LYAPUNOV EXPONENTS:
HOW FREQUENTLY ARE DYNAMICAL SYSTEMS HYPERBOLIC ?

JAIRO BOCHI AND MARCELO VIANA

ABSTRACT. Lyapunov exponents measure the asymptotic behavior of tangent vectors under iteration,
positive exponents corresponding to exponential growth and negative exponents corresponding to ex-
ponential decay of the norm. Assumihgperbolicity,that is, that no Lyapunov exponents are zero,
Pesin theory provides detailed geometric information about the system, that is at the basis of several
deep results on the dynamics of hyperbolic systems. Thus, the question in the title is central to the
whole theory.

Here we survey and sketch the proofs of several recent results on genericity of vanishing and
non-vanishing Lyapunov exponents. Genericity is meant in both topological and measure-theoretical
sense. The results are for dynamical systems (diffeomorphisms) and for linear cocycles, a natural
generalization of the tangent map which has an important role in Dynamics as well as in several other
areas of Mathematics and its applications.

The first section contains statements and a detailed discussion of main results. Outlines of proofs
follow. In the last section and the appendices we prove a few useful related results.

1. INTRODUCTION

Let M be a compact manifold with dimensian> 1, andf: M — M be aC" diffeomorphism,
r > 1. The Oseledets theorem [Ose68] says that, relative tofanyariant probabilityy, almost
every point admits a splitting of the tangent space

(1) T.M=E'®---9EF k=kQ),
and real numbers; (f,z) > --- > A\i(f, ) such that

1 ,
lim —log |[Df"(z)vill = Ai(f,x) for every nonzera; € I, .
— o0 N

n

These objects are uniquely defined and they vary measurably with thexpdifreover, the Lya-
punov exponents;( f, ) are constant on orbits, hence they are congiaaimost everywhere ifi
is ergodic.

Assuming hyperbolicity, that is, that no Lyapunov exponents are zero, Pesin theory provides
detailed geometric information about the system, including existence of stable and unstable sets
that are smooth embedded disks at almost every point [Pes76, Rue81, FHY83, PS89]. This theory
requires the diffeomorphism to havedlder continuous derivative (see [Pu84]). Such geometric
structure is at the basis of several deep results on the dynamics of hyperbolic systems, like [Pes77,
Kat80, Led84, LY85, BPS99, SWO00]. This makes the following problem central to the whole theory:

How often are dynamical systems hyperbolic ?

More precisely, consider the spaoéf), (M) of C", » > 1 diffeomorphisms that preserve a given
probability ., endowed with the correspondidgf topology. Then the question is to be understood
both in topological terms — dense, residual, or even open dense subsets — and in terms of Lebesgue
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measure inside generic finite-dimensional submanifolds, or parameterized familiesf of\/).

The most interesting casés wheny is Lebesgue measure in the manifold.

As we are going to see in section 1.1, systems wmétloLyapunov exponents are abundant among
C' volume-preserving diffeomorphisms. But other results in section 1.3 below strongly suggest
predominance of hyperbolicity amodg” systems withr > 1.

1.1. A dichotomy for conservative systems.Let i, be normalized Lebesgue measure on a compact
manifold M.

Theorem 1([BV02, BVa]). There exists a residual subsetof Diffll,,(M) such that, forevery € R
and p-almost every point,

(a) either all Lyapunov exponents(f,z) = 0for1 <i <d,

(b) or the Oseledets splitting gfis dominated on the orbit af.

The second case means there exists 1 such that for any in the orbit ofx
m . m .
IDF™ Wil IDF™ (),

Joil [an

for any nonzera); € E; v; € EgJ corresponding to Lyapunov exponenis> ;. In other words,
the fact thatD /™ will eventually expandr; more thank; can be observed in finite timeniform
over the orbit. This also implies that the angles between the Oseledets subspaegs bounded
away from zero along the orbit, in fatite Oseledets splitting extends to a dominated splitting over
the closure of the orbit.

@)

In many situations (for instance, if the transformatipiis ergodic) the conclusion gets a more
global form: either (a) all exponents vanish aalmost every point or (b) the Oseledets splitting
extends to a dominated splitting on the whole ambient manifold. The latter meams thdt as in
(2) may be chosen uniformly over all af .

It is easy to see that a dominated splitting into factors with constant dimensions is necessarily
continuous. Now, existence of such a splitting is a very strong property that can often be excluded a
priori. In any such case Theorem 1 is saying that generic systems must satisfy alternative (a).

A first example of this phenomenon is thalimensional version of Theorem 1, proved by Bochi
in 2000, partially based on a strategy proposed byi@a the early eighties [ME06].

Theorem 2 ([Boc02]). For a residual subseR of C! area preserving diffeomorphisms on any
surface, either

(a) the Lyapunov exponents vanish almost everywhere or
(b) the diffeomorphism is uniformly hyperbolic (Anosov) on the widle

Alternative (b) can only occur i/ is the torus; soC'! generic area preserving diffeomorphisms
on any other surface have zero Lyapunov exponents almost everywhere.

It is an interesting question whether the theorem can always be formulated in this more global
form. Here is a partial positive answer, for symplectic diffeomorphisms on any symplectic manifold
(M,w):

1But the problem is just as important for general dissipative diffeomorphisms, that is, without a priori knowledge of
invariant measures. E.g. [ABV0O] uses hyperbolicity type properties at Lebesgue almost every pomgttactinvariant
Sinai-Ruelle-Bowen measures.
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Theorem 3([BVa]). There exists a residual s& c Sympl!, (M) such that for every’ € R either
the diffeomorphisnf is Anosov or Lebesgue almost every point has zero as Lyapunov exponent, with
multiplicity > 2.

Remark 1.1. For r sufficiently large, KAM theory yield§"-open sets of symplectic maps which
are not hyperbolic, due to the presence of invariant Lagrangian tori restricted to which the map
is conjugate to rotations and whose union has positive volume. Moreover, ChendCS9)
Herman[Yoc92, § 4.6], Xia [Xi92] have constructed’"-open sets (large) of volume-preserving
diffeomorphisms exhibiting positive volume invariant sets consisting of codimenisioariant tori.

In all these latter examples where hyperbolicity fadfl,Lyapunov exponents actually vanish: the
dynamics on each torus is conjugate to a (diophantine) rotation; then, since the map is volume-
preserving, the transverse Lyapunov exponent must also be zero.

1.2. Deterministic products of matrices. Let f: M — M be a continuous transformation on a
compact metric spac&/. A linear cocycleover f is a vector bundle automorphisi: £ — &
coveringf, wherer: £ — M is a finite-dimensional vector bundle oviéf. This means that

moF =fom

and I’ acts as a linear isomorphism on every fiber. The quintessential example is the derivative
F = Df of a diffeomorphism on a manifoladlynamical cocycle

For simplicity, we focus on the case when the vector bundle is tdvial M x R?, although this
is not strictly necessary for what follows. Then the cocycle has the form

F(xz,v) = (f(x), A(x)v) forsomeA: M — GL(d,R).

It is no real restriction to suppose thattakes values i8L(d, R). Moreover, we assume thatis at
least continuous. Note that™ (z,v) = (f"(z), A™(z)v) for n € Z, with

Al(z) = A(fi~ V(@) - A(f(z)) A(z) and A~ (z) = inverse ofA?(f 7 (x)).

The theorem of Oseledets extends to linear cocycles: Giverf-amyariant probabilityy, then at
p-almost every point there exists a filtration

{a} xRY = F0 > F} > > Ff > FE = {0}
and real numbers; (4, z) > --- > A\;(4, z) such that

lim log | A" (@)uil] = As(A,2)

n—-4oo N
for everyv; € Fi:~1\ FL. If f is invertible there even exists an invariant splitting
{2} xRI=E!®...0 EF
such that )
lim —log [ A™ @)uill = Ai(4,2)
for everyv; € E% \ {0}. It relates to the filtration by? = &, EL.

In either case, the largest Lyapunov exponeM, =) = \; (A, ) describes the exponential rate
of growth of the norm

. 1 "
AAz) = Tim = log]|A"(z)]

If 1 is an ergodic probability, the exponents are constaatmost everywhere. We represent by
Aj (A, 1) andA(A, ) these constants.
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Example 1.2. (Products of i.i.d. random matrices) Letbe a probability orbL(d, R) with compact
support. Definél! to be the spacésupp ) of sequencegy;); in the support of, and lety = v2.
Let f: M — M be the shift map, and.: M — SL(d,R) be the projection to the Oth coordinate:
A((Oéj)j) = Qg. Then

A”((aj)j) = Qp—_1""01Qp.

A classical theory, initiated by Furstenberg and Kedsliel60, Fur63] states that the largest Lya-
punov exponent(A, u) of the cocycld A, 1) is positive, as long as the support of the probability

is rich enough: it suffices that there be no probability on the projective sg@¢e ! invariant under

the action ofall the matrices irsupp v. Also with great generality, one even has that the Lyapunov
spectrum is simple: all Oseledets subspaces have dimehsiGee Guivarch, RaugGR86] and
Gold’sheid, MarguligGM89].

Theorem 1 also extends to linear cocycles over any transformation. We state the ergodic invertible
case:

Theorem 4 ([Boc02, BV02]) Assumef: (M,u) — (M, ) is invertible and ergodic. Le@ C
SL(d,R) be any subgroup acting transitively on the projective spRE¥~!. Then there exists a
residual subseR of mapsA € C°(M, G) for which either the Lyapunov exponentg A, ) are all
zero atu-almost every point, or the Oseledets splittingAéxtends to a dominated splitting over
the support ofs.

The next couple of examples describe two simple mechanisms that exclude a priori the dominated
splitting alternative in the dichotomy:

Example 1.3.Letf: M — M andA: M — SL(d,R) be such that for every < i < d there exists
a periodic pointp; in the support ofi, with periodg; , such that the eigenvalue{ﬁ}: 1<j<d}
of A% (p,;) satisfy

®) 011 = - 2 181 > 1B = 167 > |Biyal = - 2 154

and 3¢, f+1 are complex conjugate (not real). Such drmay be found, for instance, starting with

a constant cocycle and deforming it on disjoint neighborhoods of the periodic orbits. PrdBgrty
remains valid for everny3 in a C° neighborhood/ of A. It implies that noB admits an invariant
dominated splitting over the support pf if such a splittingE @ F' existed then, at every periodic
point, thedim £ largest eigenvalues would be strictly larger than the other eigenvalues, which is
incompatible with(3). It follows, by Theorem 4, that every cocycle in a residual suliseR of the
neighborhood has all the Lyapunov exponents equal to zero.

Example 1.4. Let f: S — S! be a homeomorphism andbe any invariant ergodic measure with
supp u = S1. Let\ be the set of all continuoud: S — SL(2, R) non-homotopic to a constant.
For a residual subset ol the Lyapunov exponents of the corresponding cocycle @Quer) are
zero. That is because the cocycle has no invariant continuous subburdig ifon-homotopic to a
constant (this may be shown by the same kind of arguments as in example 3.4 below).

Remark 1.5. Theorem 4 also carries over to the spak® (X, SL(d, R)) of measurable bounded
cocycles, still with the uniform topology. We also mention that in weaker topologies, cocycles having
a dominated splitting may cease to constitute an open set. In fact, forp < oo, genericL?
cocycles have all exponents equsde Arnold, ConfAC97] and Arbieto, BochjAB].
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1.3. Prevalence of nonzero exponentsWe are now going to see that the conclusions of the previ-
ous section change radically if one considers linear cocycles which are better than just continuous:
assuming the base dynamics is hyperbolic,dherwhelming majority of Blder continuous or dif-
ferentiable cocycles admit nonzero Lyapunov exponents.

Let G be any subgroup &fL(d, R). For0 < v < co denote byC¥ (M, G) the space of” maps
from M to G endowed with th&®” norm. Whernv > 1 it is implicit that M has a smooth structure.
For integerv the notation is slightly ambiguougZ” means either thaf is v times differentiable
with continuousvth derivative, or that it iss — 1 times differentiable with Lipschitz continuous
derivative. All the statements are meant for both interpretations.

Let f: M — M be aC'! diffeomorphism with Hlder continuous derivative. Afi-invariant
probability measure is hyperbolicif every \;(f, x) is different from zero ag:i-almost every point.
The notion of measure with local product structure is recalled at the end of this section, and we also
observe that this class contains most interesting invariant measures.

Theorem 5 ([Via]). Assumef: (M, u) — (M, u) is ergodic and hyperbolic with local product
structure. Then, for every > 0, the set of cocycled with largest Lyapunov exponeitA, z) >

0 at p-almost every point contains an open dense sulgsef C* (M, SL(d,R)). Moreover, its
complement has infinite codimension.

The last property means that the set of cocycles with vanishing exponents is locally contained
inside finite unions of closed submanifolds@f (M, SL(d, R)) with arbitrary codimension. Thus,
generic parameterized families of cocycles do not intersect this exceptional set at all!

Now suppose’: M — M is uniformly hyperbolic, for instance, a two-sided shift of finite type,
or an Axiom A diffeomorphism restricted to a hyperbolic basic set. Then every invariant measure is
hyperbolic. The main novelty is that the séimay be taken the same for all invariant measures with
local product structure.

Theorem 6([BGMV, Via]). Assumef: M — M is a uniformly hyperbolic homeomorphism. Then,

for everyv > 0, the set of cocycled whose largest Lyapunov exponexftd, x) is positive atu-

almost every point for every invariant measure with local product structure contains an open dense
subset4 of C¥ (M, SL(d, R)). Moreover, its complement has infinite codimension.

Theorem 6 was first proved in [BGMV], under an additional hypothesis called domination. Under
this additional hypothesis [BVb] gets a stronger conclusion: all Lyapunov exponents have multiplic-
ity 1, in other words, the Oseledets subspaEésire one-dimensional. We expect this to extend to
full generality:

Conjecture. Theorems 5 and 6 should remain true if one replaséd, ) > 0 by all Lyapunov
exponents\; (A, x) having multiplicity1.

Theorems 5 and 6 extend to cocycles over non-invertible transformations, respectively, local dif-
feomorphisms equipped with invariant non-uniformly expanding probabilities (all Lyapunov expo-
nents positive), and uniformly expanding continuous maps, like one-sided shifts of finite type, or
smooth expanding maps. Moreover, both theorems remain true if we réfilaéeR) by any sub-
groupG such that

G > B (B¢ ,...,B&) € (RPT1),
is a submersion, for any linearly independéfit, ..., &4} C RPY~1, In particular, this holds for the
symplectic group.

Motivated by results to be presented in sections 2 and 3, we ask
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Problem. What are the continuity points of Lyapunov exponents as functions of the cocycle in
C”(M,SL(d,R)), whenv > 0 ? It may help to assume that the base systgn) is hyperbolic.

Finally, we recall the notion dbcal product structurdor invariant measures. Letbe a hyper-
bolic measure. We also assume thaias no atoms. By Pesin’s stable manifold theorem [Pes76],
p-almost every: € M has a local stable s&k;? .(z) and a local unstable s8t}"_(z) which areC
embedded disks. Moreover, these disks vary in a measurable fashion with the point. So, for every
e > 0 we may findM. C M with p(M.) > 1 — ¢ such thatW}? (x) andW}% () vary continu-
ously withz € M, and, in particular, their sizes are uniformly bounded away from zero. Thus for
anyz € M. we may construct setd(x, §) with arbitrarily small diameted, such that (iy*(z, 0)
contains a neighborhood efinside M, , (ii) every point ofH(x, ) is in the local stable manifold
and in the local unstable manifold of some pair of pointddn, and (iii) giveny, z in H(z, J) the
unique point inlV#(y) N W*(z) is also inH(z, §). Then we say that has a local product structure
if p| H(x,o) is equivalent tqu™ x p®, wherep® (resp. 1*) is the projection ofx | H(x,d) onto
WH(x) (resp. W (x)).

Lebesgue measure has local product structure if it is hyperbolic; this follows from the absolute
continuity of Pesin’s stable and unstable foliations [Pes76]. The same is true, more generally, for any
hyperbolic probability having absolutely continuous conditional measures along unstable manifolds
or along stable manifolds. Also, in the uniformly hyperbolic case, every equilibrium statet@éiaH
continuous potential [Bow75] has local product structure.

2. PROVING ABUNDANCE OF VANISHING EXPONENTS

We shall sketch the proofs of Theorems 1 and 3, given in [BV02].

Let f € Diffi(M) andI" be an invariant set We say that an invariant splittiig= E & F'is
m-dominatedfor somem € N, ifforall x € T

Dftlr, 1
m(Dfm|g,) 2

wherem(A) = ||A~!||~1. We callE @ F adominated splittingf it is m-dominated for somen.

2.1. Volume-preserving diffeomorphisms. Given f € DiffL(M) andl < p < d, we write

AFi) = M(f.0) ++ Ay(foa) and LE(f) = [ Ay(f.0) dula).
As f preserves volume\,(f,z) = 0. Itis a well-known fact that the functiong Diﬁi(M) —
LE,(f) are upper semi-continuous. Continuity of these functions is much more delicate:
Theorem 7. Let f, € Diff (M) be such that the map
Diff, (M) > f +— (LE1(f),...,LEq_1(f)) € R

is continuous atf = fy. Then for almost every € M, the Oseledets splitting of, is either
dominated or trivial (all\,(f, z) = 0) along the orbit ofx.

Since the set of points of continuity of a upper semi-continuous function is always a residual set,
we see that Theorem 1 is an immediate corollary of Theorem 7. Also, Theorem 7 remains valid for
linear cocycles, and in this setting the necessary condition is also sufficient.
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Example 2.1. Let f: S — S! be an irrational rotation,u be Lebesgue measure, add S —

SL(2,R) be given by
[ E-V() -1
=500 )

for someE € R andV: S' — R continuous. Thenl is a point of discontinuity for the Lyapunov
exponents, among all continuous cocycles dyer), if and only if the exponents are nonzero and
is in the spectrum of the associated Sutinger operator. ComparBJ]. This is becaus&’ is in the
complement of the spectrum if and only if the cocycle is uniformly hyperbolic, whi¢i.far R)
cocycles is equivalent to domination.

We shall explain the main steps in the proof of Theorem 7.

2.2. First step: Mixing directions along an orbit segment. The following notion, introduced

in [Boc02], is crucial to the proofs of our theorems. It captures the idea of sequence of linear
transformations that can be (almost) realipadsubsets with large relative measagtangent maps

of diffeomorphisms close to the original one.

Definition 2.2. Givenf € Diff,(M) or f € Sympl,,(M), a neighborhood/ of f in Diff}, (M) or
Symplllt(M), 0 < k < 1, and a nonperiodic point € M, we call a sequence of (volume-preserving
or symplectic) linear maps

T,M 2 pp o 2 B

an (U, x)-realizable sequence of lengthat x if the following holds:

For everyy > 0 there isr > 0 such that the iterateg’ (B,.(z)) are pairwise disjoint for) <
j < n, and given any nonempty open 8etC B,.(x), there areg € U and a measurable sét C U
such that

(i) g equalsf outside the disjoint uniotl]?;Ol ),

(i) 1K) > (1 — )u(U);
(iii) if y € K then||Dgy;, — L;|| <~ foreveryd < j <n—1.

To make the definition clear, let us show (informally) that jfw € T, M are two unit vectors
with <(v, w) sufficiently small then there exists a realizable sequdigg of length1 at z such
thatLo(v) = D fp(w).

Indeed, letR: T, M — T,M be a rotation of anglet(v, w) along the plane® generated by
andw, with axis P+. We takeLy, = Df,R. In order to show thafL,} is a realizable sequence
we must, for any sufficiently small neighborhoétof x, find a perturbatiory of f and a subset
K C U such that conditions (i)-(iii) in definition 2.2 are satisfied. Since this is a local problem,
we may suppose, for simplicity, tha = RY = T, M. First assumé/ is a cylinderB x B’,
whereB and B’ are balls centered atand contained i® and P+, respectively. We also assume
thatdiam B < diam B’ <« 1. Define K C U as a slightly shrunk cylinder also centeredzat
so condition (i) in definition 2.2 holds. Then there is a volume-preserving diffeomorphisath
thath equals the rotatioi inside the cylindek” and equals the identity outsidé Moreover, the
conditionsf < 1 anddiam B < diam B’ permit us to takex C''-close to the identity. Define
g = f o h; then condition (iii) also holds.

This deals with the case whetéis a thin cylinder. Now ifU is any small neighborhood af
then we only have to cover-most of it with disjoint thin cylinders and rotate (as above) each one
of them. This “shows” thaf L, = D f, R} is a realizable sequence.
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Our first proposition towards the proof of Theorem 7 says that if a spliiiag is notdominated
then one can find a realizable sequence that sends one directiofftorA.

Proposition 2.3. Givenf ¢ Diff}L(M), aneighborhood/ > f,and0 < x < 1, letm € N be large.
Given a nontrivial splittingl,.,(,) M = E @& F' along the orbit of a nonperiodig € M, satisfying
the “non-dominance” condition

@ IDslell 1
m(Dfm|g) ~ 27
there exists dU, x)-realizable sequencéLy, ..., L,,_1} aty of lengthm and a nonzero vector

ve E,suchthatl,, 1 --- Lo(v) € Fymy.

Let us explain how the sequence is constructed, at least in the simplest case. Assume that
<(Eyiy, Fyiy) is very small for someé = 1,...,m — 1. We take unit vectors; € Eyi,, w; € Fyiy,
such that<(v;, w;) is small. As we have explained before, there is a realizable seqyén¢ef
length1 at f?x such thatZ;(v;) = w;. We defineL; = Dfyiy for j # i;then{Lo,...,Lp_1}1is
the desired realizable sequence.

The construction of the sequence is more difficult whgi, F') is not small, because several
rotations may be necessary.

2.3. Second step: Lowering the norm. Let us recall some facts from linear algebra. Given a vector
spaceV and a non-negative integgr let A”(V) be thepth exterior power ofi’. This is a vector
space of dimensio(li), whose elements are callpevectors It is generated by the-vectors of the
formuv; A -+ Aw, with v; € V, called thedecomposablg-vectors We take the nornjj-|| in A” (V)
such thatifv = v; A - -- Av, then||v|| is thep-dimensional volume of the parallelepiped with edges
v1, ...,vp. Alinear mapL: V — W induces a linear map\”(L): A”(V) — A”(W) such that

N (L)1 A Avy) = L) A+ A L(vy)

Let f € Difft(M) be fixed from now on. Although it is not necessary, we shall assume for
simplicity that f is aperiodig that is, the set of periodic points ¢fhas zero measure.

Givenf e Diff}t(M) andp € {1,...,d — 1}, we have, for almost every,

g \"(DA] = Ay(f,2) asn — oo,

Suppose the Oseledets splitting along the orbit of a poiatnot dominated. Our next task (Propo-
sition 2.4) is to construct long realizable sequeniks, . . ., L,,—1 } atz such that

1 P~ ~
21 L1 L
n0g||/\( 1+ Lo)l

is smaller then the expected valtvg( f, ).

Givenp andm < N, we definel', (f,m) as the set of points such that ifl,,., , M = E© F
is an invariant splitting along the orbit, withm £ = p, then it is notm-dominated. It follows from
basic properties of dominated splittings (see section 4.1)thigt, m) is an open set. Of course, it
is also invariant.

Proposition 2.4. LetUd C Diﬁlﬂ(M) be a neighborhood of, 0 < x < 1,§ > 0 andp €
{1,...,d — 1}. Letm € N be large. Then fop-almost every point € I',(f, m), there exists an
integer N (z) such that for every, > N(x) there exists dl{, x)-realizable sequence

N A R A Ry 2

» Hn—1
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at z of lengthn such that

(5) logn/\ o)l <

Moreover, the functiodV: T',(f, m) — N is measurable.

Ap1(@) + Apia (2)

5 + 0.

The proof of the proposition may be sketched as follows. GivenI',(f, m), we may assume
Ap(z) > Ap+1(x), otherwise we can take the trivial sequerfqe: D fyi, and there is nothing to
prove. Then we can consider the splittithg\/ = E, & F,, whereE,, (resp.F) is the sum of the
Oseledets spaces corresponding to the expongs, ..., A\, (z) (resp.Apt1(z), ..., Aa(x)). By
assumption, the splitting’ & F' is notm-dominated along the orbit af, that is, there existé > 0

such that I el
DflF 1
14 Y Y
y=fla) = SRS >
m(Dfie,) ~ 2
By Poincaé recurrence, there are infinitely many integérs 0 such that the above relation is
satisfied (for almost every). Moreover, it can be shown, using Birkhoff’s theorem, that for all large

enoughn, that is, for everyn > N(z), we can findl ~ n/2 such that the inequality above holds for
(. Herel ~ n/2 means that: — 1| < consts.

Fix z,n > N(z), £ as abovey = f*(z) andz = f*(y). Proposition 2.3 gives @/, x)-realizable

sequencg Lo, ..., L,,,—1}, such that there is a nonzero vecitgre £, for which
(6) L1 ...L()(’U()) eF,
We form the sequenc{eﬁo, cee En,l} of lengthn by concatenating

It is not difficult to show that the concatenation i§4 «)-realizable sequence at

We shall give some informal indication why relation (5) is true. et A”(T,. M) be ap-vector
with ||v|| = 1, and letv’ = AP (Ly—1--- LoD fY)(v) € AP(T.M). Sincem < n, andLy, ...,
L,,—1 are bounded, we have

1 P~
M S1og I\ Eur Lol £~ loa I (D727 + g |\ (DS
To fix ideas, suppose is a decomposablevector belonging to the subspagg(E.). Then
1 P
®) zlogll/\ (DI = Ap(f, ).

If we imagine decomposabjevectors agp-parallelepipeds then, by (6), the parallelepipédon-
tains a direction irF’,. This direction is expanded by the derivative with exponent at thost(z) =
Ap+1(z). On the other hand, thg — 1)-volume of every(p — 1)-parallelepiped iff, M grows with
exponent at mosk,,_; (x). This “shows” that

1 ! —L£—m
© g | A DA IV S A () + A (o).
Substituting (8) and (9) in (7), and using that: n — ¢ — m ~ n/2, we obtain
—1og IN' (@ Toy|| < 2@ T A1 @) | Ap(@) _ Ay (@) + Apo (1)

2 2 2

So the bound from (5) holds at least fevectorsv in A”(E,). Similar arguments carry over to all
N (T M).
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2.4. Third step: Globalization. The following results renders global the construction of Proposi-
tion 2.4.

Proposition 2.5. Let a neighborhood/ > f,p € {1,...,d — 1} andé > 0 be given. Then there
existrn € N and a diffeomorphism € U/ that equalsf outside the open sét,( f,m) and such that

Ap1(frx) + Apia(f, )
10 A, (g,2)du(z) < & P E d
aw o ol ) dute) <o+ / - :

().

The proof goes as follows. Let € N be large and lefv: I',(f,m) — N be the function
given by Proposition 2.4 witlk = §2. For almost every: € I',(f,m) and everyn > N(z), the
proposition provides a realizable sequelﬁtfe} of lengthn at x satisfying (5). “Realizing” this
sequence (see definition 2.2), we obtain a perturbatiohf supported in a small neighborhood of
the segment of orbi{x, ..., f*(x)}, which is a towerU U --- U f™(U). Since the sel',(f,m)
is open and invariant, these towers can always be taken inside it. Eachtiower- U f™(U) =
UU---Ug™(U) contains asub-towerK U - - - U f"(K) where the perturbed derivatives are very
close to the mapﬁi. Hence if we choos& small enough then (5) will imply
a) Liog |\ Dgy| < ettt Apeal)

To construct the perturbatignglobally, we cover all’,(f, m) but a subset of small measure with
a (large) finite number disjointtowers as above. Moreover, the towers can be chosen so that they
have approximately the same heights (more precisely, all heights are betiveed3 H, where H
is a constant). Then we glue all the perturbations (each one supported in a tower) and ¢btain a
perturbationg of f. Let S be the support of the perturbation, i.e., the disjoint union of the towers.
Let.S” C S be union of the corresponding sub-towers; théf \ S’) < xu(S) < §2. Moreover, if
y € S’ is in the first floor of a sub-tower of heightthen (11) holds.

To bound the integral in the left hand side of (10), we want to use the elementary fact (notice
T, (f, m) is alsog-invariant):

" 1
@ [ Aeod@ < [ gl 0g)du(e) forallne
Fp(fvm) Fp fﬁm)

+ 29, Vye K.

n

Letng = H/4. Here comes a major step in the proof: To show thast points (up to a set of
measure of order of) in T',(f,m) are in.S” and its positive iterates stay insidg for at leastn,
iterates. Intuitively, this is true by the following reason: The s#tis ag-castlé, whose towers have
heights~ H. Therefore a segment of orbit of length = ' H, if it is contained inS’, “winds”
~ §~! times arounds’. SinceS’ is a castle, there are onfy ! opportunities for the orbit to leave
S’. In each opportunity, the probability of leave is of ordesd{the measure of the complementary
I,(f,m)\ ). Therefore the probability of leav® in ny iterates isc 6162 = 4.

Using the fact above, one shows that the right hand side of (12)mwithn is bounded by the
left hand side of (10), completing the proof of the proposition.

2.5. Conclusion of the proof. LetI',(f, co) be the set of points where there is no dominated split-

ting of indexp, that is,I', (f, 00) = (,,,en I (f, m).
The following is an easy consequence of Proposition 2.5.

2That is, a union of disjoing-towers.
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Proposition 2.6. Given f € Difft(M) andp € {1,...,d— 1}, let

_ )‘P(fal) —>\p+1(f,$) 2
Ip(f) = /Fp(ﬁoo) 5 dp(x).

Then for every/ > f andé > 0, there exists a diffeomorphisgne ¢/ such that

| Astg.w)dute) < [ (.00 du(o) = 1) +5.
M M
Using the proposition we can give the:

Proof of Theorem 7Let f € Difft(M) be a point of continuity of all mapeE,(-),p=1,...,d —
1. ThenJ,(f) = 0 for everyp. This means thak,(f,z) = Ap+1(f, z) for almost every: in the set
Fp(f’ OO)

Letx € M be an Oseledets regular point. If all Lyapunov exponentg af x vanish, there is
nothing to do.

For eachp such that\,(f,z) > Ap+1(f, x), we have (if we exclude a zero measure sei)of
x ¢ T'y(f, 00). This means that there is a dominated splitting of indeks~, M = E,, & F,, along
the orbit ofx. It is not hard to see thdf,, is necessarily the sum of the Oseledets spacgs atfthe

point "z, associated to the Lyapunov exponeis$f, z), ..., A\, (f, =), andF,, is the sum of the
spaces associated to the other exponents. This shows that the Oseledets splitting is dominated along
the orbit ofz. O

2.6. Symplectic diffeomorphisms. Now let (M, w) be a compact symplectic manifold without
boundary, of dimensiodim M = 2q.

The Lyapunov exponents of symplectic diffeomorphisms have a symmetry propetfyx) =
—A2g—j+1(f,x) forall1 < j < gq. In particular\,(z) > 0 andLE,(f) is the integral of the sum of
all non-negative exponents. Consider the splitting

.M =E}l®E)®E;,

whereE;, E?, andE, are the sums of all Oseledets spaces associated to positive, zero, and negative
Lyapunov exponents, respectively. Théim £ = dim E, anddim E! is even.

Theorem 8. Let f, € Sympl},(M) be such that the map
f € Sympl, (M) — LE,(f) € R

is continuous atf = fo. Then foru-almost everyr € M, eitherdim E9 > 2 or the splitting
T.M = E} & E; is uniformly hyperbolic along the orbit af.

In the second alternative, what we actually prove is that the splitting is dominatedTatis is
enough because, for symplectic diffeomorphisms, dominated splittings into two subspaces of the
same dimension are uniformly hyperbolic. See section 4.

Theorem 3 follows from Theorem 8: As in the volume-preserving case, the furjtterLE, ( f)
is continuous on a residual subget of Symplllt(M). Also (see appendix B), there is a residual
subsetR, C Sympli(M) such that for every € R, either f is an Anosov diffeomorphism or all
its hyperbolic sets have zero measure. The residual set of TheoreR 3 iR, N R,.



12 JAIRO BOCHI AND MARCELO VIANA

The proof of Theorem 8 is similar to that of Theorem 7. Actually the only difference is in the first
step. In the symplectic analogue of Proposition 2.3, we have to suppose that the/spachHs are
Lagrangian.

3. PROVING PREVALENCE OF NONZERO EXPONENTS

We discuss some main ingredients in the proofs of Theorems 5 and 6, focusing on the case when
the base dynamicg: M — M is uniformly expanding, ang is ergodic withsupp x = M. The
general cases of the theorems follow from a more local version of similar arguments.

Notice that it is no restriction to consider> 1: the Holder case® < v < 1 are immediately
reduced to the Lipschitz one= 1 by replacing the metridist(x, y) in M by dist(z,y)".

3.1. Bundle-free cocycles: genericity.

Definition 3.1. A: M — SL(d,R) is calledbundle-freaf it admits no finite-valued Lipschitz con-
tinuous invariant line bundle: in other words, given amy> 1, there exists no Lipschitz continuous
map<: © +— {vi(z),...,v,()} assigning to eachr € M a subset ofRP?~* with exactlyr
elements, such that

Alz)({v1(2), ..., v5(2)}) = {v1(f(@)),...,vy(f(x)} forallz e M.

A is calledstably bundle-fred all Lipschitz maps in a neighborhood are bundle-free.

The casey = 1 means that the cocycle has no invariaigschitzsubbundles. The regularity
requirement is crucial in view of the next theorem: invariant Lipschitz subbundles are exceptional,
whereas l8lder invariant subbundles with poorolder constants are often robust! The following
example illustrates these issues.

Example 3.2. LetG: S x R — S x R, G(0,z) = (f(0), g(6, z)) be a smooth map with
o1 > |f'| > 09 > 05 > |0zg] > 04 > 1.

Letf, be a fixed point of andx, be the fixed point of(6y, - ). Then

(1) The set of points whose forward orbit is bounded is the graph of a continuous function
u: S — R with u(6y) = x¢. This function isv-Holder for anyr < logoy/logo; .
Typically it is not Lipschitz:

(2) The fixed poinpy = (0, ) has a strong-unstable s&/“*(py) invariant underG and
which is locally a Lipschitz graph oves!. If « is Lipschitz then its graph must coincide
with W% (pg).

(3) However, for an open dense subset of choicesthE strong-unstable set is not globally a
graph: it intersects vertical lines at infinitely many points.

Theorem 9. Supposed € C¥(M,SL(d,R)) has (A4, z) = 0 with positive probability, for some
invariant measurg:. ThenA is approximated irC” (M, SL(d, R)) by stably bundle-free maps.

Here is a sketch of the proof. The first step is to deduce from the hypothesis

1
lim —log||A™(z)|| =0 for u—almostallz
n—oo n

SA subspaceZ of a symplectic vector spaqé/, w) is calledLagrangianwhendim £ = %dimv andw(vi,v2) =
0Vwvi,ve € E.
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that Birkhoff averages dbg || A’|| are also small: giveti there isN' > 1 such that
n—1
(13) lim_ % j; % log | AN (fiN (x))|| < 6 for u—almost allz.
Using the shadowing lemma, one finds periodic poings M satisfying (13) withd replaced by26.
This implies that the eigenvalugs of A9(p), ¢ = per(p) are all close td:

1
20— d)y < log|;| <26 forallj=1,....d

We may take all the normig};| to be distinct. Now the argument is very much inspired by exam-
ple 3.2. The eigenspaces d4f (p), seen as periodic points of the cocycle acting in the projective
space, have strong-unstable sets thatarally Lipschitz graphs oved!. Any Lipschitz continuous
invariant line bundle) as in definition 3.1 has to coincide with the strong-unstable sets. But a simple
transversality argument shows tlidbbally the strong-unstable sets are not graphs (not even up to
finite covering), if certain configurations with positive codimension are avoided.

3.2. A geometric criterion for nonzero exponents. Another key ingredient is the following result,
which may be thought of as a geometric version of a classical result of Furstenberg [Fur63] about
products of i.i.d. random matrices:

Theorem 10. Supposed € C¥(M,SL(d,R)) is bundle-free and there exists some periodic point
p € M of f such that the norms of the eigenvaluesdobver the orbit ofp are all distinct. Then
A(A, u) > 0 for any ergodic measurg with local product structure angupp 1 = M.

The condition on the existence of some periodic point over which the cocycle has all eigenvalues
with different norm is satisfied by an open and dense subsét' ¢/, SL(d,R)), that we denote
SP. See the last section of [BVb]. We also denoteBiy the subset of bundle-free maps. The proof
of Theorem 10 may be sketched as follows.

Let f: M — M be the natural extension ¢f andj: be the lift of s to M1. Let f4: M xRP*! —

M x RP?! be the projective cocycle induced blyover f. Let us suppose that(A, 1) = 0, and
conclude thatd is not bundle-free.

The first step is to prove that all points in the projective fibefiedlmost every: € M have
strong-stable and strong-unstable setsffprthat are Lipschitz graphs over the stable manifold and
the unstable manifold of for f. This follows from (13) and the corresponding fact for negative
iterates. The strong-stable sets are locally horizontal: by definition, the cocycle is constant over
local stable sets of the natural extensjon

Next, one considers invariant probability measuresn M x RP?!, invariant underf, and
projecting down tq:. One constructs such a measure admitting a family of conditional probabilities
{mz: & € J\Z/} that is invariant under strong-unstable holonomies. Using the hypothes$ig:) =
0 and a theorem of Ledrappier [Led86], one proves that the conditional measures are constant on
local stable leaves (in other words, invariant under strong-stable holonomies), restricted t@-a full
measure subset df/. Using local product structure ardpp 1 = M, one concludes that admits
some family of conditional measuré¢s;: & € Z\Zf} that vary continuously with the poirit on M
and are invariant by both strong-stable and strong-unstable holonomies.

Finally, one considers a periodic poiptof f such that the norms of the eigenvalues4s(p),

g = per(p) are all distinct. Then the probability,, is a convex combination of Dirac measures
supported on the eigenspaces. Using the strong-stable and strong-unstable holonomies one propa-
gates the support @i, over the wholel/. This defines an invariant mapas in definition 3.1, with



14 JAIRO BOCHI AND MARCELO VIANA

n < #suppmy, . This map is Lipschitz, because strong-stable and strong-unstable holonomies are
Lipschitz. Thus,A is not bundle-free.

3.3. Conclusion of the argument and further comments. Finally, we explain how to obtain The-

orem 6, in the special case we are considering, from the two previous theorerfi& hethe subset

of A e C¥(M,SL(d,R)) such that\(A, ;1) = 0 for some ergodic measure with local product struc-
ture andsupp = M. Theorem 9 implies that anyt € ZE is approximated by the interior &3F.
SinceSP is open and densel is also approximated by the interior B N SP. By Theorem 10,

the latter is contained in the complementZd. This proves that the interior ¢f \ ZE is dense in

ZE, and so it is dense in the whot® (M, SL(d,R)), as claimed. To get the infinite codimension
statement observe that it suffices to avoid the positive codimension configuration mentioned before
for someof infinitely many periodic points of.

The following couple of examples help understand the significance of Theorem 10.

Example 3.3.Let M = S!, f: M — M be given byf(z) = kx mod Z, for somek > 2, andu be
Lebesgue measure dd. Let

0 1/8(x)

for some smooth functiofi such that/ log 3du = 0. It is easy to ensure that the set*(1) is
finite and does not contain = 0. ThenA € SP and indeed the matrix “looks hyperbolic” at
most points. Nevertheless, the Lyapunov expohe#fu) = [ log 8du = 0. Notice thatA is not
bundle-free.

A Mo SLEE),  Al) = < B(x) 0 >

Hence the following heuristic principle: assuming there is a source of hyperbolicity somewhere
in M (here the fact thal € SP), the only way Lyapunov exponents may happen to vanish is by
having expanding directions mappesactlyonto contracting directions, thus causing hyperbolic
behavior to be “wasted away”.

Putting Theorems 4 and 10 together we may give a sharp account of Lyapunov exponents for a
whole C° open set of cocycles. This construction contains the main result of [You93]. It also shows
that the present results are in some sense optimal.

Example 3.4. Let f: S' — S* be C? uniformly expanding withf (0) = 0, andu be any invariant
probability withsupp = S*. TakeA: S* — SL(2,R) of the form

A(l’) = Ra(x)AO

where A is some hyperbolic matrixy: S! — S is a continuous function with(0) = 0, and
R () denotes the rotation of angte(z). Letdeg( - ) represent topological degree.

Corollary 3.5. Assume deg(«) is nota multiple of deg(f) — 1. Then there exists @° neighbor-
hoodl/ of A such that

(1) for B in aresidual subseR N/ we have\(B, u) = 0;

(2) foreveryB € C¥(S',SL(2,R)), v > 0, we have\(B, u) > 0.

Proof. Start by taking/ to be the isotopy class of in the space of continuous maps fram to
SL(2,R). We claim that, given anyB € U, there is nacontinuousB-invariant map

¢ M3z = {Pi(2),. . Py (a)}
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assigning a constant numbgr> 1 of elements ofRP' to each pointz € M. The proof is by
contradiction. Suppose there exists such a map and the graph

G ={(z,i(x)) € St xRP': z € Standl <i<n}

is connected. Thed represents some elemet ¢) of the fundamental group; (S' x RP') =
7 & Z. BecauseB is isotopic toA, the image of+ under the cocycle must represéntleg(f), ¢ +
2deg(a)) € m1(S* x RP'); here the facto comes from the fact thaf! is the2-fold covering of
RP'. By the invariance of) we get

¢+ 2deg(a) = deg(f)¢

which contradicts the hypothesis thitg(f) — 1 does not divide2 deg(«). If the graphG is not
connected, consider the connected components instead. Since connected components are pairwise
disjoint, they all represent elements with the same direction in the fundamental group. Then the
same type of argument as before proves the claim in full generality.

Now let’R be the residual subset in Theorem 4. The previous observation implies ti#atno
R NU may have an invariant dominated splitting. The@must have all Lyapunov exponents equal
to zero as claimed in (1). Similarly, that observation ensures that é¥ery/ N C” is bundle-free.
It is clear thatA is in SP, and so is any map'® close to it. Thus, reduciny if necessary, we may
apply Theorem 10 to conclude th&tB, 1) > 0. This proves (2). O

4. PROJECTIVEVEISUSPARTIAL HYPERBOLICITY

Here we prove that for symplectic cocycles existence of a dominated splitting implies partial
hyperbolicity. This was pointed out by N& in [Mafi84]. A proof in dimensiont was given by
Arnaud [Arn].

Let F': £ — & be a bundle automorphism covering a magpM — M. Let us recall some
definitions. Ifl’ ¢ M is an f-invariant measurable set, we say thatramvariant splittingt* @ E?
overI' is m-dominated if

| B2 1
m(Fp (B 2
We call E! @ E? a dominated splitting if it isn-dominated for somen € N. Then we write
E' = E2. More generally, we say that a splittirig} @ - -- @ E*, into any number of sub-bundles,
is dominated if

(14)

F'®.- - @F -~ F*g...0FE" foreveryl <j<k.

We are most interested in the case where the vector béndlendowed with a symplectic form,
that is, a nondegenerate antisymmeiform w = (w, ). Varying continuously with the base
point . For this€ must have even dimension. We say tlfais a symplectic cocyclewhen it
preserves the symplectic form:

Wi(a) (Frv, Fpw) = we(v,w)  foreveryr € M andv,w € &,
Our aim in this section is to establish the following result:

Theorem 11. Supposé- is a symplectic cocycle. L&tbe anf-invariant set andr = E+ @ E°~
be a dominated splitting df such thatdim E* < dim E°~.

(1) ThenE*~ splits invariantly asE“~ = E¢ @ E~, withdim £~ = dim E+.

(2) TrM = E+ @ E¢ @ E~ is a dominated splitting.

(3) ET is uniformly expanding and’~ is uniformly contracting.
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Note thatE¢ = 0 if dim E+ = dim E¢~.
4.1. General properties of dominated splittings. The anglex(E*, E?) between two subbundles
E' andE? on a sef is the infimum of<(E}, E2) over allz € T.

Transversality: If &r = E* @ E? is a dominated splitting ther(E*, E?) > 0.
Indeed, lety; € E! andv, € E? be arbitrary unit vectors. Condition (14) gives

2| F va | < [[F o]l < [ F3 ol + [|F5 (v1 — w2,
and this implieg|v; — v2|| > [|F™]|~! m(F™). By continuity of F and compactness af/, the last
expression is bounded away from zero.
Uniqueness:If &r = E' @ E2 and&r = E' @ E? are dominated splittings withim E? = dim E*
thenE! = Eifori=1,2.
To see this, suppose theredisc T such thatE2? # E2. Then there exisE2 > vy = 0y + 03 €
El @ E? with ©9; # 0. By domination,|| £, is much larger thaf F .|| and so|| F vy is
comparable td ' 0; ||, whenn is large. Sincg|F'v, || > m(F} | z,)||01]|, this proves that
IF2 | |
m(F} [p1)

IE7 |22 |l

m(F7 [5)

>(C; and > Cy
(the second inequality follows by symmetry) for constatits> 0 andC> > 0 independent of.. In
particular,
IF7 |g2 | IES g |l
m(F} |py) m(F} |g)
On the other hand, the domination condition (14)Aimplies that the left hand side converges to zero
asn — +oo. This contradiction proves thd? = E2. A similar argument, iterating backwards,
proves thatt! = E1.
Continuity: A dominated splittingr = E' @ E? is continuous, and extends continuously to a
dominated splitting over the closure bBf
Indeed, let(z;); be any sequence ifi converging to some € M. Taking subsequences if nec-
essary, eaCmE;.j ); converges to a subspadg with the same dimension, wheh — co. By

transversalityl, M = Ei &) Eﬁ For eachn € Z andi = 1,2, the sequencé’: n(z,) CONVErges to

J

> C1Cy > 0.

Bl = F2(EL) whenj — oo. Takingm as in (14), by continuity we have
1£5" 2 |

m(F" |E;)

< forally = f"(z),n € Z.

1
2
This means thak! & E2 is a dominated splitting over the orbit of By uniquenessk! & E2 does

not depend on the choice of the sequeficg ;, and it coincides wittE! & E? if z € T'. This proves
continuity, and continuous extension to the closure.

Lemma 4.1. LetT be a measurablg-invariant subset of\/, and E', E2, E3 be sub-bundles df
restricted tol".

(1) If E* = E?, E' = E® and<(E?, E®) > 0 thenE! = E? @ E3.

(2) If E* = E3, E? = E® and<(E', E?) > 0 thenE! @ E? ~ E3.

(3) If E' = E?andE? - E®thenE! - B> ® E* andE' @ E? ~ E°.
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Proof. Supposer! = E? andE! = E3, with <(E?, E3) > 0. The last condition implies that there
existsc > 0 such that|vy ® vs|| > ¢(||vz| + |Jvs]]), for everyv, + vz € EZ ® E? andz € T. The
first two imply
[P Y[ O P Y | [Fem s _ 1 | F ™|
e < e and e <

[[vz]] 28 vl [[os]l 28 ol
fork > 1,z € T, and any nonzero; € E%,i = 1,2,3. Fix k > 1 large enough so tha* > 2.
Then

(15)

[FE™ (e + )l _ L [FE™val| + [F™vsll _ 1 [IFE™ 0] _ 1 [IEE™ 0
loa+wsll  ~ e el + sl T 25 el T2 o
for all nonzerov; € E! and| vy + v3]| € E2 @ E2. This proves claim 1. The proof of claim 2 is
analogous.

Statement 3 is a consequence of the previous two. Indeed, by sectiof4:4, E3 implies
<(E?, E®) > 0. Moreover, the hypotheses give

[ Ex ™ vs| < ikHFgf’”le and | Fxmos| < %IIFfmvzll
[[vel 2k v ] [[vsl 28 lvel
which is stronger than (15). S&' - E? @ E? follows just as in 1. SimilarlyE! @ E? = E? is
proved in the same way as in 2. O

Remark 4.2. One may havé&Z! = E? andE? -~ E® but E' @ E? £ E3. Similarly, E' = E? and
E' = E3 does notimphE! - E? @ E3.

4.2. Partial hyperbolicity. We recall a few elementary facts; see [Arn¥8L3] for more informa-
tion. Given a symplectic vector spatk,, w), the skew-orthogonal complemeft” of a subspace
H C Vjy is defined by

HY = {v € Vy; wo(v,h) =0forallh € H}.
The subspacé/ is callednull (orisotopiq if H C H“, that is, if the symplectic form vanishes in
H x H.

For any chosen scalar produdh Vj, let Jy: Vo — V; be the antisymmetric isomorphism defined
by wo(u,u') = Jou - w'. ThenH* is the orthogonal complement df(H). In particular, it has
dim H¥ = dim Vy — dim H.

The following simple consequences of compactness and continuity are used in the proofs that
follow: there exists a constanfy > 0 such that

jw(u,u)| < Co |lull o' and Cq*lul| < [[Jull < Collu]
for all vectorsu andw’, whereJ: £ — £ is defined byw(u, v') = Ju - u'.
Now we prove Theorem 11. Up to partitionifginto finitely many invariant subsets, we may

suppose that the dimensions Bf- and £~ are constant, and we do so. The first step is to show
that E™ is uniformly expanding. Le2n be the dimension of the bundle.

Lemma 4.3. Let " be an f-invariant set andE', E? be invariant subbundles dfr, such that
E' = E? anddim E? > n. ThenE! is uniformly expanding and, consequently, the spaéds
null.

Proof. Assume the splittingz! @ E? is m-dominated. Fix any € I andv; € E} with [jv]| = 1.
The space = Ruv; @ E? has dimensionlim H > n, therefore the intersectiofl N J,.(H) is
nontrivial: there exists some nonzero vectos H such that/ = J'(u) € H. Assume|ul| = 1;
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then ||| < Co. Write u = av; + wa, with @ € R andw, € E2. Since<(E', E?) > 0 (see
section 4.1), there exists a constant 0, independent of, such thatal, |w2|| < ¢. Analogously,
writing «’ = a’vy + w}, with o’ € R andw}, € E?, we haved'|, ||[w}| < ¢|u’|| < Coe. Now
(16) 1= Jlull? = w(w',u) < |w(ws, a"vi)| + |w(ws, ave)| + |w(ws, wy)]
Let k € N. Then, by domination|| F**w|| < 27F||F™k, || ||w]|| for all w € E2. We are going to
use this fact and the invariancewfto bound terms in the right hand side of (16). First,
jw(wa, a'vy)| = |o/] |w(Fy" wa, F™Moy)| < Cfe | Ey ws ||| E7 o |
< Che 2 |lwa | E5 v ||* < CFe®27 R By |12,
In an analogous way, we see that the right hand side is also an upper bolw@fbrav,)|. Also,
jw(ws, wy)| = w(EFy  ws, FMwh)| < Col | Fy ws| | Fy ws |
< Co2 M |lwe| lwa || |1 E v1|? < Cfe® 27|y oy |2,
Substituting these estimates in (16), we conclude that
1 < C22(27% 27k | Fmky |2,
That is||F™*v, || > 2, if K = k(Cy, c) is chosen large enough. This estimate holds foraayd

any unit vectow; € E!, soE! is uniformly expanding.
Letz € I andvy, w; be any vectors il By uniform expansion,

IE, ™oy || <27 |lug]| and || F "M ws || < 277 |
and so _ ' _
w(vr, w1)| = |w(E, ™ vy, By ™ wy)| < Co27 ||ug|| [Jun |

forall j > 1. This impliesw(vy,w1) = 0. 0
The next lemma does not require the domination condition:

Lemma 4.4. Let&r = E' @ E?3 be an invariant and continuous splitting such that the spdces
are null anddim E* < dim E23. ThenE?? splits invariantly and continuously as2* = E? ¢ E3,
with dim E! = dim E3. Moreover,(E')* = E' @ E? and(E?)* = E' @ E3.
In the proof we shall use the following simple properties of the skew-orthogonal complement. If
H, G c R?" are vector spaces then:

dimH + dim H* =2n,  (H*)* =H, and (H+G)”=H"NG".
Proof of Lemma 4.4Define the following subbundles:
E2 _ (El)w 0E23, E13 _ (E2>w E3 _ E13 OEZ?’.
All these subbundles are continuous and invariant ufdelbecausel!, E2? and the symplectic
form w are continuous and invariant.

We first check tha? N E'% = {0}. Letv € E? N E'%. We haveE'® = ((E')* n E?%)” =
E! + (E*)¥, so we can writey = u; + w, with u; € E* andw € (E?*)“. SinceE" is null and
v € (BEY)*, we havew(w,v1) = w(u; +w,v;) = 0 forallv; € EL. Thatis,w € (E')~. But
(EY)* N (E?3)~ = (R*")* = {0}, sow = 0. Thusv = u; € E' N E?* andv = 0.

Denoteu = dim E*. Itis easy to see thdf! N (E?3)* = {0} and thusE'3 = E' & (E?3)“. It
follows thatdim E'? = 2u anddim E? = 2n — 2u. Also,

E* = E®NE” = dmE® > dim E" + dim E*® — 2n = u.

)
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But E2 4+ E3 C E?3, thereforedim E? = v andE?? = E? @ E3.
Let us check the last two claims of the lemma. We haVed E? C (E')“ and, by dimension
counting, this inclusion is an equality. Analogously, we prove fhats E3 = (E?)~. O

Lemma 4.5. In the setting of Lemma 4.4, there exists a constant0 such that for every: € T,
(1) givenuvy € E2\ {0} there iswy € E2 \ {0} with w(ve, wa) > v |lval| [|Jwa]];
(2) givenv; € EL\ {0} there iswz € E3 \ {0} with w(vy,wsz) > v |lv1]] [|Jws]]-
(3) givenus € E3\ {0} there isw; € EL\ {0} with w(vz,wy) > v |lvs]| [|Jw:]

Proof. We first note that sincér = E' @ E? @ E3 is a continuous splitting,
«E*®E*EY)>0, <«(F'@F}F*>0 and «(E'9®E? E*) >0.
Givenvy € E2\ {0}, letw = Juvp. Then
w(vz,w) = || Jva| lw]| = Cg vzl [lew]|-

Write w = w13 + wa, With wyz € EL @ E2 andw, € E2. Since<(E! & E*, E?) > 0, there exists
a constanty, > 0, independent af, such that|w|| > ~o||w=||. On the other handy(vs, w13) = 0,
becauses! @ E? = (E?)“. Thenw, # 0 and

w(vz, ws) = w(vz,w) = Cg vz || wl| = Cg M yollvz | flwe .

This proves claim 1, withy = ~,/C.

The proof of claim 2 is analogous. Given € E2 \ {0}, letw = Jv;. Thenw(v,w) >
C()_leln HU}H Write w = wqo + ws, with wig € E:llp @Ei andw3 S Ei As <[(E1 @E2, E3) > 0,
there exists a uniform constamg > 0 such that|w|| > ~o|jws|. And sinceE! @ E? = (E!)«,
w(vy,w12) = 0. Thereforews # 0 and

w(vy, ws) = w(vy, w) > Cq v [Jw]] = Cy  yolloa| [Jws]].

To prove the last claim, notice that the mapv; € E. — w3 € E? defined in the proof of
claim 2 is linear and injective. Sinekm E! = dim E2, L is an isomorphism. Now, giver; € E2,
takew; = Lil(vg). [l

Now we can complete the proof of Theorem 11:

Proof. Let & = E+ @ E°~ be as in the assumption. By Lemma 43! is uniformly expanding.

If £+ and E<~ have the same dimension, we €&t = E°~. Applying Lemma 4.3 to the inverse
cocycle, we conclude thal— is uniformly contracting, completing the proof. From now on we
assumelim £t < dim E°~.

The symplectic form is identically zero diit, by Lemma 4.3. Then we may apply Lemma 4.4,
with E' = ET andE*® = E°". Let E°~ = E° @ E~ be the invariant splitting provided by
Lemma 4.4, that isf® = E? andE~ = E3,

Claim 2 in the theorem means th&at" = E¢ @ E~ andET ¢ E¢ = E~. Since the former is
part of the assumptions, we only have to prove the latter statement. Also by assuBptisnf
and<(E™, E¢) > 0. So, by part 2 of Lemma 4.1, it is enough to show that- E~.

Letm € N be fixed such thab* m-dominatesE*~. Fix k € N such thaR*~! > C2~y72. Let
x € I' and unit vectors® € ES andv™ € E be given. By Lemma 4.5, there are unit vectors
w® € ES andw™ € E such that

w(wt0%) 2y and (R, FroT) 2 o[ FP et [ Fe])
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Then, for anyk € N,
1wl || Fyoc)| = Cg Hlw(Fy ™ w®, F*e)| = Cg 'ty and
[F7 0 | [ F o™ || < 47 Hw(w? 07)] < Cor ™t
The assumptios+ = E°~ implies that|| F™*wt || > 2k || F™kwe|. Therefore
—1 —1
Y P T
Thus E€ dominatest~ and part 2 of the theorem is proved.

Now we consider part 3. We already know, from Lemma 4.3, fifais uniformly expanding:
there existsn; € N such thaf| F™+/v*|| > 27|jv*| forallz € T,v" € Ef, andj € N. Fix j € N
such tha’~! > Cyy~!. The following argument proves that® is uniformly contracting. Given
an unit vecton™ € E, use part 2 of Lemma 4.5 to find an unit vectdr € E;F such that

w(FyIvT, ot 2 || FoT ||
Then|| Fridy= || |FrivT|| <y lw(v™,vF) < Coy~! and so
Cov~!

[FydvT || € —
[ Ez" ot

ka,Uc >
|

<Cpy~ 1277 <

| —

This proves tha#"™1J contracts every~ € E,, with uniform rate of contraction. The proof of
Theorem 11 is complete. O

Remark 4.6. Uniform contraction implies that the symplectic form is identically zero alsé@&on

APPENDIXA. Aut(D)-COCYCLES AND THEOSELEDETS THEOREM

Here we are going to discuss cocycles with values in the group of isometries of the Boincar
disk. There is a natural notion of Lyapunov exponent for these cocycles, and we prove some of its
properties in Theorem 12. In fact, we are going to show that Theorem 12 is equivalent to Oseledets
theorem in the case when the vector bundtz-iémensional.

There are several proofs of Oseledets theorem in the literature, besides the original one. See for
instance [M&87, Chapter 4]. Another proof of tiedimensional case may be found in [You95].

The same basic strategy as in here was used by Thieullen [Thi97] to prove a geometric reduction
theorem for2-dimensional cocycles, that we recall below.

Karlsson and Margulis [KM99] recently generalized Oseledets theorem to cocycles with values
in much more general groups, satisfying some geometric assumptions.

A.1. Automorphisms of the disk. Aut(ID) is the set of allautomorphism®f the unit diskD =
{z € C; |z| < 1}, that is, all conformal diffeomorphisms: D — D (orientation-preserving or
not). Thehyperbolic metricon the disk is given by
2|dz
a7) dp = | ‘2 .
1= 2]

Straight lines through the origin are geodesics, and therefore

= dr 1+|z]
(18) p(z,0) = 2/0 2= log =2l = 2arctgh |z|.

All automorphisms of the disk are isometries for the hyperbolic metric. Using this we may deduce
the general expression pf



LYAPUNOV EXPONENTS 21

Z1 — k2 |Zl_22|

(19) p(Zl,Zg):p( |1_21§2‘ .

= 2arctgh
1o ,0) arctg
A.2. Aut(D)-cocycles and Lyapunov exponentsLet (X, 1) be a probability space and [t X —
X be au-preserving invertible transformation. Lgt X — Aut(D) be a measurable map, whose
values we indicate by — f,. We also denotg’? = id, f* = frn-1,0---0 f, andf," =
(frnz) to---o(fp-1,)"}, foreachr € X andn € N.

Theorem 12. LetT: X — X andletf: X — Aut(D) be as above. Assume that

(20) [ o72(0.0) dta) < .
Then there exists a measurable functionX — [0, co) such that

(21) lim lp(f;’(o), 0) = 2A(z) for p-almost every: € X.
Furthermore, ifA(z) > 0 there arew?®(x), w*(z) € OD such that
{2)\ if z =w*(x)

lim = log|(f7) D
im_—log|(fy) 2\ if 2 € Dwith 2z # w*(x),

n—-+4oo n
if 2 =w"(x)

if 2 € D with 2 # w¥(x).

n——

lim logl(f") (2)| = {

If A(z) = 0then
1 —
lim =log|(f)'(2)] = 0forall z € D.

n—too n

Remark A.1. In view of (18), the relation(21)is equivalent to
1
lim - log (1 —|f2(0)]) =2X for u-almost every:.

Remark A.2. The contents 0f20) and (21) do not change if we replace the origin with any other
pointa in the open disk, becaugéf(a),a) < p(f(0),0) + 2p(a,0).

We shall use Kingman's subadditive ergodic theorem in the following form:

Theorem 13([Kin68]). If (¢n)n=1,2.... iS a Sequence of integrable functions such ihé}, f O >
—ocandmin < @m + ppoT™forallm,n > 1 then}chn converges almost everywhere.

Proof of Theorem 12Definey,, (z) = p(f2(0),0). Theny,+n < @m + ©n o T™, by the triangle
inequality. Using Theorem 13 we get that,, convergesu-almost everywhere to a functiah.
Sincey,, > 0, A > 0. This proves (21).

Definew, (z) = (f7)~*(0) for every integen. Notice that, by the invariance of the hyperbolic
metric, p(wy, (x),0) = p(f2(0),0). Using (18) we get, for almost evexry
(22) lim 1 log(1 — |wn(x)]) = —2A(2).

n—-+4oo n

If A(«) > 0 then the hyperbolic distance fromy, (x) to the origin goes to infinity, which means that
wy, (x) converges to the boundary Bfasn — oo.

Lemma A.3. We havehmsup log |Wh41(2) — wy(z)] < —2X(x) for u-almost everye.

n—-+00
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Proof. We shall writew,, for w,,(x). Since the hyperbolic metric is invariant under automorphisms,
p(wnr1,wn) = p((f2)7" o (frea) =1 (0), (£7)71(0))
= p((fT"w)_l(O)>O) = p(anI(O),O).
The idea of the proof is that j( fr~.(0),0) is not too big, that is, ifv,; andw,, are not too far
away from each other in terms of the hyperbolic metric, then the Euclidean distance betyaen
andw,, will have to be exponentially small, sinag, — 9D exponentially fast (assumingz) > 0).
Write b,,(z) = fr=(4(0), for simplicity. For almost every, we have
1

(24) ~p(ba(2),0) = 0.
This follows from Birkhoff’s theorem applied to the functian(xz) = p(f.(0),0), which, by as-
sumption (20), is integrable. Fix in the full measure set where (22) and (24) hold. In view of
(18)—(19) the equality (23) implies

|wn+1 :wnl _ ‘b

|1 — wpWp41]

(23)

nl
or, equivalently,
[Wnt1 — wa| = |bn| |1 — wnWpg1| = |bnl |1 - ‘wn‘2 + W (W, — Wt 1)

< [bu] (1 = fwnl* + wa| [wns1 = wa]) -

That is, ,
bal(1 = [wal*)

L — [y [wn]
Since|w,| < 1 and|b,| < 1, the last inequality implies
1- |wn|2 < 2(1 — |wy))

1- ‘bn| 1- |bn|
The condition (24) is equivalent tglog(l —1|b.|) — 0. Combining this with (22) and the inequality
above, we conclude

‘wn+1 - wn‘ S

|wn+1 - wn| <

1
lim sup — log |wp4+1 — wy| < —2A(z).

n—-+oo N

This proves the lemma. O

Assume\ = A(z) > 0. Then the lemma implies that, (z) = (f?)~*(0) is a Cauchy sequence,
relative to the Euclidean metric, for almost every sucl.etw?®(z) € 9D be the limit. Let us show
how to compute the growth rate &fg |(f)'(z)| for z € dD. We are going to use the following
formula, whose proof may be found in [Nic89, page 12] :

/ 1- f71 0 2
Therefore SO ]
vy = L= 1O — 1= Jwnl
‘(fx)(z)l_ ‘Z_(fg)_l(o)ﬁ (1+|wn|)|z_wn‘2'
Using (22) we deduce
(25) lim 1 log|(f2)'(2)| = —2A =2 lim 1 log |z — wy,| .

n—+oo n n—-4oo n
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For all z # w?®(x) this gives that the limit is-2\.

Now consider the case= w*(z). Sincelw, —w*| > 1—|w, |, we havdim inf L log |w® —w,| >
—2). On the other hand, take< ¢ < 2)\. By Lemma A.3, we havew;; — w;| < e(=2 )i jf j
is large enough. Hence

. ) e(—2A+E)n
|w® —wy| < Z |wj1 — w;] < 1_ 27+’
j=n

and sdim sup + log |w*—w,,| < —2A+-¢. This proves thalim X log |w*—w,| = —2\. Substituting
in (25), we getim L log |(f7) ()| = —2A.

Now we do the corresponding calculation for= . By the invariance of the hyperbolic met-
ric (17) underf’, we have

L= |f2(2)]" 1= |w,?

26 ()| = z = .
(26) YEN= T = T
It follows, using (22), thatim + log |(f2)(2)| = 2A.

The statements about“ follow by symmetry, considering the inverse cocycle.

At last, we consider the case= 0. If z € 9D, then using (25) antl — |w,,| < |z —w,| < 2, we
getlim X log|(f2)'(z)| = 0. If z € D then we simply use (26). O

A.3. Automorphisms versusmatrices. Next we relate automorphisms of the disk witkx 2 ma-
trices.

For eachv € R?\ {0}, let[v] € RP' denote the corresponding projective class. We define a
homeomorphisniv] € RP' — &, € 0D by &(cos g,5in0) = €27

In the next proposition, whose proof we onijt|| denotes Euclidean metric R? or GL(2, R).

Proposition A.4. There exists a group isomorphism
[A] € PGL(2,R) — ¢4 € Aut(D)
such that for allA € GL(2,R) with det A = +1, we have:

(1) ¢a(&) = Eaqv) for all nonzerov € R?;
() || Av|| = |¢4(&,)|~1/2 for all unit vectorsy € R?;

(3) if u, s are unit vectors inR? such that||Au|| = ||A| and ||As|| = ||A|~! then¢, =
a0 e $a'(0)
o1 0)] O Ol
_(1+1pa@N
@ 141 = (11248 = e (40(040).0).

We are going to deduce the Oseledets theorem, in the case when the vector Rrditiegnsional,
from Theorem 12. For simplicity we also suppose that it is a trivial bundle, th&t s, X x R2.
Then eaclF, is given by & x 2 matrix. We take these matrices to have determirantThis is not
a restriction because the validity of the theorem is not affected if we mulkiply some nonzero
functiony (as long as the integrability condition is preserved) : the Oseledets subspaces remain the
same, and one adds the Birkhoff averagégfi¢| to the Lyapunov exponents.

We use the isomorphism from Proposition A.4 to associate iAut(D)-cocycle f given by
fo = ¢r,. Let X be as in Theorem 12. Then, by item (4) of Proposition A.4,

1 1
lim—log | F2)l = lm = p(f2(0),0) = Ax),

n—-+oo n—*too 20
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which is the first assertion in Oseledets’ theorem. The others are also easily deduced.

A.4. A geometric reduction theorem. Exploring this strategy even further, Thieullen [Thi97] ob-
tained the following classification &f1.(2, R) cocycles, which may be seen as a geometric version
of results of Zimmer [Zim76].

Let f: (M, u) — (M, p) be an ergodic system amd> 0. A function ¢ is cohomologous to zero
modr if there exists a measurable functioron M such that

¢+uo f—uerZ almosteverywhere.

Given a setF C M, we defineRg: M — SL(2,R) by Rg(z) = rotation ofr/2 if x € E and
Rg(x) = id otherwise.

Theorem 14(Thieullen [Thi97]) If A: M — SL(2,R) is such thatog || A*!|| is integrable, then
there existsP?: M — SL(2,R) such that, denotind?(x) = P~!(f(z)) - A(z) - P(x), one of the
following cases holds-almost everywhere:

(1) B(z) = ( a(z) 0 ) with A = [ log|al dy > 0.

0 1/a(z)
(2) B(z) = < a(()x) 1?((15233) ) with ['log|a| dp = 0 andlog |b| integrable.

_{ cosf(x) —sinf(x)
(@) B(z) = < sinf(z) cosf(x)
_ a(z) 0
(4) B(z) = Rg(x) ( 0 1/a(x)
tion of E C M is not cohomologous to zero méd
The Lyapunov exponents ate\ in the first case, and zero in the other three. In all cases, the norms
| P(f(x))P~*(x)|| and||B(x)|| are bounded above HyA(z)].

) with 8 not cohomologous to zero mad

) wherelog |a| is integrable and the characteristic func-

APPENDIXB. HYPERBOLIC SETS OFC'?2 DIFFEOMORPHISMS

We prove that the uniformly hyperbolic sets of evéryvolume-preserving diffeomorphism have
zero Lebesgue measure, unless they coincide with the whole ambient manifold (Anosov case). This
fact, which is used in [Boc02] and [BVa], seems to be well-known but we could not find a proof in
the literature. Notice that wao notassume\ to be the maximal invariant set in a neighborhood.

Theorem 15. Let M be a compact manifold; be normalized Lebesgue measureldn f be aC?
diffeomorphism preserving, and A be a compact hyperbolic set fgt Then eithen(A) = 0 or
A=M.

Using Theorem 15 and a result of Zehnder [Zeh77] that says that é¢esymplectic diffeomor-
phism can be approximated byC# one, we deduced in [BVa]

Corollary B.1. There is a residual subs@, c Sympl, (M) such that iff € R, thenf is Anosov
or every hyperbolic set of has zero measure.

Proof of Theorem 15We show that ifu(A) > 0 thenA = M. Itis no restriction to suppose that
A = supp(p|A), replacingA by A’ = supp(u|A) from the beginning, if necessary.
Lete > 0 be given by the stable manifold theorem: for everg A the sets

We(x)={ye M:d(f*(x), f*(y)) <eforalln >0}
Wi(z)={y e M:d(f"(x), f"(y)) <eforalln <0}
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are embedded disks, contained in the (global) stable and unstablé’ 8¢et$ and W™ (z), respec-
tively, and depending continuously on the paint

We always suppose that the metriclih is adapted to the hyperbolic s&t there isA < 1 such
that

d(f(x), f(y)) < Md(z.y) and d(f~'(z), f7(2)) < Ad(z, 2)
forallz € A,y € W2(x), andz € WX (z). In particular, given any: € A,
W5 (x) = W2(z) N B(x,0) and f(W5(z)) C W3s(f(z))
forevery0 < 6 < ¢, and
We(x) = |J Wi(a).
6<e
Let ., denoteu-dimensional Lebesgue measure along unstable manifolds.

Lemma B.2. There exists: € A such thatu, (W*(z) N A) > 0.

Proof. This follows fromu(A) > 0 and absolute continuity of the unstable foliation (which uses the
hypothesisf € C?). O

Lemma B.3. There exist points;, € A such thatu,, (W (z;) \ A) — 0ask — oc.

Proof. The proof is easier whedim W* = 1. Takex as in Lemma B.2 and let € A be a density
point for W¥(z) N A. Definex;, = f*(y). Sincediam f~*(W%(z)) — 0,

pa(fF (W2 (k) \ A)
poa(f (W2 (1))
ask — oo. Then, by bounded distortion (this usé& C? once more),

pa (W (1) \ A)
pru (W (k)
ask — oo. Sinceu,, (WX (zy)) is bounded above and below, this gives the statement.

Now we treat the general case. As beforelet A be a density point foiV*(x) N A. The
difficulty is that density points are defined in terms of balls but, in dimensidn iterates of balls
need not be balls. This is handled using a trick from [BV0O, Section 4].

Givenk > 1 take a small balD;, ¢ W*(x) aroundy, so that

ﬂu(Dk \A> S k_l,uu(Dk)-
For each large:, consider the embedded digk (D, ) endowed with the metrid(-, -) associated to
the induced Riemannian structure. LBtC f™ (D)) be a maximal set such thdfe’,e”) > ¢ for
everye’, e’ € E. DefineV, = f~"(B(e,e)) andW, = f~"(B(e, 2¢)), for eache € E: theV, are
pairwise disjoint, and th&’, coverD;. We separaté into three subsets:
() B(e,2¢e) N A # 0 andB(e,2e) NOf"(Dy) =0
() B(e,2e)NA # B andB(e,2e) Nf™(Dy) # O
() B(e,2e)NA = 0.
If e € (I) U (IT) then B(e, 2¢) is contained in a local unstable manifold (replacby /10
throughout). This implies that
(1) B(e,2¢) and its backward iterates have uniformly bounded curvature.
(2) the diameter of ~7(B(e, 2¢)) decreases exponentially fast wjthin particulardiam W, <
4e\™.

— 0

— 0
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(3) backward iterateg 7 have uniformly bounded volume distortion on the b&le, 2¢)
(again, this useg € C?).
Property 2 implies that foe € (I7) the setl, is contained in the tubular neighborhood of width
4e\™ of 9Dy,. Thus, takingr large enough we ensure that

1
: < Zpu,
(27) ,uu( U We) =~ 2,uu(Dk)
ec(II)

On the other hand, bounded distortion and bounded curvature, as in properties 1 and 3, imply that

maVe)  m(Bles)

pu(We)  pu(B(e, 2¢)) ’
for everye € (I), wherex= means equality up to a uniform factor. Therefore,
(28) pu(We) < Cp(Ve)

whereC depends only orf andA.
Considerk much larger thai’, and fixn as in (27). We claim that there exists (I) such that

(29) pa(Ve \ A) < ACKk™ 11y (Vo).
The proof is by contradiction:
pu(DE\A) = > pu (Ve \A) + ([ W) (theV, are pairwise disjoint)
ec(I) ec(III)
> ) 4ACK (Vo) + pa( | We)  (assuming (29) were false)
ee(I) e€(III)
> > Ak (We) + pu( () We)  (by relation (27))
ec(I) ee(1II)
>4k (| W) (takek > 4).
ee(I)U(ITI)

Using relation (27) we conclude that,(Dy \ A) > 2k, (D), which contradicts the choice of
Dy,. This contradiction proves our claim.

Now, fix e € (I) asin (29). Letr;, be the center of the-ball ™ (V). Using bounded distortion
once more,

pa(f(Ve) N A) <402k (F7(Ve))-
SinceC is independent of, the last inequality proves the lemma. O

Lemma B.4. There existsy € A such thatW*(zo) C A.

Proof. Let x5, be as in Lemma B.3. We may suppose that the sequence converges togsante
By continuity, the local unstable manifolds of the converge toW(z). SinceA is closed,
Lemma B.3 implies thatV* (xo) C A. O

Lemma B.5. There is a hyperbolic periodic poipt € A such that?*(py) C A.

Proof. Takez, as in Lemma B.4. Lef > 0 be small enough so that the maximal invariant/sgt
inside the close@-neighborhood/s of A is hyperbolic. Leto > 0 be much smaller thag (cf.
condition below) and/, be the closedv-neighborhood ofry. Sincexzy; € A = supp(u|A), the
compacfl’ = A NV, has positive measure.



LYAPUNOV EXPONENTS 27

Letz € T and N > 1 be such thatfV(z) € TI'. Taking o small enough, we may use the
shadowing lemma (version without local product structure, see [Shu87]), to find aggo@ti/
such thatf"™ (py) = po and

d(f7(po), f7(z)) < p forall0<j<N.

The periodic poinpy is hyperbolic and its local stable and local unstable manifolds are close to
the ones ofry andz, if a andg are small. That is because all three points belong to the hyperbolic

setAg. In particular, we may suppose tHM;/2( Do) |ntersect§/[/;‘/2(:c0) transversely. Then, by the

A-lemma, the entirél™ (po) is accumulated by the forward iterateslof’,, (o). Using Lemma B.4
and the fact thaA is invariant and closed, we conclude th&t (py) C A. In particularpy, € A. O

Now let Ay C A be the closure ofV*(p,). Define
W2(Ao) = |J W) and W(Ao) = |J Wi
zE€ANg x€Ng

Lemma B.6. A consists of entire (global) unstable manifolds. ConsequeilyAo) is an open
neighborhood of\.

Proof. Let z € Ay. Then there exist, € W*(py) C Ao accumulating orz. Thee-unstable
manifolds of allz;, are contained i\, and they accumulate on theunstable manifold of. Since

Ag is closed, it follows that is in the interior ofAg N W*(z). This proves that the intersection of

Ao with the unstable manifol& ™ (z) of any of its points is an open subset. Since it is also closed,

it must be the whole unstable manifold. This proves the first statement. The second one is a direct
consequence, using the continuous dependence of local stable manifolds. O

The next lemma is the only place where we use fhpteserves volume.
LemmaB.7. f(WZ(Ag)) = W2(Ao).
Proof. For anys € (\e, ), we have
FW§(Ro)) € f(W5(Ao)) © f(W2(Ao)) © WE-(Ao) © Wi (o).
Sincef preserves volume
P(W3 (R0) \ (W5 (Ro))) < u(W5 (Ro) \ F(W§ (A))) =0
It follows thatWs (Ao) \ f(W§(Ao)) = 0, because is positive on nonempty open sets. Then,
W5 (Ao) \ f(WE(Ao)) = 0.
Taking the union over ali < ¢, we getiWs(Ao) \ f(WZ(Ay)) = 0, which proves the lemma. O

It follows that W2 (Ag) = (,,>0 [T (WZ(Ao)) = Ao . SinceW(Ap) is open and\, is closed,
we get thatA; = M. Then,A = M as claimed in Theorem 15. O
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