ROBUST ENTROPY EXPANSIVENESS IMPLIES GENERIC DOMINATION
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ABSTRACT. Letf:M — M be aC'-diffeomorphismr > 1, defined on a compact boundaryldss
dimensional manifold/, d > 2, and letH (p) be the homoclinic class associated to the hyperbolic
periodic pointp. We prove that if there exists @ neighborhood of f such that for every

g € U the continuatiot (pg) of H(p) is entropy-expansive then there iB&-invariant dominated
splitting for H(p) of the formE® F1 @ - -- & Fc ® G whereE is contractingG is expanding and

all Fj are one dimensional and not hyperbolic.
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1. INTRODUCTION

In this paper we study what are the consequences at the dgalalpehavior of the tangent
mapD f of a diffeomorphismf : M — M, assuming thaf is robustly entropy expansive. In this
direction we obtain that the tangent bundle hd3fainvariant dominated splitting of the form
E®FR ®---©F®GwhereE is contractingG is expanding and aH; are one dimensional and
not hyperbolic.

Let M be a compact connected boundary-less Riemanmidimensional manifoldd > 2,
andf : M — M a homeomorphism. L& be a compact invariant subset Mf and dist :M x
M — R" a distance irM compatible with its Riemannian structure. FoyF c K, n€ N and
& > 0 we say thakE (n,d)-spansF with respect tof if for eachy € F there isx € E such that
dist(f!(x), fi(y)) <dforall j=0,...,n—1. Letr,(d,F) denote the minimum cardinality of a
set that(n, 8)-spang~. SinceK is compact,(d,F) < «. We define

h(f,F,8) = lim sup} log(rn(8,F))

Nn—oo n
and the topological entropy dfrestricted ta- as

h(f,F)= eIsiinoh(f,F,ES).
The last limit exists sinch( f,F,d) increases a8 decreases to zero.
Definition 1.1. For x € K let us denote
Me(x, f) = {ye M/d(f"(x), f"(y)) <&,ne Z}.
We will simply writel"¢ (x) instead ofl ¢(x, f) when it is understood which f we refer to.
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Following Bowen (sefBo]) we say that K is entropy-expansiver h-expansivdor short, if
and only if there exists > 0 such that

ht (¢) = suph(f,l¢(x)) =0.
xeK

Theorem 1.1.[Bo, Theorem 2.4For all homeomorphism f defined on a compact invariant set
K it holds

h(f,K) <h(f,K,g)+ht(e) in particular h(f,K) =h(f,K,¢) if hf(¢) =0.

A similar notion toh-expansiveness, albeit weaker, is the notioagyimptotically h-expansiveness
introduced by Misiurewicz [Mi]: leK be a compact metric space ahdK — K an homeomor-
phism. We say that is asymptoticallyh-expansive if and only if

l@ohf(s) =0.

Thus, we do not require that for a certain> 0, ht(¢) = 0 but thath? (¢) — 0 whene — 0. It
has been proved by Buzzi, [Bu], that a@f diffeomorphism defined on a compact manifold is
asymptoticallyh-expansive. The interessed reader can found examplesdebuibrphisms that
are not entropy expansive neither asymptotically entrogpaasive in [Mi, PaVi].

Next we recall the notion of dominated splitting.

Definition 1.2. We say that a compact f-invariant etC M admits a dominated splitting if the
tangent bundle ;M has a continuous D f-invariant splitting & F and there exist G 0,0 <
A < 1, such that

(1) IDEE)] - IDFF(f7(x)) ] < CA"¥x e A, n> 0.

Observe that if the topological entropy of a mapM — M vanishesh( f) = 0, then automat-
ically f is h-expansive. For instance Morse-Smale diffeomorphigmgl — M areh-expansive.
We remark that Morse-Smale diffeomorphisms &festable under perturbations and so they
constitute a class which is robustiyexpansive.

Here we are interested in diffeomorphisms that exhibit asttbdehavior, i.e.: their topolog-
ical entropy is positive. Moreover, we restrict our studyhtamoclinic classesl (p) associated
to saddle-type hyperbolic periodic points. Recall thatbenoclinic clasH(p) of a saddle-
type hyperbolic periodic poinp of f € Diff1(M) is the closure of the intersections between the
unstable manifoldV"(p) of p and the stable manifod/s(p) of p. These classes persist under
perturbations and we wish to establish the property of tlutegses under the assumption that
h-expansiveness is robust.

Definition 1.3. Let M be a compact boundaryles§ @nanifold and f: M — M be a C dif-
feomorphism, £> 1. Let H(p) be a f-homoclinic class associated to the f-hyperbolicquid
point p. Assume that there is & @eighborhoodt! of f, such that for any g €I it holds that the
continuation H pg) of H(p) is h-expansive. Then we say thatHf(p) is C'-robustly h-expansive.

In [PaVi, Theorem B] we obtain that H (p, f) is isolated and the finest dominated splitting
onH(p, f)is
THpnM=EoFR & - ORoG
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with E contracting,G expanding and alFj, j = 1,...,k, one dimensional and not hyperbolic,
then f /H(p, f) is h-expansive. Moreover, since the dominated splitting is@nreed unde€!-
p?rturbations this result holds foiGt-neighborhoodi( ) c Diff}(M), i.e.: h-expansiveness is
C*-robust.

Roughly speaking, [PaVi, Theorem B] says that the dominapimperty implies that small
neighbourhoods i (p) have an ‘ordered dynamics’ and there cannot appear ‘arbjtsanall
horseshoes’, i.e:, horseshoes generated by homoclinliusptniWES(x) ﬂWE“(x) for & > 0 ar-

bitrarily small andx € H(p) periodic, as in the example given in [PaVi][Section 2] forua-s
face diffeomorphism. The presence of these arbitrarily Ishn@seshoes would imply that
SURch(p) h(f,Te(x)) > O for anye > 0.

This paper is intended to continue [PaVi] in the reversedtiioa: we analyze the consequences
of h-expansiveness to hold inGt-neighbourhoodi(f) c Diff (M) of f. Our main results are
the following:

Theorem A. Let M, f: M — M and H(p) be as in Definition 1.3 for = 1. Then Hp) has a
dominated splitting E> F.

In fact [PaVi, Example 2] shows that in dimension greatergua to three the existence of
a dominated splitting foH (p) is not enough tho guarantéeexpansiveness, so it is natural to
search for a stronger property.

Let us recall the concept dinest dominated splittingnitroduced in [BDP].

Definition 1.4. Let/A C M be a compact f-invariant subset such that IIM=E; ®E>; @ - - - D Eg
with Ej Df invariant, j=1,...,k. We say that EDE> @ - - - @ Ex is dominated if for alll < j <
k—1

(BE1®---Ej) @ (Ej11©--- DEy)
has a dominated splitting. We say that®&E, ¢ - - - & Ei is the finest dominated splitting when
forall j =1,... ,k there is no possible decomposition gfds two invariant sub-bundles having
domination.

An improvement of Theorem A is the following.

Theorem B. Let M, f: M — M and H(p) be as in Definition 1.3 for = 1. Then the finest
dominated splitting in Kip) has the form EbF, @ - - - ® Fc ® G where all  are one dimensional
and not hyperbolic.

If H(p) is isolatedthen we may refine the previous result. Before we announcasety
this result, let us recall the definitions of: chain recutrset, isolated homoclinic class and
heterodimensional cycles..

Definition 1.5. The chain recurrent set of a diffeomorphism f, denoted pfy) Rs the set of
points x such that, for evewy/> 0, there is a closed-pseudo orbit joining x to itself: there is a
finite sequence x Xg, Xy, . . ., Xn = X such thatist( f (x;), xi+1) < €.

Definition 1.6. We say that Hlp) is isolated if there are neighborhoods of f in Diff}(M) and
U of the homoclinic class class(ig) in M such that, for every g U, the continuation Hpg) of
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H (p) coincides with the intersection of the chain recurrenceo$egt R g) with the neighborhood
U.

Remark 1.2. Generically a recurrence class which contains a periodimp@g coincides with
H(pg), [BC].

Definition 1.7. We say thaf is a cycle ifl = {p;,0 <i < n,po= pn}, where p are hyperbolic
periodic points of f and W(p;) "\W3(pi1) #0, forall 0<i <n-—1.T is called a heterodimen-
sional cycle if, for somes# j, dim(W"(p;)) # dim(W"(pj)).

Recall that thendexof a hyperbolic periodic poinp is the dimension of its unstable manifold
WH(p).

Theorem C. Let M, f: M — M and H(p) be as in Definition 1.3 for .= 1. Assume moreover
that f/H(p) is isolated. Then for g int(f), H(pg) has a dominated splitting of the form
E®F @ - ®FR®G where E is contracting, G is expanding and ajldfe not hyperbolic and
dim(Fj) = 1. Moreover, in case that the index of periodic points i(gg) are in a C robust way
equal to indekp) then for an open dense subgétC U(f), H(pg) is hyperbolic, i.e.: k= 0.

On the other hand, if there agearbitrarily C1-close tof such that irH(pg) there are periodic
points of different index thehl (p) is approximated by robust heterodimensional cycles, [BDi]

If we do not assume thad (p) is isolated but we know that cannot be approximated loy
exhibiting a heterodimensional cycle we have the followiesult:

Theorem D. Let C(M) = { f € Diff}(M); f has no cycle}s and H(p) be as in Definition 1.3 for
r = 1. Assume that & Diff }(M)\ C(M). Then for g in a residual subs& C U(f), H(pg) has
a dominated splitting of the form™& E€ ¢ EY where E is not hyperbolic andlim(E®) < 2, ES
is contracting and B is expanding. Moreover, #fim(E®) = 2 then E® = ES ¢ E5 dominated.

1.1. Idea of the proofs. The proofs of Theorems A and B go by contradiction: under e h
pothesis that there is not a dominated splittindlin, M, we profit from some ideas of [PV]
and [Ro] to create a flat tangency betw&®f p) andW"(p). We remark that in [PV, Ro] for
the case that difiM) > 2 it was proved that if > 2 andg has a homoclinic tangency then there
are diffeomorphisms arbitrarilg'-close tog exhibiting persistent homoclinic tangencies (thus
generalizing results of [Nh1], see also [Nh2]). In our casece we can perform the perturba-
tions in theC! topology, our arguments are simplier than theirs to obtaA diffeomorphisng
exhibiting a flat tangency, and afterward create an arc @faacies betweeW>(p) andwWY(p).

Next we follow [DN], to perform anothe€!-perturbation with support in a small neighbor-
hood of the arc of tangencies leading to the appearance ufaaily small horseshoes with
positive entropy contradicting-expansiveness. Therefolf /Ty, )M admits a dominated
spliting.

Moreover, either the finest dominated splitting (see Dedinil..4) has the forrle ©F @ --- @
Fc ® G where allFj are one dimensional and not hyperbolic or again we contrasliustness of
h-expansiveness using [Go, Theorem 6.6.8].

For the proof of Theorem C we assume some specific generieprep described in Section
3 and thatH(p) is isolated. These allow to prove that the extremal sub-lastel and G are
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respectively contracting and expanding. Moreover if thdeinof periodic points oH (pg) is
robustly the index op then for an open dense subsetioff ) the dominated splitting defined on
Th(pM is hyperbolic. This proof is done in two steps: (1) First weya in Lemma 3.2 that the
extremal sub-bundles are hyperbolic using the facthi{ad) is isolated, [BDPR]. (2) Second we
show in Lemma 3.3 that if in @1-robust way the index of periodic pointskh(pg) are the same
for g € U(f) then for an open and dense subgktof () we have thaH (pg) is hyperbolic.

Finally in Theorem D, where we do not assume thép) is isolated, we see, under the generic
assumptions described at Section 3, that for a residuakst#ps (f) we have a dominated
splitting ES@ E¢ @ EY defined only(p) M such thaE* is contractingE" is expanding anét® is
dominated and at most two dimensional. For this we assuntieeiuthatf e Diff 1(M)\ C(M)
which allows to use [Cr, MainTheorem].

2. ENTROPY EXPANSIVENESS IMPLIES DOMINATION

In this section we prove Theorem B assuming thétl (p) is robustlyh-expansive.

Let H(p) be af-homoclinic class associated to the hyperbolic periodiatpe. Assume that
there is aC! neighborhood! of f such that for ang € U it holds that there is a continuation
H(pg) of H(p) such thaH (pgy) is h-expansive.

We may assume thattis ahyperbolic fixed poinsincef /H(p) is h-expansive if and only if
fM/H(p) is h-expansive. This follows from the fact that for any comp&ghvariant set\ we
have thah(f™ A) = m-h(f,A) which implies that(f™,A) =0 < h(f,A) =0.

Letx € WS(p) N"W"(p) be a transverse homoclinic point associated to the penudit p. We
defineE(x) = T\W?3(p) andF (x) = T\WY(p). Sincep is hyperbolic we have thd&(x) ® F(x) =
TxM. Moreover,E(x) andF(x) are Df-invariant, i.e..Df(E(x)) = E(f(x)) andDf(F(x)) =
F(f(x)). Denote byH;(p) the set of the transverse homoclinic points associated tbhen, it
can be proved thdt (p) = H;(p). HereA stands for the closure iNl of the subseA c M. So
if we prove that there is a dominated splitting td¢(p) we are done since we can extend by
continuity the splitting to the closutd (p). Moreover, since&C?-diffeomorphisms are dense in
the Cl-neighbourhoodil we may assume thdtis of classC? taking into account that we are
assuming thatt-expansiveness !-robust.

We will use the following result proved in [Fr]:

Lemma 2.1. [Fr, Lemma 1.1]Let M be a closed n-manifold,:fM — M a C! diffeomorphism,
and U(f) a given neighbourhood of f. Then, there extis( f) C U(f)andd > 0suchthatif ge
Uo(f), S= {p1,P2,...pm} C M is afinite set, andiL.i = 1,...,m are linear maps, L T My —
T Mg (p,), satisfying|Li —Dpg|| < 8,i =1,...,mthen there i§ € U(f) satisfyingd(pi) = g(pi)
and Dy § = L;. Moreover, if U is any neighborhood of S then we may clipse thatfj(x) = g(x)
forallx € {p1,p2... pm}U(M\U).

Remark 2.2. The statement given there is slightly different from thates) but the proof of our
statement is contained [Rr].

2.1. Existence of dominated splitting: proof of Theorem A. Under the hypothesis of Theorem
A, let us assume thdtis of class<C', r > 2 and prove that there is a dominated splittingHipfp)
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The proof goes by contradiction and it is done in severalkstél) at Lemma 2.3 we perform a
pertubatiorg of f exhibting a homoclinic pointg € H(pg) with small angle betweeW? .(xg,9)
andW? (Xg,0), (2) at Proposition 2.5 we perform another perturbatioat(tke still denote by
g) of f to create a tangency betwegfi(x,g) andE"(x,9), X € H(pg), (3) at Proposition 2.1
through another pertubation dfwe create an arc of flat tangencigs- H(pg), (4) finally in
Subsection 2.1.1 we perform a sequence of perturbatiofdesdding toG nearf presenting a
sequence of two by two disjoint small horseshbgesC H(pg), €n — 0 ash — . Moreover, we
can select the sequenggin such a way that none of then are a constarit-ekpansiveness of
G. Since the entropy of each of these small horseshoes isv@psie arrive to a contradiction to
h-expansiveness df.

To start, let us assume, by contradiction, thiatp) has no dominated splitting. Then, by
[MPP, 8§ 3.6 Proof of Theorem F] it holds

(AD) for all me ZZ* there existxy, such that for all 6< n < m,
IDFYEm) |- [[DF"|F (7 (xm)) | > 1/2,
Lemma 2.3. Assume that (AD) holds. Then, given 0 ande > 0 there is nt> 0 and g ane-C*-
perturbation of f with a homoclinic pointpassociated to psuch that the angle atpbetween
WS .(Xg,0) and Wa (Xg, 9) is less thary.

Proof. Arguing by contradiction let us assume that therggis- O such that for alg in Ug the
angle atxy betweenMs .(xg,9) andWd.(Xg, 9) is greater or equal thayp.

loc

By hypothesis there exist vectovs € F(xm) andwm € E(Xm) With ||Vm|| = ||[Wm|| = 1 such
that ,
D wm)[| 1,
—— >, Vj,1<j<m
I

Takee > 0 small such that an¢!-e-perturbation off gives a diffeomorphisny € 7y where
1o is theCl-neighborhood off where we havédi-expansiveness. Let > 0 be such that any
perturbation of the derivatives along a finite orbitfofan be realized via Lemma 2.1 byCA-¢-
perturbation off.

Let us defineT; : T¢j(x M — Tij(x,)M a linear map such thal|gti(x,)) = (1 +¢€)id and
Tilr(ti(xm) =1d, ] =0,...,m. Note thafl; stretche€ = Ty, W (Xm, f) and leftF = T We' (Xm, f)
unchanged. Le®: T, M — Ty, M be a linear map satisfying® = id in E(Xn) andP =id +L in
F (xm) whereL : F (Xn) — E(xm) is a linear map such thaf(vy,,) = €'wm and||L|| = €. Finally
defineGg = Ty - Dfy,,-P, andGj = Tj;1- fo,-(xm) forj=1,....m—1. By Lemma 2.1 there
exists a diffeomorphisng : M — M such thatg is e-near f, keeps the orbit ok,, unchanged
for j =0,1,...,m, and such thabDgsj( ) = Gj. We may assume (and do) that the support
of the perturbation does not cut a small neighborhoog.dt follows thatxy, continues to be a
homoclinic point ofg. Moreover, we do not chand&( f! (xm)), j € Z, andF (f!(xm)) is changed
only for j > 0. Thus such bundles are the stable and unstable directiabiamoclinic point
of a diffeomorphisng € Uy. We obtain that, — vy + €Wy = u and afterm iterates we have
Um = Dg™(u) = D@™(Vm+ €'Wim) = Df™(vin) + (14 €") "D f™(€'Wiy).

Giveng’ > 0 we may findn > 0 such that’(1+¢")™ > 44 2/yp whereyy > 0 is, by hypothesis
of absurd, such that (E(x),F(x)) > yo for all x € Hi(pg), 9 € Uo, whereZ(E(x),F(x)) stands
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for the angle betweeB(x) andF (x). With this choice oin, by [Ma2, Lemma 11.10] we have
IIDfm(Vm)H:IIUm—(1+8’>mem(’ m)[| =

Yo

> ol > ™D 1w | — D1 ™) |

Dividing the inequality}|D f™(vi) || > 110\10 } 1€ (14-€") ™D ™ (W) || — [|DF™(Vin) || | by%HDfm(vm)H

and taking into account that by hypothesis
I (wm)[|
[DF(wm)]|

[[Uml| =

- and €(1+ehM>4+2/y
we find
1+vo _ €(1+¢€)™
>
Yo 2
arriving to a contradiction. Hencé(Dg™(u), wnm) <y, proving Lemma 2.3.

1
s 14ljy= Y
Yo

O

Let us recall the following result which may be found in [BOfmma 4.16], see also [BDPR,
Lemma 3.8].

Theorem 2.4. Let p be a hyperbolic periodic point and(ld) its homoclinic class. Assume
that H(p) is not trivial. Then there exists and arbitrarily smalt@erturbation g of f and a
hyperbolic periodic point g of Kpg) with periodri(q) and homoclinically related with gosuch

that D f&t(q) has only positive real eigenvalues of multiplicity one.

Observe that in the previous result, sitge= H(pg), we haveH (pg) = H(dg). So, to simplify
notation, we may assume directly tht g and moreover thag = f, and thatp is a fixed point.
We order the eigenvalues BXf, labeling themas @ A <--- <A1 <1<y < - < Pd—k SO
that the less contracting and the less expanding ones grectaslyA1 and .

By a smallCl-preturbations we may also assume that locally, in a neigtdzmlV of p, we have
linearizing coordinates so that
d—k
Z}\ ajuj + Z Hj @t j Ukt j

where we writex= ¥9_; aju; forxe Vv .

The lines inW3 .(p)/V corresponding to the eigenvaluesmay be extended to all %5(p)
by backward iteration by giving us a foliation by lines of dimensida Similarly forwY(p) we
have a(d — k)-foliation by lines obtained by forward iteration by

Now, let us assume thatis nearf, f = g in a small neighborhood gb and that there is a
small angle betweefW?3(p,g) andT,W"(p, g) wherex is ag-homoclinic point associated

That is: there iy small such that
Z(TWS(p,g), TW!(p,9)) <.

By Theorem 2.4, we may assume that all the eigenvaluéhfé['f are positive with multiplicity
one and that we have linearizing coordinates in a small meidiood ofp.
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The next proposition stablishes that if the angle betwg&(p,g) andT,W"(p,q)) is small
than we can create a tangency betw@&ah=(p,§) andT,W"(p, §)), for somegnearg.

Proposition 2.5. There isy > 0and Up(g) C U(f) so that for som§ € Up(Qg) there is atangency
between E(x,§) and B'(x,§) if Z(E3(x,9),E"(x,9)) <y. Moreover x is a homoclinic point of
g, E3(x,9) @ EY(x,§) has dimension d 1 and there is N> 0 so that if < u > is the subspace
common to E(x, §) and E¥(x,§) then(Dg)N(< u >) is tangent to the line corresponding to the
less contracting eigenvalue ai®g§) ~N(< u >) is tangent to the line corresponding to the less
expanding eigenvalue ofd.

Proof. Let U(f), Up(f) andd be as in Lemma 2.1. Shrinkintj if it were necessary we may
assume that clddy(f) C U(f). Hence we may assume without loss of generality that there is
someC > 0 such that sufj|Dxg|| : g € Up(f)} <C.

By hypothesis there ig € Up(f), x € W3(pg,9) MW" (pg,g) andy > 0 small so that

Z(E%(x,9),EY(x,9)) <Y.

Takingy < 8/C , since Z(ES(x,g),E!(x,9)) <V, there existv € ES andu € ES such that
v+ueEY|u|=1,|v]| <y.LetT:TyM — TyM be such thaT}EsL =0, T(u)=—vand|T| <

8/C. LetL : Ty-1,9yM — TxM be defined by = (Id +T) 0 Dg-1,yg. Then we have
IL—Dg1x0ll <8, and ueL(E“g *(x).

Take a neighborhood of g=1(x) such thatOg(x) NU = {g~%(x)}. Using Lemma 2.1 we
find § € U(f) such thatg!(x) = §'(x) for all j, § = g outsideU, andDg-1§ = L. Hence
X € WS(pg,§) N"W!(pg,d) since its forward and backward orbits continue to conveagpgt
Moreoveru € E3(x,§) NEY(x,§) and so the intersection W°(pg) andW"(pg) is not transverse
at the pointx.

Since the eigenvalues Bff,, are all real positive and of multiplicity one arfd= g in a small
neighborhood ofp, by N forward iterations we have a vect@Ng(u) almost tangent to the
straight line< v, > corresponding to the less contracting eigenvalyg #&gain by Lemma 2.1
we can perturlg dutside a small neighborhood pto let the direction ofD§)N (u) coincide with
< vy >. Similarly we obtain(D§)~N(u) tangent to the line corresponding to the less expanding
eigenvector oDgp. O

From Proposition 2.5 we may assume foitself that there is a homoclinic point of tangency
x € W35(p) "WY(p) with properties analogous to those@fThe next lemma asserts that under
these hypothesis, we can obtain anfuaf non-tranversal homoclinic points WS(p) "\WY(p).

Proposition 2.1. Let p be a hyperbolic fixed point for f of index k and ¥V3(p) "WY(p) such
that the intersection at x is not transversal. Then by antaabily small C1-perturbation we may
obtain a diffeomorphism g with & W%(pg,g) "W"(pg,g) such that the intersection at x is flat,
there exists a small ar@ contained in the intersection of the stable and unstableifols of
p. Moreover, there is N> 0 such that §'(B) WS.(p,g) is tangent to the eigenvector corre-
sponding to the less contracting eigenvalue and analogogisY (B) C W.(p,g) is tangent to
the eigenvector corresponding to the less expanding eiteav
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Proof. Since p is a hyperbolic saddle)N3(p) is an Euclideark-dimensional hyperplane and
WHY(p) an Euclidear(d — k)-dimensional hyperplane both immersedvn If the intersection at

x of W5(p) andW"(p) is not transversal we should have a veaief 0 in T,WY(p) N TW3(p),
i.e.: we have a tangency betweafi(p) andw"(p) at the homoclinic point. Using Lemma 2.1
we may assume that the subspace generateddihe unique in common betwedpVY(p) and
TW3(p), that isT,WY(p) + TYW3(p) has dimensiom — 1. Moreover, we also may assume that
k > d —k (otherwise we may také ! instead off) and, again by Lemma 2.1, that the tangent
spaceT,W(x) intersects trivially(T,WS(x))* the orthogonal complement GRWS(x). Under
these assumptions the orthogonal projectioMffx) into W2(x) is locally a diffeomorphism
in a suitable neighborhood of Let us choos®y C W7 (x) a small disk andN > 0 such that
fN(Dyx) € WS(p), and letLy be a small disk iW(x) such thatf ~N(Lx) ¢ W¥(p). Lx projects
ontoL} C Dy diffeomorphicaly. Via a local coordinate map we may idgnb¥ with

{yeERY /ypi1 = =yg=0;y3+--+y2 =1},

with x identified with the origin 0 andi having the direction oDy; which is tangent at O to
L/ too. Ly may be viewed as the graph of a mBp L, — (TWS(x))*+ with g—yrl lo=0. To
simplify notation we write(ys, ...,yk) = Y1 and (Yk+1,---,Yd) = Y2. Hence if(Y1,Y2) € Lx then
de:kF(Yl(Z)), where, giverl), Y1(Z) is a local coordinate map from a neighborhood of 0 in
R~ to Dy.

Claim 2.2. There exists a Eperturbation of f that produces a diffeomorphisra gI( f) with a
flat intersection at xc Dy N Ly, with Dy € WZ(X) and Ly € W¢'(x). This flat intersection contains
a small arcp.

Proof. Defineh: M — M by
h(Y]_,Y2> = (Y]_,Yz — G(Y]_,Yz)r(y]_, 0... s O))

Here G is aC”-bump function , 0< G(Y1,Y2) < 1, that vanishes in the boundary of the ball
B(0,¢/), is equal to 1 inB(0,&’/4), and such that 0G| < 2, whered means the gradient. Let

?l
us see that is a diffeomorphisng’-C*-close to the identity.

(a) his injective: Indeedh(Y1,Y2) = h(Y],Y;) implies thaty; =Y]. Hence
Y2 — G(Y1,Y2)[ (y1,0...,0) = Y, — G(Y1,Y3)I (y1,0...,0).
Therefore
IY2 = Ya|l = (G(Y2,Y2) = G(Y1,Y2))T (y1,0,....0) [ < [T (y1,0,...,0)[],
where we have used that0G(Z;,7Z») < 1 for all (Z31,Z5). Taking into account that

or
uqm_qéﬁo_o

we obtain thaf (y1,0...,0) = o(¢'). Therefore

2
[(G(Y1,Y2) = G(Y1,Y2))| =< OG(Y4,02), Yo — Yz >< || DG | (y2,0..., )| < So(€).
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Here(Y1,0,) is a point in the segment joinin@1, Y2) with (Y1,Y;). Let us choose’ > 0
so small that? - o(¢’) < 3. It follows that

V2= Y] = [[(G(Y1, Y2) — G(Y1,Y2))T (¥1,0,. )||<—||r(y1, ;o0

By induction we have that for ali € N

1
HYZ_YZIH = ||(G<Y17Y2) _G(YJ.?YZ/))I_(yl?O,?O)H < ?Hr(yl?O??O)H

ThereforeY, =Y, andh is injective.
(b) his a diffeomorphism: Indeed, we have

Id : 0
Dh= :

art tdG _[toG
Gayl—r—l :1d raY2

Herel =T (y1,0...,0), analogouslyg—; only depends ory;, andl'! is the transpose

t, . . .
of . As g_r lo =0 we have that-G arl is small ife’ is sufficiently small and the same is

true with respect t&' $2 and™ £, taking into account thaf(y1,0, ..., 0) = o(¢’) and

|0G|| < 3. ThusDhis |nvert|ble

Items (a) and (b) above prove theis a diffefomorphism a€!-close to the identity map as we
wish andh = id off a small ballB(x,€’). Now consideg = ho f. Theng is a small pertubation
of f.

Claim 2.3. x is a flat g-homoclinic point and there is an gde- W3(p,g) "W (p, g) with x € .

Indeed, sincex € W3(p, f) N"WY(p, f) we have that lim_ 1. f"(X) = limp_._» f"(x) = p and
sox is neither forward recurrent nor backward recurrent. Tiplies that we may choose the
support,B(x,€’), of the perturbation in such a way that for£ 0, g"(B(x,€’)) N B(x,€’) = 0.
Hence ify € WZ(x, f) then fore > 0 small we obtain thay € WZ(x,g). But h sends and ar8
passing througlk in W'(x, f) onto an argy included inW2(x, f) = W2(x,g) and passing through
x too. Thereforeg~! = f~1oh1 sends the arg into B which iterated sucessively bf 1
converges t@. Hencep is an arc contained ihoththe local stable and unstable manifoldxof
which is contained iWs(p,g) "\WY(p,g). Thusp is an arc of flat intersection betwed/(p, g)
andWY(p,g). This finishes both the proofs of Claim 2.3 and Claim 2.2. O

It is not difficult to see that this perturbatiggmay be done in such a way that fdr> 0 great
enoughgV(B) c WS.(p,g) is tangent to the eigenvector corresponding to the lesgandirg
eigenvalue and analogousdy™(B) WJ.(p,9) is tangent to the eigenvector corresponding to
the less expanding eigenvalue.

All together finishes the proof Proposition 2.1.

O
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2.1.1. Creating small horseshoed.he previous result gives a diffeomorphisinC-near f,
such that the intersection betwe®t(p,g) andWS(p,g), in a local chart around such that
TWS(x) N T,WH(X) =< u >, contains a segmeift= {su: —& < s < 8}. Moreover,DgNu is
tangent to the line corresponding to the less contractipgrsiector oDgp andDgNuis tangent
to the line corresponding to the less expanding eigenveftog.

Next we shall do a perturbation gfwhich will give a diffeomorphisnt such that coincides
with g outside a small neighborhood @f similar to those of [DN, Lemma 5.1, Lemma 6.3]
in order to create a sequence of small horseskfes H(p,G) associated t&\j.(x,G) and
Wi.(X,G). These horseshoes will have positive topological entrapy aill be built in such
a way that neithee > 0, nore/2,¢/4,...,€/2",... will be constants oh-expansiveness for
H(p,G). Therefore the diffeomorphisi@ is noth-expansive, contradicting our hypothesis.

To do so we proceed as follows: first, since we are working @t-meighborhood off and
C',r > 2, diffeomorphisms are dense in DifM) we may assume tha, the diffeomorphism
obtained at Proposition 2.1, is of cla@8s r > 2.

Let us assume first that is of indexd — 1, i.e.: dimW"(p, f)) = 1. This will simplify the
techniques involved. We may assume, taking a large posiévate byg and possibly reducing
0, that3, the segment of tangency, is contained in the local stabtefold of p in a local chart
which is a linearizing neighborhoddl( p) of p.

Letw: [0,8] — R be aC” bump function satisfying:

(1) w(s) = 1/5, forse [0,5/16]. This implies thatp® (0) = ¢ (5/16) = 0 for allk > 1.
(2) Y'(s) < 0forse (5/16,0/8).

(3) W(s) =0 for allsc [5/8,5/4], this implies thatp™ (5/8) = Y (5/4) = 0 for all k > 1.
(4) W' (s) > 0forse (6/4,305/8).

(5) W(s) = 1 for all s [35/8, 3], this implies thatp) (35/8) = Y (8) = 0 for allk > 1.

Next, consideb: (—9,58/4] — R such that

b(s) = Y(s) for all s€ [0,9],

b(s) = éw(z(s+ 5/2)) for all s [~5/2,0],

b(s) = 5_12¢(22(s+ 35/4)) for all s € [~35/4,—5/2],

and in general
b(s) = 5—1an(2”(5+ 5(1—1/2") forall se [-8(1—1/2"), -5(1—1/2"1)].

Put also 5
b(s) = 5q;<s%) for se [5,55/4].

It is easy to see thdi(s) is C* at (—0,50/4]. We may assume that fare [0,9], |b/(s)| < 24/d
and|b”(s)| < K/&?, for someK > 0.

Hence fors € [-8(1—1/2"),—8(1— 1/2"] we have

21| 242"

/ _ 1 n / (oN
o(9) = 2" W(2(s+ = -0) | <

5I’1
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and
-1 4"K
S <

b”s—4n "(2"(s o
0(8) = o [W'(2'(5+ =5 -8)| < -

5n
Thereforelb/(s)| — 0 and|b”’(s)| — 0 whens — —d. Settingb(—5) = 0 we have thab/(—9d) =
b”’(—&) = 0 andb is of classC? on [—5,558/4].

Let w be the unit vector infyM tangent to the expanding eigenvectord,. Recall we
are assuming that difw"(p,G) = 1. Thenw is not contained iMW3(x, g) + TYW"(x, g) since
TWY(x,g) is tangent toT,W5(x,g). Recall that(0,s,0) are the coordinates @ in a local chart
and that the interval0, [—8,55/4],0) is totally contained if8. In the plane given by the origin 0
(identified withx) and the vectora andw we consider the graph of the functibn[d/4,55/4] —

R given by
[(s)=€1-(5—58/2)(8—5), se€[5/4,55/4].

Observe that fos € [5/4,55/4], [(s) vanishes at= /2 ands = d and it has a maximum value
equals ta¥’e; /16 ats = 35/4. Now we extend to [—8,58/4] in the following way:

[(s) =€ (s+8/4)(—s), se[-35/8,5/8,
[(s) =€3-(s+55/8)(—8/2—s), sc[-115/16,—75/16],

and in general fon > 1.:
|A(S> =€nr1- <S+ 6(1— 3/2n+1))<—6(1— 1/2”71) — S) , SE€ [_6(1_ 5/2n+2)’ —6(1— 9/2n+2)] )

Forse [—3(1—5/2"2), —3(1— 9/2"2)], | vanishes only a$,, = —3(1— 3/2"1) ands,, =
—8(1—1/2""1) and it has a maximum valuen. 1 /(5" 22"4) at (s, + Sy,)/2. We complete
the definition off in [—8,58/4] settingl(s) = 0 elsewhere.

Finally, letl(s) = I(s)b(s) for all s € [-8,55/4]. Thenl(s) is C* in (—8,55/4] andC? in
[—0,50/4.

Put coordinates in the local chaft= (S s,t) and denote bBs a small(d — 1)-dimensional
disk aroundx contained in a fundamental domain\af} .(p,g) whose coordinates in the local
chart are(S's,0). Analogously denote bR, a small 1-dimensional disk containedWt'(p, g)
aroundx whose coordinates in the local chart &es, 0). Note thatBs is characterized by = 0;
andB4 is the arcP contained inBs, parameterized bg € [—0,58/4]. The pointx is identified
with (0,0,0).

Now, pick anotheC” bump functiond such thatp vanishes outside aneighborhood of,
€ > 2¢1, and is equal to 1 in the/2 neighborhood of.

Leth: M — M be given by

(Sst) = (Ss.(t+1(9)0([YID))

andh = id outsideB(f3,€) wheree is such that the-neighborhood of8 does not intersedt N
gU)Nng ().

Now, lettingG = ho g, we get, by construction, th& is a small perturbation of, and, as
in Proposition 2.1, it is not difficult to see th& C W3.(x,G) C WS(p,G) and (0,s,1(s)) C
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Wi (x,G) C WY(p,G). Furthermore, it is straightforward to show tha&f(p,G) andW"(p,G)
intersect transversely at the points

(0,8/2,0), (0,5,0), (0, -8/4,0), (0,0,0),...,(0,-8(1—3/2""1) 0), (0, -8(1—1/2""1),0),...
and the absolute value of the tangent of the angles at théspoin

(0,—8(1—3/2™1),0), (0, —8(1—1/2"1),0) is %r}fl, neN.

We denote byy’ the graph of (s) in the plane Ow. If we choosee, €1 > €2 > --- > €, > -+
with €, \, 0 andd small, we may obtain the perturbati@®= ho g to beC! small (see [Nh1]).
Moreover, we can also assume that :

(1) G=gonUnNgU)ng *U), where we recall that = U (p) is a linearizing neighbor-
hood ofp.
(2) Wige(p,9) = Wis.(p,G) andW3.(p,g) = W5.(P,G). Hereloc > 0O states for a suitable
small posmve number,
(3) WS (x,G) UWL.(X,G) CU\G(U). In particularBUp’ c U\ G(U )
(4) G"( S (X, G)) C U for all k > 0 and there iF > 0 such thaG~
alk>T,
(5) GT(BUB) C U\GL(U).
We point out that item (5) above follows from the fact that waymeduce the value @, if it
were necessary, in order to ensure it.

(x,G)) C U for

( Ioc

Lemma 2.4. There exists a sequengg™\, 0 such that G is not h-expansive.
Proof. Recall that we are working in a linearizing neighborhabdf p with respect tay. Set
U=UngU)n---ng“(U) and US=Ung}U)n---ng*U).

Lety = G T(B) c U\G1(U) and denote by0,0,dy), (0,0,d) the coordinates of the end
points ofy corresponding respectively &= 58/4 ands= —d. In the same way we label all
points iny corresponding to thé&ransverseintersections of3 with f: (0,0,d;) corresponds
to (0,8/2,0) and (0,0,d;) corresponds td0,5,0), (0,0,d») corresponds tq0,—&/4,0) and
(0,0,d5) corresponds tq0,0,0), (0,0,d3) corresponds tq0,—558/8,0) and (0,0,d5) corre-
sponds to(0, —8/2,0), and so on, labeling the image & T of all the points of transverse
intersection betweef andf’.

Take small arcg$ anda contained inJ\G~1(U) tangent to the the direction of the eigen-
vector corresponding to the weakest contracting eigeavalliDG) , at the pointg0,0,d;) and
(0,0,d7). Multiply them by a(d — 2)-dimensional dislC of diameterc. Analogously take small
arcsaj anday' tangent to the direction corresponding to the eigenvedttiteoexpanding eigen-
value of(DG) at the pointg§0,5/2,0) and(0,0, d;) and contained itV \G(U). By theA-lemma,
[PdeM][Lemma 7.1], the forward orbits @' anda/' contain arcs arbitrarilC! nearw!(p,G)
and the backward orbits @ x C anda’® x C contain(d — 1)-dimensional disks arbitrarilg*
nearWs(p,G). By the way we have chosefj anda}® and the assumption about the eigenvalues
of D(G)p (all positive real), we have that therekis= ki (g1, ) such that fok > k; in U we have
dist(G(a$),B) < €18?/32 and distG(a}),B) < €18°/32. Moreover, we may choose> 0
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small such thaG¥(a$ x C) andGX(a$ x C) cutp’ but is contained in the/4 neighborhood of
[ and thereforé = 1 there.

In the local coordinates we have chosen, we pick a thin rgida®; with top and bottom
given byG(a$ x C) andG(a$ x C) and bounded in its sides by segments parallel to the
w-axis which is transverse Ds. Increasingk; and reducing:, a; anda?’, if it were necessary,
we may assume th&:(R) is contained in the-neighborhood of the graph @ restricted to
[356/8,90/8|.

Setgy = G4 and letg, = GT|(U\G~1(U)) : (U\G}(U)) — (U\G(U)) and consider

A= () (g2og1)"(Ra).
neZ

ThenA; contains a horseshdt; (see [Nh1, DN]) and therefor, = US“(TG(Hy) has pos-
itive topological entropy. Since this horseshoe is arblframall we may assume that there is a
periodic pointp; € Hy such thaH; C I'¢(p1) see Definition 1.1, where @ 2¢; < €. Moreover,
the periodic pointp; is homoclinically related tg since by the\-lemma we have that positive
iterates by(g, 0 g;)~* give thin subrectangles crossing allRyf and hence the stable manifold of
p1 cutsW! (x) € WY(p, G) and analogously positive iterates @pyo g1 gives subrectangles close

loc
to B in the Hausdorff metric and therefore the unstable maniéblph cutsW? (x) c WS(p, G).

loc

Claim 2.5. There is{en};_; such that for everyg, it is associated a horseshog Hvith He, C
H(p7 G) andlimn—>oo dian(Hgn) = O

Proof. Let us choose; > 0 and construdtl,. For this, picke, < €1 such thaG_kl(ai x C) and
G*kl(a’lS x C) are at a distance greater thgnfrom (S's,0). Sinceg,, < €, for all n > 2 we have
that no part of the graph ofs) for s [—0,8/4] cutsR;.

We found a new rectangl®, disjoint fromR; contained irUksz\UkS2+l with ko > ki applying
again the\-Lemma. Increasing, and reducing the corresponding valuesgfa anday, if it
were necessary, we may assume @atRy) is contained in the,-neighborhood of the graph of
B’ restricted t—50/16,5/16]. By construction when we iterate Iy the images oR; andR
cannot intersect since I\ G(U) there are only one iterate & and one iterate dR, (namely
R1 andRy). We then have fo6 two disjoint small horseshoed;, Ho both with periodic points
p1, P2 homoclinically related tq (the proof thatp, is homoclinically related tg is the same
than that top;). Hence bottH; andH; are included irH (p, G).

Next we chooses < g5 < €1 SO thatG—kZ(a§ x Cp) and G_kz(a’zs x Cp) are at a distance
greater thams from (Ss,0). For suches, there is a horsesha#;, disjoint fromHg, andHe, but
still contained inH(p,G). This construction follows the same steps as before: firdtdithin
rectangleRs cutting the graph df(s) only forse [-218/32,—155/32, RsNR; =0, RsN R, = 0.
Then find an appropriate positive real numker> k, such thaiG*s(Rs) is contained in thes-
neighborhood of the graph @f restricted tg—216/32, —155/32].

In this way we may pick the sequengesuch that for every it is associated a horseshig,
satisfying (1) lim . diamHg,) — 0, (2) Hg; NHg; = 0 and (3)Hg, C H(p,G) for all n € Z*.
This proves Claim 2.5. O
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Since the topological entropy éf;, is positive for alln, andHg, € H(p,G), we conclude that
G/H(p, G) is noth-expansive, violating robustnessteéxpansiveness. The proof of Lemma 2.4
is complete. O

Then, the final conclusion is that hypothesis (AD) describgtie begining of this section can
not hold. In another words, we conclude that there existsO such that for all homoclinic point
x € H(p) there is 1< k < msuch that

IDF/EM)IDF/F ()| < %

Following [SV, Theorem A], it can be built a dominated sptitf for the homoclinic points of
H(p, f) as required, and then extend it by continuity to the who(g@, f) using that the closure
of the homoclinic points coincide witH (p, f).

Thus, the proof of Theorem A follows.

Remark 2.6. Let us point out that even though we can assume that g, tleditirphism with

a segment of homoclinic tangencies, B, &he bump function(k), used to perturb it, is just €
Hence it seems that a similar construction can be used toegimy stronger result that @ (p) is

not asymptotically h-expansive. Recfilu, BFF], that C*- diffeomorphisms are asymptotically
h-expansive and so aperturbation of a C diffeomorphism does not disprove asymptotically
h-expansiveness.

3. PROOF OFTHEOREMSB AND C

In this section we prove both Theorems B and C. For this, lefirgs remark that after
[ABCDW, §2.1], Cl-generically the finest dominated splitting has a very sidorm. Thus,
before we continue, let us first péitin that context.

Generic assumptiong here exists a residual subsgtof Diff (M) such that iff : M — M is a
diffeomorphisms belonging tg then

(1) f is Kupka-Smale, (i.e.: all periodic points are hyperbold daheir stable and unstable
manifolds intersect transversally)

(2) for any pair of saddlep, g, eitherH(p, f) =H(q, f) orH(p, f)NH(q, f) = 0.

(3) for any saddleo of f, H(p, f) depends continuously ane G.

(4) The periodic points of are dense if6)(f).

(5) The chain recurrent classesfoform a partition of the chain recurrent set fof

(6) every chain recurrent class containing a periodic ppiistthe homoclinic class associ-
ated to that point.

Taking into account [Go, Corollary, 6.6.2, Theorem 6.6t84t guarantees that the homoclinic
tangency can be associated to a saddle inside the homodisis, the next result is proved in
[ABCDW, Corollary 3]:

Theorem 3.1. ([ABCDW, Corollary 3) There is a residual subsétC G of Diff 1(M) such that
if f € I has a homoclinic class tp, f) which contains hyperbolic saddles of indices j then
either
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(1) For any neighborhood U of Kp, f) and any G-neighborhoodu! of f there is a diffeo-
morphism ge U with a homoclinic tangency associated to a saddle of the tetinio
class H pg, ), where g is the continuation of p. or

(2) There is a dominated splitting
TH(pj)M = E@Fl@"'@Fj—i @G

with dim(E) =i and dim(F,) = 1 for all h anddim(G) = dim(M) — j. Moreover, the
sub-bundles frare not hyperbolic.

Proof of Theorem B. LetH (p) € M be a homoclinic class robustly entropy expansive, i.ergthe
is a neighbourhood! c Diff (M) such thatf € ¥, there is a continuatioH (pg) of H(p) for

all g € U andH(pg) is h-expansive. By Theorem A we have a dominated splitting defore
Th(p)M. Moreover, by [Go, Theorem 6.6.8], we have thati(pg) there is a finest dominated
splitting which has the form

(2) THppgM=ESFR® - &F_i6G
with E, G andF, Df-invariant sub-bundlefy=1,..., j —i, and all/, one-dimensional, and
E<Fh<k---<F_.<G.

Otherwise, by the theorem of [Go] cited above, we may create an arbitrarily smallC1-
perturbation a tangendysidethe perturbed homoclinic class. After that we repeat theraents
of 2.1.1 contradictingp-expansiveness. Theorem B is proved.

Proof of Theorem C. By [CMP] there is residual subse of Diff }(M) such that, for every
f € Ro, any pair of homoclinic classes of f are either disjoint oincade. Forf € Rp, by [Ab],
the number of different homoclinic classesfois locally constant irgy. We split the proof into
two cases: (1) this number is finite (and in this cdsie tame or (2) there are infinitly many
distinct homoclinic classes (and in this cdses wild.

f istame In this caseH (p) is isolated. Before we continue, recall tha¥if- M and/A¢ (V) is the
maximal invariant set of inV, i.e.. A¢(V) +N,.zf"(V), then sef\¢ (V) is robustly transitive
if there is aCl-neighbourhoodll of f such that\g(V) = Ag(V) andAg(V) is transitive for all
g€ U (i.e.: \g(V) has a dense orbit).

Lemma 3.2. Assume f M — M is tame and that{,M has a dominated splitting of the form
(2). Then E is contracting and G is expanding.

Proof. SinceH (p) is isolated it is a robustly transitive set maximal invatisna neighbourhood
U C M and hence, according to [BDPR][Theorem D], the extrematswidlesE and G are
contracting and expanding respectively. 0J

Under the same hypothesis of the previous lemma either we that in aCl-robust way the
index of periodic points irtH(pg), g near f, are the same and equal to indpxor there arey
arbitrarily C!-close tof such that inH (pg) there are periodic points of different index. In the
first case we have
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Lemma 3.3. There is a dense open subgétof 7/( ) in the C' topology such that for all g 1y
we have that Kipg) is hyperbolic.

Proof. We follow the lines of the proof at [BDi, Section 6]. Sintg(p) is isolated by [BC,
Corollaire 1.13] or [Ab, Theorem A] it is robustly isolateldet E andF be sub bundles such that
TH(py)M = E&F is m-dominated, for alg € 7/(f), with dim(E) = index(p). We need to prove
that [Df || — 0 asn — +e and ||Df/‘F”(X)|| — 0 asn — +oo for anyx € H(pg) in order to
prove thatH (pg) is hyperbolic. Let us show only thgD f/”E(X) | — 0 asn — +oo, the other one
being similar. For this, it is enough to show that for artyy H(py) there exist& = k(x) such that
HE(:OHDg;nE(gim(X))H < %

Arguing by contradiction, assume this does not hold. Thieeret existz € H(pg) such that
HE(:OHDf/TE(fim(Z))H > :_2L VKZ 0.

As in the proof of [Ma2, Theorem B] we may finde H(pg) N%(g), whereZ(g) is a set of
total probability measure, such that

. 1t m mi

Thus there is a perturbatidnof g such thath has a non hyperbolic periodic point k(pp).
After a new perturbation we obtain periodic poiRt®ndQ contained in a small neighborhood
U of H(pyn) and with different indeces. Sind#(p) is C1-robustly isolated®, Q € H(py,) contra-
dicting our assumption that in@t-robust way the index of periodic pointsk(p) are the same
and equal to indep). This finishes the proof of Theorem C in this case. O

In the second case, that is, there grarbitrarily C!-close tof such that inH (pg) there are
periodic points of different indeces, by [GWG!-generically the diffeomorphism, and hence
f, can beC! approximated by diffeomorphisms exhibiting a heterodisienal cycle. Next we
show that in this case the eigenvalues of periodic pointsamastly inR.

Lemma 3.4. Let us assume that there is a periodic poingdd(p) with expanding complex
eigenvalues such that indéy) < index(p). Then there is an arbitrarily &small perturbation
of f creating a tangency inside the perturbed homoclinisslg(pg).

Proof. C! generically we may assume that there is a robust heterodioreal cycle between
p andq and thatW3(p) N"WY(q) contains a compact aichomeomorphic td0, 1], (see [BDi]).
Let us consider a disk of the same dimensiosiof WS(p) and contained ittVS(p) such thaD
is homeomorphic td0, 1] x [—1,1]%~! by a homeomorphisrh such thaih([0,1] x {0}5t =1.
lterating by f ™9 this arcl spiralizes around) while D stretches approachinys(q). Since
WS(q) N"\WY(p) # 0 there is aC! small perturbation off creating a tangency betwedv®(pg)
andW'(pg). O

Corollary 3.5. If there is a periodic point ¢ H(p) with expanding complex eigenvalues such
that index(q) < index(p) then H(p) is not C* robustly h-expansive.
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Proof. Under the hypothesis of the lemma we may create tangendieketd(p) and by another
C!- perturbation an arbitrarily small horseshoe in the irgetion betweeiVS (p) andW.(p)
contradictingh-expansiveness. O

Thus Corollary 3.5 implies that the eigenvalues of perigaimts inH (p) are real numbersina
robust way. By [ABCDW] forC!-generic diffeomorphisms the set of indices of the (hypkcho
periodic points in a homoclinic class form an intervalNn Thus by [BDi][Theorem 2.1] there
are diffeomorphisms arbitrarilg!-close tof with Cl-robust heterodimensional cycles.

As a consequence we obtain in both cases the following result

Theorem 3.6.If f /H(p) is C! robustly h-expansive and () is an isolated homoclinic class
then for a dense open subs&t C U(f) either f/H(p) is hyperbolic and we have,J,M =
ES® EY or there is a robust heterodimensional cycle iiigg) for g arbitrarily close to f.

Proof. If we have that in a&Cl-robust way the index of periodic points (pg) are the same
and equal to indehpg) by Lemma 3.3 there is an open dense subi$ef 7/(g) such thaH (pg)

is hyperbolic forg € 7. Hence we are done. Otherwise we have an open sub&gtin any
neighborhood/ C U( f) of any diffeomorphisng € U( f) exhibiting a heterodimensional cycle,
[BDi]. This finishes the proof Theorem 3.6, which in its turiregs the proof of Theorem C. [

f is wild Now let us assume thét(p) is not isolated. Either there is a sm@h-perturbatiorg
of f such thatH(py) is isolated oH (p) is persistently not isolated, i.eH (pg) is not isolated
for anyg close tof. In the first case we are done by Theorem 3.6.

In the second case the following result of [Cr] (see also [W}alid assuming that is far
from homoclinic cycles.

Remark 3.7. Since f/H(p) is h-expansive we are far from homoclinic tangencies.

Theorem 3.8(Crovisier) There exists a densezGubset oDiff 1(M)\TangU Cyclessuch that
each homoclinic class H has a dominated splittipdT= E®® Ef & ES & E" which is partially
hyperbolic and such that each central bundlg ES has dimension 0 or 1.

Thus Theorem D is a consequence of Theorem 3.8 and the psa@mark.
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