction mapping principle to solve the integral equation associated with the Cauchy
problem, the flow-map acts smoothly from H* to itself. In fact, for s > —3/4 the flow-map
is real analytic (see for eg., [14] [12] [6]).

Motivated by the work of Bourgain in [7], Takaoka [19] showed that the nonlinear
Schrodinger equation with derivative in a nonlinear term is ill-posed in H*(R), s < 1/2.
Utilizing the same techniques Tzvetkov [20] proved that the KdV equation is locally ill-
posed in H*(R) for s < —3/4 if one requires only C? regularity of the flow-map in the
notion of well-posedness. Following the same scheme, we prove that the IVP (1) is ill-
posed in H*(R) x H*(R), s < —3/4. This result is in agreement with the KdV results.
So, one expects that the IVP (1) be locally well-posed in H*(R) x H*(R) for s > —3/4.
In fact, using bilinear estimates established by Kenig, Ponce and Vega [14], we prove that
the IVP (1) is locally well-posed in H*(R) x H*(R), s > —3/4. Nakanishi, Takaoka and
Tsutsumi [16] produced a counterexample to prove the bilinear estimate established by
Kenig, Ponce and Vega [14] fails when s = —3/4. Therefore the critical index s = —3/4
cannot be achieved using this method. However, Christ, Colliander and Tao [9] showed
recently the existence of the solutions to the IVP associated to the KdV equation in
H~3/*(R) using a generalized Miura transform to transfer the existing local theory for the
modified KAV equation in H'/*(R).

Note that, in the Sobolev spaces of negative index, conservation laws are not available
to extend the local solution to the global one. To overcome this difficulty, i.e. lack
of conservation laws, quite recently, Colliander, Keel, Staffilani, Takaoka and Tao [10]
introduced a variant of Bourgain’s method [8] called I-method to obtain a global solution
to KdV equation in Sobolev spaces of negative index. For this, they introduced a notion
of an almost conserved quantity by utilizing an appropriate Fourier multiplier operator
I. To obtain such almost conserved quantity they exploited some internal cancellation
which the KdV equation satisfies. The cancellation plays a main role in this process. In
our case, it is not possible to get such cancellation unless the coefficients a3 = 0 and
by = by (see Lemma 4.2 below). It seems that we cannot get more cancellation in the
general case because the IVP under consideration is not completely integrable. Using this
method, under above conditions on the coefficients, we prove that the IVP (1) is globally
well-posed in H*(R) x H*(R), s > —3/10.

Before stating the main results let us introduce some notations which will be used
throughout this work.

Notation: We denote by L7(L{), (1 < p < oo) the Banach spaces LP(R : LI(R)) for

variables ¢ and x respectively. Let f be the Fourier transform of f in both z and ¢
variables

fg,r)=(2m)™ / e~ BEHT) £ (5 1) daz dt.
RZ
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For —1 < b <1, let X, denotes the Hilbert space with norm

N /
s = ([ @ b= €02+ il e P agar)

We use C' to denote various constants whose exact values are immaterial. Also, we use
the notation A < B if there exists a constant C' > 0 such that A < CB, A 2 B if there
exists a constant C' > 0 such that A > CB and A~ Bif A< Band A 2 B.

The main results of this work are,

THEOREM 1.1. For any (¢,v) € H*(R) x H*(R), s > —3/4 and b € (1/2,1), there exist
T =T(||p]|us, |¥]|gs) and a unique solution of (1) in the time interval [T, T] satisfying

u,v € C([-T,T]; H(R)), (3)
u,v € Xsp C LY 1, (R L7 (R), for1<p< oo, (4)
(u2)z: (v2)z € Xs,b—l (5)
and
U, Vg € X 3p-1- (6)

Moreover, given T' € (0,T), the map (¢,v) — (u(t),v(t)) is smooth from H*(R) x
HR) to C([-T",T'; H*(R)) x C([=T",T']; H*(R)).

THEOREM 1.2. The initial value problem (1) is globally well-posed in H*(R) x H*(R),
s > —3/10 in the case when az = 0 and by = bs.
THEOREM 1.3. Let s < —3/4, then there is no T > 0 such that the flow-map

(@,9) = (u(t),v(t),  te€(0,T]
be C? Frechet-differentiable at the origin from H*(R) x H*(R) to H*(R) x H*(R).

Let us recall some properties of the space X, regarding the regularity. First, observe
that for f € X, one has,

1£1x,0 = N1+ D) U @) fllzas),

where U(t) = e7'%2 is the unitary group associated with the linear problem.
If b > 1/2, the previous remark and the Sobolev lemma imply,

X, C C(R; H:(R)).

The remainder of this article is organized as follows. In section 2 we decouple the
dispersive terms in (1) with the help of a non-singular linear transformation and recall
some linear estimates. In section 3 we prove Theorem 1.1, the local well-posedness result.
In section 4 we introduce an almost conserved quantity and prove Theorem 1.2, the global
well-posedness result. Finally, we give proof of the local ill-posedness result, Theorem 1.3,
in section 5.
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2. REDUCTION OF THE PROBLEM AND PRELIMINARY ESTIMATES
As mentioned in the introduction we consider the following IVP

Ut + Uggpe + 03Vpzr + Uy + a100; + ao(uv)y; = 0,
b1Vt + Vzr + boG3Ugs + VU, + boasuu, + boay (uv), = 0, (7)
u(z,0) = ¢(z), v(z,0) = P(z),

where a1, as, a3, by, by are real constants with by, by positive.

If ag = 0 there is no coupling in the dispersive terms. So let ag # 0. We are interested
to decouple the dispersive terms in the system (7). For this, let a3by # 1. Define,

A= {(1—;—1)2+4bb21“§}1/2>0 and ai:%(l—l—bl—l:t/\).

Our assumption a2b, # 1 guarantees that au # 0. Thus we can write the system (7)
in a matrix form and then diagonalize the matrix of coefficients corresponding to the
dispersive terms as in [17]. After that we make the change of scale

1/3

u(z,t) = a(af/gx,t) and v(z,t) = 0(a_ "z, 1).

Then we obtain the system of equations

Ut + Uggy + ally + b0T, + c(U0), = 0,
By 4 Vg + Gy + b7, + &(60), = 0, (8)

a(x,0) = (), o(x,0) = P(x),
where a, b, c and a, B, ¢, are constants.

REMARK 1. Notice that the nonlinear terms involving the functions @ and v are not
evaluated at the same point. Therefore those terms are not local anymore. Hence we
should be careful in making the estimates. In the existing literature, see for instance [17]
and [2], this feature of the nonlinear terms was not pointed out which may lead to wrong
conclusions.

REMARK 2. Due to the previous remark, in Proposition 2.1 below, we need to estimate
terms of the form Oy(u(Az,t)v(Bz,t)) or more generally 0, (u(Ax + C,t)v(Bx + D,t)).
It is not difficult to prove the same inequality since the only changes coming out are from
the contributions given by the constants A, B,C and D.

The system (8) has a pair of KdV equations coupled only in the nonlinear terms. It is
enough to prove local well-posedness for system (8) because the results for the IVP (7)
can be obtained in the obvious way.

Hence, our interest here is to solve system (8) for initial data (¢, ) € H*(R) x H*(R),
s > —3/4. For this we use the Fourier transform restriction space X, discussed above.
For the sake of simplicity, from now onwards we will drop ‘” and use the notation u, v, ¢, ¥
in the system (8).
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Using Duhamel’s principle, we study the following system of integral equations equiv-
alent to the system (8),

{ u(t) = U(t)d — fo Ut — ') F(u, v, ug, vy) (') dt',
v

(&) = U0 — [ Ut — )G (u, v, ug, vs)(¥) dt! 9)

where U(t) = e(=192) is the unitary group associated with the linear problem and F' and
G are respective nonlinearities.

To find a local solution to (8) we can replace (9) with the following system of integral
equations,

u(t) = v (U (t)d — 1 (1) fo Ut —t")s(t')F (u, v, ug, vg) (¢ dt’,
v(t) = L (U ()Y — () fo Ut —t")s(t)G(u, v, ug, vg) (t) dt’,

where ¢; € C§°(R), 0 < 1; <1 is a cut-off function given by,

1, It <1
Vi = {0, It > 2

(10)

and 95 = Y1(t/5), 0 <6 < 1.
Now, let us recall some estimates which will be used to prove the local well-posedness
result.

LEMMA 2.1. Let s e R, V', b€ (1/2,1) with ¥ < b and § € (0,1); then we have,

45U ©)6llx,., < CFO]|6]l - (1)
b=t
WP llx,, . < C5553 | Fllx,,,_, (12)
t
[est [ we-oypeyae|,  <csmmpy, (13)
0 s,b
and
t
[uste) [ ve-o)F@yae], < csmrFx,, . (14)
0 Hs ’

PROPOSITION 2.1. Let s > —3/4, then there exists b > 1/2 such that the following bilinear
estimate holds,

[(Wv)allx, s < Cllullx,, lI0llx, - (15)

The proof of Lemma 2.1 can be found in ([13], [14]) and that of Proposition 2.1 in [14],
so we skip the details.



COUPLED KDV SYSTEM 7

3. LocAL WELL-POSEDNESS RESULT

In this section we give the proof of Theorem 1.1. To do so we first consider the following
function space where we seek a solution to the IVP (8). For given (¢, ) € H*(R) x H*(R)
and b > 1/2, let us define,

Hun = {(v,v) € Xsp x Xop 2 |ullx,, <M, [Jv|x,, <N},

where M = 2C||¢||zs and N = 2Co||9)||zs- Then Hysn is a complete metric space with
norm,

s,b —

[[1(w, ) lseren = lluellx, o + llv]lx, .-
Without loss of generality, we may assume that M > 1 and N > 1. For (u,v) € Hyy,
let us define the maps,

(Plﬁ[u’ o] = (U (t)g — it fo (t =) ps(t)F (u, v, ug, v)(¢') dt’ (16)
Uylu, v] =1 (U (t) — (2 fo (t — t"s(t) G (u, v, ug, vy)(t) dt'.

We prove that ® x ¥ maps Hyn into Hyy and is a contraction.
Using (11) and (13) we get from (16),

[@[w, v]llx,, < Collllms + CllYsF (u, v, g, va)|lx, -,
19w, lllx,, < Coll¢llas + ClltsGu, v, e, va)llx, s -

Now, using (12) we get from (17) for ¥’ < b and 0 = 8(”1_—_”;,),

{Hq’[u, Vlix,, < Coll@llms + CONF (u, v, ug,v5)llx,

(17)

18
190, olllx . < Collllze + COG s 0,y 02 (18)

Using the bilinear estimate (15), the estimate (18) yields,

s,b — s,b/—1

{II‘P[% lix., < Collglla: + Cro’{Jlullk, , + llvli%, , + lullx,.llvllx, .} (19)

19w, vlllx,, < Collvlla: + Cod’{llull%,, + Ivli%, , + llullx, llvllx, . }-
As (u,v) € Hpn, with our choice of M and N we get from (19),
{mmwmssM+cWMF+W+MN}
[, v]||x,, <5+ C26°{M? + N? + MN}
If we choose ¢ such that,
6% < (2max{Cy, Co}(M + N)?)

(20)

-1

then we get from (20),
1w, v]llx,, <M and  [|fu,v]||x,, < N.

Therefore,
(D[, v], ¥[u,v]) € Hun.
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Now, we need to show that ® x ¥ : (u,v) — (®[u,v], ¥[u, v]) is a contraction. For this,
let (u,v), (u1,v1) € Huyn, then as above using Lemma 2.1 and Proposition 2.1 we get,

{||<I>[u,v] — Ofus, villx., < CLd"(M + N)[lu = wlx,,, + v = villx,,] o
1Plu, v] = Wlur, vi]|lx,, < Co0’(M + N)[[lu—wllx,, + v = vilx,,]-
If we choose ¢ such that
8’ < (4max{Cy, Co}(M + N)?) ™
then we get,
{||<1>[u,v] — s, vl < 3l wllx, + o - oillx,,) -
1w, v] = Wlur, vi]l|x,, < zlllu—wllx,, + v = vllx,,]-

Therefore the map ® x V¥ is a contraction and we obtain a unique fixed point (u,v)
which solves the IVP (8) for T < 4. The remainder of the proof follows a standard
argument.

4. GLOBAL WELL-POSEDNESS RESULT

This section is devoted to extend the local solution obtained in the previous section to
the global one. Using usual conservation laws we have global solution in H*(R) x H*(R),
s > 0. So, we suppose s < 0 throughout this section. Our aim here is to derive an almost
conserved quantity and use it to prove Theorem 1.2. For this, let us define the Fourier
multiplier operator I by, .

Tu(€) = m(€)a(¢),

where m(§) is a smooth and monotone function given by

T, €| < N,
m(€) = { NUEls, ] > 2N,

with N > 1 to be fixed later.

Note that, I is the identity operator in low frequencies, {£ : |£| < N}, and simply an
integral operator in high frequencies. In general, it commutes with differential operators
and satisfies the following property.

LEMMA 4.1. Let —3/4 < s < 0 and N > 1. Then the operator I maps H*(R) to L*(R)
and

WL flleew) S N 78| fllasm)- (23)
Proof.
IZf1I22 = |TF|22 = [|m() fII2
< ON||f % + N2 / 1+ FEPa+ §i> ¢
|€]>2N

< ON7|| f -
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As discussed in the introduction let us consider the IVP (1) with a3 = 0 and b; = bs,
that is,

Up + Uggy + UUg + 10V, + ag(uv), = 0,

b1vy + Vgzg + VUL + boaouuy + byay (uv), = 0,
u(z,0) = ¢(z),

v(z,0) = YP(z).

After introducing the multiplier operator I, we have the following variant of the local
well-posedness for the IVP (24).

(24)

THEOREM 4.1. For any (¢,v) € H’(R) x H*(R), s > —3/4, the IVP (24) is locally
well-posed in the Banach space

I x I7'L? = {(¢,%) € H®* x H*, with norm ||I¢||1> + ||I%] 12}
with the existence lifetime satisfying,
82 (IHellZ= + Iwlz) ™", 0>0. (25)
Moreover,

{H%IUleo,b < |12 (26)

[¥slvllx,, < ClI||ze-

The proof of this theorem is not difficult and follows by using the same procedure to
prove local well-posedness for the IVP (8) (see the Proof of Theorem 1.1) once we have
the bilinear estimate

10 (wo)lx, ., < CllTullx, , Tl , (27)

The proof of the bilinear estimate (27) is easy and follows by using the usual bilinear
estimate (15) due to Kenig, Ponce and Vega [14] combined with the following extra
smoothing bilinear estimate whose proof is given in Colliander, Keel, Staffilani, Takaoka
and Tao [10].

PROPOSITION 4.1. The bilinear estimate

10:{(Tulv — I(uv)}llxs | < CNT*|[Tullxs  ||Tv]|xs
0,—1— 0,— 0,—1

1
2 gt 2t

(28)

holds.
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Now we proceed to introduce the almost conserved quantity. Using the Fundamental
Theorem of Calculus, the equation and integration by parts we get,

I17u(@) I =u(O) [+ [ 50, () as
([ Tu(0)]% + 2 /0 (%Iu(t),[u(t)) dt

b 29
=||7u(0)|%; + 2/ (I(—Uggr — Uy — a1V, — az(uv)y), Tu(t)) dt (29)
0
5
=||Tu(0)||2: + 2/ (I(—uug — a1vv, — ag(uv),), Tu(t)) dt
0
=[1Tu(0)|IZ> + Ru(9),
where 5
Ry (0) = / / Op(—Iu? — a1Iv? — 2ayI (uwv)) Tu dzdt. (30)
R
Similarly,
[Hv(O)I7> = [[Tv(0)]172 + Ra(9), (31)
where
2
/ / -_1 2_ Doz 0 20901 b N Ty dadt, (32)
by by
Let us define R(J) := )+ R2(5) so that we have from (29) and (31),
[T (s )||L2 +[[Tv(@)lIZz2 = ITu(O)IZ> + [1Tv(0)lIZ> + R(5). (33)

We will obtain the so called almost conserved quantity from (33) by treating R(d) as
an error term. In what follows we prove a cancellation property which plays a vital role
in our analysis.

LEMMA 4.2. The following cancellations hold.

5 5
/ / Oy (Tu)*ITu dzdt = 0 :/ / 0, (Iv)*Iv dzdt (34)
0 JR 0o JR
and
a1b1]1 —+ 2&2[)1[2 + bQG,QIg + 2b2&1[4 = 0, if bl = bg, (35)
where
) )
L =/ / 0y (Iv)*Iu dxdt, I, = / Oy (Tulv)Iu dxdt,
0o JR 0o JR

B 5
13:/ /8z(lu)21vdxdt and I4:/ /(%(Iulv)lvdxdt.
o Jr 0 Jr
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Proof. The proof of (34) is trivial and (35) follows by using integration by parts. In fact,
for bl = bz,

a1[1+2a212 =+ (I,QI:J, =+ a1]4 =

5 5
=a1/ /8I(Iv)21udxdt+2a2/ /aw(lu]v)]ud:cdt
0o Jr 0o Jr
5 5
+a2/ /am(lu)QIvdxdt—l—Qal/ /&E(Iulv)lvdxdt
0o Jr o JR
5 5
=—a1/ /(IU)28qudmdt—a2/ /Ivaw(lu)dedt
o Jr o Jr
5 5
—a2/ /(Iu)Qavadacdt—al/ /Iuagc(IU)dedt
o Jr o JR
5 5
:—al/ /8$[Iu(fv)2] dxdt—az/ /81[11)([11)2] dxdt
0 JR o Jr

=0.
U

REMARK 3. Note that, it is here in Lemma /4.2, where the restriction by = by on the
coefficients appears. From here onwards we will use this restriction on the coefficients.

Using Lemma 4.2, R(d) can be written as,

//8{Iu w?) M dzdt + — //8{[1} (Iv?) v dzdt

36
+a1//3 {(Iv)? )}Iudmdt+a2//8 {(Tu)?® — (Iu®)}v dzdt (36)
+2a2//8 {Iulv — (uv)}[udxdt—i—?al//a {Iulv — I(uv)}Tv dzdt.
Using Plancherel identity and Cauchy-Schwarz inequality as in [18] we get,
| R(3)]
< C*{Ilaz{(lufv—I(W)}Ilg%_%_(||IUIIX¢S vl )
=7 0,-} 0,—%
(37)

+ (l10:{(Tu)” - I(UQ)}“XS,_%_ + 10 (1v)* — I(UQ)}“Xg,_%_)”IUHXg .

)

+ (19:(10) = 1) Hllxs , +110:{(Tu)* - I(uQ)}HXg_I_)IIIv||Xg,_5+}-

T 9T L
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Now, using (37) and Proposition 4.1 the identity (33) yields the following almost con-
servation law,

Hu(@)lI72 + w12 < [Hu(0)l[Z> + [[1v(0)]]7:

3
N 1u)3 Tulfs |1
+ CN7it4|| U||Xg,_%++|| U||Xg,_%+|| U”Xg’_%_i_ (38)
Tvl? I Ivl|3 }
+ 1l vllxgﬁ%ll ullxs |+l v||Xg,7%+

Now we are in position to prove the global well-posedness result.

Proof of Theorem 1.2. To prove the theorem it is enough to show that the local solution
to the IVP (24) can be extended to [0, 7] for arbitrary 7" > 0. To make the analysis easy
we use the scaling introduced in the introduction. That is, if (u,v) solves the IVP (24)
with initial data (¢,) then for 1 > A > 0 so does (u*, v*); where u*(z,t) = Nu(\z, \3t),
v (z,t) = Nv(Az, \3); with initial data (¢*,9?) given by ¢*(x) = N2¢(Az) , v (z) =
A2p(Az). Observe that, (u,v) exists in [0, T] if and only if (u*,v*) exists in [0, 55]. So we
are interested in extending (u*, v*) to [0, J5].
Using Lemma 4.1 we have,

{WéﬂhaSCug”N‘ﬂWHm,

39
1M 22 < CAFFSN=* ||y e (39)

N = N(T) will be selected later, but let us choose A = A(N) right now by requiring that,

CAN = ol = /E <1, (o)
CNFHN [|oh] s = /2 < 1.
From (40) we get, A ~ N5 and using (40) in (39) we get,
1163 < <1 )
Iz < 2 < 1.

Therefore, if we choose €, arbitrarily small then from Theorem 4.1 we see that the IVP
(24) is well-posed for all ¢ € [0, 1].
Now, using the almost conserved quantity (38), the identity (41) and Theorem 4.1, we
get,
€ , €

_3 €o €0
Tl + 1l < 5+ 5 +CNTHF[32(5)] (42)

< ¢+ CN7%+€0.

So, we can iterate this process C~' N~ times before doubling ||Tu*(t)||%, + || Tv*(¢)]|2..
Using this process we can extend the solution to the time interval [0, C"'N17] by taking
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C~'Ni~ time steps of size O(1). As we are interested in extending the solution to the
time interval [0, L], let us select N = N(T) such that, C-'N3~ > L. That is,
3 T —6s
N¥ > Og5 ~ TN,
Therefore for large N, the existence interval will be arbitrarily large if we choose s such
that s > —3/10. This completes the proof of the theorem. 1

5. ILL-POSEDNESS RESULT

As in the local well-posedness result, we consider the system (8). Note that we have
dropped ¢~ and retained the notation u,v,pandv. Let W = (u,v)’, then the IVP (8)
can be written as,

(43)

Wi+ Wipe + BWW)W,, =0,
W (z,0) = Wo(x),

where,
au+dv cu+ bv
B(W)_(&u-l—ch 6u+l~)v)'

For fixed ® € H*(R) x H*(R), consider the solution W = W? of the IVP

{Wt + Wags + B(W)W, = 0, (w4

W(z,0) = 6®(z), jeR

We will show that the flow-map §® — W?(x,t) fails to be C? at the origin when
s < —3/4. More precisely, we prove the following theorem which in turn implies Theorem
1.3.

THEOREM 5.1. Let s < —3/4, then there is no T > 0 such that the flow-map
5O — W(t), te(0,T]
be C? Frechet-differentiable at the origin from H*(R) x H*(R) to H*(R) x H*(R).

Proof. We prove it by contradiction. Suppose that the flow-map be C? differentiable at
the origin. Using Duhamel’s formula we have,

Wo(z,t) =0Ut)®(z) — /0 t Ut —t"YBW?®(z,t'))W?(z,t) dt’, (45)

where U(t) is the unitary group associated to the linear problem. Differentiating (45)
with respect to 6 we get,

OW?®(z,1t) _ -
T |y = V0@ = Wi(a,0) (46)
awgig(f,t)‘&:o = _2/0 Ut —t"YB(W(z, t"))Wig(z, ') dt' := Wy(x,1). (47)
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Our assumption of the C? regularity of the flow-map at the origin implies that,

IWa (s )l oscsre < C IRy o (48)

Now, we look for ® € H*(R) x H*(R) so that (48) fails to hold whenever s < —3/4.
For this, let I; := [-N,—N + |, I := [N + a, N + 2a] with N > 1 and « < 1, define ¢
by the formula

$(8) = a2 N {x1,(€) + x5 (6)}, (49)

and take ® = (¢, ¢)7.
It is easy to see that

1@ i7s s ~ 1. (50)
Now we proceed to calculate ||[Wa(:,t)|| gy pgs- For this, let us first calculate W;(z,1)
and Wy(z,t).
From (46) we have ,
() i1e3 A
Wi (6 1) = " B(8).

Therefore,

i€ +itgd d g

Wi(z,t) ~a 2N"* ( Jeeno,

ez’w§+it§3 df
ffEhUIz

From (47) we get,

Walw,f) = —2 /tU(t—t')B(Wl(x,t'))Wlw(x,t')dt’

e~ 31861 (§—81) 1

L aA A a e
= ETEHIE G(E — £)P(&1) ( y A ) dé, d¢,
R2 T Qee e ¢\

3¢61(6—¢1)

where o' = a+b+c+dand b = a+ b+ ¢+ d. Therefore, using (49) we get,

Wg(x,t) ~ a/lest /&EIIUI2 feiw§+it€3 ( ZI Zég:g}:g ) df dfl,

§—§1€; VI

where h(,&,t) = o1 Hence, formally we have,

£61(6-61)
— () —1 A7—25 ¢ it€3 J lfA (€) 6 61) )dé-l
W. ~ N

2 (gat) (0% fe ( ] lfA f 61, dé_l

— ( p1(&,t) +p2(&,t) + p3(€,1) )
. q 5 )

1( ’t) + q2(£a t) + Q3(£,t)
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where,
A ={& &€l =& e}
A)={& 4 €L, E-& € lh}
As§) ={& &€, =& el or L el E—& €L}

Let ;' = p; and @ =q;, j = 1,2,3, then,
fl(x:t) f2 x, t
Wy(x,t) =
= Fi(z, t) + Fy(z,t) +F3 z,1).

Let us find an upper bound for H® x H® norm of Fy. If &, € I, and € — &, € I; then
|&1| ~ |€ =& ~ €] ~ N and we get,

IF R, e = / P (Ipr (6, 1) + s (&, 1)) de
R

e 3itE61(E—61) _ q p 2 p
/Al(g) £61(E — &) G @

~ /|§|25a_2N_4S|f|2(a12—|—bl2)

< Ca—QN 25— 4( b12)
= CaN %4

Therefore,

| < CallPN—2,

||HS><H8
Similarly,
||F2||2 . < Cal/ZN_S_Q.

s H$

Now we find, with proper choice of oz and N, the lower bound for the H? x H*® norm of
F3.

If& elhandE—& € or & €1, and € — & € I then |§| ~ N, [€ —&| ~ N and
|| ~ a. Therefore,

E61(E — &)| ~ N

For 0 < € < 1, choose N and « such that N?a = N=¢. Hence for & € A3(€) we have,

for fixed ¢ and large N,

‘ e 3itg&1(§—61)

A lzoso (51)

Now,

e B (- 61) _ 1

F. 2.8 e N/ 628a—2N—4S£2 a/2+b/2 / e dg 5
(B3 ) € €1°( ) o EE—E)

Using the Mean Value Theorem for integrals and (51) it is easy to see that,

—3zt§§1(§ &) _ 1 d 52
‘/A Ge-e) @ o ”
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Also, it is easy to see that |A3(&)| ~ a. In fact, |A3(¢)| < |I1| + |I2] < 2. On the
other hand, if £ € ({o,2a) C (,3a) then [-N + 2,—N + 2a] C A3(€) and we get
44(6)] > /2.

Now using (52), we get,

o

||F3||2 Z 0N74sa—2(a/2 + b/Q)/ |€‘25+2a/2 df ~ 0N745a25+3.

i x I .
ZO{

Therefore,
| F3 |2 > ON~2¢513/2,

Hsx Hs
Observe that supp T, C [-2N, —2N+2a], supp FC [2N+2a, 2N +4a] and supp T C
[, Bar], which are clearly disjoint, therefore using (50) and (48) we obtain,

L 10050 e = W 010, s
> (1 F3 () ey e
> CNf2sas+3/2
— CN74573N76(5+3/2).
Hence
N—4s—3 S 0N6(5+3/2)‘ (53)

Case I If —3/2 < s < —3/4 then s+ 3/2 > 0 and (53) gives
Ns=3)=<s+3/2) < ¢

which is a contradiction for N > 1 if we choose 0 < € < (—4s — 3)/(s + 3/2).

Case II: If s < —3/2 then s+ 3/2 < 0 and (53) gives N~*73 < (C, which is again a
contradiction for N > 1.

Hence for s < —3/4, (48) fails to hold for our choice of ®, which completes the proof
of the theorem. O
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