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ABSTRACT. Lyapunov exponents measure the asymptotic behavior of tangent vectors under iteration,
positive exponents corresponding to exponential growth and negative exponents corresponding to ex-
ponential decay of the norm. Assuminghyperbolicity,that is, that no Lyapunov exponents are zero,
Pesin theory provides detailed geometric information about the system, that is at the basis of several
deep results on the dynamics of hyperbolic systems. Thus, the question in the title is central to the
whole theory.

Here we survey and sketch the proofs of several recent results on genericity of vanishing and
non-vanishing Lyapunov exponents. Genericity is meant in both topological and measure-theoretical
sense. The results are for dynamical systems (diffeomorphisms) and for linear cocycles, a natural
generalization of the tangent map which has an important role in Dynamics as well as in several other
areas of Mathematics and its applications.

The first section contains statements and a detailed discussion of main results. Outlines of proofs
follow. In the last section and the appendices we prove a few useful related results.

1. INTRODUCTION

LetM be a compact manifold with dimensiond ≥ 1, andf : M →M be aCr diffeomorphism,
r ≥ 1. The Oseledets theorem [Ose68] says that, relative to anyf -invariant probabilityµ, almost
every point admits a splitting of the tangent space

(1) TxM = E1
x ⊕ · · · ⊕ Ek

x , k = k(x),

and real numbersλ1(f, x) > · · · > λk(f, x) such that

lim
n→±∞

1
n

log ‖Dfn(x)vi‖ = λi(f, x) for every nonzerovi ∈ Ei
x .

These objects are uniquely defined and they vary measurably with the pointx. Moreover, the Lya-
punov exponentsλi(f, x) are constant on orbits, hence they are constantµ-almost everywhere ifµ
is ergodic.

Assuming hyperbolicity, that is, that no Lyapunov exponents are zero, Pesin theory provides
detailed geometric information about the system, including existence of stable and unstable sets
that are smooth embedded disks at almost every point [Pes76, Rue81, FHY83, PS89]. This theory
requires the diffeomorphism to have Hölder continuous derivative (see [Pu84]). Such geometric
structure is at the basis of several deep results on the dynamics of hyperbolic systems, like [Pes77,
Kat80, Led84, LY85, BPS99, SW00]. This makes the following problem central to the whole theory:

How often are dynamical systems hyperbolic ?

More precisely, consider the spaceDiffr
µ(M) ofCr, r ≥ 1 diffeomorphisms that preserve a given

probabilityµ, endowed with the correspondingCr topology. Then the question is to be understood
both in topological terms – dense, residual, or even open dense subsets – and in terms of Lebesgue

Date: September 26, 2003.
1



2 JAIRO BOCHI AND MARCELO VIANA

measure inside generic finite-dimensional submanifolds, or parameterized families, ofDiffr
µ(M).

The most interesting case1 is whenµ is Lebesgue measure in the manifold.
As we are going to see in section 1.1, systems withzeroLyapunov exponents are abundant among

C1 volume-preserving diffeomorphisms. But other results in section 1.3 below strongly suggest
predominance of hyperbolicity amongCr systems withr > 1.

1.1. A dichotomy for conservative systems.Letµ be normalized Lebesgue measure on a compact
manifoldM .

Theorem 1([BV02, BVa]). There exists a residual subsetR ofDiff1
µ(M) such that, for everyf ∈ R

andµ-almost every pointx,

(a) either all Lyapunov exponentsλi(f, x) = 0 for 1 ≤ i ≤ d,
(b) or the Oseledets splitting off is dominated on the orbit ofx.

The second case means there existsm ≥ 1 such that for anyy in the orbit ofx

(2)
‖Dfm(y)vi‖

‖vi‖
≥ 2

‖Dfm(y)vj‖
‖vj‖

for any nonzerovi ∈ Ei
y, vj ∈ Ej

y corresponding to Lyapunov exponentsλi > λj . In other words,
the fact thatDfn will eventually expandEi

y more thanEj
y can be observed in finite time,uniform

over the orbit.This also implies that the angles between the Oseledets subspacesEi
y are bounded

away from zero along the orbit, in factthe Oseledets splitting extends to a dominated splitting over
the closure of the orbit.

In many situations (for instance, if the transformationf is ergodic) the conclusion gets a more
global form: either (a) all exponents vanish atµ-almost every point or (b) the Oseledets splitting
extends to a dominated splitting on the whole ambient manifold. The latter means thatm ≥ 1 as in
(2) may be chosen uniformly over all ofM .

It is easy to see that a dominated splitting into factors with constant dimensions is necessarily
continuous. Now, existence of such a splitting is a very strong property that can often be excluded a
priori. In any such case Theorem 1 is saying that generic systems must satisfy alternative (a).

A first example of this phenomenon is the2-dimensional version of Theorem 1, proved by Bochi
in 2000, partially based on a strategy proposed by Mañé in the early eighties [Mãn96].

Theorem 2 ([Boc02]). For a residual subsetR of C1 area preserving diffeomorphisms on any
surface, either

(a) the Lyapunov exponents vanish almost everywhere or
(b) the diffeomorphism is uniformly hyperbolic (Anosov) on the wholeM .

Alternative (b) can only occur ifM is the torus; so,C1 generic area preserving diffeomorphisms
on any other surface have zero Lyapunov exponents almost everywhere.

It is an interesting question whether the theorem can always be formulated in this more global
form. Here is a partial positive answer, for symplectic diffeomorphisms on any symplectic manifold
(M,ω):

1But the problem is just as important for general dissipative diffeomorphisms, that is, without a priori knowledge of
invariant measures. E.g. [ABV00] uses hyperbolicity type properties at Lebesgue almost every point toconstructinvariant
Sinai-Ruelle-Bowen measures.
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Theorem 3([BVa]). There exists a residual setR ⊂ Sympl1ω(M) such that for everyf ∈ R either
the diffeomorphismf is Anosov or Lebesgue almost every point has zero as Lyapunov exponent, with
multiplicity≥ 2.

Remark 1.1. For r sufficiently large, KAM theory yieldsCr-open sets of symplectic maps which
are not hyperbolic, due to the presence of invariant Lagrangian tori restricted to which the map
is conjugate to rotations and whose union has positive volume. Moreover, Cheng, Sun[CS90],
Herman[Yoc92, § 4.6], Xia [Xi92] have constructedCr-open sets (larger) of volume-preserving
diffeomorphisms exhibiting positive volume invariant sets consisting of codimension-1 invariant tori.
In all these latter examples where hyperbolicity fails,all Lyapunov exponents actually vanish: the
dynamics on each torus is conjugate to a (diophantine) rotation; then, since the map is volume-
preserving, the transverse Lyapunov exponent must also be zero.

1.2. Deterministic products of matrices. Let f : M → M be a continuous transformation on a
compact metric spaceM . A linear cocycleover f is a vector bundle automorphismF : E → E
coveringf , whereπ : E →M is a finite-dimensional vector bundle overM . This means that

π ◦ F = f ◦ π
andF acts as a linear isomorphism on every fiber. The quintessential example is the derivative
F = Df of a diffeomorphism on a manifold (dynamical cocycle).

For simplicity, we focus on the case when the vector bundle is trivialE = M ×Rd, although this
is not strictly necessary for what follows. Then the cocycle has the form

F (x, v) = (f(x), A(x)v) for someA : M → GL(d,R).

It is no real restriction to suppose thatA takes values inSL(d,R). Moreover, we assume thatA is at
least continuous. Note thatFn(x, v) = (fn(x), An(x)v) for n ∈ Z, with

Aj(x) = A(f j−1(x)) · · ·A(f(x))A(x) and A−j(x) = inverse ofAj(f−j(x)).

The theorem of Oseledets extends to linear cocycles: Given anyf -invariant probabilityµ, then at
µ-almost every pointx there exists a filtration

{x} × Rd = F 0
x > F 1

x > · · · > F k−1
x > F k

x = {0}
and real numbersλ1(A, x) > · · · > λk(A, x) such that

lim
n→+∞

1
n

log ‖An(x)vi‖ = λi(A, x)

for everyvi ∈ F i−1
x \ F i

x. If f is invertible there even exists an invariant splitting

{x} × Rd = E1
x ⊕ · · · ⊕ Ek

x

such that

lim
n→±∞

1
n

log ‖An(x)vi‖ = λi(A, x)

for everyvi ∈ Ei
x \ {0}. It relates to the filtration byF j

x = ⊕i>jE
i
x.

In either case, the largest Lyapunov exponentλ(A, x) = λ1(A, x) describes the exponential rate
of growth of the norm

λ(A, x) = lim
n→+∞

1
n

log ‖An(x)‖ .

If µ is an ergodic probability, the exponents are constantµ-almost everywhere. We represent by
λj(A,µ) andλ(A,µ) these constants.
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Example 1.2. (Products of i.i.d. random matrices) Letν be a probability onSL(d,R) with compact
support. DefineM to be the space(supp ν)Z of sequences(αj)j in the support ofν, and letµ = νZ.
Let f : M → M be the shift map, andA : M → SL(d,R) be the projection to the 0th coordinate:
A((αj)j) = α0. Then

An
(
(αj)j

)
= αn−1 · · ·α1 α0 .

A classical theory, initiated by Furstenberg and Kesten[FK60, Fur63], states that the largest Lya-
punov exponentλ(A,µ) of the cocycle(A,µ) is positive, as long as the support of the probabilityν
is rich enough: it suffices that there be no probability on the projective spaceRPd−1 invariant under
the action ofall the matrices insupp ν. Also with great generality, one even has that the Lyapunov
spectrum is simple: all Oseledets subspaces have dimension1. See Guivarch, Raugi[GR86] and
Gold’sheid, Margulis[GM89].

Theorem 1 also extends to linear cocycles over any transformation. We state the ergodic invertible
case:

Theorem 4 ([Boc02, BV02]). Assumef : (M,µ) → (M,µ) is invertible and ergodic. LetG ⊂
SL(d,R) be any subgroup acting transitively on the projective spaceRPd−1. Then there exists a
residual subsetR of mapsA ∈ C0(M,G) for which either the Lyapunov exponentsλi(A,µ) are all
zero atµ-almost every point, or the Oseledets splitting ofA extends to a dominated splitting over
the support ofµ.

The next couple of examples describe two simple mechanisms that exclude a priori the dominated
splitting alternative in the dichotomy:

Example 1.3. Letf : M →M andA : M → SL(d,R) be such that for every1 ≤ i < d there exists
a periodic pointpi in the support ofµ, with periodqi , such that the eigenvalues{βi

j : 1 ≤ j ≤ d}
ofAqi(pi) satisfy

(3) |βi
1| ≥ · · · ≥ |βi

i−1| > |βi
i | = |βi+1

i | > |βi
i+2| ≥ · · · ≥ |βi

d|

andβi
i , β

i
i+1 are complex conjugate (not real). Such anA may be found, for instance, starting with

a constant cocycle and deforming it on disjoint neighborhoods of the periodic orbits. Property(3)
remains valid for everyB in a C0 neighborhoodU of A. It implies that noB admits an invariant
dominated splitting over the support ofµ: if such a splittingE ⊕ F existed then, at every periodic
point, thedimE largest eigenvalues would be strictly larger than the other eigenvalues, which is
incompatible with(3). It follows, by Theorem 4, that every cocycle in a residual subsetU ∩R of the
neighborhood has all the Lyapunov exponents equal to zero.

Example 1.4. Letf : S1 → S1 be a homeomorphism andµ be any invariant ergodic measure with
suppµ = S1. LetN be the set of all continuousA : S1 → SL(2,R) non-homotopic to a constant.
For a residual subset ofN , the Lyapunov exponents of the corresponding cocycle over(f, µ) are
zero. That is because the cocycle has no invariant continuous subbundle ifA is non-homotopic to a
constant (this may be shown by the same kind of arguments as in example 3.4 below).

Remark 1.5. Theorem 4 also carries over to the spaceL∞(X,SL(d,R)) of measurable bounded
cocycles, still with the uniform topology. We also mention that in weaker topologies, cocycles having
a dominated splitting may cease to constitute an open set. In fact, for1 ≤ p < ∞, genericLp

cocycles have all exponents equal, see Arnold, Cong[AC97] and Arbieto, Bochi[AB] .
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1.3. Prevalence of nonzero exponents.We are now going to see that the conclusions of the previ-
ous section change radically if one considers linear cocycles which are better than just continuous:
assuming the base dynamics is hyperbolic, theoverwhelming majority of Ḧolder continuous or dif-
ferentiable cocycles admit nonzero Lyapunov exponents.

LetG be any subgroup ofSL(d,R). For0 < ν ≤ ∞ denote byCν(M,G) the space ofCν maps
fromM toG endowed with theCν norm. Whenν ≥ 1 it is implicit thatM has a smooth structure.
For integerν the notation is slightly ambiguous:Cν means either thatf is ν times differentiable
with continuousνth derivative, or that it isν − 1 times differentiable with Lipschitz continuous
derivative. All the statements are meant for both interpretations.

Let f : M → M be aC1 diffeomorphism with Ḧolder continuous derivative. Anf -invariant
probability measureµ is hyperbolicif everyλi(f, x) is different from zero atµ-almost every point.
The notion of measure with local product structure is recalled at the end of this section, and we also
observe that this class contains most interesting invariant measures.

Theorem 5 ([Via]) . Assumef : (M,µ) → (M,µ) is ergodic and hyperbolic with local product
structure. Then, for everyν > 0, the set of cocyclesA with largest Lyapunov exponentλ(A, x) >
0 at µ-almost every point contains an open dense subsetA of Cν(M,SL(d,R)). Moreover, its
complement has infinite codimension.

The last property means that the set of cocycles with vanishing exponents is locally contained
inside finite unions of closed submanifolds ofCν(M,SL(d,R)) with arbitrary codimension. Thus,
generic parameterized families of cocycles do not intersect this exceptional set at all!

Now supposef : M → M is uniformly hyperbolic, for instance, a two-sided shift of finite type,
or an Axiom A diffeomorphism restricted to a hyperbolic basic set. Then every invariant measure is
hyperbolic. The main novelty is that the setAmay be taken the same for all invariant measures with
local product structure.

Theorem 6([BGMV, Via]) . Assumef : M →M is a uniformly hyperbolic homeomorphism. Then,
for everyν > 0, the set of cocyclesA whose largest Lyapunov exponentλ(A, x) is positive atµ-
almost every point for every invariant measure with local product structure contains an open dense
subsetA ofCν(M,SL(d,R)). Moreover, its complement has infinite codimension.

Theorem 6 was first proved in [BGMV], under an additional hypothesis called domination. Under
this additional hypothesis [BVb] gets a stronger conclusion: all Lyapunov exponents have multiplic-
ity 1, in other words, the Oseledets subspacesEi are one-dimensional. We expect this to extend to
full generality:

Conjecture. Theorems 5 and 6 should remain true if one replacesλ(A, x) > 0 by all Lyapunov
exponentsλi(A, x) having multiplicity1.

Theorems 5 and 6 extend to cocycles over non-invertible transformations, respectively, local dif-
feomorphisms equipped with invariant non-uniformly expanding probabilities (all Lyapunov expo-
nents positive), and uniformly expanding continuous maps, like one-sided shifts of finite type, or
smooth expanding maps. Moreover, both theorems remain true if we replaceSL(d,R) by any sub-
groupG such that

G 3 B 7→ (Bξ1 , . . . , Bξd) ∈ (RPd−1)d,

is a submersion, for any linearly independent{ξ1, . . . , ξd} ⊂ RPd−1. In particular, this holds for the
symplectic group.

Motivated by results to be presented in sections 2 and 3, we ask
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Problem. What are the continuity points of Lyapunov exponents as functions of the cocycle in
Cν(M,SL(d,R)), whenν > 0 ? It may help to assume that the base system(f, µ) is hyperbolic.

Finally, we recall the notion oflocal product structurefor invariant measures. Letµ be a hyper-
bolic measure. We also assume thatµ has no atoms. By Pesin’s stable manifold theorem [Pes76],
µ-almost everyx ∈M has a local stable setW s

loc(x) and a local unstable setWu
loc(x) which areC1

embedded disks. Moreover, these disks vary in a measurable fashion with the point. So, for every
ε > 0 we may findMε ⊂ M with µ(Mε) > 1 − ε such thatW s

loc(x) andWu
loc(x) vary continu-

ously withx ∈ Mε and, in particular, their sizes are uniformly bounded away from zero. Thus for
anyx ∈ Mε we may construct setsH(x, δ) with arbitrarily small diameterδ, such that (i)H(x, δ)
contains a neighborhood ofx insideMε , (ii) every point ofH(x, δ) is in the local stable manifold
and in the local unstable manifold of some pair of points inMε , and (iii) giveny, z in H(x, δ) the
unique point inW s(y)∩Wu(z) is also inH(x, δ). Then we say thatµ has a local product structure
if µ | H(x, δ) is equivalent toµu × µs, whereµu (resp.µs) is the projection ofµ | H(x, δ) onto
Wu(x) (resp.W s(x)).

Lebesgue measure has local product structure if it is hyperbolic; this follows from the absolute
continuity of Pesin’s stable and unstable foliations [Pes76]. The same is true, more generally, for any
hyperbolic probability having absolutely continuous conditional measures along unstable manifolds
or along stable manifolds. Also, in the uniformly hyperbolic case, every equilibrium state of a Hölder
continuous potential [Bow75] has local product structure.

2. PROVING ABUNDANCE OF VANISHING EXPONENTS

We shall sketch the proofs of Theorems 1 and 3, given in [BV02].

Let f ∈ Diff1
µ(M) andΓ be an invariant set We say that an invariant splittingTΓ = E ⊕ F is

m-dominated, for somem ∈ N, if for all x ∈ Γ

Dfm
x |Fx

m(Dfm
x |Ex)

<
1
2
,

wherem(A) = ‖A−1‖−1. We callE ⊕ F adominated splittingif it is m-dominated for somem.

2.1. Volume-preserving diffeomorphisms. Givenf ∈ Diff1
µ(M) and1 ≤ p ≤ d, we write

Λp(f, x) = λ1(f, x) + · · ·+ λp(f, x) and LEp(f) =
∫

M

Λp(f, x) dµ(x).

As f preserves volume,Λd(f, x) ≡ 0. It is a well-known fact that the functionsf ∈ Diff1
µ(M) 7→

LEp(f) are upper semi-continuous. Continuity of these functions is much more delicate:

Theorem 7. Letf0 ∈ Diff1
µ(M) be such that the map

Diff1
µ(M) 3 f 7→

(
LE1(f), . . . ,LEd−1(f)

)
∈ Rd−1

is continuous atf = f0. Then for almost everyx ∈ M , the Oseledets splitting off0 is either
dominated or trivial (allλp(f, x) = 0) along the orbit ofx.

Since the set of points of continuity of a upper semi-continuous function is always a residual set,
we see that Theorem 1 is an immediate corollary of Theorem 7. Also, Theorem 7 remains valid for
linear cocycles, and in this setting the necessary condition is also sufficient.
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Example 2.1. Let f : S1 → S1 be an irrational rotation,µ be Lebesgue measure, andA : S1 →
SL(2,R) be given by

A =
(
E − V (θ) −1

1 0

)
for someE ∈ R andV : S1 → R continuous. ThenA is a point of discontinuity for the Lyapunov
exponents, among all continuous cocycles over(f, µ), if and only if the exponents are nonzero andE
is in the spectrum of the associated Schrödinger operator. Compare[BJ]. This is becauseE is in the
complement of the spectrum if and only if the cocycle is uniformly hyperbolic, which forSL(2,R)
cocycles is equivalent to domination.

We shall explain the main steps in the proof of Theorem 7.

2.2. First step: Mixing directions along an orbit segment. The following notion, introduced
in [Boc02], is crucial to the proofs of our theorems. It captures the idea of sequence of linear
transformations that can be (almost) realizedon subsets with large relative measureas tangent maps
of diffeomorphisms close to the original one.

Definition 2.2. Givenf ∈ Diff1
µ(M) or f ∈ Sympl1µ(M), a neighborhoodU of f in Diff1

µ(M) or

Sympl1µ(M), 0 < κ < 1, and a nonperiodic pointx ∈M , we call a sequence of (volume-preserving
or symplectic) linear maps

TxM
L0−−→ TfxM

L1−−→ · · · Ln−1−−−→ TfnxM

an (U , κ)-realizable sequence of lengthn atx if the following holds:
For everyγ > 0 there isr > 0 such that the iteratesf j(Br(x)) are pairwise disjoint for0 ≤

j ≤ n, and given any nonempty open setU ⊂ Br(x), there areg ∈ U and a measurable setK ⊂ U
such that

(i) g equalsf outside the disjoint union
⊔n−1

j=0 f
j(U);

(ii) µ(K) > (1− κ)µ(U);
(iii) if y ∈ K then

∥∥Dggjy − Lj

∥∥ < γ for every0 ≤ j ≤ n− 1.

To make the definition clear, let us show (informally) that ifv, w ∈ TxM are two unit vectors
with ^(v, w) sufficiently small then there exists a realizable sequence{L0} of length1 at x such
thatL0(v) = Dfx(w).

Indeed, letR : TxM → TxM be a rotation of anglê (v, w) along the planeP generated byv
andw, with axisP⊥. We takeL0 = DfxR. In order to show that{L0} is a realizable sequence
we must, for any sufficiently small neighborhoodU of x, find a perturbationg of f and a subset
K ⊂ U such that conditions (i)-(iii) in definition 2.2 are satisfied. Since this is a local problem,
we may suppose, for simplicity, thatM = Rd = TxM . First assumeU is a cylinderB × B′,
whereB andB′ are balls centered atx and contained inP andP⊥, respectively. We also assume
that diamB � diamB′ � 1. DefineK ⊂ U as a slightly shrunk cylinder also centered atx,
so condition (ii) in definition 2.2 holds. Then there is a volume-preserving diffeomorphismh such
thath equals the rotationR inside the cylinderK and equals the identity outsideU . Moreover, the
conditionsθ � 1 anddiamB � diamB′ permit us to takeh C1-close to the identity. Define
g = f ◦ h; then condition (iii) also holds.

This deals with the case whereU is a thin cylinder. Now ifU is any small neighborhood ofx
then we only have to coverµ-most of it with disjoint thin cylinders and rotate (as above) each one
of them. This “shows” that{L0 = DfyR} is a realizable sequence.
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Our first proposition towards the proof of Theorem 7 says that if a splittingE⊕F is notdominated
then one can find a realizable sequence that sends one direction fromE to F .

Proposition 2.3. Givenf ∈ Diff1
µ(M), a neighborhoodU 3 f , and0 < κ < 1, letm ∈ N be large.

Given a nontrivial splittingTorb(y)M = E ⊕ F along the orbit of a nonperiodicy ∈ M , satisfying
the “non-dominance” condition

(4)
‖Dfm

y |F ‖
m(Dfm

y |E)
≥ 1

2
,

there exists a(U , κ)-realizable sequence{L0, . . . , Lm−1} at y of lengthm and a nonzero vector
v ∈ Ey such thatLm−1 · · ·L0(v) ∈ Ffmy .

Let us explain how the sequence is constructed, at least in the simplest case. Assume that
^(Efiy, Ffiy) is very small for somei = 1, . . . ,m− 1. We take unit vectorsvi ∈ Efiy, wi ∈ Ffiy

such that̂ (vi, wi) is small. As we have explained before, there is a realizable sequence{Li} of
length1 at f ix such thatLi(vi) = wi. We defineLj = Dffjx for j 6= i; then{L0, . . . , Lm−1} is
the desired realizable sequence.

The construction of the sequence is more difficult when^(E,F ) is not small, because several
rotations may be necessary.

2.3. Second step: Lowering the norm.Let us recall some facts from linear algebra. Given a vector
spaceV and a non-negative integerp, let

∧p(V ) be thepth exterior power ofV . This is a vector
space of dimension

(
d
p

)
, whose elements are calledp-vectors. It is generated by thep-vectors of the

form v1 ∧ · · · ∧ vp with vj ∈ V , called thedecomposablep-vectors. We take the norm‖·‖ in
∧p(V )

such that ifv = v1 ∧ · · · ∧ vp then‖v‖ is thep-dimensional volume of the parallelepiped with edges
v1, . . . ,vp. A linear mapL : V →W induces a linear map

∧p(L) :
∧p(V ) →

∧p(W ) such that∧p
(L)(v1 ∧ · · · ∧ vp) = L(v1) ∧ · · · ∧ L(vp)

Let f ∈ Diff1
µ(M) be fixed from now on. Although it is not necessary, we shall assume for

simplicity thatf is aperiodic, that is, the set of periodic points off has zero measure.

Givenf ∈ Diff1
µ(M) andp ∈ {1, . . . , d− 1}, we have, for almost everyx,

1
n

log ‖
∧p

(Dfn
x )‖ → Λp(f, x) asn→∞.

Suppose the Oseledets splitting along the orbit of a pointx is not dominated. Our next task (Propo-
sition 2.4) is to construct long realizable sequences{L̂0, . . . , L̂n−1} atx such that

1
n

log ‖
∧p

(L̂n−1 · · · L̂0)‖

is smaller then the expected valueΛp(f, x).
Givenp andm ∈ N, we defineΓp(f,m) as the set of pointsx such that ifTorb(x)M = E ⊕ F

is an invariant splitting along the orbit, withdimE = p, then it is notm-dominated. It follows from
basic properties of dominated splittings (see section 4.1) thatΓp(f,m) is an open set. Of course, it
is also invariant.

Proposition 2.4. Let U ⊂ Diff1
µ(M) be a neighborhood off , 0 < κ < 1, δ > 0 and p ∈

{1, . . . , d − 1}. Letm ∈ N be large. Then forµ-almost every pointx ∈ Γp(f,m), there exists an
integerN(x) such that for everyn ≥ N(x) there exists a(U , κ)-realizable sequence

{L̂0, . . . , L̂n−1} = {L̂(x,n)
0 , . . . , L̂

(x,n)
n−1 }
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at x of lengthn such that

(5)
1
n

log ‖
∧p

(L̂n−1 · · · L̂0)‖ ≤
Λp−1(x) + Λp+1(x)

2
+ δ.

Moreover, the functionN : Γp(f,m) → N is measurable.

The proof of the proposition may be sketched as follows. Givenx ∈ Γp(f,m), we may assume
λp(x) > λp+1(x), otherwise we can take the trivial sequenceL̂j = Dffjx and there is nothing to
prove. Then we can consider the splittingTxM = Ex ⊕ Fx, whereEx (resp.Fx) is the sum of the
Oseledets spaces corresponding to the exponentsλ1(x), . . . ,λp(x) (resp.λp+1(x), . . . ,λd(x)). By
assumption, the splittingE ⊕ F is notm-dominated along the orbit ofx, that is, there exists̀≥ 0
such that

y = f `(x) ⇒
‖Dfm

y |Fy‖
m(Dfm

y |Ey )
≥ 1

2
.

By Poincaŕe recurrence, there are infinitely many integers` ≥ 0 such that the above relation is
satisfied (for almost everyx). Moreover, it can be shown, using Birkhoff’s theorem, that for all large
enoughn, that is, for everyn ≥ N(x), we can find̀ ≈ n/2 such that the inequality above holds for
`. Here` ≈ n/2 means that| `

n −
1
2 | < const.δ.

Fix x, n ≥ N(x), ` as above,y = f `(x) andz = f `(y). Proposition 2.3 gives a(U , κ)-realizable
sequence{L0, . . . , Lm−1}, such that there is a nonzero vectorv0 ∈ Ey for which

(6) Lm−1 . . . L0(v0) ∈ Fz

We form the sequence{L̂0, . . . , L̂n−1} of lengthn by concatenating

{Dffi(x); 0 ≤ i < `}, {L0, . . . , Lm−1}, {Dffi(x); `+m ≤ i < m}.
It is not difficult to show that the concatenation is a(U , κ)-realizable sequence atx.

We shall give some informal indication why relation (5) is true. Letv ∈
∧p(TxM) be ap-vector

with ‖v‖ = 1, and letv′ =
∧p(Lm−1 · · ·L0Df

`
x)(v) ∈

∧p(TzM). Sincem � n, andL0, . . . ,
Lm−1 are bounded, we have

(7)
1
n

log ‖
∧p

(L̂n−1 · · · L̂0)v‖ .
1
n

log ‖
∧p

(Dfn−`−m
z )v′‖+

1
n

log ‖
∧p

(Df `
x)v‖.

To fix ideas, supposev is a decomposablep-vector belonging to the subspace
∧p(Ex). Then

(8)
1
`

log ‖
∧p

(Df `
x)v‖ ' Λp(f, x).

If we imagine decomposablep-vectors asp-parallelepipeds then, by (6), the parallelepipedv′ con-
tains a direction inFz. This direction is expanded by the derivative with exponent at mostλp+1(z) =
λp+1(x). On the other hand, the(p− 1)-volume of every(p− 1)-parallelepiped inTzM grows with
exponent at mostΛp−1(x). This “shows” that

(9)
1

n− `−m
log ‖

∧p
(Dfn−`−m

z )v′‖ . λp+1(x) + Λp−1(x).

Substituting (8) and (9) in (7), and using that` ≈ n− `−m ≈ n/2, we obtain

1
n

log ‖
∧p

(L̂n−1 · · · L̂0)v‖ .
λp+1(x) + Λp−1(x)

2
+

Λp(x)
2

=
Λp+1(x) + Λp−1(x)

2
.

So the bound from (5) holds at least forp-vectorsv in
∧p(Ex). Similar arguments carry over to all∧p(TxM).
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2.4. Third step: Globalization. The following results renders global the construction of Proposi-
tion 2.4.

Proposition 2.5. Let a neighborhoodU 3 f , p ∈ {1, . . . , d − 1} andδ > 0 be given. Then there
existm ∈ N and a diffeomorphismg ∈ U that equalsf outside the open setΓp(f,m) and such that

(10)
∫

Γp(f,m)

Λp(g, x) dµ(x) < δ +
∫

Γp(f,m)

Λp−1(f, x) + Λp+1(f, x)
2

dµ(x).

The proof goes as follows. Letm ∈ N be large and letN : Γp(f,m) → N be the function
given by Proposition 2.4 withκ = δ2. For almost everyx ∈ Γp(f,m) and everyn ≥ N(x), the
proposition provides a realizable sequence{L̂i} of lengthn at x satisfying (5). “Realizing” this
sequence (see definition 2.2), we obtain a perturbationg of f supported in a small neighborhood of
the segment of orbit{x, . . . , fn(x)}, which is a towerU t · · · t fn(U). Since the setΓp(f,m)
is open and invariant, these towers can always be taken inside it. Each towerU t · · · t fn(U) =
U t · · · t gn(U) contains asub-towerK t · · · t fn(K) where the perturbed derivatives are very
close to the mapŝLi. Hence if we chooseU small enough then (5) will imply

(11)
1
n

log ‖
∧p

Dgn
y ‖ <

Λp−1(x) + Λp+1(x)
2

+ 2δ, ∀ y ∈ K.

To construct the perturbationg globally, we cover allΓp(f,m) but a subset of small measure with
a (large) finite number ofdisjoint towers as above. Moreover, the towers can be chosen so that they
have approximately the same heights (more precisely, all heights are betweenH and3H, whereH
is a constant). Then we glue all the perturbations (each one supported in a tower) and obtain aC1

perturbationg of f . Let S be the support of the perturbation, i.e., the disjoint union of the towers.
Let S′ ⊂ S be union of the corresponding sub-towers; thenµ(S \ S′) < κµ(S) ≤ δ2. Moreover, if
y ∈ S′ is in the first floor of a sub-tower of heightn then (11) holds.

To bound the integral in the left hand side of (10), we want to use the elementary fact (notice
Γp(f,m) is alsog-invariant):

(12)
∫

Γp(f,m)

Λp(g, x) dµ(x) ≤ 1
n

∫
Γp(f,m)

log ‖
∧p

(Dgn
x )‖ dµ(x) for all n ∈ N.

Let n0 = H/δ. Here comes a major step in the proof: To show thatmost points (up to a set of
measure of order ofδ) in Γp(f,m) are in S′ and its positive iterates stay insideS′ for at leastn0

iterates.Intuitively, this is true by the following reason: The setS′ is ag-castle2, whose towers have
heights≈ H. Therefore a segment of orbit of lengthn0 = δ−1H, if it is contained inS′, “winds”
≈ δ−1 times aroundS′. SinceS′ is a castle, there are onlyδ−1 opportunities for the orbit to leave
S′. In each opportunity, the probability of leave is of order ofδ2 (the measure of the complementary
Γp(f,m) \ S′). Therefore the probability of leaveS′ in n0 iterates is≈ δ−1δ2 = δ.

Using the fact above, one shows that the right hand side of (12) withn = n0 is bounded by the
left hand side of (10), completing the proof of the proposition.

2.5. Conclusion of the proof. Let Γp(f,∞) be the set of points where there is no dominated split-
ting of indexp, that is,Γp(f,∞) =

⋂
m∈N Γp(f,m).

The following is an easy consequence of Proposition 2.5.

2That is, a union of disjointg-towers.
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Proposition 2.6. Givenf ∈ Diff1
µ(M) andp ∈ {1, . . . , d− 1}, let

Jp(f) =
∫

Γp(f,∞)

λp(f, x)− λp+1(f, x)
2

dµ(x).

Then for everyU 3 f andδ > 0, there exists a diffeomorphismg ∈ U such that∫
M

Λp(g, x) dµ(x) <
∫

M

Λp(f, x) dµ(x)− Jp(f) + δ.

Using the proposition we can give the:

Proof of Theorem 7.Let f ∈ Diff1
µ(M) be a point of continuity of all mapsLEp(·), p = 1, . . . , d−

1. ThenJp(f) = 0 for everyp. This means thatλp(f, x) = λp+1(f, x) for almost everyx in the set
Γp(f,∞).

Let x ∈ M be an Oseledets regular point. If all Lyapunov exponents off at x vanish, there is
nothing to do.

For eachp such thatλp(f, x) > λp+1(f, x), we have (if we exclude a zero measure set ofx)
x /∈ Γp(f,∞). This means that there is a dominated splitting of indexp, TfnxM = En ⊕ Fn along
the orbit ofx. It is not hard to see thatEn is necessarily the sum of the Oseledets spaces off , at the
point fnx, associated to the Lyapunov exponentsλ1(f, x), . . . ,λp(f, x), andFn is the sum of the
spaces associated to the other exponents. This shows that the Oseledets splitting is dominated along
the orbit ofx. �

2.6. Symplectic diffeomorphisms. Now let (M,ω) be a compact symplectic manifold without
boundary, of dimensiondimM = 2q.

The Lyapunov exponents of symplectic diffeomorphisms have a symmetry property:λj(f, x) =
−λ2q−j+1(f, x) for all 1 ≤ j ≤ q. In particular,λq(x) ≥ 0 andLEq(f) is the integral of the sum of
all non-negative exponents. Consider the splitting

TxM = E+
x ⊕ E0

x ⊕ E−x ,

whereE+
x ,E0

x, andE−x are the sums of all Oseledets spaces associated to positive, zero, and negative
Lyapunov exponents, respectively. ThendimE+

x = dimE−x anddimE0
x is even.

Theorem 8. Letf0 ∈ Sympl1µ(M) be such that the map

f ∈ Sympl1µ(M) 7→ LEq(f) ∈ R

is continuous atf = f0. Then forµ-almost everyx ∈ M , either dimE0
x ≥ 2 or the splitting

TxM = E+
x ⊕ E−x is uniformly hyperbolic along the orbit ofx.

In the second alternative, what we actually prove is that the splitting is dominated atx. This is
enough because, for symplectic diffeomorphisms, dominated splittings into two subspaces of the
same dimension are uniformly hyperbolic. See section 4.

Theorem 3 follows from Theorem 8: As in the volume-preserving case, the functionf 7→ LEq(f)
is continuous on a residual subsetR1 of Sympl1µ(M). Also (see appendix B), there is a residual
subsetR2 ⊂ Sympl1µ(M) such that for everyf ∈ R2 eitherf is an Anosov diffeomorphism or all
its hyperbolic sets have zero measure. The residual set of Theorem 3 isR = R1 ∩R2.
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The proof of Theorem 8 is similar to that of Theorem 7. Actually the only difference is in the first
step. In the symplectic analogue of Proposition 2.3, we have to suppose that the spacesE andF are
Lagrangian3.

3. PROVING PREVALENCE OF NONZERO EXPONENTS

We discuss some main ingredients in the proofs of Theorems 5 and 6, focusing on the case when
the base dynamicsf : M → M is uniformly expanding, andµ is ergodic withsuppµ = M . The
general cases of the theorems follow from a more local version of similar arguments.

Notice that it is no restriction to considerν ≥ 1: the Hölder cases0 < ν < 1 are immediately
reduced to the Lipschitz oneν = 1 by replacing the metricdist(x, y) in M by dist(x, y)ν .

3.1. Bundle-free cocycles: genericity.

Definition 3.1. A : M → SL(d,R) is calledbundle-freeif it admits no finite-valued Lipschitz con-
tinuous invariant line bundle: in other words, given anyη ≥ 1, there exists no Lipschitz continuous
mapψ : x 7→ {v1(x), . . . , vη(x)} assigning to eachx ∈ M a subset ofRPd−1 with exactlyη
elements, such that

A(x)
(
{v1(x), . . . , vη(x)}

)
= {v1(f(x)), . . . , vη(f(x))} for all x ∈M.

A is calledstably bundle-freeif all Lipschitz maps in a neighborhood are bundle-free.

The caseη = 1 means that the cocycle has no invariantLipschitzsubbundles. The regularity
requirement is crucial in view of the next theorem: invariant Lipschitz subbundles are exceptional,
whereas Ḧolder invariant subbundles with poor Hölder constants are often robust! The following
example illustrates these issues.

Example 3.2. LetG : S1 × R → S1 × R,G(θ, x) = (f(θ), g(θ, x)) be a smooth map with

σ1 ≥ |f ′| ≥ σ2 > σ3 > |∂xg| > σ4 > 1.

Letθ0 be a fixed point off andx0 be the fixed point ofg(θ0, · ). Then

(1) The set of points whose forward orbit is bounded is the graph of a continuous function
u : S1 → R with u(θ0) = x0 . This function isν-Hölder for anyν < log σ4/ log σ1 .
Typically it is not Lipschitz:

(2) The fixed pointp0 = (θ0, x0) has a strong-unstable setWuu(p0) invariant underG and
which is locally a Lipschitz graph overS1. If u is Lipschitz then its graph must coincide
withWuu(p0).

(3) However, for an open dense subset of choices ofg the strong-unstable set is not globally a
graph: it intersects vertical lines at infinitely many points.

Theorem 9. SupposeA ∈ Cν(M,SL(d,R)) hasλ(A, x) = 0 with positive probability, for some
invariant measureµ. ThenA is approximated inCν(M,SL(d,R)) by stably bundle-free maps.

Here is a sketch of the proof. The first step is to deduce from the hypothesis

lim
n→∞

1
n

log ‖An(x)‖ = 0 for µ−almost allx

3A subspaceE of a symplectic vector space(V, ω) is calledLagrangianwhendim E = 1
2

dim V andω(v1, v2) =

0 ∀ v1, v2 ∈ E.
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that Birkhoff averages oflog ‖Ai‖ are also small: givenδ there isN ≥ 1 such that

(13) lim
n→∞

1
n

n−1∑
j=0

1
N

log ‖AN (f jN (x))‖ < δ for µ−almost allx.

Using the shadowing lemma, one finds periodic pointsp ∈M satisfying (13) withδ replaced by2δ.
This implies that the eigenvaluesβj of Aq(p), q = per(p) are all close to1:

2(1− d)δ <
1
q

log |βj | < 2δ for all j = 1, . . . , d.

We may take all the norms|βj | to be distinct. Now the argument is very much inspired by exam-
ple 3.2. The eigenspaces ofAq(p), seen as periodic points of the cocycle acting in the projective
space, have strong-unstable sets that arelocally Lipschitz graphs overM . Any Lipschitz continuous
invariant line bundleψ as in definition 3.1 has to coincide with the strong-unstable sets. But a simple
transversality argument shows thatglobally the strong-unstable sets are not graphs (not even up to
finite covering), if certain configurations with positive codimension are avoided.

3.2. A geometric criterion for nonzero exponents.Another key ingredient is the following result,
which may be thought of as a geometric version of a classical result of Furstenberg [Fur63] about
products of i.i.d. random matrices:

Theorem 10. SupposeA ∈ Cν(M,SL(d,R)) is bundle-free and there exists some periodic point
p ∈ M of f such that the norms of the eigenvalues ofA over the orbit ofp are all distinct. Then
λ(A,µ) > 0 for any ergodic measureµ with local product structure andsuppµ = M .

The condition on the existence of some periodic point over which the cocycle has all eigenvalues
with different norm is satisfied by an open and dense subset ofCν(M,SL(d,R)), that we denote
SP. See the last section of [BVb]. We also denote byBF the subset of bundle-free maps. The proof
of Theorem 10 may be sketched as follows.

Let f̂ : M̂ → M̂ be the natural extension off , andµ̂ be the lift ofµ toM̂ . Let f̂A : M̂×RPd−1 →
M̂ × RPd−1 be the projective cocycle induced byA over f̂ . Let us suppose thatλ(A,µ) = 0, and
conclude thatA is not bundle-free.

The first step is to prove that all points in the projective fiber ofµ̂-almost everŷx ∈ M̂ have
strong-stable and strong-unstable sets forf̂A that are Lipschitz graphs over the stable manifold and
the unstable manifold of̂x for f̂ . This follows from (13) and the corresponding fact for negative
iterates. The strong-stable sets are locally horizontal: by definition, the cocycle is constant over
local stable sets of the natural extensionf̂ .

Next, one considers invariant probability measuresm on M̂ × RPd−1, invariant underf̂A and
projecting down toµ. One constructs such a measure admitting a family of conditional probabilities
{mx̂ : x̂ ∈ M̂} that is invariant under strong-unstable holonomies. Using the hypothesisλ(A,µ) =
0 and a theorem of Ledrappier [Led86], one proves that the conditional measures are constant on
local stable leaves (in other words, invariant under strong-stable holonomies), restricted to a fullµ̂-
measure subset of̂M . Using local product structure andsupp µ̂ = M̂ , one concludes thatm admits
some family of conditional measures{m̃x̂ : x̂ ∈ M̂} that vary continuously with the point̂x onM
and are invariant by both strong-stable and strong-unstable holonomies.

Finally, one considers a periodic pointp̂ of f̂ such that the norms of the eigenvalues ofAq(p̂),
q = per(p) are all distinct. Then the probabilitỹmp is a convex combination of Dirac measures
supported on the eigenspaces. Using the strong-stable and strong-unstable holonomies one propa-
gates the support of̃mp over the wholeM . This defines an invariant mapψ as in definition 3.1, with
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η ≤ # supp m̃p . This map is Lipschitz, because strong-stable and strong-unstable holonomies are
Lipschitz. Thus,A is not bundle-free.

3.3. Conclusion of the argument and further comments.Finally, we explain how to obtain The-
orem 6, in the special case we are considering, from the two previous theorems. LetZE be the subset
of A ∈ Cν(M,SL(d,R)) such thatλ(A,µ) = 0 for some ergodic measure with local product struc-
ture andsupp = M . Theorem 9 implies that anyA ∈ ZE is approximated by the interior ofBF.
SinceSP is open and dense,A is also approximated by the interior ofBF ∩ SP. By Theorem 10,
the latter is contained in the complement ofZE. This proves that the interior ofCν \ ZE is dense in
ZE, and so it is dense in the wholeCν(M,SL(d,R)), as claimed. To get the infinite codimension
statement observe that it suffices to avoid the positive codimension configuration mentioned before
for someof infinitely many periodic points off .

The following couple of examples help understand the significance of Theorem 10.

Example 3.3. LetM = S1, f : M →M be given byf(x) = kxmod Z, for somek ≥ 2, andµ be
Lebesgue measure onM . Let

A : M → SL(2,R), A(x) =
(
β(x) 0

0 1/β(x)

)
for some smooth functionβ such that

∫
log β dµ = 0. It is easy to ensure that the setβ−1(1) is

finite and does not containx = 0. ThenA ∈ SP and indeed the matrixA “looks hyperbolic” at
most points. Nevertheless, the Lyapunov exponentλ(A,µ) =

∫
log β dµ = 0. Notice thatA is not

bundle-free.

Hence the following heuristic principle: assuming there is a source of hyperbolicity somewhere
in M (here the fact thatA ∈ SP), the only way Lyapunov exponents may happen to vanish is by
having expanding directions mappedexactlyonto contracting directions, thus causing hyperbolic
behavior to be “wasted away”.

Putting Theorems 4 and 10 together we may give a sharp account of Lyapunov exponents for a
wholeC0 open set of cocycles. This construction contains the main result of [You93]. It also shows
that the present results are in some sense optimal.

Example 3.4. Let f : S1 → S1 beC2 uniformly expanding withf(0) = 0, andµ be any invariant
probability withsuppµ = S1. TakeA : S1 → SL(2,R) of the form

A(x) = Rα(x)A0

whereA0 is some hyperbolic matrix,α : S1 → S1 is a continuous function withα(0) = 0, and
Rα(x) denotes the rotation of angleα(x). Letdeg( · ) represent topological degree.

Corollary 3.5. Assume2 deg(α) is nota multiple of deg(f)− 1. Then there exists aC0 neighbor-
hoodU ofA such that

(1) for B in a residual subsetR∩ U we haveλ(B,µ) = 0;
(2) for everyB ∈ Cν(S1,SL(2,R)), ν > 0, we haveλ(B,µ) > 0.

Proof. Start by takingU to be the isotopy class ofA in the space of continuous maps fromM to
SL(2,R). We claim that, given anyB ∈ U , there is nocontinuousB-invariant map

ψ : M 3 x 7→ {ψ1(x), . . . , ψη(x)}
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assigning a constant numberη ≥ 1 of elements ofRP1 to each pointx ∈ M . The proof is by
contradiction. Suppose there exists such a map and the graph

G = {(x, ψi(x)) ∈ S1 × RP1 : x ∈ S1 and1 ≤ i ≤ η}

is connected. ThenG represents some element(η, ζ) of the fundamental groupπ1(S1 × RP1) =
Z⊕ Z. BecauseB is isotopic toA, the image ofG under the cocycle must represent(η deg(f), ζ +
2 deg(α)) ∈ π1(S1 × RP1); here the factor2 comes from the fact thatS1 is the2-fold covering of
RP1. By the invariance ofψ we get

ζ + 2 deg(α) = deg(f)ζ

which contradicts the hypothesis thatdeg(f) − 1 does not divide2 deg(α). If the graphG is not
connected, consider the connected components instead. Since connected components are pairwise
disjoint, they all represent elements with the same direction in the fundamental group. Then the
same type of argument as before proves the claim in full generality.

Now letR be the residual subset in Theorem 4. The previous observation implies that noB ∈
R ∩ U may have an invariant dominated splitting. ThenB must have all Lyapunov exponents equal
to zero as claimed in (1). Similarly, that observation ensures that everyB ∈ U ∩ Cν is bundle-free.
It is clear thatA is in SP, and so is any mapC0 close to it. Thus, reducingU if necessary, we may
apply Theorem 10 to conclude thatλ(B,µ) > 0. This proves (2). �

4. PROJECTIVEversusPARTIAL HYPERBOLICITY

Here we prove that for symplectic cocycles existence of a dominated splitting implies partial
hyperbolicity. This was pointed out by Mañé in [Mañ84]. A proof in dimension4 was given by
Arnaud [Arn].

Let F : E → E be a bundle automorphism covering a mapf : M → M . Let us recall some
definitions. IfΓ ⊂M is anf -invariant measurable set, we say that anF -invariant splittingE1⊕E2

overΓ ism-dominated if

(14)
‖Fm

x | E2
x‖

m(Fm
x | E1

x)
≤ 1

2
.

We callE1 ⊕ E2 a dominated splitting if it ism-dominated for somem ∈ N. Then we write
E1 � E2. More generally, we say that a splittingE1 ⊕ · · · ⊕ Ek, into any number of sub-bundles,
is dominated if

E1 ⊕ · · · ⊕ Ej � Ej+1 ⊕ · · · ⊕ Ek for every1 ≤ j < k.

We are most interested in the case where the vector bundleE is endowed with a symplectic form,
that is, a nondegenerate antisymmetric2-form ω = (ωx)x∈M varying continuously with the base
point x. For thisE must have even dimension. We say thatF is a symplectic cocycle, when it
preserves the symplectic form:

ωf(x)(Fxv, Fxw) = ωx(v, w) for everyx ∈M andv, w ∈ Ex

Our aim in this section is to establish the following result:

Theorem 11. SupposeF is a symplectic cocycle. LetΓ be anf -invariant set andEΓ = E+ ⊕Ec−

be a dominated splitting ofF such thatdimE+ ≤ dimEc−.

(1) ThenEc− splits invariantly asEc− = Ec ⊕ E−, with dimE− = dimE+.
(2) TΓM = E+ ⊕ Ec ⊕ E− is a dominated splitting.
(3) E+ is uniformly expanding andE− is uniformly contracting.
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Note thatEc = 0 if dimE+ = dimEc−.

4.1. General properties of dominated splittings. The anglê (E1, E2) between two subbundles
E1 andE2 on a setΓ is the infimum of̂ (E1

x, E
2
x) over allx ∈ Γ.

Transversality: If EΓ = E1 ⊕ E2 is a dominated splitting then̂(E1, E2) > 0.

Indeed, letv1 ∈ E1
x andv2 ∈ E2

x be arbitrary unit vectors. Condition (14) gives

2‖Fm
x v2‖ ≤ ‖Fm

x v1‖ ≤ ‖Fm
x v2‖+ ‖Fm

x (v1 − v2)‖,

and this implies‖v1− v2‖ ≥ ‖Fm
x ‖−1 m(Fm

x ). By continuity ofF and compactness ofM , the last
expression is bounded away from zero.

Uniqueness:If EΓ = E1 ⊕E2 andEΓ = Ê1 ⊕ Ê2 are dominated splittings withdimEi = dim Êi

thenEi = Êi for i = 1, 2.

To see this, suppose there isx ∈ Γ such thatE2
x 6= Ê2

x. Then there existE2
x 3 v2 = v̂1 + v̂2 ∈

Ê1
x ⊕ Ê2

x with v̂1 6= 0. By domination,‖Fn
x v̂1‖ is much larger than‖Fn

x v̂2‖ and so‖Fn
x v2‖ is

comparable to‖Fn
x v̂1‖, whenn is large. Since‖Fn

x v̂1‖ ≥ m(Fn
x |Ê1

x
)‖v̂1‖, this proves that

‖Fn
x |E2

x
‖

m(Fn
x |Ê1

x
)
≥ C1 and

‖Fn
x |Ê2

x
‖

m(Fn
x |E1

x
)
≥ C2

(the second inequality follows by symmetry) for constantsC1 > 0 andC2 > 0 independent ofn. In
particular,

‖Fn
x |E2

x
‖

m(Fn
x |E1

x
)

‖Fn
x |Ê2

x
‖

m(Fn
x |Ê1

x
)
≥ C1C2 > 0.

On the other hand, the domination condition (14) implies that the left hand side converges to zero
asn → +∞. This contradiction proves thatE2 = Ê2. A similar argument, iterating backwards,
proves thatE1 = Ê1.

Continuity: A dominated splittingEΓ = E1 ⊕ E2 is continuous, and extends continuously to a
dominated splitting over the closure ofΓ.

Indeed, let(xj)j be any sequence inΓ converging to somex ∈ M . Taking subsequences if nec-
essary, each(Ei

xj
)j converges to a subspacêEi

x with the same dimension, whenj → ∞. By

transversality,TxM = Ê1
x ⊕ Ê2

x. For eachn ∈ Z andi = 1, 2, the sequenceEi
fn(xj)

converges to

Êi
fn(x) = Fn

x (Êi
x) whenj →∞. Takingm as in (14), by continuity we have

‖Fm
y |Ê2

y
‖

m(Fm
y |Ê1

y
)
≤ 1

2
for all y = fn(x), n ∈ Z.

This means that̂E1 ⊕ Ê2 is a dominated splitting over the orbit ofx. By uniqueness,̂E1 ⊕ Ê2 does
not depend on the choice of the sequence(xj)j , and it coincides withE1⊕E2 if x ∈ Γ. This proves
continuity, and continuous extension to the closure.

Lemma 4.1. LetΓ be a measurablef -invariant subset ofM , andE1, E2, E3 be sub-bundles ofE
restricted toΓ.

(1) If E1 � E2, E1 � E3 and^(E2, E3) > 0 thenE1 � E2 ⊕ E3.
(2) If E1 � E3, E2 � E3 and^(E1, E2) > 0 thenE1 ⊕ E2 � E3.
(3) If E1 � E2 andE2 � E3 thenE1 � E2 ⊕ E3 andE1 ⊕ E2 � E3.
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Proof. SupposeE1 � E2 andE1 � E3, with ^(E2, E3) > 0. The last condition implies that there
existsc > 0 such that‖v2 ⊕ v3‖ ≥ c

(
‖v2‖+ ‖v3‖

)
, for everyv2 + v3 ∈ E2

x ⊕ E3
x andx ∈ Γ. The

first two imply

(15)
‖F km

x v2‖
‖v2‖

≤ 1
2k

‖F km
x v1‖
‖v1‖

and
‖F km

x v3‖
‖v3‖

≤ 1
2k

‖F km
x v1‖
‖v1‖

,

for k ≥ 1, x ∈ Γ, and any nonzerovi ∈ Ei
x, i = 1, 2, 3. Fix k ≥ 1 large enough so thatc2k > 2.

Then

‖F km
x (v2 + v3)‖
‖v2 + v3‖

≤ 1
c

‖F km
x v2‖+ ‖F km

x v3‖
‖v2‖+ ‖v3‖

≤ 1
c2k

‖F km
x v1‖
‖v1‖

≤ 1
2
‖F km

x v1‖
‖v1‖

for all nonzerov1 ∈ E1
x and‖v2 + v3‖ ∈ E2

x ⊕ E3
x. This proves claim 1. The proof of claim 2 is

analogous.
Statement 3 is a consequence of the previous two. Indeed, by section 4.1,E2 � E3 implies

^(E2, E3) > 0. Moreover, the hypotheses give

‖F km
x v2‖
‖v2‖

≤ 1
2k

‖F km
x v1‖
‖v1‖

and
‖F km

x v3‖
‖v3‖

≤ 1
2k

‖F km
x v2‖
‖v2‖

,

which is stronger than (15). So,E1 � E2 ⊕ E3 follows just as in 1. Similarly,E1 ⊕ E2 � E3 is
proved in the same way as in 2. �

Remark 4.2. One may haveE1 � E3 andE2 � E3 butE1 ⊕ E2 6� E3. Similarly,E1 � E2 and
E1 � E3 does not implyE1 � E2 ⊕ E3.

4.2. Partial hyperbolicity. We recall a few elementary facts; see [Arn78,§ 43] for more informa-
tion. Given a symplectic vector space(V0, ω0), theskew-orthogonal complementHω of a subspace
H ⊂ V0 is defined by

Hω = {v ∈ V0; ω0(v, h) = 0 for all h ∈ H}.
The subspaceH is callednull (or isotopic) if H ⊂ Hω, that is, if the symplectic form vanishes in
H ×H.

For any chosen scalar product· in V0, letJ0 : V0 → V0 be the antisymmetric isomorphism defined
by ω0(u, u′) = J0u · u′. ThenHω is the orthogonal complement ofJ0(H). In particular, it has
dimHω = dimV0 − dimH.

The following simple consequences of compactness and continuity are used in the proofs that
follow: there exists a constantC0 > 0 such that

|ω(u, u′)| ≤ C0 ‖u‖ ‖u′‖ and C−1
0 ‖u‖ ≤ ‖Ju‖ ≤ C0‖u‖

for all vectorsu andu′, whereJ : E → E is defined byω(u, u′) = Ju · u′.
Now we prove Theorem 11. Up to partitioningΓ into finitely many invariant subsets, we may

suppose that the dimensions ofE+ andEc− are constant, and we do so. The first step is to show
thatE+ is uniformly expanding. Let2n be the dimension of the bundle.

Lemma 4.3. Let Γ be anf -invariant set andE1, E2 be invariant subbundles ofEΓ, such that
E1 � E2 anddimE2 ≥ n. ThenE1 is uniformly expanding and, consequently, the spaceE1 is
null.

Proof. Assume the splittingE1 ⊕ E2 ism-dominated. Fix anyx ∈ Γ andv1 ∈ E1
x with ‖v1‖ = 1.

The spaceH = Rv1 ⊕ E2
x has dimensiondimH > n, therefore the intersectionH ∩ Jx(H) is

nontrivial: there exists some nonzero vectoru ∈ H such thatu′ = J−1
x (u) ∈ H. Assume‖u‖ = 1;
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then‖u′‖ ≤ C0. Write u = av1 + w2, with a ∈ R andw2 ∈ E2. Since^(E1, E2) > 0 (see
section 4.1), there exists a constantc > 0, independent ofx, such that|a|, ‖w2‖ ≤ c. Analogously,
writing u′ = a′v1 + w′2, with a′ ∈ R andw′2 ∈ E2, we have|a′|, ‖w′2‖ ≤ c‖u′‖ ≤ C0c. Now

(16) 1 = ‖u‖2 = ω(u′, u) ≤ |ω(w2, a
′v1)|+ |ω(w′2, av1)|+ |ω(w2, w

′
2)|

Let k ∈ N. Then, by domination,‖Fmk
x w‖ ≤ 2−k‖Fmk

x v1‖ ‖w‖ for all w ∈ E2
x. We are going to

use this fact and the invariance ofω to bound terms in the right hand side of (16). First,

|ω(w2, a
′v1)| = |a′| |ω(Fmk

x w2, F
mk
x v1)| ≤ C2

0c ‖Fmk
x w2‖ ‖Fmk

x v1‖

≤ C2
0c 2−k‖w2‖ ‖Fmk

x v1‖2 ≤ C2
0c

22−k‖Fmk
x v1‖2.

In an analogous way, we see that the right hand side is also an upper bound for|ω(w′2, av1)|. Also,

|ω(w2, w
′
2)| = |ω(Fmk

x w2, F
mk
x w′2)| ≤ C0‖Fmk

x w2‖ ‖Fmk
x w′2‖

≤ C02−2k‖w2‖ ‖w′2‖ ‖Fmk
x v1‖2 ≤ C2

0c
2 2−2k‖Fmk

x v1‖2.
Substituting these estimates in (16), we conclude that

1 ≤ C2
0c

2(2−2k + 2−k+1)‖Fmk
x v1‖2,

That is‖Fmk
x v1‖ ≥ 2, if k = k(C0, c) is chosen large enough. This estimate holds for anyx and

any unit vectorv1 ∈ E1
x, soE1 is uniformly expanding.

Let x ∈ Γ andv1, w1 be any vectors inE1
x. By uniform expansion,

‖F−mkj
x v1‖ ≤ 2−j‖v1‖ and ‖F−mkj

x w1‖ ≤ 2−j‖w1‖
and so

|ω(v1, w1)| = |ω(F−mkj
x v1, F

−mkj
x w1)| ≤ C02−2j‖v1‖ ‖w1‖

for all j ≥ 1. This impliesω(v1, w1) = 0. �

The next lemma does not require the domination condition:

Lemma 4.4. LetEΓ = E1 ⊕ E23 be an invariant and continuous splitting such that the spacesE1

are null anddimE1 < dimE23. ThenE23 splits invariantly and continuously asE23 = E2 ⊕E3,
with dimE1 = dimE3. Moreover,(E1)ω = E1 ⊕ E2 and(E2)ω = E1 ⊕ E3.

In the proof we shall use the following simple properties of the skew-orthogonal complement. If
H,G ⊂ R2n are vector spaces then:

dimH + dimHω = 2n, (Hω)ω = H, and (H +G)ω = Hω ∩Gω.

Proof of Lemma 4.4.Define the following subbundles:

E2 = (E1)ω ∩ E23, E13 = (E2)ω, E3 = E13 ∩ E23.

All these subbundles are continuous and invariant underF , becauseE1, E23 and the symplectic
form ω are continuous and invariant.

We first check thatE2 ∩ E13 = {0}. Let v ∈ E2 ∩ E13. We haveE13 =
(
(E1)ω ∩ E23

)ω =
E1 + (E23)ω, so we can writev = u1 + w, with u1 ∈ E1 andw ∈ (E23)ω. SinceE1 is null and
v ∈ (E1)ω, we haveω(w, v1) = ω(u1 + w, v1) = 0 for all v1 ∈ E1. That is,w ∈ (E1)ω. But
(E1)ω ∩ (E23)ω = (R2n)ω = {0}, sow = 0. Thusv = u1 ∈ E1 ∩ E23 andv = 0.

Denoteu = dimE1. It is easy to see thatE1 ∩ (E23)ω = {0} and thusE13 = E1 ⊕ (E23)ω. It
follows thatdimE13 = 2u anddimE2 = 2n− 2u. Also,

E3 = E13 ∩ E23 ⇒ dimE3 ≥ dimE13 + dimE23 − 2n = u.
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ButE2 + E3 ⊂ E23, thereforedimE3 = u andE23 = E2 ⊕ E3.
Let us check the last two claims of the lemma. We haveE1 ⊕ E2 ⊂ (E1)ω and, by dimension

counting, this inclusion is an equality. Analogously, we prove thatE1 ⊕ E3 = (E2)ω. �

Lemma 4.5. In the setting of Lemma 4.4, there exists a constantγ > 0 such that for everyx ∈ Γ,

(1) givenv2 ∈ E2
x \ {0} there isw2 ∈ E2

x \ {0} with ω(v2, w2) ≥ γ ‖v2‖ ‖w2‖;
(2) givenv1 ∈ E1

x \ {0} there isw3 ∈ E3
x \ {0} with ω(v1, w3) ≥ γ ‖v1‖ ‖w3‖.

(3) givenv3 ∈ E3
x \ {0} there isw1 ∈ E1

x \ {0} with ω(v3, w1) ≥ γ ‖v3‖ ‖w1‖;

Proof. We first note that sinceEΓ = E1 ⊕ E2 ⊕ E3 is a continuous splitting,

^(E2 ⊕ E3, E1) > 0, ^(E1 ⊕ E3, E2) > 0 and ^(E1 ⊕ E2, E3) > 0.

Givenv2 ∈ E2
x \ {0}, letw = Jv2. Then

ω(v2, w) = ‖Jv2‖ ‖w‖ ≥ C−1
0 ‖v2‖ ‖w‖.

Writew = w13 +w2, with w13 ∈ E1
x ⊕E3

x andw2 ∈ E2
x. Since^(E1 ⊕E3, E2) > 0, there exists

a constantγ0 > 0, independent ofx, such that‖w‖ ≥ γ0‖w2‖. On the other hand,ω(v2, w13) = 0,
becauseE1 ⊕ E3 = (E2)ω. Thenw2 6= 0 and

ω(v2, w2) = ω(v2, w) ≥ C−1
0 ‖v2‖ ‖w‖ ≥ C−1

0 γ0‖v2‖ ‖w2‖.

This proves claim 1, withγ = γ0/C0.

The proof of claim 2 is analogous. Givenv1 ∈ E2
x \ {0}, let w = Jv1. Thenω(v1, w) ≥

C−1
0 ‖v1‖ ‖w‖. Writew = w12 +w3, withw12 ∈ E1

x⊕E2
x andw3 ∈ E2

x. As^(E1⊕E2, E3) > 0,
there exists a uniform constantγ0 > 0 such that‖w‖ ≥ γ0‖w3‖. And sinceE1 ⊕ E2 = (E1)ω,
ω(v1, w12) = 0. Thereforew3 6= 0 and

ω(v1, w3) = ω(v1, w) ≥ C−1
0 ‖v1‖ ‖w‖ ≥ C−1

0 γ0‖v1‖ ‖w3‖.

To prove the last claim, notice that the mapL : v1 ∈ E1
x 7→ w3 ∈ E3

x defined in the proof of
claim 2 is linear and injective. SincedimE1

x = dimE3
x, L is an isomorphism. Now, givenv3 ∈ E3

x,
takew1 = L−1(v3). �

Now we can complete the proof of Theorem 11:

Proof. Let EΓ = E+ ⊕ Ec− be as in the assumption. By Lemma 4.3,E+ is uniformly expanding.
If E+ andEc− have the same dimension, we setE− = Ec−. Applying Lemma 4.3 to the inverse
cocycle, we conclude thatE− is uniformly contracting, completing the proof. From now on we
assumedimE+ < dimEc−.

The symplectic form is identically zero onE+, by Lemma 4.3. Then we may apply Lemma 4.4,
with E1 = E+ andE23 = Ec−. Let Ec− = Ec ⊕ E− be the invariant splitting provided by
Lemma 4.4, that is,Ec = E2 andE− = E3.

Claim 2 in the theorem means thatE+ � Ec ⊕ E− andE+ ⊕ Ec � E−. Since the former is
part of the assumptions, we only have to prove the latter statement. Also by assumption,E+ � E−

and^(E+, Ec) > 0. So, by part 2 of Lemma 4.1, it is enough to show thatEc � E−.
Letm ∈ N be fixed such thatE+ m-dominatesEc−. Fix k ∈ N such that2k−1 > C2

0γ
−2. Let

x ∈ Γ and unit vectorsvc ∈ Ec
x andv− ∈ E−x be given. By Lemma 4.5, there are unit vectors

wc ∈ Ec
x andw+ ∈ E+

x such that

ω(wc, vc) ≥ γ and ω(Fmk
x w+, Fmk

x v−) ≥ γ‖Fmk
x w+‖ ‖Fmk

x v−‖.
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Then, for anyk ∈ N,

‖Fmk
x wc‖ ‖Fmk

x vc‖ ≥ C−1
0 |ω(Fmk

x wc, Fmk
x vc)| ≥ C−1

0 γ and

‖Fmk
x w+‖ ‖Fmk

x v−‖ ≤ γ−1|ω(w+, v−)| ≤ C0γ
−1.

The assumptionE+ � Ec− implies that‖Fmkw+‖ ≥ 2k‖Fmkwc‖. Therefore

‖Fmkvc‖ ≥ C−1
0 γ

‖Fmkwc‖
≥ C−1

0 γ2k

‖Fmkw+‖
≥ C−2

0 γ22k‖Fmkv−‖ ≥ 2‖Fmkv−‖.

ThusEc dominatesE− and part 2 of the theorem is proved.

Now we consider part 3. We already know, from Lemma 4.3, thatEu is uniformly expanding:
there existsm1 ∈ N such that‖Fm1j

x v+‖ ≥ 2j‖v+‖ for all x ∈ Γ, v+ ∈ E+
x , andj ∈ N. Fix j ∈ N

such that2j−1 > C0γ
−1. The following argument proves thatEs is uniformly contracting. Given

an unit vectorv− ∈ E−x , use part 2 of Lemma 4.5 to find an unit vectorv+ ∈ E+
x such that

ω(Fm1j
x v−, Fm1j

x v+) ≥ γ‖Fm1j
x v−‖ ‖Fm1j

x v+‖ .
Then‖Fm1j

x v−‖ ‖Fm1j
x v+‖ ≤ γ−1ω(v−, v+) ≤ C0γ

−1 and so

‖Fm1j
x v−‖ ≤ C0γ

−1

‖Fm1j
x v+‖

≤ C0γ
−12−j ≤ 1

2
.

This proves thatFm1j contracts everyv− ∈ E−x , with uniform rate of contraction. The proof of
Theorem 11 is complete. �

Remark 4.6. Uniform contraction implies that the symplectic form is identically zero also onE−.

APPENDIX A. Aut(D)-COCYCLES AND THEOSELEDETS THEOREM

Here we are going to discuss cocycles with values in the group of isometries of the Poincaré
disk. There is a natural notion of Lyapunov exponent for these cocycles, and we prove some of its
properties in Theorem 12. In fact, we are going to show that Theorem 12 is equivalent to Oseledets
theorem in the case when the vector bundle is2-dimensional.

There are several proofs of Oseledets theorem in the literature, besides the original one. See for
instance [Mãn87, Chapter 4]. Another proof of the2-dimensional case may be found in [You95].
The same basic strategy as in here was used by Thieullen [Thi97] to prove a geometric reduction
theorem for2-dimensional cocycles, that we recall below.

Karlsson and Margulis [KM99] recently generalized Oseledets theorem to cocycles with values
in much more general groups, satisfying some geometric assumptions.

A.1. Automorphisms of the disk. Aut(D) is the set of allautomorphismsof the unit diskD =
{z ∈ C; |z| < 1}, that is, all conformal diffeomorphismsf : D → D (orientation-preserving or
not). Thehyperbolic metricon the disk is given by

(17) dρ =
2 |dz|

1− |z|2
.

Straight lines through the origin are geodesics, and therefore

(18) ρ(z, 0) = 2
∫ |z|

0

dr

1− r2
= log

1 + |z|
1− |z|

= 2arctgh |z| .

All automorphisms of the disk are isometries for the hyperbolic metric. Using this we may deduce
the general expression ofρ:
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(19) ρ(z1, z2) = ρ
( z1 − z2
1− z1z2

, 0
)

= 2arctgh
|z1 − z2|
|1− z1z2|

.

A.2. Aut(D)-cocycles and Lyapunov exponents.Let (X,µ) be a probability space and letT : X →
X be aµ-preserving invertible transformation. Letf : X → Aut(D) be a measurable map, whose
values we indicate byx 7→ fx. We also denotef0

x = id, fn
x = fT n−1x ◦ · · · ◦ fx andf−n

x =
(fT nx)−1 ◦ · · · ◦ (fT−1x)−1, for eachx ∈ X andn ∈ N.

Theorem 12. LetT : X → X and letf : X → Aut(D) be as above. Assume that

(20)
∫

X

ρ(fx(0), 0) dµ(x) <∞.

Then there exists a measurable functionλ : X → [0,∞) such that

(21) lim
n→∞

1
n
ρ(fn

x (0), 0) = 2λ(x) for µ-almost everyx ∈ X.

Furthermore, ifλ(x) > 0 there arews(x), wu(x) ∈ ∂D such that

lim
n→+∞

1
n

log |(fn
x )′(z)| =

{
2λ if z = ws(x)
−2λ if z ∈ D with z 6= ws(x),

lim
n→−∞

1
n

log |(fn
x )′(z)| =

{
−2λ if z = wu(x)
2λ if z ∈ D with z 6= wu(x).

If λ(x) = 0 then

lim
n→±∞

1
n

log |(fn
x )′(z)| = 0 for all z ∈ D.

Remark A.1. In view of (18), the relation(21) is equivalent to

lim
n→∞

1
n

log (1− |fn
x (0)|) = 2λ for µ-almost everyx.

Remark A.2. The contents of(20) and (21) do not change if we replace the origin with any other
pointa in the open disk, becauseρ(f(a), a) ≤ ρ(f(0), 0) + 2ρ(a, 0).

We shall use Kingman’s subadditive ergodic theorem in the following form:

Theorem 13([Kin68]). If (ϕn)n=1,2,... is a sequence of integrable functions such thatinfn

∫
ϕn >

−∞ andϕm+n ≤ ϕm + ϕn ◦ Tm for all m, n ≥ 1 then 1
nϕn converges almost everywhere.

Proof of Theorem 12.Defineϕn(x) = ρ(fn
x (0), 0). Thenϕm+n ≤ ϕm + ϕn ◦ Tm, by the triangle

inequality. Using Theorem 13 we get that1
nϕn convergesµ-almost everywhere to a function2λ.

Sinceϕn ≥ 0, λ ≥ 0. This proves (21).

Definewn(x) = (fn
x )−1(0) for every integern. Notice that, by the invariance of the hyperbolic

metric,ρ(wn(x), 0) = ρ(fn
x (0), 0). Using (18) we get, for almost everyx,

(22) lim
n→+∞

1
n

log(1− |wn(x)|) = −2λ(x).

If λ(x) > 0 then the hyperbolic distance fromwn(x) to the origin goes to infinity, which means that
wn(x) converges to the boundary ofD asn→∞.

Lemma A.3. We havelim sup
n→+∞

1
n

log |wn+1(x)− wn(x)| ≤ −2λ(x) for µ-almost everyx.
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Proof. We shall writewn for wn(x). Since the hyperbolic metric is invariant under automorphisms,

(23)
ρ(wn+1, wn) = ρ

(
(fn

x )−1 ◦ (fT nx)−1(0), (fn
x )−1(0)

)
= ρ((fT nx)−1(0), 0) = ρ(fT nx(0), 0).

The idea of the proof is that ifρ(fT nx(0), 0) is not too big, that is, ifwn+1 andwn are not too far
away from each other in terms of the hyperbolic metric, then the Euclidean distance betweenwn+1

andwn will have to be exponentially small, sincewn → ∂D exponentially fast (assumingλ(x) > 0).
Write bn(x) = fT n(x)(0), for simplicity. For almost everyx, we have

(24)
1
n
ρ(bn(x), 0) → 0 .

This follows from Birkhoff’s theorem applied to the functionϕ(x) = ρ(fx(0), 0), which, by as-
sumption (20), is integrable. Fixx in the full measure set where (22) and (24) hold. In view of
(18)–(19) the equality (23) implies

|wn+1 − wn|
|1− wnwn+1|

= |bn|

or, equivalently,

|wn+1 − wn| = |bn| |1− wnwn+1| = |bn|
∣∣∣1− |wn|2 + wn(wn − wn+1)

∣∣∣
≤ |bn|

(
1− |wn|2 + |wn| |wn+1 − wn|

)
.

That is,

|wn+1 − wn| ≤
|bn|(1− |wn|2)
1− |bn| |wn|

.

Since|wn| < 1 and|bn| < 1, the last inequality implies

|wn+1 − wn| <
1− |wn|2

1− |bn|
<

2 (1− |wn|)
1− |bn|

.

The condition (24) is equivalent to1n log(1−|bn|) → 0. Combining this with (22) and the inequality
above, we conclude

lim sup
n→+∞

1
n

log |wn+1 − wn| ≤ −2λ(x).

This proves the lemma. �

Assumeλ = λ(x) > 0. Then the lemma implies thatwn(x) = (fn
x )−1(0) is a Cauchy sequence,

relative to the Euclidean metric, for almost every suchx. Letws(x) ∈ ∂D be the limit. Let us show
how to compute the growth rate oflog |(fn

x )′(z)| for z ∈ ∂D. We are going to use the following
formula, whose proof may be found in [Nic89, page 12] :

f ∈ Aut(D), z ∈ ∂D =⇒ |f ′(z)| = 1− |f−1(0)|2

|z − f−1(0)|2
.

Therefore

|(fn
x )′(z)| = 1− |fn

x (0)|2

|z − (fn
x )−1(0)|2

= (1 + |wn|)
1− |wn|
|z − wn|2

.

Using (22) we deduce

(25) lim
n→+∞

1
n

log |(fn
x )′(z)| = −2λ− 2 lim

n→+∞

1
n

log |z − wn| .
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For allz 6= ws(x) this gives that the limit is−2λ.
Now consider the casez = ws(x). Since|wn−ws| ≥ 1−|wn|, we havelim inf 1

n log |ws−wn| ≥
−2λ. On the other hand, take0 < ε < 2λ. By Lemma A.3, we have|wj+1 − wj | ≤ e(−2λ+ε)j if j
is large enough. Hence

|ws − wn| ≤
∞∑

j=n

|wj+1 − wj | ≤
e(−2λ+ε)n

1− e−2λ+ε
,

and solim sup 1
n log |ws−wn| ≤ −2λ+ε. This proves thatlim 1

n log |ws−wn| = −2λ. Substituting
in (25), we getlim 1

n log |(fn
x )′(z)| = −2λ.

Now we do the corresponding calculation forz ∈ D. By the invariance of the hyperbolic met-
ric (17) underfn

x , we have

(26) |(fn
x )′(z)| = 1− |fn

x (z)|2

1− |z|2
=

1− |wn|2

1− |z|2
.

It follows, using (22), thatlim 1
n log |(fn

x )′(z)| = 2λ.
The statements aboutwu follow by symmetry, considering the inverse cocycle.
At last, we consider the caseλ = 0. If z ∈ ∂D, then using (25) and1− |wn| ≤ |z−wn| ≤ 2, we

getlim 1
n log |(fn

x )′(z)| = 0. If z ∈ D then we simply use (26). �

A.3. Automorphisms versusmatrices. Next we relate automorphisms of the disk with2 × 2 ma-
trices.

For eachv ∈ R2 \ {0}, let [v] ∈ RP1 denote the corresponding projective class. We define a
homeomorphism[v] ∈ RP1 7→ ξv ∈ ∂D by ξ(cos θ,sin θ) = e2iθ.

In the next proposition, whose proof we omit,‖·‖ denotes Euclidean metric inR2 or GL(2,R).

Proposition A.4. There exists a group isomorphism

[A] ∈ PGL(2,R) 7→ φA ∈ Aut(D)

such that for allA ∈ GL(2,R) with detA = ±1, we have:

(1) φA(ξv) = ξA(v) for all nonzerov ∈ R2;
(2) ‖Av‖ = |φ′A(ξv)|−1/2 for all unit vectorsv ∈ R2;
(3) if u, s are unit vectors inR2 such that‖Au‖ = ‖A‖ and ‖As‖ = ‖A‖−1 then ξu =

−
φ−1

A (0)
|φ−1

A (0)|
andξs =

φ−1
A (0)

|φ−1
A (0)|

;

(4) ‖A‖ =
(

1 + |φA(0)|
1− |φA(0)|

)1/2

= exp
(

1
2ρ(φA(0), 0)

)
.

We are going to deduce the Oseledets theorem, in the case when the vector bundle is2-dimensional,
from Theorem 12. For simplicity we also suppose that it is a trivial bundle, that is,E = X × R2.
Then eachFx is given by a2×2 matrix. We take these matrices to have determinant±1. This is not
a restriction because the validity of the theorem is not affected if we multiplyF by some nonzero
functionϕ (as long as the integrability condition is preserved) : the Oseledets subspaces remain the
same, and one adds the Birkhoff average oflog |ϕ| to the Lyapunov exponents.

We use the isomorphism from Proposition A.4 to associate toF a Aut(D)-cocyclef given by
fx = φFx . Letλ be as in Theorem 12. Then, by item (4) of Proposition A.4,

lim
n→±∞

1
n

log ‖Fn
x ‖ = lim

n→±∞

1
2n
ρ(fn

x (0), 0) = λ(x),
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which is the first assertion in Oseledets’ theorem. The others are also easily deduced.

A.4. A geometric reduction theorem. Exploring this strategy even further, Thieullen [Thi97] ob-
tained the following classification ofSL(2,R) cocycles, which may be seen as a geometric version
of results of Zimmer [Zim76].

Let f : (M,µ) → (M,µ) be an ergodic system andr > 0. A functionφ is cohomologous to zero
modr if there exists a measurable functionu onM such that

φ+ u ◦ f − u ∈ rZ almost everywhere.

Given a setE ⊂ M , we defineRE : M → SL(2,R) by RE(x) = rotation ofπ/2 if x ∈ E and
RE(x) = id otherwise.

Theorem 14(Thieullen [Thi97]). If A : M → SL(2,R) is such thatlog ‖A±1‖ is integrable, then
there existsP : M → SL(2,R) such that, denotingB(x) = P−1(f(x)) · A(x) · P (x), one of the
following cases holdsµ-almost everywhere:

(1) B(x) =
(
a(x) 0

0 1/a(x)

)
with λ =

∫
log |a| dµ > 0.

(2) B(x) =
(
a(x) b(x)

0 1/a(x)

)
with

∫
log |a| dµ = 0 andlog |b| integrable.

(3) B(x) =
(

cos θ(x) − sin θ(x)
sin θ(x) cos θ(x)

)
with θ not cohomologous to zero modπ.

(4) B(x) = RE(x)
(
a(x) 0

0 1/a(x)

)
wherelog |a| is integrable and the characteristic func-

tion ofE ⊂M is not cohomologous to zero mod2.

The Lyapunov exponents are±λ in the first case, and zero in the other three. In all cases, the norms
‖P (f(x))P−1(x)‖ and‖B(x)‖ are bounded above by‖A(x)‖.

APPENDIX B. HYPERBOLIC SETS OFC2 DIFFEOMORPHISMS

We prove that the uniformly hyperbolic sets of everyC2 volume-preserving diffeomorphism have
zero Lebesgue measure, unless they coincide with the whole ambient manifold (Anosov case). This
fact, which is used in [Boc02] and [BVa], seems to be well-known but we could not find a proof in
the literature. Notice that wedo notassumeΛ to be the maximal invariant set in a neighborhood.

Theorem 15. LetM be a compact manifold,µ be normalized Lebesgue measure onM , f be aC2

diffeomorphism preservingµ, andΛ be a compact hyperbolic set forf . Then eitherµ(Λ) = 0 or
Λ = M .

Using Theorem 15 and a result of Zehnder [Zeh77] that says that everyC1 symplectic diffeomor-
phism can be approximated by aC2 one, we deduced in [BVa]

Corollary B.1. There is a residual subsetR2 ⊂ Sympl1ω(M) such that iff ∈ R2 thenf is Anosov
or every hyperbolic set off has zero measure.

Proof of Theorem 15.We show that ifµ(Λ) > 0 thenΛ = M . It is no restriction to suppose that
Λ = supp(µ|Λ), replacingΛ by Λ′ = supp(µ|Λ) from the beginning, if necessary.

Let ε > 0 be given by the stable manifold theorem: for everyx ∈ Λ the sets

W s
ε (x) = {y ∈M : d(fn(x), fn(y)) < ε for all n ≥ 0}

Wu
ε (x) = {y ∈M : d(fn(x), fn(y)) < ε for all n ≤ 0}
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are embedded disks, contained in the (global) stable and unstable setsW s(x) andWu(x), respec-
tively, and depending continuously on the pointx.

We always suppose that the metric inM is adapted to the hyperbolic setΛ: there isλ < 1 such
that

d(f(x), f(y)) ≤ λd(x, y) and d(f−1(x), f−1(z)) ≤ λd(x, z)
for all x ∈ Λ, y ∈W s

ε (x), andz ∈Wu
ε (x). In particular, given anyx ∈ Λ,

W s
δ (x) = W s

ε (x) ∩B(x, δ) and f(W s
δ (x)) ⊂W s

λδ(f(x))

for every0 < δ ≤ ε, and

W s
ε (x) =

⋃
δ<ε

W s
δ (x).

Let µu denoteu-dimensional Lebesgue measure along unstable manifolds.

Lemma B.2. There existsx ∈ Λ such thatµu(Wu
ε (x) ∩ Λ) > 0.

Proof. This follows fromµ(Λ) > 0 and absolute continuity of the unstable foliation (which uses the
hypothesisf ∈ C2). �

Lemma B.3. There exist pointsxk ∈ Λ such thatµu(Wu
ε (xk) \ Λ) → 0 ask →∞.

Proof. The proof is easier whendimWu = 1. Takex as in Lemma B.2 and lety ∈ Λ be a density
point forWu

ε (x) ∩ Λ. Definexk = fk(y). Sincediam f−k(Wu
ε (xk)) → 0,

µu(f−k(Wu
ε (xk)) \ Λ)

µu(f−k(Wu
ε (xk)))

→ 0

ask →∞. Then, by bounded distortion (this usesf ∈ C2 once more),

µu(Wu
ε (xk) \ Λ)

µu(Wu
ε (xk))

→ 0

ask →∞. Sinceµu(Wu
ε (xk)) is bounded above and below, this gives the statement.

Now we treat the general case. As before, lety ∈ Λ be a density point forWu
ε (x) ∩ Λ. The

difficulty is that density points are defined in terms of balls but, in dimension> 1, iterates of balls
need not be balls. This is handled using a trick from [BV00, Section 4].

Givenk ≥ 1 take a small ballDk ⊂Wu
ε (x) aroundy, so that

µu(Dk \ Λ) ≤ k−1µu(Dk).

For each largen, consider the embedded diskfn(Dk) endowed with the metricd(·, ·) associated to
the induced Riemannian structure. LetE ⊂ fn(Dk) be a maximal set such thatd(e′, e′′) ≥ ε for
everye′, e′′ ∈ E. DefineVe = f−n(B(e, ε)) andWe = f−n(B(e, 2ε)), for eache ∈ E: theVe are
pairwise disjoint, and theWe coverDk. We separateE into three subsets:

(I) B(e, 2ε) ∩ Λ 6= ∅ andB(e, 2ε) ∩ ∂fn(Dk) = ∅
(II) B(e, 2ε) ∩ Λ 6= ∅ andB(e, 2ε) ∩ ∂fn(Dk) 6= ∅

(III) B(e, 2ε) ∩ Λ = ∅.
If e ∈ (I) ∪ (II) thenB(e, 2ε) is contained in a local unstable manifold (replaceε by ε/10

throughout). This implies that

(1) B(e, 2ε) and its backward iterates have uniformly bounded curvature.
(2) the diameter off−j(B(e, 2ε)) decreases exponentially fast withj; in particular,diamWe ≤

4ελn.
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(3) backward iteratesf−j have uniformly bounded volume distortion on the ballB(e, 2ε)
(again, this usesf ∈ C2).

Property 2 implies that fore ∈ (II) the setWe is contained in the tubular neighborhood of width
4ελn of ∂Dk. Thus, takingn large enough we ensure that

(27) µu(
⋃

e∈(II)

We) ≤
1
2
µu(Dk)

On the other hand, bounded distortion and bounded curvature, as in properties 1 and 3, imply that

µu(Ve)
µu(We)

≈ µu(B(e, ε))
µu(B(e, 2ε))

≈ 1,

for everye ∈ (I), where≈ means equality up to a uniform factor. Therefore,

(28) µu(We) ≤ Cµu(Ve)

whereC depends only onf andΛ.
Considerk much larger thanC, and fixn as in (27). We claim that there existse ∈ (I) such that

(29) µu(Ve \ Λ) ≤ 4Ck−1µu(Ve).

The proof is by contradiction:

µu(Dk \ Λ) ≥
∑

e∈(I)

µu(Ve \ Λ) + µu(
⋃

e∈(III)

We) (theVe are pairwise disjoint)

≥
∑

e∈(I)

4Ck−1µu(Ve) + µu(
⋃

e∈(III)

We) (assuming (29) were false)

≥
∑

e∈(I)

4k−1µu(We) + µu(
⋃

e∈(III)

We) (by relation (27))

≥ 4k−1µu(
⋃

e∈(I)∪(III)

We) (takek ≥ 4).

Using relation (27) we conclude thatµu(Dk \ Λ) ≥ 2k−1µu(Dk), which contradicts the choice of
Dk. This contradiction proves our claim.

Now, fix e ∈ (I) as in (29). Letxk be the center of theε-ball fn(Ve). Using bounded distortion
once more,

µu(fn(Ve) \ Λ) ≤ 4C2k−1µu(fn(Ve)).
SinceC is independent ofk, the last inequality proves the lemma. �

Lemma B.4. There existsx0 ∈ Λ such thatWu
ε (x0) ⊂ Λ.

Proof. Let xk be as in Lemma B.3. We may suppose that the sequence converges to somex0 ∈ Λ.
By continuity, the local unstable manifolds of thexk converge toWu

ε (x0). SinceΛ is closed,
Lemma B.3 implies thatWu

ε (x0) ⊂ Λ. �

Lemma B.5. There is a hyperbolic periodic pointp0 ∈ Λ such thatWu(p0) ⊂ Λ.

Proof. Takex0 as in Lemma B.4. Letβ > 0 be small enough so that the maximal invariant setΛβ

inside the closedβ-neighborhoodUβ of Λ is hyperbolic. Letα > 0 be much smaller thanβ (cf.
condition below) andVα be the closedα-neighborhood ofx0. Sincex0 ∈ Λ = supp(µ|Λ), the
compactΓ = Λ ∩ Vα has positive measure.
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Let z ∈ Γ andN ≥ 1 be such thatfN (z) ∈ Γ. Takingα small enough, we may use the
shadowing lemma (version without local product structure, see [Shu87]), to find a pointp0 ∈ M
such thatfN (p0) = p0 and

d(f j(p0), f j(z)) < β for all 0 ≤ j ≤ N.

The periodic pointp0 is hyperbolic and its local stable and local unstable manifolds are close to
the ones ofx0 andz, if α andβ are small. That is because all three points belong to the hyperbolic
setΛβ . In particular, we may suppose thatW s

ε/2(p0) intersectsWu
ε/2(x0) transversely. Then, by the

λ-lemma, the entireWu(p0) is accumulated by the forward iterates ofWu
ε/2(x0). Using Lemma B.4

and the fact thatΛ is invariant and closed, we conclude thatWu(p0) ⊂ Λ. In particular,p0 ∈ Λ. �

Now letΛ0 ⊂ Λ be the closure ofWu(p0). Define

W s
ε (Λ0) =

⋃
x∈Λ0

W s
ε (x) and Wu

ε (Λ0) =
⋃

x∈Λ0

Wu
ε (x).

Lemma B.6. Λ0 consists of entire (global) unstable manifolds. Consequently,W s
ε (Λ0) is an open

neighborhood ofΛ0.

Proof. Let z ∈ Λ0. Then there existzk ∈ Wu(p0) ⊂ Λ0 accumulating onz. The ε-unstable
manifolds of allzk are contained inΛ0, and they accumulate on theε-unstable manifold ofz. Since
Λ0 is closed, it follows thatz is in the interior ofΛ0 ∩Wu(z). This proves that the intersection of
Λ0 with the unstable manifoldWu(z) of any of its points is an open subset. Since it is also closed,
it must be the whole unstable manifold. This proves the first statement. The second one is a direct
consequence, using the continuous dependence of local stable manifolds. �

The next lemma is the only place where we use thatf preserves volume.

Lemma B.7. f(W s
ε (Λ0)) = W s

ε (Λ0).

Proof. For anyδ ∈ (λε, ε), we have

f(W s
δ (Λ0)) ⊂ f(W s

δ (Λ0)) ⊂ f(W s
ε (Λ0)) ⊂W s

λε(Λ0) ⊂W s
δ (Λ0).

Sincef preserves volume

µ(W s
δ (Λ0) \ f(W s

δ (Λ0))) ≤ µ(W s
δ (Λ0) \ f(W s

δ (Λ0))) = 0.

It follows thatW s
δ (Λ0) \ f(W s

δ (Λ0)) = ∅, becauseµ is positive on nonempty open sets. Then,

W s
δ (Λ0) \ f(W s

ε (Λ0)) = ∅.

Taking the union over allδ < ε, we getW s
ε (Λ0) \ f(W s

ε (Λ0)) = ∅, which proves the lemma. �

It follows thatW s
ε (Λ0) =

⋂
n≥0 f

n(W s
ε (Λ0)) = Λ0 . SinceW s

ε (Λ0) is open andΛ0 is closed,
we get thatΛ0 = M . Then,Λ = M as claimed in Theorem 15. �
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