CURVATURE OF PENCILS OF FOLIATIONS
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ABSTRACT. Let F and G be two distinct singular holomorphic foliations on a compact complex surface
M, in the same class, that is Ny = Ng. In this case, we can define the pencil P = P(F,G) of foliations
generated by F and G. We can associate to a pencil P a meromorphic 2-form © = ©(P), the form of
curvature of the pencil, which is in fact the Chern curvature (cf. [Ch]). When ©(P) = 0 we will say
that the pencil is flat. In this paper we give some sufficient condictions for a pencil to be flat. (Theorem
2). We will see also how the flatness reflects in the pseudo-group of holonomy of the foliations of P. In
particular, we will study the set {#{ € P|H has a first integral } in some cases (Theorem 1).

81. Introduction

Let F and G be two distinct singular holomorphic foliations on a compact complex surface M,
with isolated singularities, in the same class, that is Ny = Ng. This means that there exists a
Leray covering (Us)aca of M by open sets, and collections (wa)aca; (1a)aca and (gas)uv. 520,
Uag = Ua NUg, such that
(I). w,, and 7, are holomorphic 1-forms on U, which represent the foliations F and G, respectively.
This means that F|y, and G|y, are defined by the differential equations w, = 0 and 7, = 0,
respectively. Since the singularities of F and G are isolated, we have codg(w, = 0) > 2 and
code (e = 0) > 2 for every a € A.

(AT). If Uyp # 0 then gag € O*(Ung), Wa = Gag-wg and 1, = gag-ns on Ung.

The class of the multiplicative cocycle (gag)u, 2 in Pic(M) defines Ny and Ng, so that
Nz = Ng. The pencil generated by F and G is the family P = (Fr)per, where
(II1). Foo = G and if T' € C, then Fy is represented on U, by the form wl := wy + T4,

The singular set of Fr is defined by sing(Fr) N U, = {wl = 0}. The tangency divisor of F
and G is defined by Tang(F,G) N Uy = {wa A na = 0}. Note that sing(Fr) and Tang(F,G) are
analytic subsets of M and that sing(Fr) C |Tang(F,G)| for all T € C. Since F # G, [Tang(F,G)|
is a proper analytic subset of pure dimension one. Let W = M \ |Tang(F,G)| and W, = WNU,,.
Since wa A a(p) # 0 for all p € Wy, there exists an unique holomorphic 1-form 6, on W, such
that

(*) dwe, = 04 N wy, and dng = 0o, A 1o

for all € A. It follows from (), (IT) and the fact that w, A6, # 0 that, if W,z := WaNWs # ()

then, 0, = 0g + ‘?—‘X; on Wag. Hence df,, = dfg on Was and we can define a holomorphic 2-form
© on W by

(**) Oly, = db,
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It can be proved that the form © can be extended meromorphically to Tang(F,G) (see §2). This
extension will be called the curvature of the pencil P(F,G). We will say that the pencil is flat if
© = 0. Let us see some examples of flat pencils.

Example 1. Let w and 7 be two meromorphic closed 1-forms on some compact complex surface
M, such that w An # 0 and the divisors of poles and zeroes of w and n coincide. Let F and G
be the foliations generated by w and 7, respectively. It is known that Ny = Ng in this case (cf.
[Br]). Moreover, the pencil generated by F and G, say P(F,G), is defined by the pencil of forms
wr =n + T.w. Therefore, it is flat. We will call a pencil like this a pencil of closed forms.

A particular case is given by some families of logarithmic forms in CP(2). Let fq,..., fx, k > 3,
be irreducible homogeneous polynomials of three variables such that df; A df; # 0 if ¢ # j. Given
A= (A1, ..., A\) € CF, such that 2521 Xj.dg(f;) =0, set wy = Ele X;j.dfj] f;. The closed form wy
can be considered as meromorphic form on CP(2), so that the family (wx)a generates a family of
foliations (Fx)x on CP(2). It can be checked that any pencil contained in this family is flat.

Another particular case, is the following : let M be the complex two torus C2 /T, where I' =
Zw1 @© Z.owy @ Z.vs @ Z.vy is some lattice in C?, and m:C? — C2/F be the canonical projection.
Consider an affine coordinate system (z,w) on C? and let F and G be the foliations generated by
the closed forms w and 7 such that 7*(w) = dz and 7*(n) = dw, respectively.

Example 2. The pull-back of a flat pencil is a flat pencil. More precisely, let M and N be complex
surfaces and f: M— — N be a meromorphic map. If P := P(F,G) is a pencil of foliations on N,
then we can define the pencil f*(P) = P(f*(F), [*(G)) on M. It is not difficult to prove that, if
P is flat then f*(P) is also flat.

Example 3. Suppose that the pencil P(F, G) is defined by w+T'.n, where w and 7 are meromorphic
1-forms, and there exists a closed meromorphic 1-form € such that dw = 0 Aw and dn = 0 A n.
Then the pencil P(F,G) is flat. Of course, the pencils of Example 1 are of this kind, because the
forms w and 7 are closed. However, the reader can find some examples in [L.N] or [LN-1] which are
not generated by closed forms. One example of this kind is the pencil P; of foliations of degree
two on CP(2) defined in some affine coordinate system (z,y) € C? C CP(2) by the the forms (see
§2.4 of [LN]) :

w1 = (4z — 922 + y?)dy — 6y(1 — 2z)dx
) {o T e

m o= 2y(l — 2x)dy — 3(2? — y*)du

A straightforward computation gives dw; = %% Awi and dmp = %% A1y, where P(x,y) =
—dg? + 42% + 1229% — 92* — 62°y® — y*. The other examples of [LN] can be obtained from the
above one by pulling-back P; by a meromorphic map f: CP(2)— — CP(2).

Another example is the pencil Ps of degree three generated by

@) wy = y(2* — y?)dy — 2a(y® — 1)dz
e = (Ao —2® — 2y — 3ay® + %) dy + 2(x + y) (y* — 1)da

In this case, we have dwy = %% Awsy and dng = %% A2, where Q(z,y) = (v — )(z + 2 + 4> —
2z) (22 4 y? + 2x).

We would like to observe that both pencils P; and Ps are exceptional families of foliations in the
sense of [LN-1]. This means the folowing : Let .7:%, T € C, be the foliation defined in C? C CP(2)
by the form w; + T.n; (FZL, defined by 7;), where w; and 7; are as in (j), j = 1,2, of example 3.
Then, for j = 1,2, we have :
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(a). The singularities of .7:% are of constant analytic type. In other words, there is a finite subset
F; C C such that if 77,7, € C\ F ; then every singularity of Fr, is locally analytically equivalent
to some singularity of Frp,.
(b). If we set

E; ={T € C| F% has a meromorphic first integral}

then F; is countable and dense in C.

(c). Given T € F; denote by d;(T) the degree of the generic level of the first integral of JFi.
Then, for any m € N the set {T' € F;|d;(T) < m} is finite. In particular, in both families, there
foliations with first integrals of arbitrarily large degrees.

Concerning the exceptional pencils above, we have the following result :
Theorem 1. Let E;, j = 1,2, be as in (b). Then

B =Q. <1,e2™/3 > U{oo}
Ey=Q.<1,i>U{oo}

where Q. < a,b >= {q1.a + ¢2.b| g1, ¢ € Q}.

In our last result we will give some sufficient condictions for the flatness of a pencil P = P(F, G)
in terms of the singularities of the foliations in P and the components of the divisor of tangencies.
In order to state it, let us consider the singularities of Fp, 7' € C. Without lost of generality, we
will suppose that F and G have isolated singularities. This implies that the set NI := {T € C| Fr
has non-isolated singularities } is finite. Set IS := C\ NI and for each T € IS, set n(T) =
#(sing(Fr)). Note that, if T € IS then Nz, = Nz. It is well known that the number of
singularities of Fr, counted with multiplicities, is given by (cf. [Br]) :

m(F) =m(Fr) = N2+ Nr. Ky + ca(M)

where Kjs is the canonical bundle of M. Hence n(T) < m(F) for all T € IS. Tet ng =
max{n(T)|T € IS} and GP = {T € IS|n(T) = ng}. We need a fact.

Lemma 1. C\ GP is finite. Moreover, there exist holomorphic maps p;:GP = M, j=1,...,no,
such that sing(Fr) = {p1(T), ..., pno(T)} for all T € GP.

The proof of Lemma 1 is left for the reader.
Definition 1. We say that the singularity p; is fized if the map p;: GP — M is constant.
Otherwise, we say that p; is movable. For instance, if p is a singularity of the curve Tang(F,G)
then p is a singularity of all foliations of the pencil and it is a fixed singularity of the pencil.

Note that, for any movable singularity p, of the pencil, the image p;(GP) is contained in some
irreducible component C of Tang(F,G). In this case we will say that p; is contained in C.

Let C C Tang(F,G) be an irreducible component. We have two possibilities :

(A). C is invariant for both foliations F and G. In this case, C is invariant for all foliations Fp in
the pencil and we will say that C is invariant for the pencil.

(B). C is not invariant for the pencil. In this case, the set IN(C) = {T' € C|C is invariant for
Fr} is finite.

Remark 1. Given an irreducible component C of Tang(F,§G), we two possibilities : either C
contains a movable singularity, or C does not contain movable singularities. In the second case,
we will call C a NI-component. The reason is the following : let (U, )aca be a covering of M by
open sets and (wWa)acAa, (a)aca be collections of holomorphic 1-forms such that the foliations in
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the pencil are defined on U, by wl = w, +T.n,, T € C. Given p € U,NC\ (sing(F) U sing(G)),
there exists an unique 7, such that we(p) + Tp.na(p) = 0, because wqo(p) and 7,(p) are linearly
dependent. However, since C' does not contain movable singularities and p ¢ sing(F) U sing(G),
the unique possibility is that w,(q) + T5.n4(q) = 0 for all ¢ € C N U,. Hence, T, € NI and the
component C is contained in sing(Fr). Note that T, depends only on C. We will use the notation
T, = T(C). This happens for instance in the case of the Logarithmic forms (see Example 1).

The divided foliation associated to T'(C) is defined as follows : for each o € A, let (f, = 0) be
a reduced equation of C N U,. Since wZ(C) lcnu, = 0, we can write wZ(C) = fﬁ.&a, where &, has
isolated singularities and £ € N, does not depend on «. The divided foliation, denoted by ]:"T(C),

is defined by the collection (&4 )aca. Note that N]:-T(C) = Nrpey © C—t.

Definition 2. We say that an irreducible component C of Tang(F,G) is nice, if one of the
following condictions hold :

(a). C is invariant for the pencil and contains a movable singularity p;(7) such that the function
T € GP — BB(p;(T), Fr) is constant, where BB(p,;(T), Fr) denotes the Baum-Bott index of the
singularity (cf. [Br]).

(b). C is an NI-component, invariant for the pencil.

(¢). C is non-invariant for the pencil and C contains a movable singularity, say p;(T'), such that

BB(p;(T), Fr) =0for all T € GP.

(d). C is an NI-component, non-invariant for the pencil. In this case, we ask that C is invariant
for the divided foliation associated to T'(C').

The last result, characterizes when the pencil is flat, if we assume that the components of the
divisor of tangencies have multiplicity one.

Theorem 2. Let F and G by two holomorphic foliations on a compact complex surface, such
that Ny = Ng, and let © be the curvature of the pencil generated by them. Suppose that all
components of Tang(F,G) have multiplicity one. Then the following condictions are equivalent :

(a). The pencil is flat.
(b). All components of Tang(F,G) are nice.
(¢). © is holomorphic.

Let us state one consequence.

Corollary . Let F and G by two holomorphic foliations on a compact complex surface M. Suppose
that Ny = Ng and Tang(F,G) = 0. Then the pencil generated by them is flat. Moreover, M is a
complex 2-torus and F, G are linear foliations.

We observe that this corollary is a consequence of Theorem 2 and the classification of complex
compact surfaces (see [BPV]). We would like to pose the following problems :

Problem 1. Given a flat pencil P = P(F,§), describe the set

E(P) = {a € C| F, has a first integral} .

Problem 2. Give necessary and suflicient conditions for a pencil to be flat, like in Theorem 2.
Recall that Theorem 2 is true only in the case that all components of Tang(F, G) have multiplicity
one.

Problem 3. Give necessary and suflicient conditions for a flat pencil to be a pencil of closed
1-forms. We observe that the pencils defined by logarithmic forms satisfy the following properties,
when all components of T'ang(F,G) have multiplicity one :
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(a). All invariant components of Tang(F,G) are NI-components.
(b). All non-invariant components of Tang(F,G) are nice.

We note that the above conditions are necessary in the case that all components of T'ang(F,G)
have multiplicity one. It seems that they are also sufficient in some cases.

82. Proofs

§2.1 Proof of Theorem 1.

We will use the notation .7:% (resp. FZ,) to denote the foliation defined by w; + T.n;, T € C
(resp. m;), where w; and n; are as in (j) of example 3, j = 1,2. First of all, we observe that, in
both cases, it is easy to see that some foliations in the foliations in the pencils have first integrals.
Given a € E; we will call ¢/, the first integral of FJ. For the pencil P; we have :

y)
z,Y) = L@wy)  where, P(z,y) = —4y* +42° + 122y — 92* — 622y — y* .

In particular, 1, —1,00 € F;. On the other hand, for the pencil P> we have

Rlz,y) = % Ci(z,y) = gc22—|— y22_ 2
2 _ La().Ci(ew) C_i(w,y) = 2° +y* + 2z
(4) gOO<x7 y) - Ll(y).071($,y) Where7 Ll (y) — y — ]_
2 ( ) _ _La(y).Ci(zy) _
912(%¥) = T2 05T (o) Loa(y)=y+1

In particular, 0,00,1/2 € Es.

Note that, in all above cases, the generic level curves of g? are elliptic curves. There is a
difference between the two cases : for j = 1 the level curves, after normalization, are of the form
C/ < 1,e2™/3 > whereas for j = 2 they are of the form C/ < 1,i >. In the case j = 1, the proof
can be found in §2.4 of [LN]. In the case j = 2, the fact that the level curves are elliptic can be
proved by using the genus formula. For instance, in the case of g2, the level curve L, := (g2, = ¢),
for generic ¢ € C, has degree three and no singularities. Hence, g(L.) = w = 1. The proof
that the normalization L. is C/ < 1,7 > will be sketched next.

Let us give an idea of the proof that the pencil P, is exceptional. This proof was done in §2.2
of [LN] for another pencil (of degree four), but the idea is the same. First of all, the divisor of
tangency of F§ and F2, is

Tg:=Tang(Fg,F2)=C1+C 1+ 11+ L1+ Leo ,

where Lo is the line at infinity of C* C CP(2). The singular set of T'g, which are the fixed
singularities of the pencil, is (in homogeneous coordinates) :

(M. Fixe={O:=(0:0:1),A:=(-1:1:1),B:==(1:1:1),C:=(1:-1:1),D:=(-1:—-1:
1),B:=(1:9:0),F:=(1:-i:0),G:=(1:0:0)}. For T ¢ {1,—1,4, —i,00} the points F, F,G
are radial singularities for the foliation F2 (of type 1 : 1), whereas the points A, B, C, D and O are
singularities of type 2 : 1. We say that a singularity is of type p : g if the foliation has a local first
integral of the form u”/v?, in some local coordinate system (u, v).

On the other hand, each component of T'g contains exactly one movable singularity of 2, a € C:
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(IT). The points P_i(a) := (o, —1) € L_y, Pi(a) = (—a,1) € L1, Q_1(a) := (1=, Ti2z) € Oy
and Q1 (a) == <1+—20¢Z7 1:_—20?‘;) € (. These singularities are of the type 1 : —4 (with local first integral
of the type u.v?).

(IIT). The point Poo(cr) :=[a : 1 : 0] € Le,. This singularity is of the type 1: —2.

The next step is to reduce the fixed singularities (which are dicritical) by blowing-ups. This
can be done for all foliations in the pencil simultaneously by doing one blowing-up at each radial
singularity and two at each singularity of the type 2 : 1. After this procedure, we find a rational
surface M and a bimeromorphism 7: M — CP(2). We will use the notation F,, = 7*(F2), a € C,
and P for the pencil in M so obtained. The pencil P has ten invariant curves (rational) : five of
them are the strict transforms of the components of T'g and the other five are the divisors introduced
in the first blowing-up at the singularities of the type 2 : 1 (A, B, C, D, 0). For each o € Fs, the
foliation F,, which corresponds to the first integral g2, has also a first integral g, = g2 o 7. We
observe that g, is holomorphic, because the foliation F,, has no dicritical singularities. In fact, for
any a € C, F, has ten singularities, one in each invariant curve, which are the folowing : four of
the type 1 : —4, which come from the singularities P («), P_i(a), @1(a) and Q_1(a), and six of
the type 1 : —2. One of these six singularities come from P, («) and the other five are contained
in the five invariant divisors introduced in the blowing-up procedure. We leave the details of the
proof of these facts for the reader.

Let us describe briefly the (singular) fibration g.,. We will denote by 7. the level curve g_! (c) C
M. Tt has three critical levels : Ty, 7} and Teo. If we call U = M\ (To UT U Ts), then
f = geoly:U — C\ {0,1,00} := W is a (regular) elliptic fibration. The main fact is the following
Lemma 2.1.1. If « # oo then F,, is tranverse to the fibers of f in all points of the set U.

Proof. Since the divisors introduced by 7 are contained in Top U 71 U Ts, it is suflicient to prove
that the foliations F2, and F2 are transverse outside T'g, because 7|y: U — w(U) = CP(2)\ Tg is
a biholomorphism. On the other hand, we have :

(w2 + amp) A = 2(2* + 4 — 22)(2® +y* +22)(y — V) (y + V)de Ady =2 C,.C_1.Ly.L_y dx Ady .

Hence F2 and F2, are transverse outside 7T'g, which implies the lemma. [

Now, we use Ehresmann’s theory of foliations tranverse to a fibration (cf. [E-R]). According
to this theory, if L is a leaf of F,|y then f|: L — W is a covering map. Moreover, if we fix a
(regular) fiber T, and a closed curve v:[0,1] — W = C\ {0, 1,00} with v(0) = v(1) = ¢, then we
can define an automorphism M., o:T. — T, as follows : given p € T¢, let L, (p) be the leaf of F,
through p. Since f|r_ (p): La(p) = W is a covering map, there exists an unique curve 4 on Ly (p)
such that fo4 =~ and 4(0) = p. The automorphism is defined by H., o(p) = #(1). It is called the
global holonomy transformation associated to v. We will use the following facts :

(i). For every a € C the automorphism H, , is holomorphic and depends only of the the class of y
in ITy (W, ¢). This follows from Ehresmann’s theory and the fact that the foliations are holomorphic.

(ii). If v,y € II1i(W,c) and o € C then Hy sypo = Hy o © Hyy o In particular, for each
a € C, we can define an action Hy:II; (W, ¢) — Aut(Te.) by Ho(y) = H,,qa, called the holonomy
representation. The image Ho (IL (W, ¢)) := G(a, ¢) is called the global holonomy group of Fy.
(iii). For each fixed v € II;(W,¢), the map H,:C x T, — T, defined by H,(o,p) = H,.(p)
is holomorphic. This follows from the theorem of holomorphic dependency of the solutions with
respect to initial conditions and parameters and the fact that II, , can be found by integrating
the equation wy + a.ny = 0.

(iv). For any p € T,, the orbit of p by H, coincides with the intersection of the leaf L, (p) with
the fiber T..



CURVATURE OF PENCILS OF FOLIATIONS 7

(v). If ¢; is another point of W and ~; is a curve in W connecting ¢; to ¢, then, for each o € C it
can be defined a biholomorphism F,,:T., — T, (by lifting v, to leaves of F,) such that

Ha(yl_l*y*yl):F_loHa(y)oF.

In particular, the holonomy representations are conjugated and the fibration f is isotrivial, that
is, all regular fibers are biholomorphic.

Now, consider the two closed curves ~p,v1:[0,1] — W, where gr(0) = (1) = ¢, k = 0,1, v
goes around 0 once and 7, goes around oo once. It is known that vo,v; generate II; (W, ¢). We will
call f1 o = Ha(v) and g1, = Huo(m). Fix a holomorphic universal covering P: C — T, and let
Ja, 9o € Aut(C) be coverings of fi o and gy, respectively (Po fo, = fi,o0P and Pog, = g1,40P).

Lemma 2.1.2. If we choose well the orientation of the curves g and =1, then for any o« € C we
have fo(z) =i.z + A(a) and g,(z) = i.z + B(a), where A, B:C — C are holomorphic.

Idea of the proof. The proof is analogous to the proof of Proposition 4 of §2.2 of [L.N], and so
we will give only an idea. Let us consider the case of f,. The critical fiber Ty := f~1(0) of the
fibration f contains the strict transforms, by m: M — CP(2), of the curves C; and L_;, which
we call C' and L, respectively. On the other hand, C; and L._; contain the movable singularities
Q1 (a) and P_q(a) of F2, which are of the type 1 : —4. These singularities give origin to movable
singularities of the pencil P, Q(a) = 77 1(Q1(a)) € C and P(a) = 7~ (P_1(a)) € L, which are
also of the type 1: —4. Since Q(«) is the unique singularity of F,, on C and C is a rational curve,
Q() is linearizable for the foliation F,, (because the holonomy of C' is trivial, and so linearizable).
The same argument applies to P(a), which is the unique singularity of F, on L. On the other
hand, the foliation F, has an unique local smooth separatrix, say S(«), which is transversal to
C. Since the quotient of the eigenvalues is —1/4, the holonomy of S(«), in a suitable coordinate
system u of a transversal ¥, is linear of the form u — e~2"/* .y = —j.u. If we choose ¢ near 0
then the separatrix S(a) cuts the fiber 7, in an unique point, say p(«). It can be checked that
fls(a): S(a) = D := f(S(c)) is a bijection. If we choose the curve v as a small circle sorrounding
0 contained in D, then when we go around ~yg in order to evaluate f; , we see that p(a) is a fixed
point of fi ,. Moreover, the section 3 can be choosed to be contained in 7. This implies that
J1,a is locally conjugated to u + +i.u. The sign + depends on the orientation of v5. We choose
this orientation in such a way that fi , is locally conjugated to uw + ¢.u. This implies that fi .
has period four and that f,(z) =i.z + A(«). Analogously, we can choose the orientation of ~; in
such a way that g,(z) = i.z + B(«). The maps o € C — A(a), B(a) are holomorphic by (iii). O
As a consequence of Lemma 2.1.2, we obtain that 7, is biholomorphic to C/ < 1,4 >. This
implies that all regular fibers of f are biholomorphic to C/ < 1,i >, because the fibration is
isotrivial. We will fix an universal covering P: C — T, such that the associated lattice is < 1,7 >.
The crucial result is the following :
Lemma 2.1.3. A(a) and B(«) are affine, that is, A(a) = ay.a + ag and B(a) = by.a + by, where
o, A1, b07 bl eC.
Proof. We need another lemma.

Lemma 2.1.4. Let P(F,G) be a flat pencil on a surface M. Given p € M \ Tang(F,G), there
exists a local coordinate system (U, (z,y)), p € U, (z,y):U — C2, such that the foliation F, of
the pencil, a € C, is defined on U by dy + a.dx = 0. Moreover, if (V, (u,v)) is another coordinate
system such that U NV # ) is connected and F,|y is defined by dv + a.du = 0, a € C, then
du = A.dx and dv = A.dy on U NV, where A € C*.

Proof. Let W C M \ Tang(F,G) be a small simply connected open neighborhood of p and w, 7
be holomorphic 1-forms such that the foliation F,|w is defined by w 4+ a.n = 0. Note that Fo = F
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and Fo, = G are defined on W by w = 0 and 7 = 0, respectively. Since W N Tang(F,G) = 0, we
have w An # 0 on W. Hence, we can write dw = 0 Aw and dn = 0 A n, where 0 is holomorphic on
W. Since the pencil is flat, 6 is closed. Therefore, there exists h € V(W) such that 6 = dh. If we
set f = exp(h) then we get

df

d
dw:?f/\wanddn:?/\n — d(f

S

Again, since W is simply connected, there exist z,y € V(W) such that dy = % and dx = ? The
foliation F, is defined on W by dy + a.dx = %(w + a.n) = 0. Note that de Ady # 0 on W. It
follows that (x,y): W — C? is an immersion. This implies that we can take a smaller neighborhood
U C W of p such that (z,y)|y is a biholomorphism from U to an open set of C2.

Let (V,(u,v)) be another coordinate system such that U NV # @ is connected and Fy|y is
defined by dv + a..du = 0. Note that Fl|y and G|y are defined by dv = 0 and du = 0, respectively.
Since Fo|uny is defined by dy + a.dx and du + a.dv = 0, we get

)=d(3)=0.

(*) dv + a.du = h(z,y, o) (dy + a.dx)
where h is holomorphic. Differenciating both members of (x) with respect to «, we get

Oh Oh
du = —(d .d h.d — =
U 3a< y+ a.dx) + hde = o 0,
because du is a multiple of dz on U N V. Hence, h(z,y,«) = h(z,y), does not depend on a.
Therefore, du = h.dz and dv = h.dy on U N'V. This implies that dh A dy = dh A dz = 0 and
h € C*, is a constant. This finishes the proof of the lemma. [J

Let us finish the proof of Lemma 2.1.3. Fix ag € C and p € T,. Set ¢ = f1 o(p) € T¢. Denote
by Lo (p) the leaf of F, through p. Let ~,:[0,1] = Lo, (p) be the lifting of vo on the leaf L, (p)
through the fibration f. Note that ~,(0) = p and ~,(1) = g. Let (U,)1<n<m be a covering of
10, 1] by open sets as in Lemma 2.1.4. For each n = 1,...,m there exists a coordinate system
(Zn, yn) on U, such Fo|u, is defined by dy, + a.dx, = 0. We can choose the enumeration in such a
way that there is a partition 0 =g < t; < ... <ty =1 of [0, 1] such that ~,[t,—1,t,] C U,, for all
n =1,...,m. We can suppose that U, NU, ., is connected for every n = 1, ..., m—1. It follows from
Lema 2.1.4 that there exist constants A, € C* such that dz,+1 = \,.dz, and dy,+1 = A,.dyn,
n=1,..,m— 1. Hence,

(1) yn+1 = A\n.Yn + an, where a, € C, n=1,...,m — 1.
Fix transversal sections to the foliation Fy, X, ..., 2m, such that :
(ii). v (tn) € Xy, n=0,1,...,m.
(iii). X, C (a, = ct), that is 3, is contained in a leaf of Fo,. Note that 3¢, %, C T..

Since F, is defined by dy, + a.dz, = 0 on U,, the holonomy transformation of F, ,a near ag,
from the section 3,1 C (2, = ¢1) to the section %,, C (2, = ¢2), in terms of the parameter y,, is
of the form y, = Hp(yn, @) = Yn — @by, by, = ca — ¢y. It follows from (i) that, in the section %,
we have y,+1 = Ap.Yn + @y, and so the holonomy transformation fZ,,, can be written in terms of
the parameter y,.1 (in the immage) as Ynr1(Yn, @) = Ao Hy(Yn) + an = ApYn — @A by + ay. As
the reader can check, this implies that the holonomy transformation from the section g C U1 N7,
to the section ., C Upy NT,, which is the composition of the intermediate holonomies, is of the
form

ym = H(yr1,a) = py1 + ab+c¢ , where p € C* | byceC.
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Now, let us relate the parameters y; € X1 and y,,, € X,, with the parametrization which comes
from the universal covering P:C — T,. Since Fy is transverse to T, there exists a neighborhood
V of T, such that

(iv). flv:V = D := f(V) is a trivial fibration. In particular, V ~ D x T, where f|y = 7, the
first projection, and the fibers of the second projection mo: V' — T, are the leaves of Fo|y.

Let 7 be a non-vanishing 1-form on 7, such that P*(7) = dz.
Claim . There exist constants kq, k,, € C* such that dy, |y, = k1.7|n, and dym,|2m = km.T|s,, -

Proof. Set w = 75(7). Note that w(p) # 0, for all p € V, and that the foliation Fo|y is defined
by w = 0. We can suppose that D C C and consider = := f|y:V — C. This implies that Fo|v is
defined by dx = 0. We assert that there exists g € V*(D) such that the foliation F,|y is defined
by w4 a.g(z).dz = 0.

In fact, since w and dx are linearly independent on V', the foliation Fy|v is defined by a 1-form of
the type w, = w + go.dz, where g, € V*(V). Since the fiber T, = f~1(x) is compact, the function
Jo|T, 1s constant. Hence, we can write g, = go(2) and w, = w + go(x).dz. Fix a point ¢ € V
and a coordinate system (Ug, (24,4)) such that U, C V and F, |y, is defined by dy, + a.dz, = 0.
It follows that dy, + a.dzy = ho(w + go(z).dx) on U,, where h, € V*(U,). Differentiating twice
both members 2With respect to @ and by an argument similar to the proof of Lemma 2.1.4, we get
ah 9°gq

S = 0 and 2 = 0. This implies that g, (z) = a.g(x), where g € V*(V).

Since w and g(x)dx are closed, they are locally exact and we can apply Lemma 2.1.4 to them
and the forms dy, and dx;. It follows that dy; = k.wly,, k1 € C*. Similarly, dy,, = km.w|u,,,
km € C*. Hence, dy;|s; = k;.7|s;, j=1,m. O

Now, fix a disk Dy C C such that ¢, := P|p,: D1 — ¥ is a biholomorphism. The claim implies
that ¢%(dy1) = ky.dz. Therefore, y; 0¢1(2) = ky.z+dy, dy € C. Similarly, ¥, 0 ¢m(2) = kp.z+dp,
dpm € C (¢, = P|p,,). It follows that the holonomy transformation f, can be written, in terms of
the parameter z € C, as

fa(z) = k:n_@l.H(yl op1(z), ) — k‘;bl.dm =iz+ai.atag,

where a; = k,,'.b and a9 = k' (¢ — dy,) + p.dy. Hence, A(a) = aj.a + ag, where aj,a¢ € C.
Similarly, B(a) = by.a+bg. O

Now, the point zg = @ is a fixed point of f,. Let Qn(2) = z—zy. The global holonomy group

G(a, ¢) (viewed in the universal covering) is conjugated to the group generated by Fi(z) = Qn ©
f00Q3 (2) =iz and Go(2) = QaogaoQL(2) = i.z+C(a), where C(a) = B(a)— A(a) = a.a+1b,
a=0b; —ay and b= bg — ag. Let us finish the proof of Theorem 1. We need two more results. We
will give only an idea of the proof of these results (see Proposition 5 and its corollary in [LN]).

Lemma 2.1.5. The following assertions are equivalent :
(a). The group G(a,c) is finite.

(b). G(a,¢) has a finite orbit in T..

(c). There exists m € N such that m.C(a) €< 1,7 >.
(d). F,, has a first integral. In particular, o € F,.

Idea of the proof. The proof of the equivalences (a) <= (b) <= (c) is based in the fact
that the group generated by F, and G, is

G={z—cz+dC(a)l ce{l,-1,i,—i} and d €< 1,i >} .
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This is done in Proposition 5 of [L.N] in another case, but the proof is similar for the above case.
On the other hand, if F, has a first integral, then all leaves of F,, are algebraic and cut 7, in a finite
number of points. Hence, (d) = (b). Finally, if the group G(«,c) is finite, say # G(a,c) =m,
then each leaf of F, cut each fiber T, = f~!(z) in m points. This implies that all leaves F,
are algebraic. There is a delicate point here, which involves the fact that the leaves of F, cut
transversely the components of the critical fibers of f which are not invariant for F,. We have
not, proved this fact here, but the proof can be done by studing carefully the blowing-up process
7. We leave the details for the reader. Now, we can use Darboux’s theorem which asserts that if
all leaves of a foliation are algebraic then the foliation has a first integral. Therefore, (a) =

(d). O

Lemma 2.1.6. The map o — C(«) is non-constant. In particular, a # 0.

Idea of the proof. If a — C(a) were constant then all holonomy groups G(a,c) would be
isomorphic. Therefore, it is sufficient to prove that there are ag, a1 € Fo such that #(G(ap, ¢)) #
#(G(a1,c)). In the case of this pencil, we have 0,1/2 € F5 and the first integrals g3 and g%/2 given

in (4). It can be checked by using Bézout’s theorem and the explicit expressions for g2, g& and
g% /2 that the generic leaf of Fy cuts T. in eight points, whereas the generic leaf of F; /5 cuts T, in

four points. This implies that #(G(0,c)) = 8 and #(G(1/2,¢c)) = 4. Therefore, a — C(a) is not
constant. [

End of the proof of Theorem 1. We have seen that C(a) = a.ao + b, where a # 0. On the
other hand, 0,1/2 € Ey, which implies that there exist m,n € N and mg, ng,my,n; € N such that

m.b:mo—l—no.iandn(%—l—b):ml—l—nl.i = a,bcQ.<1,71> .
Since Q. < 1,7 > is a field, we get
m(aa+bd) €Q.<Lyi> meN «— acQ.<1l,i> .

This finishes the proof in the case of the pencil Ps.

In the case of the pencil P; the proof is similar. In this case, the non-singular fibers of f are
biholomorphic to C/ < 1,k > (k = e™/ 3) and the holonomy group of F, is isomorphic to the
group generated by the transformations F,,(z) = k.z and G, (2) = k?.2 + C(a) (in the universal
covering), where and C(«a) = a.a+ b, a # 0. This group is

G={zcz4+dC)|ce{1,kk*k k' k°}andde< 1,k >} .

By the analogous of Lemma 2.1.5 we have that o € Fj if, and only if, there exists m € N such that
m.C(a) €< 1,k >. On the other hand, we know that 1,—1 € F;, because we have the explicit
first integrals g{ and g, (see (3)). Therefore, there exist m,n € N and mg,ng,m1,n1 € Z such
that

m(a+b) =mg +no.k and n(—a+b) =my +n.k = a,b€Q. <1, k> .

Since Q. < 1,k > is a field, we get
m(a.a+b)e< k> meN «<— acQ <l,k> .
This finishes the proof of the theorem. [

§2.2 Proof of Theorem 2. Let P(F,G) be a pencil of foliations on the compact complex surface
M.
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Definition 3. Suppose that F and G are defined on an open set U C M by w = 0 and n = 0,
where w and 7 are holomorphic 1-forms on U. We will say that (U,w,n) are compatible with the
pencil if the foliation F,, is defined on U by w + a.n =10, a € C.

We need a Lemma.

Lemma 2.2.1. Let C be an irreducible component of Tang(F,G) of multiplicity k > 1. There
exists a finite set F' C |C| such that if p € |C|\ F then there is a holomorphic coordinate system
(U, (x,y)) withp € U, z(p) = y(p) =0, |C|NU = (y = 0), and holomorphic 1-forms w and n,
representing F|y and G|y respectively, such that (U,w,n) is compatible with the pencil and

(a). If C is invariant for the pencil then

w=dy
n=P(x,y)dy — y* da

where P € V(U). If 0 is such that dw = 0 A w and dn = 6 A, then

In particular, ©|y = y=% P,.(z,y) dz A dy in these coordinates.
(b). If C is non-invariant for F (and so for the pencil) then

{ w = dzx
n=y*"dy — Qz,y)dx

where () € V(U). If 0 is such that dw = 0 Aw and dn = 0 A1, then

0= Q—: dx
Yy
In particular ©|y = —a%(y_k Q) dxz A dy in these coordinates.

Proof . Consider a covering U = (Uy)aca of M by open sets and collections Q = (wo)aca,
E = (a)aca and A = (gap)v, 20, such that (Uy,wa,na) is compatible with the pencil for every
a € A and, if Uyg # 0 then w, = gap-wg and 1o = gag.ng on Ugg = U, NUg. Let F} =
|C| N sing(F). Given p € |C|\ Fy, let (V, (u,v)) be a holomorphic coordinate system around p
such that u(p) = v(p) = 0 and V N |C| = (v = 0). We can suppose that V C U,, for some o € A.
Suppose first that C is invariant for the pencil. Since p € sing(F) and C is invariant for F, by
taking a smaller V' if necessary, we can suppose that the leaves of F|c are the level curves of v, so
that w, |y = f.dv, where f € V*(V). Set w = f~t.w, = dv and n = f~L.n,. Note that (V,w,n) is
compatible with the pencil. Let n = A(u,v)dv — B(u, v)du. Since w A1 = B(u,v)du A dv and the
multiplicity of C' in Tang(F,§) is k, then B(u,v) = v*.b(u,v), where b € V(V) and b(u, 0) # 0.
Let Fy = {(u,0) € |C|NV; b(u,0) =0} and F' = Uy Fy U Fy. We leave for the reader the proof
that F is finite. If p € |C|\ F then, in the above coordinate system we have b(0,0) # 0. Therefore,
there exists a neighborhood U of p, with U CC V, and a function « € V(U) such that z(p) =0,
8t — b and ®(u,v) = (x(u,v),v) is biholomorphism onto &(U/) C C2. In the coordinate system
(z,y) := (x,v), we have w = dy and

o 3}
77:Adv—vkbdu:Ady—yk(dx—a—xdy) = (A+yF 8—x)dy—ykdx = Pdy — o~ dx
v v
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Let us compute O|y. If 6 is such that dw = 0 A w and dn = 6 A then 0 = ¢.dy, because w = dy
and dw = 0. Since

P, k
dn = (Py + ky*Hda Ndy = (? + Z)dy An
we get that
P,

k P{L’CL’
0:<_k+_)dy — O|y=di= kdx/\dy
) ) )

Now, suppose that C is non-invariant for F. Let F} = {p € |C|; F is tangent to |C| at p}.
Clearly F} is finite and if p € |C|\ F} then there exists a holomorphic coordinate system (V, (u, v))
around p such that V' C U, for some o € A, u(p) = v(p) =0, |C|NV = (v =0) and the leaves of
F|v are the level curves of u. In this case, w,|v = f.du where f € V*(V). Set w :=du = f~lw,|v
and n = f~1.m,|v. Note that (V,w,n) is compatible with the pencil. Let n = Adv — B du, where
A, B € V(U). Since w An = Adu A dv and C is a component of multiplicity k, we can write
A = v*.a, where a(u,0) #Z 0. Let Fyy = {(u,0) € |C|NV; a(u,0) = 0} and set F = Uy Fy U F}.
We leave for the reader the proof that F' is finite. If p € |C|\ F then in the above coordinate
system we have a(0,0) # 0. We assert that there exists a coordinate system (U, (z,y)) around p
such that U C V, u =z, y = v.¢(u,v) and

(%) 8%:—1 = (k4 1) v" afu,v)

[oe)

In fact, in a neighborhood of p = (0,0) € V, we can write (k+ 1) v* a(u,v) = >oo2k aj(u) v, where
ar(0) = (k+ 1) a(0,0) # 0. Let

[oe)

d(u,v) = Z l,aj_l(u) vl = " b(u, v) .

et J

Note that b(0,0) = a(0,0) # 0 and % = (k+1)v"* a(u,v). Let U; C V be a simply connected open
neighborhood of (0,0) such that b € V*(Uy;). Let ¢ € V*(U;) be such that ¢*T!1 =b and y € V(U;)
be defined by y(u,v) = v.c(u,v). Note that y**1 = ¢ and the map ®(u,v) = (u,y(u,v)) = (z,y)
is a biholomorphism from some open neighborhood U/ C U; onto an open subset of C2. Clearly,
the coordinate system (U, (z,y)) satisfies (x). In these coordinates, we have w = dz and

1 8yk+1
n=uv a(u,v)dv—B(u,v)du—]{:—_I_1 5 dv — B(u,v) du =
k Oy k
=y dy_(k:—+1 D0 + B(u,v))du = y* dy — Q(x,y) dx

If 8 is such that dw =8 A w and dn = 6 A 1y then 6 = ¢.dz, because w = dx and dw = 0. Since
dn = _ Y%
n—dex/\dy—y—kd:L’/\n

we get that
QZQ—gdx = @zd@z—i(Q—:)d:ﬁ/\dy
Y Oy y
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From now on, in this section, we will suppose that all irreducible components of Tang(F,G)
have multiplicity one.

2.2.2. (b) = (c). Denote by D the divisor of poles of ©. TLet C be a component of
Tang(F,G). Suppose first that C is invariant for the pencil. Since the multiplicity of C in
Tang(F,G) is one, by Lemma 2.2.1, we can choose a coordinate system (U, (x,y)) such that

UNC=(y=0),p=1(0,0) €U and

o) e

n = P(x,y)dy — ydx

Let P(z,y) = po(z) + yp(z,y), where p € V(U) and po(z) = 352 aja’. Since © =y~ ' Ppp =
Yy pg(x) + pee(,y), then C ¢ De, if, and only if, po(z) = ag + a; x. Note that the foliation Fr
associated to np = n+ T.w = (T + P(x,y))dy — ydz, is defined on U by the vector field

Xr(o,y) = (T + pola) + (o)) 5 +

Hence, the singularities of Fp on U are given by y =T + po(x) = 0.

We have two possilities : either pg is a constant (po(z) = ag) , or po is not a constant. In
the first case, we get that n_,, = y(pdy — dz). In this case, —ag € NI and there is no movable
singularity on C. Moreover © = p,, drzAdy, which implies that C' ¢ D,. In the second case, there
is a movable singularity on C : if z(T') is such that T+ po(2(T")) = 0 and —7T is a regular value
of po then z(T) is a movable singularity of P and T' € GP = {T € IS|n(T) = ng}. Without lost
of generality, we can suppose that this singularity satisfies (a) of Definition 2. This singularity is
non-degenerate, in the sense that zero is not an eigenvalue of DX (¢(T)), where ¢(T') = (2(T), 0).
In this case, the Baum-Bott index of Fr at p(T') is given by (cf. [Br]) :

r?(DXo(g(T)) _ (M) +1)* _ _

(6) B(T) = BB(q(T), Fr) = det@XT( @)~ gy

Since C is nice, we have B'(T) = 0. As the reader can check, this condiction is equivalent to

Ph(a(1) (1 = o)/ (1) = 0

(po(2
Since ¢(T) is a movable singularity, we have 2'(T') # 0. Therefore, pj(z(T)) = 0, which implies
that pj = 0 and po(x) = ag + a1 = (note that p{(«(7)) = £1 implies also that pj = 0). Therefore,
C ¢ D

Suppose now that C is non-invariant for P. Consider a coordinate system (U, (x,y)) such that

UNC=(y=0),p=1(0,0) €U and

@) i o

n=ydy— Q(z,y)dx

where Q(z,y) = qo(z) + q1(%)y + y? q(x,y), where qo, q1 and ¢ are holomorphic. Since © =
—(y™ ' Qy)ydz Ady, then C ¢ De, if, and only if, ¢;(z) = 0. Note that the foliation Fr associated
tonr =n+Tw=ydy+ (T — Q(x,y)dz, is defined on U by the vector field

0

Xp(z,y) = yi + (qo(z) + 1 (%) y + v* q(z,y) — T)a_y

ox
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Hence, the singularities of Fp on U are given by y = qo(z) — T = 0.

We have two possilities : either ¢ is a constant , or g is not a constant. In the first case, we
get 1y = yldy — (1 (z) + yq(x,y))dz], and so qo € NI and there is no movable singularity on C.
Since C' is nice, the curve C is invariant for the divided foliation associated to qg, which is defined
by @ =dy— (q1(z) + yq(z,y))dz on U. But, CNU = (y = 0) and this curve is invariant for & = 0
if, and only if, ¢ = 0. Therefore, C ¢ D,. In the second case, there is a movable singularity :
p(T) = (2(T),0) € UNC, where 2(T) is such that go(2(T)) — T = 0. Set qo(0) = Tp. I T is a
regular value of gg near Ty, then T € GP. Without lost of generality, we can suppose that this
singularity satisfies (¢) of Definition 2. This singularity is non-degenerate, and so :

(8) B(T) = BBO(T), Fr) = Gobs o) ~ 4

tr*(DXr(p(T)) _ ¢¢(=(T))

Since C is nice, we get B =0, and so ¢; = 0, which implies that C ¢ D,,.

2.2.3. (a) = (b). Suppose first that C is invariant for P(F,G). Let (U, (x,y)) be a coordinate
system like in (5), around a point p = (0,0) € UN C. Since ® = 0, by Lemma 2.2.1, we have
P, = 0. This implies that P(z,y) = po(y) + p1(y)x, where pg,p; are holomorphic. Hence, the
singularities of Fr on C N U are the solutions of y = T + po(0) 4+ p1(0)z = 0. We have two
possibilities : either p;(0) # 0, or p1(0) = 0. If p1(0) = 0, then T'= —p;(0) € NI and we are in
the situation of (b) of Definition 2. Therefore, C is nice. If p; (0) # 0, then C contains an unique
movable singularity : ¢(T") = (2(T),0), where z(T) = —(T + po(0))/p1(0) (clearly ¢(T') € U for
|T + po(0)| small enough). This singularity is non-degenerate, and so by (6) we get :

_ 3 (DXe(p(D)) _ (pr(0) + 1)?
BB(p(T)y-FT) - det(DXT<p<T)) N p1<0)

Hence, C is nice in this case.

Suppose now that C is non-invariant for the pencil. Consider a coordinate system (U, (z,y))
around p = (0,0) € U as in (7). Since © = 0, Lemma 2.2.1 implies that

o, _

W @) =0 = Qy)= @) + ey’

This implies that C is nice, as the reader can check by using (R).

2.2.4. (¢) = (a). Suppose that © is holomorphic. The idea is to use the well-known fact that

0=0 — /@A@zo — [0]=0in H5z(M)
M

The proof will be based in the following :

Claim 1. [,, ©A© = —27i [,, ¢;(N#) AO, where ¢;(Nr) is any representative of the first Chern
class of Nz in H2 o(M).

Proof. Tet U = (Uy)aca be a covering of M by open sets, @ = (Wa)aca; = = (Na)aca and
A = (gop)u.s20 be as in (I), (IT) and (III) of §1. Tet (0n)aca be a collection of 1-forms,
where 6, is meromorphic on Uy, dws = 0o A we and dng = 04 A 1e. Recall that, if U,z # (0 then

00— 05 = dg‘i—“ﬁf. On the other hand, by taking a C* resolution of the additive cocycle (Cii—“;)UaB#@,

we can write C;g“" = Jto — [13, Where the closed 2-form A defined by A|y, = %d,ua, represents
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c1(Nx) on H% (M) (cf. [G-H], pg. 141). If Uyg # 0, then if—“; =0, — 03 = pto — pg. Hence,
we can define a C*° 1-form ¢ on W = M \ Tang(F,G) by ¢lv.ow = 5=(0a — pa). Note that
do = %@ — A. This implies that dy extends to a C*° form in M. Moreover,

) /M%@—A)A@:/de@.

The idea is to prove that [ o dp A © = 0. Let us study the behavior of ¢ near an irreducible
component of Tang(F,G). Set Tang(F,G) = Ele C; + Y D;, where C; is invariant for the
pencil, 7 = 1,...,k, and D; is non-invariant, ¢ = 1,...,£. Consider first the non-invariant case.
Let p € |D;| N U, be a point such that we have a normal form like in (b) of Lemma 2.2.1, in
a coordinate system (U, (z,y)), where U C U,. As we have seen, w,|y = fw and n4|lv = fn,
where f € V*(U), w = da and n = ydy — Q(x,y)dx, Q(x,y) = qo(x) + q(x) y + y* q(x,y). This
implies that 0, = 6 + ‘ft—f, where 0 = %dm. Note that © is holomorphic in U if, and only if, % is
holomorphic, which implies that 6, is holomorphic in U and ¢ is C* in U. This implies that ¢ is
C* on M\ |C|, where C =}, C; and |C| = U; |C}].

Consider now a point p € |C|. Let (f1...fx = 0) be a (reduced) equation of C in a small Stein
neighborhood U of p. We assert that there exist Ay, ..., \x € C and a C*° 1-form v such that

(10) elu = Z )‘J f]

In fact, suppose first that p belongs to an invariant component C; and we have a normal form like
in (a) of Lemma 2.2.1 on a coordinate system (U, (z,y)), where U C U,, for some a € A. As
before, we have wy |y = fw = f.dy and ns|v = fn, where f € V*(U) and n = P(x,y) dy — yda.
From the first part of the proof and the fact that © is holomorphic, we get

df 1+0P, a1 . dy

(*) o =0+ =—Ldy+ =5

where Ay € C and ¢ is a holomorphic 1-form. This implies that ga]U = )\U% + vy, where vy7 is a
C*° 1-form.

Let us prove that Ay depends only of C;. It follows from (*) that

27

1
—)\U = Res(0,, C;) = —/Qa ,
2mi Jy

where 7 is a small cicle swrrounding C;. If 8 € A is such that U,NUgNC; # O then 0, — 65 = C;g“; .

Hence,

1 1
— [ 05,

. -
27 ~ 2m ~

if vy U, NUg. This proves that Ay depends only of C;. Set Ay = A;.

Note that A; satisfies the following property
(A). Let (fjo = 0) be a reduced equation of C; N U,. Then 6, — 5); C;f?'“ has no poles along
C;NU,.
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We leave the proof of (A) for the reader. Let p € |C|NU,, and (fja = 0) be a reduced equation

of Cj on Uy. It follows from (A) that 6, — Z? 1 271”)\ 7“ is holomorphic on U,. Hence,

v=¢lu, — Ele Aj % is C*°. This proves (10).

Let us prove that | A A © = 0. We will consider two cases :

1% case. All the singularities of C are nodes. In this case, we can find a finite open covering
V = (Vo)aca of M with the following properties :

(i). For every a € A, V, is a domain of a coordinate system v, = (Zqa,¥a): Ua — C2 such that
o (Us) = D2 X Da, where D, = {z € C||z| < r}.

(ii). If U, = 2Dy x Dy) then Ug Uy = M

(iii). If |C|NV, # 0 is smooth then (y, = 0) is an equation of CNV,,. In particular, ¢ly, = A dy&—l—y,
where A € C and v is C*°.

(iv). If |C| NV, has a singularity in V,, then (z4.yo = 0) is an equation of C'NV,. In particular,
elv, = Aa d% + Xy dy“ + v, where Ay, Ay € C and v is C®.

In general, let (fa = 0) be an equation of C NV,. Let (¢4)aca be a C= partition of the unity
such that supp(¢a) C Vo for all o € A and set f = exp(d_, va-ln|fa]). If § € A is fixed, then

flvs=eap( Y gadnlfal)exp( Y palnlfal) =

OCVOLB#@ OCVOLB 0

=eap( Y Panlgasfsl)eap( D palnlfal) = |fsl-95
(27 Va 6#0 (27 Va B= 0

where gg: Vg — (0,400) is C°.

V). flv, = |fal-9a, where g, € C=(V,). In particular, f can be extended continually to M as

(vi). f>0o0n M\ |C|and f~1(0) =|C].
Set Me = {p € M| f(p) > €} and Ce = {p € M| f(p) < €}. For all € > 0 we have

/dgp/\@:/ dga/\@—l—/ dgp/\@:/ d(gp/\@)—l—/ dgp/\@:/ ¢A@+/ de ANO
M M, C. M, Ce oM. Ce

Since éz_% ( fC’e do A @), we get

(vii). [, dp NO = éz_% (faMe ©ANO).
It is enough to prove that lim ( f onm. P /\@) = 0. In order to prove this fact, consider a covering
e—0 €

Vi = Vo, ., Vi i= Vi, } of |C] by sets of V, such that {U; := Ug;|1 < j < n} is still a
covering of |C|. If U = U” U; then there exists €g such that, if € < ¢g then OM, C V. Hence, if
S;(€) = OM.NU, and I;( fS(e) | A O], we get that

n

‘ ga/\@‘ Z ,if e < g

It follows that, it is sufficient to prove that ling Ij(e) =0for all j =1,...,n. We will prove this fact
€—

in the case where V; is like in (iv) and leave the other case for the reader.



CURVATURE OF PENCILS OF FOLIATIONS 17

Consider a coordinate system (z,y) on V; as in (iv), that is |C| NV, = (2.y = 0). As we have
seen before, O|y;, = g(z,y) dx N dy and ¢ly, = A, dgg + Ay dy + v, where g € V(V}), A, Xy € C and

v is C*°. Therefore, there exists a constant ¢ > 0 such that on U we have
— dx o dy
e AB| <c (| = AdTAdy|+|= ANdTAdy| +|vAdTAdy|)
z Y

If we set A;( fs()]dm/\d_/\ dy|, Bj(e fs()]dy/\d_/\ dy| and C;(e fs()]VAd_Ad_],
then I;(e) < (A (e)+ Bj(e) + Cj(e)). Hence it is sufficient to prove that lm(”)LA (¢) —lmz)LB () =
€—> €—>
éz_% Cj(e) = 0. We will prove that éz_% A;(€) = 0 and leave the proof that éz_% Bj(e) = éz_% Cji(e) =
0 for the reader (note that ling C;(€) = 0 because v is C*). Given 0 < a < 1, define
€—>

Z Z

d d
J(a,e):/ %5 n A dg| and K(a,e):/ % p dz A g
S(On(lelza) SN (el <0

so that A;(€) = J(a,€)+ K(a, ). Since |2 AdTAdY| is C*° on (x| > a), we get that lzm J(a,e) =0
for all @ > 0. Therefore, it is sufficient to prove that there exists 0 < a < 1 such that lmg K(a €)=0.
€—

Set @ = r e and y = se'P| so that |2 A dT A dy| = 2|dr A da A dy|. In the coordinate system
(r,a,y) we have f(r, o, y) = r.s.g(r,a,y) (by (iv)), where g € C* and g > 0. Since 8Tg(O a,y) =
9(0,a,y) > 0, there exists 0 < a < 1 such that the map ¥(r,a,y) = (r.g(r,o,y),a,y) = (R, a,y)
is diffeomorphism from a neighborhood W of (r = 0) N (Jy| < 1) onto W7 = (R < ) N(ly <1+4),
where W sup(r < a) N (Jy| < 1). Note that v~ R, a,y) = (R.h(R, o, y), a, y), where h is C*°. In
the coordinate system (R, «, y) we have

SiegNWr=(RJyl=Rs=¢)N(s<1):=T() = K(a,e)= /T(e) 2|d(R.h) A da A dy|

if € > 0 is small. We assert that there exists a constant ¢ > 0 such that 2|d(R.h) A da A dg| <
c.R|ds N da A dB| on T(e), if € is small (the restriction to T'(¢)). In fact,
2|d(R.h) Nda A dy| < 2R|dh A do Adg| + 2|h| |[dR A da A dg| <

< 2R|hg||dR A da A dg| + 2R |hy| |do A dy A dg| + 2|h| |dR A do A dy|

Since K =y ((r < a) N (Jy| < 1)) is compact, 2|h|,2|hg|,2|h,|, R are bounded in K, so that there
exists a constants ¢; > 0 such that

2|d(R.h) Nda Ady| < ci (R|da Ady Adg|+ |dRAda Adg|) < ci (2 R|ds Ada Adf| +|dR A do A dy))

on K, because |da A dy A dj| = 2|ds A da A dB|. On the other hand, 7 = s.e”® and R.s = ¢ on
T(€). Hence, if ¢ > 0 is small, we get

|dR A do A dg| = |d(Rdg) A da| = |d(—R sie”Pdg) A da + d(Re™Fds) A dal

= |d(—eie”PdB) Ada + d(Re™Fds) Ada| = |d(Re™Fds) A da| <
< Rl|ds Nda AdB| + |dR Ads Ada| = R|ds Ado A df|
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because dR A ds = 0 on T'(¢). Therefore, on T'(¢) we have 2|d(R.h) Ada Ady| < c.R|ds Ada A df,
where ¢ = 3¢;. From this, we get that

K(a,e)gc/ R]ds/\da/\dﬁ]:ce/ ]E/\da/\dﬁ]:
T (€) T s

(e)

On the other hand, the region T'(¢) in the real hypersurface R.s = ¢, is contained in a re-
gion of the form Ti(e) = {(&,s,a,0)|R.s = ¢, a,8 € [0,2n],1 > s > £}, where Ry =
sup{R(r, a,y)| (r, o, y) € Sj(€)}. This implies that

d
K(a,¢) gce/ ]—S/\da/\dﬁ]:47T2ce.]log(e/R0)] = limK(a,e)=0
Tl(e) S e—0

This finishes the proof of Claim 1 in the first case.

2"? case. General case. Consider a resolution of the curve C' by blowing-ups 7: M — M and let
C* =a71(0), ©* = 7*(0) and ¢* = 7*(¢). Then [,, dp A© =0 if, and only if, [, de* A® =0.
Note that the singularities of C* are of nodal type. It is sufficient to prove that |C*| admits an open
covering satisfying (i), (ii), (iii) and (iv). Let p € sing(C) (which is not a node) and g € 7~ (p).
Since the singularities of C'* are nodes, we have two possibilities : either ¢ is a smooth point of
C*, or ¢ is in the normal crossing of two local components, say )1 and Dy of C*. Let us consider,
for instance, the second case. Let (W, (z,y)) be a coordinate system around p, where C' N U has
?:1 Aj %
AL,y A € C and v is C*°. Consider a coordinate system (V, ¢ = (u,v)) around ¢ = (0,0) such
that (V) € W, ¢(V) = {(u,v) € C?||u|,|v| <2}, D1NV = (u=0) and DoNV = (v = 0).
We have still two possibilities : either 7(Dy) = w(D2) = {p}, or n(D;) = {p} for just one
J € {1,2}. Let us consider, for instance, the first case. In this case, if fj is the strict transform
of f;, then Fj := fj]V € V*(V). On the other hand, f; o w(u,v) = u™.v™ .F;. Hence, in the
coordinates (u,v) we have, 7*(¢) = A & + X, €2 + v*, where A, = > My, A =3, ny.A; and

a reduced equation (fi...fr = 0). As we have seen, we can write ¢lw = > + v, where

V=) + 30,5 A d;j. Since F; € v*(V) for all j, we get that v* is C*°. We leave the proof of
the other cases for the reader. This finishes the proof of Claim 1. [

Let us finish the proof of (¢) = (a). Suppose by contradiction that © is holomorphic and
© #£ 0. Let Z := (0)o be the divisor of zeroes of ©. Given a divisor D on M we will denote by
[D] its class in Pic(M). Since © is a non-vanishing section of Q?(M), we have Kj; = [Z]. On the
other hand, it is known that Tang(F,G) = Ky + Nr + Ng (cf. [Br]). Since Nr = Ng we get

that 2Nz = T'ang(F,G) — [2] = >_5_, n;[D;], where n; € Z and Dj is an irreducible component
of Tang(F,G)U Z, 1 < j <m. It follows from Claim 1 that

/ @A@ZZ—Z’TF’H’LJ/ Cl<Dj)/\@
M

=1 M

On the other hand, it is known that (cf. [G-H])

/M cl(Dj)/\@:/D'@ZO

because O is a (0,2)-form. This finishes the proof of Theorem 1. O
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