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Abstract

Let k be a field of characteristic zero, f(X, Y ), g(X, Y ) ∈ k[X, Y ], g(X, Y ) /∈ (X, Y )
and d := g(X, Y ) ∂

∂X + f(X, Y ) ∂
∂Y . We establish a connection between the d-simplicity

of the local ring k[X, Y ](X,Y ) and the transcendency of the solution in tk[[t]] of the
algebraic differential equation g

(
t, y(t)

)
. ∂
∂ty(t) = f

(
t, y(t)

)
. We use this connection to

obtain some interesting results in the theory of the formal power series and to construct
new examples of differentially simple rings.

Introduction

Let k be a field of characteristic zero, k[x1, · · · , xn] a domain that is a finitely
generated k-algebra, D its module of k-derivations and M a maximal ideal of k[x1, · · · , xn].
A. Seidenberg has shown in [6] that the domain k[x1, · · · , xn] is regular if only if it is D-
simple; later on, R. Hart has shown in [3] that, when k[x1, · · · , xn] is D-simple, there need
not exist d ∈ D such that k[x1, · · · , xn] be d-simple. For the local ring R := k[x1, · · · , xn]M ,
the situation is better: Hart has shown that if R is regular, then there always exists a
k-derivation d of R such that R be d-simple. Since Seidenberg had already proved the
converse, one has that the existence of a k-derivation d of R that makes R d-simple is a
characterization of the property of regularity for the local ring R.

In view of this geometric interpretation of the d-simplicity of a ring of the type R :=
k[x1, · · · , xn]M , it is natural to investigate the conditions under which a derivation d of R
will make R d-simple. In this paper, we will do that in the particular case of R to be the
localization of a polynomial ring in finitely many indeterminates. In this introduction, in
order to avoid technicalities, we shall present our results in the special case of a polynomial
ring in two variables.

Let f(X, Y ), g(X, Y ) be two polynomials in k[X, Y ], g(X, Y ) not in the maximal ideal
(X, Y ). On the local ring k[X, Y ](X,Y ), consider the derivation d := g(X, Y ) ∂

∂X +f(X, Y ) ∂
∂Y .
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In section 1 of the paper, we show that k[X, Y ](X,Y ) is d-simple if and only if the unique
solution y(t) ∈ tk[[t]] of the algebraic differential equation (∗): g

(
t, y(t)

)
. ∂
∂ty(t) = f

(
t, y(t)

)
is transcendental over k(t). Using this connection between d-simplicity of the local ring
k[X, Y ](X,Y ) and the transcendency of the solution y(t) ∈ tk[[t]] of the equation (∗), we
get some applications in the theory of formal power series: if neither f(X, Y ) nor g(X, Y )
belong to (X, Y ), we obtain in Theorem 1.5 that the solution y(t) ∈ tk[[t]] of the equation

(∗) g
(
t, y(t)

)
. ∂
∂ty(t) = f

(
t, y(t)

)
is transcendental over k(t) if and only if the solution x(t) ∈ tk[[t]] of the equation

(∗∗) f
(
x(t), t

)
. ∂
∂tx(t) = g

(
x(t), t

)
is transcendental over k(t). This is interesting: on one hand it may be difficult (or even
impossible) to decide whether the solution of one of the equations is, or is not, transcedental
over k(t), using the classical methods; on the other hand, the same classical methods may
easily give the solution for the other equation. In section 2 of the paper, we give three such
examples.

In section 3, also using the connection established in section 1, we construct several fami-
lies of differentially simple rings. For example, in Proposition 3.3, we show that k[X, Y ](X,Y )

is d-simple if we take d = ∂
∂X + (Y n + 1) ∂

∂Y with n ≥ 1. In Proposition 3.4 we show that
k[Y1, · · · , Yr](Y1,··· ,Yr) is d-simple if we take d = ∂

∂Y1
+

∑r
i=1(1+Y1)(1+Y3) · · · (1+Yi−1) ∂

∂Yi
.

In section 4, we study the ring k[X, Y ] endowed with the derivation d := ∂
∂X +(a(X)Y +

b(X)) ∂
∂Y with a(X), b(X) ∈ k[X]. With the help of results on power series obtained in

section 2, we complement and deepen the theorem of Shamsuddin in [7] which asserts that
k[X, Y ] is d-simple if only if there does not exist any polynomial h(X) ∈ k[X] such that
h′(X) = a(X)h(X) + b(X).

Let R be a ring and d a derivation of R. An ideal I of R is a d-ideal if d(I) ⊆ I. The
ring R is d-simple if (0) and R are the only d-ideals of R. The ring R is differentially simple
if for every ideal I 6= (0), R, there exists a derivation d of R such that d(I) 6⊆ I.

1 Differential simplicity and algebraic independence

The objective of this section is to establish a connection between the local differential
simplicity in a ring of polynomials and the algebraic independence of power series that are
solutions of a certain associated system of algebraic differential equations:

Theorem 1.1. Let k be a field of characteristic zero and r a positive integer.Let (α, β) :=
(α, β1, · · · , βr) ∈ kr+1 and t, X, Y := {Y1, · · · , Yr} be some indeterminates over k. Let
g(X, Y ), f1(X, Y ), · · · , fr(X, Y ) ∈ k[X, Y1, · · · , Yr], g(X, Y ) /∈ (X − α, Y1 − β1, · · ·Yr − βr).

Over the local ring k[X, Y1, · · · , Yr](X−α,Y1−β1,···Yr−βr), consider the derivation
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d := g(X, Y )
∂

∂X
+

r∑
i=1

fi(X, Y )
∂

∂Yi

and over k[[t]], consider the system of differential equations

(∗.α)
{

g
(
t + α, y1(t), · · · , yr(t)

)
.
∂

∂t
(yi(t)) = fi

(
t + α, y1(t), · · · , yr(t)

)}r

i=1

.

Then,

(a) The system of equations (∗.α) has a unique solution y1(t, β), · · · , yr(t, β) ∈ k[[t]] such
that y1(0, β) = β1, · · · , yr(0, β) = βr,

(b) The height of the biggest d−ideal of k[X, Y1, · · · , Yr](X−α,Y1−β1,···Yr−βr) is equal to

r − trdegk(t)

(
k
(
y1(t, β), · · · , yr(t, β)

))
,

(c) The ring k[X, Y1, · · · , Yr](X−α,Y1−β1,···Yr−βr) is d- simple if and only if y1(t, β), · · · , yr(t, β)
are algebraically independent over k(t).

Remark 1.2. Let k be a field of characteristic zero, r a positive integer, X, Y1, · · · , Yr some
indeterminates over k and d a derivation of k[X, Y1, · · · , Yr]. Let g(X, Y1, · · · , Yr) := d(X)
and fi(X, Y1, · · · , Yr) := d(Yi) for i = 1, · · · , r. Let (α, β1, · · · , βr) ∈ kr+1, R the local ring
k[X, Y1, · · · , Yr](X−α,Y1−β1,···Yr−βr) and m its maximal ideal. Let the natural extension of d
to the ring R be also denoted by d.

i) If R is d−simple, then it is clear that d(X−α) /∈ m or d(Yi−βi) /∈ m for some i; without
loss of generality, we may suppose that d(X − α) /∈ m, i.e., that g(X, Y1, · · · , Yr) /∈
(X − α, Y1 − β1, · · ·Yr − βr). This is the hypothesis we make in Theorem 1.1.

ii) The results (b) and (c) of Theorem 1.1 can be reformulated in the following way:

(b’) The height of the biggest d−ideal of k[X, Y1, · · · , Yr] contained in
(X − α, Y1 − β1, · · · , Yr − βr) is equal to r − trdegk(t)

(
k
(
y1(t, β), · · · , yr(t, β)

))
.

(c’) The biggest d−ideal of k[X, Y1, · · · , Yr] contained in (X − α, Y1 − β1, · · · , Yr − βr) is
equal to (0) if and only if y1(t, β), · · · , yr(t, β) are algebraically independent over k(t).

Theorem 1.1 will be obtained as a consequence of several auxiliary results.
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Proposition 1.3. Let k, r, (α, β), g(X, Y ), f1(X, Y ), · · · , fr(X, Y ) and d be as in Theorem
1.1; let D := 1

g(X,Y )d.
Let etD

α,β : k[X, Y1, · · · , Yr](X−α,Y1−β1,···Yr−βr) −→ k[[t]] be the map defined by

etD
α,β(ξ) =

∑
i≥0

Di(ξ)
i! (α, β)ti.

Let ℘α,β be the kernel of etD
α,β. Then,

(a) etD
α,β is a homomorphism of k-algebras such that

etD
α,β(X) = α + t, etD

α,β(Yi) ∈ βi + tk[[t]] for every i = 1, · · · , r,

(b) ∂
∂t ◦ etD

α,β = etD
α,β ◦D,

(c) ℘α,β is the biggest D−ideal of k[X, Y1, · · · , Yr](X−α,Y1−β1,···Yr−βr),

(d) height of ℘α,β = r − trdegk(t)k
(
etD
α,β(Y1), · · · , etD

α,β(Yr)
)
,

(e) k[X, Y1, · · · , Yr](X−α,Y1−β1,···Yr−βr) is D−simple if and only if etD
α,β is injective, if and

only if etD
α,β(Y1), · · · , etD

α,β(Yr) are algebraically independent over k(t).

Proof. (a) It is clear that etD
α,β leaves every element of k fixed.

Let ξ, η ∈ k[X, Y1, · · · , Yr](X−α,Y1−β1,···Yr−βr). For every n ≥ 0, we have

Dn(ξη) =
∑n

i=0 Ci
nDi(ξ)Dn−i(η), where Ci

n = n!
i!(n−i)! ,

hence Dn(ξη)
n! =

∑n
i=0

Ci
n

n! Di(ξ)Dn−i(η) =
∑n

i=0
Di(ξ)

i!
Dn−i(η)
(n−i)! .

Then, etD
α,β(ξη) =

∑
n≥0

Dn(ξη)
n! (α, β)tn =

∑
n≥o(

∑n
i=0

Di(ξ)
i! (α, β)ti.D

n−i(η)
(n−i)! (α, β)tn−i) =

(
∑

i≥0
Di(ξ)

i! (α, β)ti).(
∑

i≥0
Di(η)

i! (α, β)ti) = etD
α,β(ξ).etD

α,β(η).

Finally it is clear that etD
α,β(X) = α + t and that etD

α,β(Yi) ∈ βi + tk[[t]] for every i =
1, · · · , r.

(b) Let ξ ∈ k[X, Y1, · · · , Yr](X−α,Y1−β1,···Yr−βr). We have
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etD
α,β ◦D(ξ) =

∑
i≥0

Di(D(ξ))
i! (α, β)ti =

∑
i≥0

Di+1(ξ)
i! (α, β)ti =

∑
j≥1

Dj(ξ)
(j−1)!(α, β)t(j−1) = ∂

∂t(
∑

j≥0
Dj(ξ)

j! (α, β)tj) = ∂
∂t ◦ etD

α,β(ξ).

(c) By part (b) it is clear that ℘α,β is a D−ideal of R := k[X, Y1, · · · , Yr](X−α,Y1−β1,···Yr−βr).
Now, let J ⊆ m := (X − α, Y1 − β1, · · ·Yr − βr)R be a D−ideal of R. Then etD

α,β(J) ⊆
etD
α,β(m) ⊆ tk[[t]] by part (a); thus the ideal < etD

α,β(J) > of k[[t]] generated by etD
α,β(J) is

contained in tk[[t]]. On the other hand, since J is a D−ideal, we have by part (b),

∂
∂t(e

tD
α,β(J)) = etD

α,β(D(J)) ⊆ etD
α,β(J) , hence ∂

∂t(< (etD
α,β(J)) >) ⊆< (etD

α,β(J)) >.

Thus < (etD
α,β(J)) > is a proper ∂

∂t−ideal of k[[t]]. Since k[[t]] is clearly ∂
∂t−simple, this

implies that < (etD
α,β(J)) >= (0) and therefore that J ⊆ ker(etD

α,β) = ℘α,β. Thus ℘α,β is the
biggest D−ideal of R.

(d) We have

height of ℘α,β = height of (℘α,β ∩ k[X, Y1, · · · , Yr])

= r + 1− dim
k[X, Y1, · · · , Yr]

℘α,β ∩ k[X, Y1, · · · , Yr]

= r + 1− dim k[α + t, etD
α,β(Y1), · · · , etD

α,β(Yr)]

= r + 1− trdegk k
(
t, etD

α,β(Y1), · · · , etD
α,β(Yr)

)
.

(e) Since ℘α,β is its biggest D−ideal, then k[X, Y1, · · · , Yr](X−α,Y1−β1,···Yr−βr) is D−simple
if and only if ℘α,β = (0). By part (d), this happens if and only if etD

α,β(Y1), · · · , etD
α,β(Yr) are

algebraically independent over k(t). But ℘α,β is also the kernel of etD
α,β. Thus ℘α,β = (0)

happens also if and only if etD
α,β is injective.

Proposition 1.4. Let the notations be the same as in Theorem 1.1 and Proposition 1.3.
Then, the system of differential equations (∗.α) has a unique solution y1(t, β), · · · , yr(t, β) ∈
k[[t]] such that y1(0, β) = β1, · · · , yr(0, β) = βr. This solution is given by y1(t, β) =
etD
α,β(Y1), · · · , yr(t, β) = etD

α,β(Yr).
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Proof. Let i ∈ {1, · · · , r}. By Proposition 1.3(a), we have etD
α,β(Yi)(0) = βi. Now,

∂

∂t

(
etD
α,β(Yi)

)
= etD

α,β ◦D(Yi) by Proposition 1.3(b)

= etD
α,β(

fi(X, Y1, · · · , Yr)
g(X, Y1, · · · , Yr)

) by the definition of D

=
fi

(
t + α, etD

α,β(Y1), · · · , etD
α,β(Yr)

)
g
(
t + α, etD

α,β(Y1), · · · , etD
α,β(Yr)

) by Proposition 1.3(a).

Thus etD
α,β(Y1), · · · , etD

α,β(Yr)) is a solution of the system (∗.α) with the desired property.

Now, we check the unicity. For i = 1, · · · , r let yi(t) := βi +
∑

j≥1 bijt
j ∈ k[[t]] and

suppose that y1(t), · · · , yr(t) is a solution of the system (∗.α). Write g(X, Y1, · · · , Yr) as a
polynomial in the indeterminates Y1 − β1, · · · , Yr − βr, with coefficients in k[X − α]:

(1) g(X, Y1, · · · , Yr) =
∑

(l1,··· ,lr)

g(l1,··· ,lr)(X − α).(Y1 − β1)l1 · · · (Yr − βr)lr

We then have

(2) g
(
t + α, yi(t), · · · , yr(t)

)
=

∑
(l1,··· ,lr)

g(l1,··· ,lr)(t).(
∑
j≥1

b1jt
j)l1 · · · (

∑
j≥1

brjt
j)lr .

Note that the constant term in (2) is equal to the constant term of g(0,··· ,0)(t); by (1) this
constant term is equal to g(α, β1, · · · , βr), which is different from zero since, by hypothesis,
g(X, Y1, · · · , Yr)) does not belong to the ideal (X − α, Y1 − β1, · · · , Yr − βr).

Write also fi(X, Y1, · · · , Yr) as a polynomial in the variables Y1 − β1, · · · , Yr − βr with
coefficients in k[X − α]:

(3) fi(X, Y1, · · · , Yr) =
∑

i,(l1,··· ,lr)

fi,(l1,··· ,lr)(X − α).(Y1 − β1)l1 · · · (Yr − βr)lr .

We then have

(4) fi

(
t + α, yi(t), · · · , yr(t)

)
=

∑
(l1,··· ,lr)

fi,(l1,··· ,lr)(t)(
∑
j≥1

b1jt
j)l1 · · · (

∑
j≥1

brjt
j)lr .

Note that the constant term in (4) is equal to the constant term of fi,(0,··· ,0)(t) which, by
(3), is equal to fi(α, β1, · · · , βr). Looking at the constant terms in the following equality

(5) g
(
t + α, y1(t), · · · , yr(t)

)
.y′i(t) = fi

(
t + α, y1(t), · · · , yr(t)

)
,

6



we obtain g(α, β1, · · · , βr).bi1 = fi(α, β1, · · · , βr). Since g(α, β1, · · · , βr) is not zero, then
bi1 is uniquely determined by g(X, Y1, · · · , Yr) and fi(X, Y1, · · · , Yr).

Now suppose that for every i = 1, · · · , r and every j ≤ n, bij is uniquely determined
by g(X, Y1, · · · , Yr), f1(X, Y1, · · · , Yr), · · · , fr(X, Y1, · · · , Yr).We want to show that bi(n+1)

is also uniquely determined for every i. First note that our supposition implies that for
every j ≤ n, the coefficient aj of tj in (2) and the coefficient cj of tj in (4) are also uniquely
determined by g(X, Y1, · · · , Yr), f1(X, Y1, · · · , Yr), · · · , fr(X, Y1, · · · , Yr). Now, looking at
the terms in tn in the equality (5) we have

(n + 1)a0bi(n+1) + na1bin + · · ·+ anbi1 = cn.

Since a0, a1, · · · , an, bi1, · · · , bin, cn are all uniquely determined by g(X, Y1, · · · , Yr),
f1(X, Y1, · · · , Yr), · · · , fr(X, Y1, · · · , Yr) and since a0 = g(α, β1, · · · , βr) 6= 0, then bi(n+1) is
indeed also uniquely determined by g(X, Y1, · · · , Yr), f1(X, Y1, · · · , Yr), · · · , fr(X, Y1, · · · , Yr).

Proof of Theorem 1.1:
(a) This is given by Proposition 1.4.
(b) Let ℘α,β be the biggest D−ideal of R := k[X, Y1, · · · , Yr](X−α,Y1−β1,···Yr−βr); since

g(X, Y ) is a unit in R, then ℘α,β is also the biggest d-ideal of R. By Proposition 1.3(d),
height of ℘α,β = r − trdegk(t)k

(
etD
α,β(Y1), · · · , etD

α,β(Yr)
)
. By Proposition 1.4, the set

{etD
α,β(Y1), · · · , etD

α,β(Yr)} is equal to the set {y1(t, β), · · · , yr(t, β)}.
(c) This is consequence of part (b), or of Proposition 1.3(e) and Proposition 1.4.

As a consequence of Theorem 1.1, we shall obtain an important result on the algebraic
independence of some sets of power series. For convenience, we first state the result in a
very particular case.

Theorem 1.5. Let k be a field of characteristic zero, (α, β) ∈ k2 and t, X, Y some inde-
terminates over k. Let f(X, Y ), g(X, Y ) ∈ k[X, Y ], f(α, β) 6= 0 and g(α, β) 6= 0. Over the
local ring k[X, Y ](X−α,Y −β), consider the derivation d := g(X, Y ) ∂

∂X + f(X, Y ) ∂
∂Y . Over

k[[t]], consider the differential equations

(∗.α) g
(
t + α, y(t)

)
.y′(t) = f

(
t + α, y(t)

)
and

(∗ ∗ .β) f
(
x(t), t + β

)
.x′(t) = g

(
x(t), t + β

)
.

Let y(t) ∈ k[[t]] be the unique solution of (∗.α) such that y(0) = β and x(t) ∈ k[[t]]
be the unique solution of (∗ ∗ .β) such that x(0) = α. Then, the following statements are
equivalent:

(i) y(t) is transcendental over k(t).
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(ii) R is d−simple.

(iii) x(t) is transcendental over k(t).

Proof. By Theorem 1.1 c), R is d−simple if and only if y(t) is transcendental over k(t)
and also if and only if x(t) is transcendental over k(t).

As a generalization of Theorem 1.5 we have:

Theorem 1.6. Let k be a field of characteristic zero and r, s positive integers. Let α =
(α1, · · · , αr+s) ∈ kr+s and t, Y := {Y1, · · · , Yr+s} some indeterminates over k. Let f1(Y ), · · · ,
fr+s(Y ) ∈ k[Y ] such that fi(α) 6= 0 for all i ∈ {1, · · · , r}. Over the local ring R :=
k[Y ](Y1−α1,··· ,Yr+s−αr+s) consider the derivation

D :=
∑s+r

i=1 fi(Y ) ∂
∂Yi

.

For each i ∈ {1, · · · , r} consider, over k[[t]], the system of differential equations in
(r + s− 1) unknowns

{fi(y1(t), · · · , yi−1(t), t + αi, yi+1(t), · · · , yr+s(t)). ∂
∂t(yl(t))

(∗i.αi)
= fl(y1(t), · · · , yi−1(t), t + αi, yi+1(t) · · · , ys+r(t))}l∈{1,··· ,r+s}\{i}

and let yi1(t), · · · , yi(i−1)(t), yi(i+1)(t), · · · , yi(r+s)(t) ∈ k[[t]] be the solution of (∗i.αi) such
that yil(0) = αl for every l ∈ {1, · · · , r + s} \ {i}. Then the following statements are
equivalent:

(i) There exists i ∈ {1, · · · , r} such that the elements yil(t) ,with l ∈ {1, · · · , r + s} \ {i},
are algebraically independent over k(t).

(ii) The ring R is d-simple.

(iii) For every i ∈ {1, · · · , r}, the elements yil(t) ,with l ∈ {1, · · · , r + s} \ {i}, are alge-
braically independent over k(t).

2 Transcendental Power Series

In Theorem 1.5, we have obtained that the solution in β+tk[[t]] of the equations (∗.α) is tran-
scendental over k(t) if and only if the solution in α + tk[[t]] of the equation
(∗∗.β) is transcendental over k(t). This is interesting: in one hand it may be difficult (or even
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impossible) to decide whether the solution of one of the equations is, or is not, transcen-
dental over k(t), using the classical methods; on the other hand, the same classical methods
may easily give the solution for the other equation. We shall give two such examples. We
shall also give an example to illustrate the more complex context of theorem 1.6.

Proposition 2.1. Let k be a field of characteristic zero, t an indeterminate over k, n a
positive integer and q ∈ Q \ {0}.Then:

(a) The solution in tk[[t]] of the equation

(qtn + 1)x′(t) =1(∗ ∗ .0)

is transcendental over k(t).

(b) The solution in tk[[t]] of the equation

y′(t) = qyn(t) + 1(∗.0)

is transcendental over k(t).

Proof. (a) We have
1

qtn + 1
= 1− qtn + q2t2n − q3t3n + · · · ,

hence

x(t) =
∫

1
qtn + 1

= t− qtn+1

n + 1
+

q2t2n+1

2n + 1
− q3t3n+1

3n + 1
+ · · · .

By Dirichlet’s Theorem on arithmetic progressions, the set S := {1, n + 1, 2n + 1, · · · }
of the denominators of the series x(t) contains infinitely many prime integers. Then, by a
theorem of Eisenstein [4, 32., page 44], x(t) is transcendental over k(t).

(b) Is a consequence of (a) and Theorem 1.5.

Proposition 2.2. Let k be a field of characteristic zero and t, X, Y some indeterminates
over k. Let f(X, Y ) := a(X)Y + b(X) with a(X), b(X) ∈ k[X], deg a(X) >deg b(X),
b(X) 6= 0. Then,

(a) For every α ∈ k, all the solutions in k[[t]] of the equation

y′(t) = a(t + α)y(t) + b(t + α)(∗.α)

are transcendental over k(t).
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(b) For every α, β ∈ k such that f(α, β) 6= 0, the solution x(t) ∈ α+ tk[[t]] of the equation(
a
(
x(t)

)
.(t + β) + b

(
x(t)

))
.x′(t) = 1(∗ ∗ .β)

is transcendental over k(t).

We shall prove part (a) of Proposition 2.2 and obtain part (b) as a consequence of (a)
and Theorem 1.5. But before that, we need an auxiliary result that has its own interest.

Proposition 2.3. Let l ⊇ k ⊇ Z be domains of characteristic zero, where k is a field. Let
t be an indeterminate over l, a(t), b(t) ∈ k[t], a(t) 6= 0.Over l[[t]], consider the differential
equation

y′(t) = a(t)y(t) + b(t).(*)

Then:

(a) With the possible exception of one of them, all the solutions of (∗) in l[[t]] are tran-
scendental over k[t].

(b) If there exists a solution of (∗) in l[[t]] that is not transcendental over k[t], then it
belongs to k[t].

This proposition will be obtained as an immediate consequence of the next proposition
in witch we take A := k[t], R := l[[t]] and d := ∂

∂t .
We recall that if R is a ring that contains the rational numbers and if d is a derivation

of R, then Nil(d) is defined to be {ξ ∈ R;∃s ∈ N such that ds(ξ) = 0}. Following [2] we
define the function degd on Nil(d) by degd(ξ) = max{s ∈ N; ds(ξ) = 0}. Using Leibnitz’s
formula, it is easy to check that, if R is a domain, then one has degd(ξη) = degd(ξ)degd(η).

Proposition 2.4. Let R ⊇ A ⊇ k ⊇ Z be domains of characteristic zero. Let d be a
k-derivation of R such that d(A) ⊆ A and A ⊆ Nil(d).

Let a, b ∈ A, a 6= 0, and over R consider the differential equation

d(y) = ay + b(*.b)

(a) • If y0 ∈ R is a solution of (∗.b), then

{solutions of (∗.b) in R} = {y0 + z; z ∈ R, z solution of d(y) = ay}.

• If z0 ∈ R is a non-zero solution of d(y) = ay, then

{solutions of d(y) = ay in R} = {cz0; c ∈ qf(R), d(c) = 0, cz0 ∈ R}.

(b) With the possible exception of one of them, all the solutions of (∗.b) in R are tran-
scendental over A.
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(c) Suppose that A is a U.F.D and that ker(d) ∩ (A \ {0}) = {units of A}. If there exists
a solution of (∗.b) in R that is not transcendental over A, then it belongs to A.

Remark 2.5. Part (b) of Proposition 2.4 was proved in the particular case of A ⊆ ker (d)
by Nousiainen and Sweedler in [5, Lemma 3.5]

Proof of Proposition 2.4. (a) These are routine verifications.
(b) First we prove the following:
Claim 1. Let the natural extension of d to the quotient field qf(R) of R be also denoted

by d. If z ∈ qf(R) is a non-zero solution of the differential equation

d(y) = ay,(*.0)

then z is transcendental over A.
Let z be any non-zero solution of (*.0) in qf(R) and suppose that z is algebraic over A.

Let

αnzn + · · ·+ α1z + α0 = 0

be an algebraic relation, with αn, · · · , α1, α0 ∈ A, n minimal. Applying d to this relation,
we obtain

(6)
(
d(αn) + nαna

)
zn + · · ·+

(
d(α1) + α1a

)
z + d(α0) = 0.

We assert that d(αn) + nαna is not equal to zero. Indeed, if it were equal to zero, then we
would have d(αn) = −naαn, hence degd(d(αn)) = degd(a) + degd(αn) ≥ degd(αn) which is
absurd since degd(d(αn)) = degd(αn) − 1. Thus the left side of (6) has a non-zero term in
zn. Then, by the minimality of n, d(α0) must be different from zero. Applying d to the
relation (6), we shall obtain a new algebraic relation with a non-zero term in zn and with
d2(α0) 6= 0 as a constant. Going on with this process, we see that ds(α0) 6= 0 for every
s ≥ 0 which is absurd since α0 ∈ A ⊆ Nil(d). This terminates the proof of our claim.

Now, if there exists a solution y0 of (*.b) in R that is algebraic over A, then all the other
solutions of (*.b) in R will be transcendental over A since they will be of the type y0 + z
with z a non-zero solution of (*.0) in R.

(c) Let y ∈ R be a solution of (*.b) that is not transcendental over A. Let

P (X) := Xn + βn−1X
n−1 + · · ·+ β0

be the irreducible polynomial of y over the quotient field qf(A) of A. Applying d to the
equality yn + βn−1y

n−1 + · · ·+ β0 = 0, we obtain

nayn + [nb + (n− 1)βn−1a + d(βn−1)]yn−1 + · · · = 0.

11



Clearly, the polynomial

g(X) = naXn + [nb + (n− 1)βn−1a + d(βn−1)]Xn−1 + · · ·

has degree n, has its coefficients in qf(A) and admits z as a root; thus g(X) is a multiple of
P (X). Looking at the terms in Xn, we see that g(X) = naP (X). Then,
nb + (n− 1)βn−1a + d(βn−1) = naβn−1, hence

(7) d(βn−1) = aβn−1 − nb.

Let w := ny + βn−1. We have

d(w) = nd(y) + d(βn−1)
= n(ay + b) + aβn−1 − nb by (∗.b) and (7)
= a(ny + βn−1)
= aw

Thus w belongs to qf(R) and is a solution of (*.0) which is algebraic over A since y is
algebraic over A and since βn−1 ∈ qf(A). Then , by the previous claim, we have w = 0 and
hence y = −βn−1

n ∈ qf(A) .
Now since A is a U.F.D we can write y = γ

δ with γ, δ ∈ A, δ 6= 0, mdc(γ, δ) = 1. We
have ay + b = aγ+bδ

δ and d(y) = d(γ)δ−γd(δ)
δ2 , hence aγ+bδ

δ = d(γ)δ−γd(δ)
δ2 since y is a solution

of (*.b). From this we get δ[d(γ)− aγ − bδ] = γd(δ). Since mdc(γ, δ) = 1, this implies that
δ divides d(δ) in A, say d(δ) = uδ with u, δ, d(δ) ∈ A. Looking at the d-degree, we see that
necessarily d(δ) = 0, i.e., that δ ∈ Ker(d) ∩ (A \ {0}) ⊆ {units of A}. Thus y = γ

δ ∈ A.

Proof of Proposition 2.2 (a): For reasons of degree, it is clear that the equation (∗.α)
does not have any solution in k[t]. Then, by Proposition 2.3(b), all the solutions of (∗.α)
in k[[t]] are transcendental over k(t).

(b) This is a consequence of (a) and of Theorem 1.5.

We shall apply Theorem 1.6 on a set of polynomials that is related to the example
constructed by Hart in [3]

Proposition 2.6. Let k be a field of characteristic zero and t, Y1, · · · , Yr some indetermi-
nates over k. Let f1(Y ) := 1 and for i = 2, · · · , r, let fi(Y ) := 1(1+Y1)(1+Y2) · · · (1+Yi−1).
For each i ∈ {1, · · · , r}, consider over k[[t]] the system of differential equations in (r − 1)
unknowns

{fi

(
y1(t), · · · , yi−1(t), t, yi+1(t), · · · , yr(t)

)
. ∂
∂t(yl(t))

(∗i.0)
= fl

(
y1(t), · · · , yi−1(t), t, yi+1(t) · · · , yr(t)

)
}l∈{1,··· ,r}\{i}
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and let yi1(t), · · · , yi(i−1)(t), yi(i+1)(t), · · · , yir(t) be the solution of (∗i.0) in tk[[t]]. Then, for
every i ∈ {1, · · · , r}, the elements yil(t) with l ∈ {1, · · · , r}\{i} are algebraically independent
over k(t).

Proof. By Theorem 1.6, it suffices to show that the series y12(t), y13(t), · · · , y1r(t) are
algebraically independent over k(t). The system of equations (∗1.0) is particularly easy
to handle, and it is routine to check that its solution in tk[[t]] is given by

y12(t) = et − 1
y13(t) = ey12(t) − 1

...
y1r(t) = ey1(r−1)(t) − 1

Now it is well known that y12(t), y13(t), · · · , y1r(t) are algebraically independent over
k(t).(For example, see [1, Corollary 1, p.253].)

Remark 2.7. (a) In the previous proposition, instead of working with the system of equa-
tions (∗1.0), we could have worked with the system (∗r.0). It would have been routine to
check that the solution of this system in tk[[t]] is given by:

yr(r−1)(t) = log(1 + t)
yr(r−2)(t) = log(1 + yr(r−1)(t))

...
yr1(t) = log(1 + yr2(t))

Then, we would have used the fact that yr(r−1)(t), · · · , yr1(t) are algebraically indepen-
dent over k(t).( See [3, Lemma, p.292].)

(b) For i 6= 1, r, it is not clear at all what is the form of the solution yi1(t), · · · , yi(i−1)(t),
yi(i+1)(t), · · · , yir(t) of (∗i.0) in tk[[t]], and it is even less clear how one could see directly
that the elements yil(t), with l ∈ {1, · · · , r} \ {i}, are algebraically independent over k(t).

3 Differentially Simple Rings

In this section, we apply the results of section 1 to obtain interesting families of differential
simple rings.

Theorem 3.1. Let k ⊆ k′ be fields of characteristic zero and Y1, · · · , Yr some indeter-
minates over k′. Let M be a maximal ideal of k[Y1, · · · , Yr] and M ′ a maximal ideal of
k′[Y1, · · · , Yr] that lies over M . Let d be a k-derivation of k[Y1, · · · , Yr] and d′ the exten-
sion of d to a k′-derivation of k′[Y1, · · · , Yr]; let d and d′ also denote the extensions to
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k[Y1, · · · , Yr]M and k′[Y1, · · · , Yr]M respectively. Then, the following statements are equiv-
alent:

(i) The local ring k[Y1, · · · , Yr]M is d-simple.

(ii) The local ring k′[Y1, · · · , Yr]M ′ is d′-simple.

Proof. Let k be the algebraic closure of k and k′ the algebraic closure of k′. Since the
extension k′[Y1, · · · , Yr] ⊆ k′[Y1, · · · , Yr] is integral, there exists a maximal ideal M ′ of
k′[Y1, · · · , Yr] lying over M ′. Let M := M ′ ∩ k[Y1, · · · , Yr]. The local ring k′[Y1, · · · , Yr]M ′

is d′-simple if and only if k′[Y1, · · · , Yr]M ′ is d′-simple. Indeed, if I is a non-zero d′-ideal
contained in M ′, then Ik′[Y1, · · · , Yr] is a non-zero d′-ideal in M ′; conversely, if J is a non-
zero d′-ideal contained in M ′, then J ∩ k′[Y1, · · · , Yr] is a non-zero d′-ideal contained in
M ′. Similarly, k[Y1, · · · , Yr]M is d-simple if and only if k[Y1, · · · , Yr]M is d-simple. Thus,
without loss of generality, we may suppose that k and k′ are algebraically closed.

(ii) ⇒ (i) The local ring k′[Y1, · · · , Yr]M ′ is d′-simple if an only if for every ξ ∈ M ′,
there exists s ≥ 1 such that d′s(ξ) /∈ M ′; when this occurs then evidently, for every η ∈ M ,
there exists s such that ds(η) /∈ M ′ ∩ k[Y1, · · · , Yr] = M , hence k[Y1, · · · , Yr] is d-simple.

(i) ⇒ (ii) Let β1, · · · , βr ∈ k such that M = (Y1 − β1, · · · , Yr − βr)k[Y1, · · · , Yr]. Then,
necessarily, the ideal M ′ that lies above M is M ′ = (Y1−β1, · · · , Yr−βr)k′[Y1, · · · , Yr]. For
every i = 1, · · · , r, let fi(Y1, · · · , Yr) := d(Yi). Since k[Y1, · · · , Yr]M is d-simple,there exists
i ∈ {1, · · · , r}, say i = 1, such that d(Y1) = d(Y1 − β1) /∈ M . Let y12(t), · · · , y1r(t) ∈ k[[t]]
be the solution of the system of differential equations

(∗1.β1) {f1

(
t + β1, y2(t), · · · , yr(t)

)
.
∂

∂t
(yi(t)) = fi

(
t + β1, y2(t), · · · , yr(t)

)
}r

i=2

such that y12(0) = β2, · · · , y1r(0) = βr. By Theorem 1.1(c), k[Y1, · · · , Yr]M is d-simple if and
only if y12(t), · · · , y1r(t) are algebraically independent over k(t). Also by Theorem 1.1(c),
k′[Y1, · · · , Yr]M ′ is d′-simple if and only if y12(t), · · · , y1r(t) are algebraically independent
over k′(t). Then, we can conclude by the following easy to prove lemma.

Lemma 3.2. Let k ⊆ k′ be fields of characteristic zero, t an indeterminate over k′ and
y1(t), · · · , yr(t) ∈ k[[t]]. Then y1(t), · · · , yr(t) are algebraically independent over k(t) if and
only if they are algebraically independent over k′(t).

Most published examples of derivations D that make the local ring k[X, Y ](X,Y )

D-simple are of the type D = ∂
∂X + f(X, Y ) ∂

∂Y with f(X, Y ) ∈ k[X, Y ], degY f(X, Y ) = 1,
or variations of that type; in particular, there does not seem to be any example with
degY f(X, Y ) an arbitrary positive integer. Our next proposition gives such an example.
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Proposition 3.3. Let k be a field of characteristic zero, n a positive integer and q ∈ Q\{0}.
On the local ring k[X, Y ](X,Y ) consider the derivation D := ∂

∂X + (qY n + 1) ∂
∂Y . Then,

k[X, Y ](X,Y ) is D-simple.

Proof. As seen in Proposition2.1, the solution in tk[[t]] of the equation (qtn + 1).x′(t) = 1
is transcendental over k(t). Then, by Theorem1.1(c), the ring k[X, Y ](X,Y ) is D-simple

We can recover the main result of [3] witch asserts that there exists a derivation d that
makes k[Y1, · · · , Yr](Y1,··· ,Yr) d-simple:

Proposition 3.4. Let k be a field of characteristc zero and Y := {Y1, · · · , Yr} some in-
determinates over k. Let f1(Y ) := 1 and for i = 2, · · · , r, let fi(Y ) := 1(1 + Y1)(1 +
Y2) · · · (1 + Yi−1). On the local ring R := k[Y1, · · · , Yr](Y1,··· ,Yr), consider the derivation
d :=

∑r
i=1 fi(Y ) ∂

∂Yi
. Then, R is d-simple.

Proof. Consider the system of differential equations

(∗1.0) {f1

(
t, y2(t), · · · , yr(t)

)
.
∂

∂t
yl(t) = fl

(
t, y2(t), · · · , yr(t)

)
}r

l=2

i.e.,

{ ∂

∂t
yl(t) = (1 + t)

(
1 + y2(t)

)
· · ·

(
1 + yl−1(t)

)
}r

l=2.

As it was seen in the proof of Proposition 2.6, the solution of this system in tk[[t]] is
given by y12(t) = et − 1, y13(t) = ey12(t) − 1, · · · , y1r = ey1(r−1)(t) − 1.

Since these power series are algebraically independent over k(t), then the ring R is
d-simple by Theorem 1.1(c).

Finally using a theorem of Ax on the transcendency of certain formal power series, we
obtain examples of derivations d that makes the ring k[X, Y1, · · · , Yr](X,Y1,··· ,Yr) d-simple:

Proposition 3.5. Let k be a field of characteristic zero. Let y1(t) := h1(t)
l(t) , · · · , yr(t) :=

hr(t)
l(t) ∈ tk[t](t) be Q-linearly independent. Let d be the k-derivation of k[X, Y1, · · · , Yr](X,Y1,··· ,Yr)

defined by d(X) := l2(X), d(Yi) :=
(
h
′
i(X)l(X)−hi(X)l

′
(X)

)
Yi+

(
h
′
i(X)l(X)−hi(X)l

′
(X)

)
.

Then:

(a) ey1(t) − 1, · · · , eyr(t) − 1 are algebraically independent over k(t).

(b) k[X, Y1, · · · , Yr](X,Y1,··· ,Yr) is d− simple.
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Proof. (a) Note that for every i, yi(t) ∈ k[[t]] ∩ k(t). Then, applying [1, Corollary 1, p.253]
we obtain that ey1(t) − 1, · · · , eyr(t) − 1 are algebraically independent over k(t).

(b) Follows from Theorem 1.1 since, for every i = 1, · · · , r, zi(t) := eyi(t) − 1, satisfies
the differential equation

l2(t).z
′
i(t) =

(
h
′
i(t)l(t)− hi(t)l

′
(t)

)
zi(t) +

(
h
′
i(t)l(t)− hi(t)l

′
(t)

)
.

4 The Ring k[X,Y] with the derivation d defined by d(X) = 1,
d(Y ) = a(X)Y + b(X) with a(X), b(X) ∈ k[X].

In this section, we consider the domain k[X, Y ] (and not a localization of it), endowed with
the derivation d defined by d(X) = 1, d(Y ) = a(X)Y + b(X) with a(X), b(X) ∈ k[X]. By
a Theorem of Shamsuddin [7], it is known that k[X, Y ] is d-simple if and only if there does
not exist any polynomial h(X) ∈ k[X] such that h′(X) = a(X)h(X) + b(X). Using some
of our results on power series obtained in section 2, we shall complement and deepen that
result of Shamsuddin.

Theorem 4.1. Let k be a field of characteristic zero and X, Y two indeterminates over k.
Let a(X), b(X) ∈ k[X] and d := ∂

∂X +
(
a(X)Y + b(X)

)
∂

∂Y .

a) The following statements are equivalent:

(i) k[X, Y ] is d-simple.

(ii) There does not exist any polynomial h(X) ∈ k[X] such that h′(X) = a(X)h(X)+
b(X).

(iii) There exists an irreducible polynomial f(X) ∈ k[X] such that, for every maximal
ideal < f(X),− > of k[X, Y ] that contains f(X), the ring k[X, Y ]<f(X),−> is
d-simple.

b) If k[X, Y ] is not d-simple, then:

• There exists a unique polynomial h(X) ∈ k[X] such that h′(X) = a(X)h(X) +
b(X).

• The ring k[X, Y ] has a unique non-zero prime d-ideal ℘. It is equal to
(Y − h(X)). In particular k[X,Y ]

℘ ' k[X].

• Given any irreducible polynomial f(X) ∈ k[X] there exists a unique maximal
ideal < f(X),− > of k[X, Y ] that contains f(X) such that k[X, Y ]<f(X),−> is
not d-simple. It is equal to

(
f(X), Y − h(X)

)
.
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Proof (a) Let k be the algebraic closure of k. We first make three observations:
1) k[X, Y ] is d-simple if and only if k[X, Y ] is d-simple. This is routine to check.
2) If the equation h′(X) = a(X)h(X) + b(X) does not have a solution in k[X], then

clearly it does not have a solution in k[X] either. Conversely, if it has a solution in k[X],
then by Proposition 2.3(b) (with l = k), this solution belongs to k[X].

3) If f(X) is an irreducible polynomial of k[X] and if α ∈ k is a root of f(X), then it
is routine to check that k[X, Y ]<f(X),−> is d-simple for every maximal ideal < f(X),− >

of k[X, Y ] that contains f(X) if and only if k[X, Y ]<X−α,−> is d- simple for every maximal
ideal < X − α,− > of k[X, Y ] that contains X − α.

Thus, in order to prove the equivalence of (i)-(iii) in part (a) of the Theorem , we may
suppose that k is algebraically closed.

If a(X) = 0, then clearly, the equation h′(X) = b(X) has a solution
∫

b(X) in k[X] and
k[X, Y ] is not d-simple since (Y −

∫
b(X)) is a non-zero proper d-ideal of k[X, Y ]. Thus,

in this case , both statements (i) and (ii) are false. That statement (iii) is also false is a
clear consequence of the, soon to be proved, part (b) of the theorem.

So, for part (a) of the theorem, we may suppose that a(X) 6= 0.
(i) =⇒ (ii) Suppose that there exists a polynomial h(X) ∈ k[X] such that h′(X) =

a(X)h(X) + b(X). Then, d(Y − h(X)) = a(X)(Y − h(X)) and therefore, (Y − h(X)) is a
non-zero proper d-ideal of k[X, Y ], which is a contradiction with the hypothesis.

(ii) =⇒ (iii) Since the equation h′(X) = a(X)h(X)+b(X) does not have any solution in
k[X], then by Proposition 2.3, all the solutions of this equation in k[[X]] are transcendental
over k(X). By Theorem 1.1(c), this implies that k[X, Y ](X,Y −β) is d-simple for every β ∈ k.

(iii) =⇒ (i) By hypothesis, there exists α0 ∈ k such that k[X, Y ](X−α0,Y −β) is d-simple
for every β ∈ k. Then, by Theorem 1.1 (c), we already have:

Fact 1. All the solutions in k[[X]] of the equation

(∗.α0) y′(X) = a(X + α0)y(X) + b(X + α0)

are transcendental over k(X).
Now suppose that k[X, Y ] is not d-simple. Then there exists α1, β1 ∈ k such that

k[X, Y ](X−α1,Y −β1) is not d-simple. By Theorem 1.1 (c), this implies that the element
h1(X) ∈ β1 + Xk[[X]] satisfying

(8) h′1(X) = a(X + α1)h1(X) + b(X + α1)

is algebraic over k(X); even more, by Proposition 2.3, h1(X) ∈ k[X].
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Let h0(X) := h1(X − α1 + α0). We have h0(X) ∈ k[X] and

h′0(X) = (h1(X − α1 + α0))′

= a(X + α0)h1(X − α1 + α0) + b(X + α0)
= a(X + α0)h0(X) + b(X + α0)

Thus h0(X) ∈ k[X] is a solution of (∗.α0); this contradicts Fact 1. Thus k[X, Y ] is d-simple.
(b) Suppose that k[X, Y ] is not d-simple. Once again, using the fact that k[X, Y ] is an

integral extension of k[X, Y ] and using Proposition 2.3, it easy to see that, without loss of
generality, we may suppose that k is algebraically closed.

As seen before, there exists α1 ∈ k and h1(X) ∈ k[X] satisfying (8). Let h(X) :=
h1(X − α1). We have h(X) ∈ k[X] and

h′(X) = (h1(X − α1))′

= a(X).h1(X − α1) + b(X) by (8)
= a(X)h(X) + b(X).

Then d(Y − h(X)) = a(X)
(
Y − h(X)

)
∈

(
Y − h(X)

)
and ℘ :=

(
Y − h(X)

)
is a non-zero

prime d-ideal of k[X, Y ].
Claim 2. Given an arbitrary α ∈ k, then:

1) ℘ is the biggest d-ideal contained in (X − α, Y − h(α)).

2) k[X, Y ](X−α,Y −γ)) is d-simple for every γ ∈ k, γ 6= h(α).

Indeed, with β := h(α), we have ℘ = (Y − h(X)) ⊆ (X − α, Y − β). Since ℘ is a prime
d-ideal of height one and since (X − α, Y − β) is not a d-ideal then ℘ is the biggest d-ideal
contained in (X − α, Y − β)).

Since k[X, Y ](X−α,Y −β)) is not d-simple then by Theorem 1.1 (c), the solution in β +
Xk[[X]] of the equation

(∗.α) y′(X) = a(X + α)y(X) + b(X + α)

is algebraic over k(X), and by Proposition 2.3 (a), all the other solutions in k[[X]] are
transcendental over k(X). Thus, by Theorem 1.1 (c), k[X, Y ](X−α,Y −γ)) is d-simple for
every γ 6= β, γ ∈ k. This terminates the proof of our claim .

Now, let ℘′ be any non-zero prime d-ideal of k[X, Y ]. Let α2, β2 ∈ k such that ℘′ ⊆
(X − α2, Y − β2). Clearly (X − α2, Y − β2) is not a d-ideal, hence ℘′ is the biggest d-
ideal contained in (X − α2, Y − β2). Since ℘′ 6= (0), the ring k[X, Y ](X−α2,Y −β2)) is not
d-simple. Thus, by Claim 2 .2), we necessarily have β2 = h(α2), and by Claim 2.1),
℘ ⊆ (X − α2, Y − β2). Since both ℘ and ℘′ are the biggest d-ideal of k[X, Y ] contained in
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(X − α2, Y − β2), we obtain that ℘ = ℘′ and therefore that ℘ is the unique non-zero prime
d-ideal of k[X, Y ].

The prime ideal ℘ has been defined as ℘ :=
(
Y − h(X)

)
where h(X) was an element

of k[X] such that h′(X) = a(X)h(X) + b(X). The uniqueness of such an element h(X) is
given by Proposition 2.3.

Finally, given an arbitrary irreducible polynomial of k[X],i.e., given an arbitrary poly-
nomial of the type X − α with α ∈ k, then by Claim 2, (X − α, Y − h(α)) is the unique
maximal ideal M of k[X, Y ] that contains X − α such that k[X, Y ]M is not d-simple; since(
X − α, Y − h(α)

)
=

(
X − α, Y − h(X)

)
, we are through.

Using Theorem4.1 and Theorem1.1, we can prove the following:

Proposition 4.2. Let k be a field of characteristic zero. Let t be an indeterminate over k,
a(t), b(t) ∈ k[t], a(t) 6= 0. Then, the following statements are equivalent:

(i) The equation
y′(t) = a(t)y(t) + b(t)

does not have any solutions in k[t].

(ii) For every α ∈ k, all the solutions in k[[t]] of the equation

y′(t) = a(t + α)y(t) + b(t + α)

are transcendental over k[t].

Proof (ii) =⇒ (i) Clear
(i) =⇒ (ii) By Theorem4.1 (a), k[X, Y ] is d-simple and, if k denotes the algebraic closure

of k, k[X, Y ] is d-simple. Then k[X, Y ](X−α,Y −β) is d-simple for every α, β ∈ k and, by
Theorem 1.1 (c), for every α ∈ k, all the solutions in k[[t]] of y′(t) = a(t + α)y(t) + b(t + α)
are transcendental over k(t), hence in particular over k[t].
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