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Abstract. In this paper we prove that the Poincarè map associated to a Lorenz like
system has exponential decay of correlations with respect to Lipschitz observables. This
implies that the hitting time associated to the system satisfies a logarithm law. The hitting
time τr(x, x0) is the time needed for the orbit of a point x to enter for the first time in a
ball Br(x0) centered at x0, with small radius r. As the radius of the ball decreases to 0
its asymptotic behavior is a power law whose exponent is related to the local dimension
of the SRB measure at x0: for each x0 such that the local dimension dµ(x0) exists,

lim
r→0

log τr(x, x0)

− log r
= dµ(x0) − 1

holds for µ almost each x. In a similar way it is possible to consider a quantitative
recurrence indicator quantifying the speed of coming back of an orbit to its starting point.
Similar results holds for this recurrence indicator.
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1. Introduction

It is well known that a chaotic dynamics may share several statistical features with
stochastic systems. These statistical features are often described by suitable versions of
classical theorems from probability theory: law of large numbers, central limit theorem,
large deviation estimations, correlation decay, hitting times, various kind of quantitative
recurrence and so on.

In this article we consider a class of flows which contain the celebrated Geometric Lorenz
flow and we will study some of its statistical features by a sharp estimation for the decay
of correlations of its first return map on a suitable Poincarè section. This will give a
quantitative recurrence estimation and an estimation for the scaling behavior for the time
which is needed to hit small targets (logarithm law).

Let Φt be a C1 flow in R
3. Quantitative recurrence estimations and logarithm laws can

be seen in the following framework: we are interested to a quantitative estimation of the
speed of approaching of a certain orbit Φt(x) (starting from the point x) of the system to
a given target point x0. Let Br(x0) be a ball with radius r centered at x0. We consider
the time

τr(x, x0) = inf{t ∈ R
+ : Φt(x) ∈ Br(x0)}

needed for the orbit of x to enter in Br(x0) for the first time and the asymptotic behavior
of τr(x, x0) as r decreases to 0. Often this is a power law of the type τr ∼ r−d and then it
is interesting to extract the exponent d by looking at the behavior of

(1) R(x, x0) = lim
r→0

log τr(x, x0)

− log r
.

In this way, we have a hitting time indicator for orbits of the system.1

If the orbit Φt starts at x0 itself and we consider the second entrance time in the ball

(2) τ ′r(x0) = inf{t ∈ R
+ : Φt(x0) ∈ Br(x0), ∃i, s.t.Φ

i(x0) /∈ Br(x0)}

(because the orbit trivially starts inside the ball) with the same construction as before, we
have a quantitative recurrence indicator. If the dynamics is chaotic enough, often the above
indicators converge to a quantity which is related to the local dimension of the invariant
measure of the system and in the hitting time case this relation is called logarithm law.

1Another way to look at the same phenomena is by considering the behavior of the ratio of the distance
− log d(Φt(x),x0)

log t
as t → ∞ (for the equivalence see [18]).
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Hitting time results of this kind (sometime replacing balls with other suitable target
sets) have been proved in many continuous time dynamical systems of geometrical interest:
geodesic flows, unipotent flows, homogeneous spaces, etc. etc. (see e.g. [6, 20, 23, 38, 30,
32]). For discrete time systems this kind of results hold in general if the system has fast
enough decay of correlation ([16]). Mixing is however not sufficient, since this relation does
not hold in some slowly mixing system having particular arithmetical properties ([18]).
Some further connections with arithmetical properties are shown in interesting examples
as rotations and interval exchange maps (see e.g. [14, 21, 22]). This kind of problem
is also connected with the so called dynamical Borel Cantelli results (see [17] and e.g.
[41, 20, 17, 13]). Moreover, in the symbolic setting, similar results about the hitting time
are used in information theory (see e.g. [37, 24]). About quantitative recurrence, our
approach follows a set of results connecting a quantitative recurrence estimation with local
dimension (see e.g. [36, 35, 7, 9]). We remark that the speed of correlation decay for
Lorenz like flows is not yet known (although some are proved to be mixing, see [29]) hence
quantitative recurrence and hitting time results cannot be proved directly using this tool,
instead of this we will consider a Poincarè section, estimating its correlation decay and
work with return times.

1.1. Statement of results. Let I = [−1
2
, 1

2
] be a unit interval, we consider a flow X t on

R
3 having a Poincaré section on a square Σ = I × I satisfying the following properties:

1): The flow induces2 a first return map F : Σ → Σ of the form F (x, y) = (T (x), G(x, y))
(preserves the natural vertical foliation of the square) and:

1.a): There is c ∈ I and k ≥ 0 such that, if x1, x2 are such that c /∈ [x1, x2] then
∀y ∈ I : |G(x1, y)−G(x2, y)| ≤ k · |x1 − x2|

1.b): F |γ is λ-Lipschitz with λ < 1 (hence is uniformly contracting) on each leaf γ:
|G(x, y1) −G(x, y2)| ≤ λ · |y1 − y2|

1.c): T : I → I is onto and piecewise monotonic, with two C1 increasing branches on
the intervals [−1

2
, c),(c, 1

2
] and T ′ > 1 where it is defined3. Moreover lim

x→c−
T (x) =

1
2
, T (c) = −1

2
, lim

x→c
T ′(x) = ∞.

1.d): 1
|T ′|

has bounded variation.

By the statistical properties of the map T , which is piecewise expanding, under the
above assumptions, it turns out that F has a unique SRB measure µF . We then ask the
following property for the flow:

2): The flow X t is transversal to the section Σ and its return time to Σ is integrable
with respect to µF .

In Section 2.1 we will describe the geometric Lorenz system and we show that it satisfies
these properties.

2Up to zero Lebesgue measure sets.
3The condition T ′ > 1 can be relaxed to λ[infx∈I(T

′(x))] < 1 provided that the map T is eventually
expanding in the sense of [44], Chapter 3.
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The main results of the paper concern some statistical properties of X t and F , more
precisely:

Theorem A (decay of correlation for the Poincarè map) The unique SRB measure
µF of F has exponential decay of correlation with respect to Lipschitz observables.

This result is proved in Section 4 (Theorem 4.7) where the reader can also find a precise
definition of correlation decay. The proof also uses a regularity estimation for the invariant
measure µF which can be found in the Appendix I (Lemma 8.1) and is proved by sort of
Lasota-Yorke inequality. We remark that a stretched-exponential bound for the decay of
correlation for a two dimensional Lorenz like map was given in [12] and [2].

We say that a point x0 ∈ R
3 is regular if there are y0 ∈ Σ and t0 ≥ 0 such that X t0

induces a diffeomorphism between a neighborhood of y0 and a neighborhood of x0.
In Section 3 we recall how to construct an SRB ergodic invariant measure for the flow

X t which will be denoted by µX . It turns out that this measure has the following property
Theorem B (logarithm law for the flow) For each regular x0 such that the local

dimension dµX
(x0) is defined it holds

(3) lim
r→0

log τr(x, x0)

− log r
= dµX

(x0) − 1

for a.e. starting point x.
This is proved in Section 6 (Theorem 6.3) and uses the above decay of correlation

estimation for the first return map F , a result from [16] giving the hitting time estimation
for systems having faster than polynomial decay of correlations and finally the integrability
of return time is used to get the result for the flow.

Using the main result of [35], by a similar construction, if the flow also satisfies

3): the map T has derivative bounded by a power law near c: there is a β > 0 s.t.
(x− c)βT ′(x) is limited in a neighborhood of c

in Section 7 (see Corollary 7.4) we prove the following
Theorem C (quantitative recurrence) If the flow satisfies conditions 1),2), 3) above,

then for a.e. x it holds

(4) lim sup
r→0

log τ ′r(x)

− log r
= dµX

(x) − 1, lim inf
r→0

log τ ′r(x)

− log r
= dµX

(x) − 1.

In the Appendix II we give an auxiliary result, using a theorem by Steinberger [40]
showing that the local dimension is defined a.e. for the Geometric Lorenz system.

2. Geometric Lorenz’model

In this section we will introduce and motivate the so-called Geometric Lorenz system.
This is the main example where our results will be applied. Indeed we will see that
assumption 1.a),...,1.d) and 2) of the introduction are verified for this model. The results
in this section are however not strictly necessary for the proofs of our main theorems. The
reader familiar to the construction of such models can skip it and start at Section 3.
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In 1963 the meteorologist Edward Lorenz published in the Journal of Atmospheric Sci-
ences ([27]) an example of a parametrized 2-degree polynomial system of differential equa-
tions

ẋ = a(y − x) a = 10

ẏ = rx− y − xz r = 28(5)

ż = xy − bz b = 8/3

as a very simplified model for thermal fluid convection, motivated by an attempt to un-
derstand the foundations of weather forecast. Later Lorenz [28] together with other ex-
perimental researches showed that the equations of motions of a certain laboratory water
wheel are also given by (5).

Numerical simulations performed by Lorenz for an open neighborhood of the chosen
parameters suggested that almost all points in phase space tend to a chaotic attractor.

An attractor is a bounded region in phase-space, invariant under time evolution, such that
the forward trajectories of most (positive probability) or, even, all nearby points converge
to it. And what makes an attractor chaotic is the fact that trajectories converging to the
attractor are sensitive with respect to initial data: trajectories of two any nearby points
get apart under time evolution.

Figure 1. Lorenz chaotic attractor

Lorenz’s equations proved to be very resistant to rigorous mathematical analysis, and
also presented serious difficulties to rigorous numerical study. As an example, the existence
of a chaotic attractor for the original Lorenz system where not proved until the year 2000,
when Warwick Tucker did it with a computer aided proof (see [43, 42]).

In order to construct a class of flows having properties which are very similar to the
Lorenz system and are easier to be studied, Afraimovich, Bykov and Shil’nikov [1], and
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Guckenheimer, Williams [19], independently constructed the so-called geometric Lorenz
models for the behavior observed by Lorenz. These models are flows in 3-dimensions for
which one can rigorously prove the existence of a chaotic attractor that contains an equilib-
rium point of the flow, which is an accumulation point of typical regular solutions. Recall
that γ is a regular solution for the flow X t if X t(x) 6= x for all x ∈ γ. The accumulation of
regular orbits near an equilibrium prevents such sets from being hyperbolic [33]. Further-
more, this attractor is robust: it can not be destroyed by any small perturbation of the
original flow.

We point out that the robustness of this example provides an open set of flows which
are not Morse-Smale, nor hyperbolic, and also non-structurally stable [33, 10]. Recall that
a flow is structurally stable if there is a neighborhood of it in the C1 topology such that
the global structure of orbits of any two flows in this neighborhood are the same up to a
homeomorphism preserving orientation of the orbits.

2.1. Construction of the geometric model: near the equilibrium. In this paper
we will consider a class of three dimensional flows which will be defined axiomatically. To
show that these axioms are verified in the geometric Lorenz models we give a detailed
introduction to this model.

We first analyze the dynamics in a neighborhood of the singularity at the origin, and
then we complete the flow, imitating the butterfly shape of the original Lorenz flow (see
Figure 1 and compare with Figure 3).

In the original Lorenz system the origin p = 0 = (0, 0, 0) is an equilibrium of saddle type
for the vector field defined by equations (5) with real eigenvalues λi, i ≤ 3 satisfying

(6) 0 <
λ1

2
≤ −λ3 < λ1 < −λ2

(in the classical Lorenz system λ1 ≈ 11.83 , λ2 ≈ −22.83, λ3 = −8/3).
If certain nonresonance conditions are satisfied (see [39]) this vector field is smoothly

linearizable in a neighborhood of the origin. To construct a model which is similar to
the original Lorenz one we start with a linear system (ẋ, ẏ, ż) = (λ1x, λ2y, λ3z), with λi,
1 ≤ i ≤ 3 satisfying relation (6). This vector field will be considered in the cube [−1, 1]3

containing the origin.
For this linear flow, the trajectories are given by

X t(x0, y0, z0) = (x0e
λ1t, y0e

λ2t, z0e
λ3t),(7)

where (x0, y0, z0) ∈ R
3 is an arbitrary initial point near p = (0, 0, 0).

Consider Σ =
{

(x, y, 1) : |x| ≤ 1/2, |y| ≤ 1/2
}

and

Σ− =
{

(x, y, 1) ∈ Σ : x < 0
}

, Σ+ =
{

(x, y, 1) ∈ Σ : x > 0
}

and

Σ∗ = Σ− ∪ Σ+ = Σ \ Γ, where Γ =
{

(x, y, 1) ∈ Σ : x = 0
}

.

Σ is a transverse section to the linear flow and every trajectory crosses Σ in the direction
of the negative z axis.
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Consider also Σ̃ = {(x, y, z) : |x| = 1} = Σ̃− ∪ Σ̃+ with Σ̃± = {(x, y, z) : x = ±1}. For
each (x0, y0, 1) ∈ Σ∗ the time t such that X t(x0, y0, 1) ∈ Σ̃ is given by

(8) t(x0) = −
1

λ1
log |x0|

which depends on x0 ∈ Σ∗ only and is such that t(x0) → +∞ when x0 → 0.
Hence, using (8), we get (where sgn(x) = x/|x| for x 6= 0 )

X t(x0)(x0, y0, 1) =
(

sgn(x0), y0e
λ2·t(x0), eλ3·t(x0)

)

=
(

sgn(x0), y0|x0|
−

λ2
λ1 , |x0|

−
λ3
λ1

)

.

Since 0 < λ1

2
< −λ3 < λ1 < −λ2, we have 1

2
< α = −λ3

λ1
< 1 < β = −λ2

λ1
.

Consider L : Σ∗ → Σ̃± defined by

(9) L(x, y, 1) =
(

sgn(x)y|x|β, |x|α
)

.

It is easy to see that L(Σ±) has the shape of a cusp triangle without the vertex (±1, 0, 0).

Σ Σ

x=x=

λ

λ

λ

1

2 3

.

.
p.

− +11

Γ

L

+

−

Σ
+Σ

−

Figure 2. Behavior near the origin.

In fact the vertex (±1, 0, 0) are cusp points at the boundary of each of these sets. The fact
that 0 < α < 1 < β together with equation (9) imply that L(Σ±) are uniformly compressed
in the y-direction.

Clearly each segment Σ∗ ∩ {x = x0} is taken by L to another segment Σ̃± ∩ {z = z0} as
sketched in Figure 2.

2.2. The random turns around the origin. To imitate the random turns of a regular
orbit around the origin and obtain a butterfly shape for our flow, as it is in the original
Lorenz flow depicted at Figure 1, we proceed as follows.

Recall that the equilibrium p at the origin is hyperbolic and so its stable W s(p) and
unstable W u(p) manifolds are well defined, [33]. Observe that W u(p) has dimension one
and so, it has two branches, W u,±(p), and W u(p) = W u,+(p) ∪ {p} ∪W u,−(p).

The sets Σ̃± should return to the cross section Σ through a flow described by a suitable
composition of a rotation R±, an expansion E±θ and a translation T±.
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Σ

Σ

Σ
_

R

R

+

Figure 3. T± ◦R± takes Σ̃± to Σ.

The rotation R± has axis parallel to the y-direction, which is orthogonal to the x-
direction (which is parallel to the local branches W u,±(p)). More precisely is such that
(x, y, z) ∈ Σ̃±, then

R±(x, y, z) =





0 0 ±1
0 1 0
±1 0 0



 .(10)

The expansion occurs only along the x-direction, so, the matrix of Eθ is given by

E±θ(x, y, z) =





θ 0 0
0 1 0
0 0 1



(11)

with θ · (1
2

α
) < 1 and θ · α · 21−α > 1. The first condition is to ensure that the image of

the resulting map is contained in Σ, the second condition makes a certain one dimensional
induced map to be piecewise expanding. This point will be discussed below.
T± : R

3 → R
3 is chosen such that the unstable direction starting from the origin is

sent to the boundary of Σ and the image of both Σ̃± are disjoint. These transformations
R±, E±θ, T± take line segments Σ̃± ∩ {z = z0} into line segments Σ∩ {x = x1} as sketched
in Figure 3, and so does the composition T± ◦ E±θ ◦R±.

This composition of linear maps describes a vector field in a region outside [−1, 1]3 in
the sense that one can use the above matrices to define a vector field V such that the time
one map of the associated flow realizes T± ◦E±θ ◦R± as a map Σ̃± → Σ. This will not be
explicit here, since the choice of the vector field is not really important for our purposes.

The above construction allow to describe for each t ∈ R the orbit X t(x) of each point
x ∈ Σ: the orbit will start following the linear field until Σ̃± and then it will follow V



LORENZ:DECAY,HITTING,RECURRENCE 9

coming back to Σ and so on. Let us denote with B = {X t(x), x ∈ Σ, t ∈ R
+} the set where

this flow acts. The geometric Lorenz flow is then the couple (B, X t) defined in this way.
The Poincaré first return map will be hence defined by F : Σ∗ → Σ as

(12) F (x, y) =

{

T+ ◦ E+θ ◦R+ ◦ L(x, y, 1) for x > 0
T− ◦ E−θ ◦R− ◦ L(x, y, 1) for x < 0

The combined effects of T± ◦R± and L on lines implies that the foliation F s of Σ given
by the lines Σ ∩ {x = x0} is invariant under the return map. In another words, we have

(⋆) for any given leaf γ of F s, its image F (γ) is contained in a leaf of F s.

2.3. An expression for the first return map and its differential. Combining equa-
tions (9) with the effect of the rotation composed with the expansion and the translation,
we obtain that F must have the form

(13) F (x, y) =
(

fLo(x), gLo(x, y)
)

where fLo : I \ {0} → I and gLo : (I \ {0}) × I → I are given by

(14) fLo(x) =

{

f1(x
α) x < 0

f0(x
α) x > 0

with fi = (−1)iθ · x+ bi, i ∈ {0, 1}, and

(15) gLo(x, y) =

{

g1(x
α, y · xβ) x < 0

g0(x
α, y · xβ) x > 0,

where g1|I
− × I → I and g0|I

+ × I → I are suitable affine maps. Here I− = (−1/2, 0),
I+ = (0, 1/2).

Σ

ΣF

ΣF

Σ

( )+

+

−

Γ

)−(

Figure 4. F (Σ∗).

Σ

f(x) x
..

Γ

Figure

5. Projection
on I.

Now, to found an expression for DF we proceed as follows. Recall F = T±◦E±θ ◦R±◦L,
L is as in (9), DR± is as in (10). Given q = (x, y) ∈ Σ∗ with x > 0, we have
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DL(x, y, 1) =

(

β · y · xβ−1 xβ

α · xα−1 0

)

.

Restricting the rotation and the other linear maps to Σ̃± and composing the resulting
matrices we get

DF (x, y) =

(

θ · α · x(α−1) 0
β · yx(β−α) xβ

)

.(16)

The expression for DF at q = (x, y) with x < 0 is similar.

2.4. Properties of the map gLo. Observe that by construction gLo in equation (12) is
piecewise C2. Moreover, equation (16) implies the following bounds on its partial deriva-
tives :

(a) For all (x, y) ∈ Σ∗, x > 0, we have ∂ygLo(x, y) = xβ. As β > 1, |x| ≤ 1/2, there is
0 < λ < 1 such that

(17) |∂ygLo| < λ.

The same bound works for x < 0.
(b) For all (x, y) ∈ Σ∗, x 6= 0, we have ∂xgLo(x, y) = β · xβ−α. As β − α > 0 and

|x| ≤ 1/2, we get

(18) |∂xgLo| <∞.

Item (a) above implies that the map F = (fLo, gLo) is uniformly contracting on the leaves
of the foliation F s: there is C > 0 such that

(⋆⋆) if γ is a leaf of F s and x, y ∈ γ then

dist
(

F n(x), F n(y)
)

≤ λn · C · dist(x, y)

where λ can be chosen as the one given by equation (17).

+1/20-1/2

Figure 6. The Lorenz map fLo.
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2.5. Properties of the one-dimensional map fLo. Now let us outline the main prop-
erties of fLo. We recall that we chosen θ such that θ · α · 21−α > 1.

The following properties are easily implied from the construction of X t:

(f1) By equation (14) and the way T± is defined, fLo is discontinuous at x = 0. The
lateral limits fLo(0

±) do exist, fLo(0
±) = ±1

2
,

(f2) fLo is C2 on I \ {0}. By the choice of θ f ′
Lo(1/2) > 1. By the convexity properties

of fLo we then obtain that

(19) f ′
Lo(x) > 1 for all x ∈ I \ {0}.

(f3) The limits of f ′
Lo at x = 0 are limx→0 f

′
Lo(x) = +∞.

We obtain that fLo is a piecewise expanding map. Moreover fLo has a dense orbit, which
in its turn implies that the closure of the maximal invariant set by fLo is the whole interval
I, see [5, Lemma 2.11].

Now recall that the variation varφ of a function φ : [0, 1] → R is defined by

varφ = sup

n
∑

i=1

|φ(xi−1) − φ(xi)|

where the supremum is taken over all finite partitions 0 = x0 < x1 < · · · < xn = 1,
n ≥ 1, of [0, 1]. The variation varJ φ = var(φ|J) of φ over an arbitrary interval J ⊂ [0, 1] is
defined by a similar expression, with the supremum taken over all the x0, x1, · · · , xn ∈ J ,
with inf J ≤ x0 < x1 < · · · < xn ≤ sup J . One says that φ has bounded variation, or φ is
BV for short, if varφ <∞.

The one dimensional map has the following property, which is important to obtain the
existence of an SRB invariant measure and its statistical properties.

Lemma 2.1. Let X t a C2 geometric Lorenz flow as before and fLo be the one-dimensional
map associated to X t. Then 1

f ′

Lo

is BV.

Proof. Each branch of fLo is the composition of an affine map with xα then it is a convex
function. Hence, the derivative f ′

Lo is monotonic on each branch, implying that (f ′
lo)

−1 is
also monotonic. On the other hand, (f ′

Lo)
−1 is bounded because f ′

lo > 1. Thus (f ′
Lo)

−1 is
monotonic and bounded and hence is BV. �

We have seen that fLo is a topologically transitive piecewise expanding map with 1
f ′

Lo

BV. The statistical properties of such maps are well known. Next we state a result about
it, which will be used later:

Proposition 2.2. ([44], Prop.3.8) The one-dimensional fLo admits a unique invariant
probability µfLo

which is absolutely continuous with respect to Lebesgue measure m, it is
ergodic and so a SRB measure for the map. Moreover dµfLo

/dm is a BV function and in
particular it is bounded. Furthermore fLo has exponential decay of correlations for L1 and
BV observables and any a.c.i.m. converges exponentially fast to the invariant measure:
there are constants C > 0 and λ > 0, depending on the system such that for each n and
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observables f, g:
∣

∣

∣

∣

∫

g(F n(x))f(x)dm−

∫

g(x)dµ

∫

f(x)dm

∣

∣

∣

∣

≤ C · ‖g‖L1
· ‖f‖BV · e−λn.

Summarizing, for what it was said above, the study of the 3-flow can be reduced to the
study of a bi-dimensional map F and, moreover, the dynamics of this map can be further
reduced to a one-dimensional map, fLo, since the invariant contracting foliation enables
us to identify two points on the same leaf, see Figure 5. The quotient map fLo obtained
through this identification will be called one dimensional Lorenz map. Figure 6 shows the
graph of this one-dimensional transformation, and Figure 4 sketches F (Σ∗).

3. A SRB measure for a Lorenz like flow

In this section, following [44] we construct a SRB measure for a flow X t which satisfies
the assumptions 1a),...,1d),2) in the introduction. As noticed in the previous section, these
assumptions are satisfied by the Geometric Lorenz system.

Properties 1a),...,1d) implies that the flow Poincaré map has an invariant foliation and
the one dimensional induced map T is piecewise expanding. Piecewise expanding maps
(see Proposition 2.2) admits a unique invariant probability measure µT which is absolutely
continuous with respect to Lebesgue measure m.

From µT we may construct a SRB measure µF , for the first return map F through the
following general procedure ([11, 44]). Since µT is defined on the interval I which can be
identified to the space of leaves of the contracting foliation F s, we may also think of it
as a measure on the σ-algebra of Borel subsets of Σ which are union of entire leaves of
F s. Using the fact that F is uniformly contracting on leaves of F s we conclude that the
sequence

F ∗n(µT ), n ≥ 1,

of push-forwards of µT under F is weak*-Cauchy: given any continuous ψ : Σ → R
∫

ψd(F n∗µ) =

∫

(ψ ◦ F n)dµ, n ≥ 1,

is a Cauchy sequence in R, see [44, pp.173]. Define µF to be the weak*-limit of this
sequence, that is,

∫

ψdµF = lim

∫

ψd(F ∗nµ)

for each continuous ψ. Then µF is invariant under F , and it is an ergodic SRB measure
for F . The last statement follows from the fact that µT is an ergodic SRB measure for T ,
together with the fact that asymptotic time-averages of continuous functions ψ : Σ → R

are constant on the leaves of F s.
Given any point x whose orbit sooner or later will cross Σ we denote with t(x) the first

strictly positive time such that X t(x)(x) ∈ Σ (the return time of x to Σ). Coherently with
the Geometric Lorenz system, we will denote by Σ∗ the (full measure, by the assumption
1 in the introduction) subset of Σ where t is defined.
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Now we show how to construct an SRB invariant measure for the flow, when the return
time is integrable:

(20)

∫

Σ∗

tdµF <∞.

Denote by ∼ the equivalence relation on Σ × R given by (w, t(w)) ∼ (F (w), 0).
Let N = (Σ∗ × R)/ ∼ and ν = π∗(µF × dt), where π : Σ∗ × R → N is the quotient map

and dt is a Lebesgue measure in R. Equation (21) gives that ν is a finite measure. Let
φ : N → R

3 be defined by φ(w, t) = X t(w). Let µX = φ∗ν. The measure µX is a SRB for
the flow X t:

1

T

∫ T

0

ψ(X t(w))dt→

∫

ψdµX as T → ∞

for every continuous function ψ : R
3 → R, and Lebesgue almost every point w ∈ φ(N).

We end the subsection remarking that the Geometric Lorenz flow has integrable return
time, hence the above construction for the invariant measure can be applied to it. As
before denote by t : Σ \ Γ → (0,∞) the return time to Σ. Then, recalling Equation (8)
there are K,C > 0 such that

−K−1 log(d(w,Γ)) − C ≤ t(x) ≤ −K log(d(w,Γ)) + C.

Combining this with the definition of µF and the remark made above that dµfLo/dm is
a bounded function, we conclude that

Proposition 3.1. The return time is integrable

(21) t0 =

∫

tdµF <∞.

3.1. Local dimension. Let us recall the definition of local dimension and fix some nota-
tions for what follows.

Let (M, d) be a metric space and assume that µ is a Borel probability measure on M .
Given x ∈ M , let Br(x) = {y ∈ M ; d(x, y) ≤ r} be the ball centered at x with radius r.
The local dimension of µ at x ∈M is defined by

dµ(x) = lim
r→∞

log µ(Br(x))

log r

if this limit exists. In this case µ(Br(x)) ∼ rdµ(x).
This notion characterizes the local geometric structure of an invariant measure with

respect to the metric in the phase space of the system, see [45] and [34].
We can always define the upper and the lower local dimension at x as

d+
µ (x) = lim sup

r→∞

logµ(Br(x))

log r
, d−µ (x) = lim inf

r→∞

logµ(Br(x))

log r
.

If d+(x) = d−(x) = d almost everywhere the system is called exact dimensional. In this
case many properties of dimension of a measure coincide. In particular, d is equal to the
dimension of the measure µ: d = inf{dimH Z;µ(Z) = 1}. This happens in a large class of
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systems, for example, in C2 diffeomorphisms having non zero Lyapunov exponents almost
everywhere, [34].

3.2. Relation between local dimension for F and for X t. Let us establish a relation
between dµF

and dµX
which will be used in the following.

Proposition 3.2. Let x ∈ R
3 and π(x) be the projection on Σ given by π(x) = y if x is on

the orbit of y ∈ Σ and the orbit from y to x does not cross Σ. For all regular point x ∈ R
3

(22) dµX

+(x) = dµF

+(π(x)) + 1, dµX

−(x) = dµF

−(π(x)) + 1.

Proof. First observe that for product measures as µX = µF × dt, where dt is the Lebesgue
measure at the line, the formula is trivially verified. But, by construction µX = φ∗(dµF ×
dt), where φ : R

3 → R
3 is a local bi-Lipschitz map at each regular point. Since the local

dimension is invariant by local bi-Lipschitz maps, it follows the required equation (22). �

4. Decay of correlations for two dimensional Lorenz maps

In this section we estimate the decay of correlations for a class of Lorenz like maps
containing the first return map of the geometric Lorenz system described above. Inspired
by a remark of R. S. Mc Kay (see [31], p. 8), this will be done by estimating the speed
of approaching of iterates of suitable measures (corresponding to Lipschitz observables) to
the invariant measure. For this purpose we will consider the space of measures on Σ as a
metric space, endowed with the Wasserstein-Kantorovich distance, whose basic properties
we are going to describe.

Notations. Let us introduce some notations: we will consider the sup distance on
Σ = [−1

2
, 1

2
]2, so that the diameter, diam(Σ) = 1. This choice is not essential, but will

avoid the presence of many multiplicative constants in the following making notations
cleaner.

As before, the square Σ will be foliate by stable, vertical leaves. We will denote the leaf
with x coordinate by γx or, with a small abuse of notation, when no confusion is possible
we will denote both the leaf and its coordinate with γ.

Let fµ be the measure µ1 such that dµ1 = fdµ. Moreover, let us sometime for short
denote the integral by µ(f) =

∫

fdµ. Let µ a measure on Σ. In the following, such measures
on Σ will be often disintegrated in the following way: for each Borel set A

(23) µ(A) =

∫

γ∈I

µγ(A ∩ γ)dµx

with µγ being probability measures on the leaves γ and µx is the marginal on the x axis
which will be an absolutely continuous probability measure. We will also denote by φx its
density.

Let us consider the projection πy on the y coordinate. Let us denote the ”restriction” of
µ on the leaf γ by

µ|γ = π∗
y(φx(γ)µγ).

This is a measure on I and it is not normalized. We remark that µ|γ(I) = φx(γ). If Y is
a metric space, we denote by PM(Y ) the set of Borel probability measures on Y . Let us
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finally denote by L(g) be the best Lipschitz constant of g : L(g) = supx,y
|g(x)−g(y)|

|x−y|
and set

‖g‖lip = ‖g‖∞ + L(g).

4.1. The Wasserstein-Kantorovich distance. Let us consider a bounded metric space
Y . Let us consider the following notion of distance between measures: given two probability
measures µ1 and µ2 on Y

W1(µ1, µ2) = sup
g∈1lip(Y )

(|

∫

Y

g dµ1 −

∫

Y

g dµ2|)

where 1lip(Y ) is the space of 1-Lipschitz functions on Y. We remark that adding a constant
to the test function g does not change the above difference

∫

g dµ1 −
∫

g dµ2. The above
defined W1 has moreover the following basic properties.

Proposition 4.1. [3, Prop 7.1.5] The following properties hold

(1) W1 is a distance and if Y is separable and complete, then PM(Y ) with this distance
is a separable and complete metric space.

(2) If Y is bounded, a sequence is convergent for the W1 metrics if and only if it is
convergent for the weak topology.

Remark 4.2. (distance and convex combinations) If a + b = 1, a ≥ 0, b ≥ 0 then

(24) W1(aµ1 + bµ2, aµ3 + bµ4) ≤ a ·W1(µ1, µ3) + b ·W1(µ2, µ4).

Indeed

W1(aµ1 + bµ2, aµ3 + bµ4) = sup
g∈1lip(Y )

(|

∫

g d(a · µ1 + b · µ2) −

∫

g d(a · µ3 + b · µ4)|) =

= sup
g∈1lip(Y )

(|a ·

∫

g dµ1 + b ·

∫

g dµ2 − a ·

∫

g dµ3 − b ·

∫

g dµ4|)

≤ sup
g∈1lip(Y )

(|a

∫

g dµ1 − a ·

∫

g dµ3| + |b ·

∫

g dµ2 − b ·

∫

g dµ4|) =

sup
g∈1lip(Y )

(a · |

∫

g dµ1 −

∫

g dµ3|+ b · |

∫

g dµ2 −

∫

g dµ4|) ≤ a ·W1(µ1, µ3)+ b ·W1(µ2, µ4).

We also remark that the same kind of estimation can be done if the convex combination
has more than 2 summand.

Remark 4.3. If g is ℓ-Lipschitz and µ1, µ2 are probability measures then

|

∫

Y

g dµ1 −

∫

Y

g dµ2| ≤ ℓ ·W1(µ1, µ2).
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4.2. Wassertein distance and decay of correlations over Lipschitz observables.
We give some general facts on the relation between W1 distance and decay of correlations.

Let (Y, F, µ) be a dynamical system on a metric space with invariant probability measure
µ. The transfer operator associated to F will be indicated with F ∗.

Proposition 4.4 (decay in function of distance). Let µ1 be a probability measure which
is absolutely continuous with respect to µ, and dµ1 = f(x)dµ (hence

∫

f(x)dµ = 1). Let
g ∈ lip(Y ) then

|

∫

g(F n(x)) f(x)dµ−

∫

g(x)dµ| ≤ L(g) ·W1((F
∗)n(µ1), µ).

Proof. Dividing by L(g) we can suppose g ∈ 1lip(Y ). As
∫

g(F (x))f(x)dµ =
∫

g(x)d(F ∗(µ1))
then the decay of correlations between f and g can be estimated in function of the distance
between (F ∗)n(µ1) and µ as:

|

∫

g(F n(x)) f(x)dµ−

∫

g(x)dµ| = |

∫

g(x)d(F ∗n(µ1)) −

∫

g(x)dµ|

≤ sup
g∈1lip(Y )

(|

∫

g d(F ∗n(µ1)) −

∫

g dµ|) = W1((F
∗)n(µ1), µ).

�

Conversely,

Proposition 4.5 (distance in function of decay). If for each f ∈ L1(µ), f ≥ 0 and
g ∈ lip(Y ) it holds

|

∫

g(F n(x)) f(x)dµ−

∫

f(x)dµ

∫

g(x)dµ| ≤ C · L(g) · ‖f‖L1 · Φ(n)

then taking dµ1 = f(x)
||f ||

L1
dµ it holds

W1((F
∗)n(µ1), µ) ≤ C · Φ(n).

Proof. Consider g ∈ 1lip. Hence

C · L(g)‖f‖L1 · Φ(n)

||f ||L1

≥
|
∫

g(F n(x)) f(x)dµ−
∫

f(x)dµ
∫

g(x)dµ|

||f ||L1

=

= |

∫

g(x)d(F ∗n(µ1)) −

∫

g(x)dµ|

since this hold for each g hence W1(F
∗n(µ1), µ) ≤ C · Φ(n). �
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4.3. Disintegration and Wasserstein distance. We will consider maps having an in-
variant foliation, as we have seen in the Lorenz map. The invariant measure will then be
disintegrated as in Equation (23) into a family of measures µγ on almost each stable leaf
γ and an absolutely continuous measure µx on the unstable direction.

If µ1 and µ2 are two disintegrated measures as above, their W1 distance can be estimated
in function of some distance between their respective marginals on the x axis and measures
on the leaves:

Proposition 4.6. Let µ1, µ2 be measures on Σ as above, such that for each Borel set A

• µ1(A) =
∫

γ∈I
µ1

γ(A ∩ γ)dµ1
x

• µ2(A) =
∫

γ∈I
µ2

γ(A ∩ γ)dµ2
x

with µi
x absolutely continuous with respect to the Lebesgue measure, moreover let us

suppose

(1) for almost each vertical leaf γ, W1(µ
1
γ, µ

2
γ) ≤ ε and

(2) sup‖h‖∞≤1 |
∫

hdµ1
x −

∫

hdµ2
x| ≤ δ

then W1(µ
1, µ2) ≤ ε+ δ.

Proof. Considering the W1 distance and disintegrating µ1 and µ2:

(25) W1(µ
1, µ2) ≤ sup

g∈1lip
|µ1(g) − µ2(g)| =

= sup
g∈1lip

|

∫

γ∈I

∫

γ

g(∗)dµ1
γdµ

1
x −

∫

γ∈I

∫

γ

g(∗)dµ2
γdµ

2
x|.

Adding and subtracting
∫ ∫

γ
g(∗)dµ2

γdµ
1
x the last expression is equivalent to

sup
g∈1lip

|

∫

I

∫

γ

g(∗)dµ1
γdµ

1
x −

∫

I

∫

γ

g(∗)dµ2
γdµ

1
x +

+

∫

I

∫

γ

g(∗)dµ2
γdµ

1
x −

∫

I

∫

γ

g(∗)dµ2
γdµ

2
x|.

This becomes

sup
g∈1lip

|

∫

I

(

∫

γ

g(∗)dµ1
γ − g(∗)dµ2

γ)dµ
1
x +

∫

I

∫

γ

g(∗)dµ2
γdµ

1
x −

∫

I

∫

γ

g(∗)dµ2
γdµ

2
x| ≤

≤ sup
g∈1lip

|

∫

I

εdµ1
x +

∫

I

∫

γ

g(∗)dµ2
γdµ

1
x −

∫

I

∫

γ

g(∗)dµ2
γdµ

2
x| ≤

(26) ≤ ε+ |

∫

I

∫

γ

g(∗)dµ2
γdµ

1
x −

∫

I

∫

γ

g(∗)dµ2
γdµ

2
x|

Since g ∈ 1lip and diam(Σ) = 1, then by adding a constant to g (which does not change
∫

gdµ1
γ −

∫

gdµ2
γ ) we can suppose without loss of generality that g ≤ 1 and then for

almost each γ it holds h(γ) = |
∫

γ
g(∗)dµ2

γ| ≤ 1. Hence, by assumption (2) the statement

is proved. �
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4.4. Exponential decay of correlations. Now we are ready to prove that a Lorenz
like two dimensional map F has exponential decay of correlations with respect to its SRB
measure µ. We recall (see Proposition 2.2 ) that for a piecewise expanding map of the
interval T , there are constants C > 0 and λ > 0, depending on the system such that, if g
and f are respectively L1 and BV (bounded variation) observables on I for each n it holds:

(27) |

∫

g(T n(x))f(x)dm−

∫

g(x)dµ

∫

f(x)dm| ≤ C · ‖g‖L1
· ‖f‖BV · e−λn

(recall that m is the Lebesgue measure above). Next, we consider systems behaving as the
first return map of the Geometric Lorenz system and prove

Theorem 4.7. Let F : Σ → Σ a Borel function such that F (x, y) = (T (x), G(x, y)). Let
µ be an invariant measure for F with marginal µx on the x-axis (which is invariant for
T : I → I ). Let us suppose that

(1) (T, µx) satisfies the above equation 27 and T−1(x) is finite for each x ∈ I.
(2) F is a contraction on each vertical leaf: G is λ-Lipschitz in y for each x with λ < 1.
(3) µ is regular enough that for each ℓ-Lipschitz function f : Σ → R the projection

π∗
x(fµ) has bounded variation density f 4, with

(28) ||f ||BV ≤ Kℓ

where K is not depending on f .

Then (F, µ) has exponential decay of correlation (with respect to Lipschitz observables).

We already saw that the first two points in the above proposition are satisfied by the
first return map of the Geometric Lorenz system. In the Appendix I we will prove that
also the above point 3 is satisfied by a systems containing the Geometric Lorenz one.

We point out that this is the hard part of the proof that Lorenz like maps have expo-
nential decay of correlations and this will be done by a sort of Lasota-Yorke inequality.
Putting together all the necessary assumptions this prove Theorem A in the introduction.

Before the proof of Theorem 4.7 we also make the following remark which is a simple
but important fact implied by the uniform contraction on stable leaves

Remark 4.8. Under the above assumptions, let us consider a leaf γ and two probability
measures µ, ν on it. Then

W1(F
∗(µ), F ∗(ν)) ≤ λW1(µ, ν).

Proof. This is because the map is uniformly contracting on each leaf. If g is 1-Lipschitz on
F (γ) then g(F (∗)) is λ-Lipschitz on γ. This implies that

|

∫

F (γ)

g d(F ∗µ) −

∫

F (γ)

g d(F ∗ν)| = |

∫

γ

g ◦ F dµ−

∫

γ

g ◦ F dν| ≤ λW1(µ, ν)

finishing the proof. �

4which can also be expressed as f(x) =
∫

f(x, y) dµ|γx
.
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Proof. (of Theorem 4.7) Let us consider ν = fµ with f ≥ 0 being ℓ−Lipschitz.and
∫

fdµ =
1 The strategy is to use Proposition 4.6 and find exponentially decreasing bounds for ε
and δ so that we can estimate the Wasserstein distance between µ and iterates of fµ and
then apply Proposition 4.4 to deduce decay of correlations. Let us consider the leaf γx

with coordinate x. The density f , by item 3 has bounded variation and ||f ||BV ≤ Kℓ.
Let νx = fm (as before m is the Lebesgue measure). Let us consider the quotient map T .
Let g ∈ L1([−1

2
, 1

2
]). Since |

∫

g d(T ∗n(νx)) −
∫

g dµx| = |
∫

g(T n(x))f(x)dm−
∫

g(x)dµx|,
by equation (27)

|

∫

gd(T ∗n(νx)) −

∫

gdµx| ≤ ‖g‖L1
· ‖f‖BV · C · e−λn,

implying that sup‖g‖∞≤1 |
∫

gdT ∗n(νx)−
∫

gdµx| ≤ ‖f‖BV ·C · e−λn ≤ KℓC · e−λn and hence
we see that item (2) at Proposition 4.6 is satisfied with an exponential bound depending
on the Lipschitz constant ℓ of f .

Let us consider νn = F ∗nν again. Since, as said before the map F sends vertical leaves
into vertical ones then there is a family of probability measures νn

γ on vertical leaves such
that

(F ∗nν)(g) =

∫

γ∈I

∫

γ

g(∗)dνn
γ d((T

∗n(νx))).

To satisfy item (1) at Proposition 4.6 and hence conclude the statement we only have to
prove that there are C2, λ2 s.t.

∀γ W1(ν
n
γ , µγ) ≤ C2 · e

−λ2n

this is by uniform contraction on stable leaves.
Indeed, by remark 4.8, if νγ and ργ are the two probability measures on the leaf γ then

the measures F ∗(νγ), F
∗(ργ) on the contracting leaf F (γ) are such that

W1(F
∗(νγ), F

∗(ργ)) ≤ λ ·W1(νγ , ργ).

Now let us consider F−1(γ) = γ1 ∪ γ2... ∪ γk and apply the above inequality to estimate
the distance of iterates of the measure on the leaves. For simplicity let us show the
case where the pre-image of a leaf consists of two leaves as it happen in the Geometric
Lorenz system, the case where the pre-image consists of more leaves is analogous: let hence
F−1(γ) = γ1 ∪ γ2, after one iteration of F ∗ on the measures ν and µ the ”new” measures
ν1

γ = (F ∗(ν))γ and µγ (which is equal to (F ∗(µ))γ because µ is invariant) on the leaf γ will
be a convex combination of the images of the ”old” measures on γ1 and γ2

ν1
γ = a · F ∗(νγ1

) + b · F ∗(νγ2
),

(29) µγ = a · F ∗(µγ1
) + b · F ∗(µγ2

)

with a + b = 1, a, b ≥ 0 (the second equality is again because µ is invariant). By the
triangle inequality (remark 4.2)

W1(ν
1
γ , µγ) ≤ a ·W1(F

∗(νγ1
), F ∗(µγ1

)) + b ·W1(F
∗(νγ2

), F ∗(µγ2
))
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and by remark 4.8

W1(ν
1
γ , µγ) ≤ λ(a ·W1(νγ1

, µγ1
) + b ·W1(νγ2

, µγ2
))

hence

W1(ν
1
γ , µγ) ≤ λ sup

γ
(W1(νγ, µγ)).

The same can be done in the case when the pre-image F−1(γ) = γ1 is only one leaf or more
than two, hence by induction W1(ν

n
γ , µγ) < λn, and the exponential bound on the distance

of iterates on the leaves (item 1 of Proposition 4.6) is provided. �

5. Hitting time: flow and section

We now consider again a Lorenz like flow, with integrable return time, i.e. a flow X t

having a transversal section Σ whose first return map satisfies the assumptions of Theorem
4.7 and the return time is integrable, as before. As before F : Σ \Γ → Σ is the first return
map associated.

Let x0 ∈ R
3 and

τXt

r (x, x0) = inf{t ≥ 0|X t(x) ∈ Br(x0)}

be the time needed for the X-orbit of a point x to enter for the first time in a ball Br(x0).
The number τXt

r (x, x0) is the hitting time associated to the flow X t and Br(x0).
If x0 ∈ Σ andBΣ

r (x0) = Br(x0)∩Σ, we define τΣ
r (x, x0) = min{n ∈ N

+;F n(x) ∈ BΣ
r (x0)}:

the hitting time associated to the discrete system F .
Given any x we recall that we denoted with t(x) the first strictly positive time, such

that X t(x)(x) ∈ Σ (the return time of x to Σ). A relation between τr
X(x, x0) and τΣ

r (x, x0)
is given by

Proposition 5.1. If
∫

Σ
t(x) dµF < ∞, then, there is K ≥ 0 and a set A ⊂ Σ having full

µF measure such that for each x0 ∈ Σ, x ∈ A

(30) c(r) · τΣ
Kr(x, x0) ·

∫

Σ

t(x) dµF ≤ τXt

r (x, x0) ≤ c(r) · τΣ
r (x, x0) ·

∫

Σ

t(x) dµF

with c(r) → 1 as r → 0.

Proof. Let us assume that x, x0 ∈ Σ. Since the flow cannot hit the section near x0 without
entering in a small ball of the space centered at x0 before, there is e(r) → 0 as r → 0 such
that τΣ

r (x, x0) and τXt

r (x, x0) are related by

(31) τXt

r (x, x0) ≤ e(r) +

τΣ
r (x,x0)
∑

i=0

t(F i(x)).

Moreover the transversality condition implies that there is a K such that

(32) τXt

r (x, x0) ≥ [

τΣ
Kr

(x,x0)
∑

i=0

t(F i(x))] − e(r).
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The last inequality follows by the fact that if the flow at some time crosses the ball centered
at x0 then it will cross the section at a distance less than Kr, where K depends on the
angle between the flow and the section (when r is small approximate locally the flow by a
constant one).

The above sums are Birkhoff sum of the observable t on the F -orbit of x and µF is
ergodic. Then there is a full measure set A such that

1

n

n
∑

i=0

t(F i(x)) −→

∫

Σ

t(x) dµF , as n→ ∞

for x ∈ A. Hence

1

τΣ
r (x, x0)

τΣ
r (x,x0)
∑

i=0

t(F i(x)) −→

∫

Σ

t(x) dµF , as n→ ∞

for x ∈ A. Thus we get that for each x ∈ A

(33)

τΣ
r (x,x0)
∑

i=0

t(F i(x)) = c(r) · τΣ
r (x, x0) ·

∫

Σ

t(x) dµF

with c(r) → 1 as r → 0. Combining Equations (31,32) and (33) we get (30). �

Let π be the projection on Σ defined in Proposition 3.2. The above statement implies
the following

Proposition 5.2. There is a full measure set B ⊂ R
3 such that if x0 ∈ R

3 is regular and
x ∈ B it holds

(34) lim
r→0

log τXt

r (x, x0)

− log r
= lim

r→0

log τΣ
r (x, π(x0))

− log r

Proof. The above Proposition implies that if x0, x ∈ Σ and x ∈ A then

(35) lim
r→0

log τXt

r (x, x0)

− log r
= lim

r→0

log τΣ
r (x, x0)

− log r
= dµF

(x0).

This is also true for each x ∈ B = π−1(A). If x0 ∈ R
3 is a regular point, the flow X induces

a bilipschitz homeomophism from a neighborhood of x0 to a neighborhood of π(x0) ∈ Σ.
Hence there is K ≥ 1 such that

τX
K−1r(x, π(x0)) + Const ≤ τX

r (x, x0) ≤ τX
Kr(x, π(x0)) + Const

where Const represents the time which is needed to go from π(x0) to x0 by the flow.
Extracting logarithms and taking the limits we get the required result. �

We recall that (see Section 3) the assumption
∫

Σ
t(x) dµF < ∞ is verified for the geo-

metric Lorenz flow. Hence these results applies for this example.
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6. A logarithm law for the hitting time

In this section we give the main result for the behavior of the hitting time on Lorenz
like flows. First let us recall a result on discrete time systems.

Let (Y, T, µ) be a measure preserving (discrete time) dynamical system. We say that
(X, T, µ) has super-polynomial decay of correlations with respect to Lipschitz observables
if

∣

∣

∣

∣

∫

ϕ ◦ T nψ · dµ−

∫

ϕ · dµ ·

∫

ψ · dµ

∣

∣

∣

∣

≤ ‖ϕ‖ · ‖ψ‖ · θn,

with limn θn · np = 0 for all p > 0 and ‖ · ‖ is the Lipschitz norm.
In [15] it is proved the following fact for discrete time systems:

Theorem 6.1. Let (Y, T, µ) a dynamical system having superpolynomial decay of correla-
tions as above. For each x0 ∈ Y such that dµ(x0) is defined

lim
r→0

log τr(x, x0)

− log r
= dµ(x0)

for µ-almost each x ∈ Y .

We can apply this to a 2-dimensional systems (Σ, F, µF ) satisfying the assumptions of
Theorem 4.7 since we proved that the system has exponential decay of correlations. We
hence conclude the following

Corollary 6.2. Let F : Σ → Σ be a map with an invariant measure µF satisfying the
assumptions of Theorem 4.7. For each x0 ∈ Σ such that dµF

(x0) exists then

lim
r→0

log τΣ
r (x, x0)

− log r
= dµF

(x0).

for µF -almost x ∈ Σ.

Now, if we consider a flow having such a map as its Poincaré section and integrable
return time, we can construct as in Section 3 an SRB invariant measure µX for the flow.
By Proposition 5.2, Corollary 6.2 and Proposition 3.2 we can estimate the hitting time to
balls for the flow by the corresponding estimation for the Poincaré map and we get our
main result, which corresponds to Theorem B in the introduction (where all the necessary
assumptions on the map are listed):

Theorem 6.3. If X t is a Lorenz like flow, that is a flow having a transversal section, with
a Poincaré map satisfying the assumptions of proposition 4.7 and integrable return time,
then for each regular x0 ∈ R

3 such that dµX
(x0) exists, it holds

lim
r→0

log τXt

r (x, x0)

− log r
= dµX

(x0) − 1

for µX-almost each x ∈ R
3.
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7. Quantitative recurrence for Lorenz like systems

We now recall a general result proved by Saussol in [35] about quantitative recurrence
in order to apply it to a Lorenz like flow. The result shows that the power law behavior of
the recurrence rate can be estimated in function of the local dimension if the system has
fast enough decay of correlations.

Let (Y, µ, T ) be discrete time dynamical system. Given a set A ⊂ Y , we denote the
boundary of A as ∂A.

Theorem 7.1. [35, Thm 4, Lemma 13]. Let (Y, T, µ) be a measure preserving dynamical
system. Assume that the entropy hµ(T ) > 0 and T is such that there exists a partition A
(modulo µ) into open sets such that for each A ∈ A the map T is Lipschitz with constant
LT (A). Furthermore, suppose that

(1) the set S(A) = ∪{∂A ∈ A} is such that there are constants c > 0 and a > 0 so that

µ ({x ∈ X : dist(x,S(A)) < ε}) < c · εa.

(2) the average Lipschitz exponent
∑

A∈A

µ(A) log+ LT (A)

is finite,
(3) the decay of correlation of T is super-polynomial.

Then

(36) lim inf
r→0

log τr(x, x)

− log r
= d−µ (x) , and lim sup

r→0

log τr(x, x)

− log r
= d+

µ (x) a.e.

Let us first show that the above theorem can be applied to the Geometric Lorenz system.

Lemma 7.2. The first return map (F,Σ, µF ) of the Geometric Lorenz system (described
in Section 2) satisfies the hypothesis of Theorem 7.1 above.

Proof. Since we have proved that the system (F,Σ, µF ) is exponentially mixing, item (3)
at Theorem 7.1 is satisfied.

The partition A = {Ai}, with

(37) Ai =

(

1

i+ 1
,
1

i

)

× I̊ , i ∈ Z

where I̊ denotes the interior of I, satisfies (1) and (2) at Theorem 7.1. Here we note that
F is not globally Lipschitz, but from Eq. (16) we get LT (Ai) ≤ K · iβ, with β > 1 and
K > 0.

Moreover, the fact that µF has a bounded density marginal (the density will be denoted
by f0 as before) on the x direction implies that the measure of the sets Ai can be estimated
by

µ(Ai) ≤
2 · sup(f0)

i2
.
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Thus,
∑

A∈S(A)

log+ LF (A) · µ(A) =
∑

A∈S(A)

log+(K · iβ) ·
2 · sup(f0)

i2
<∞.

This finishes the proof. �

In the same way, replacing Equation 16 with assumption 3) in the introduction it can
be proved that the above theorem applies to Lorenz like flows:

Lemma 7.3. If the system (F,Σ, µF ) is the first return map of a flow satisfying assump-
tions 1.a),...1.d),2),3) of the introduction, then it satisfies the hypothesis of Theorem 7.1.

Applying Theorem 7.1 to such system, then we get

Corollary 7.4. For the system (F,Σ, µF ) it holds

lim inf
r→0

log τΣ
r (x, x)

− log r
= d−µF

, lim sup
r→0

log τΣ
r (x, x)

− log r
= d+

µF
, µF − a.e. .

Finally, remarking that regular points have full measure, with the same arguments as in
Proposition 5.2 by Theorem 3.2, we get

Corollary 7.5. For the Geometric Lorenz flow and for Lorenz like flows as above it holds

lim inf
r→0

log τ ′r(x)

− log r
= d−µX

− 1, lim sup
r→0

log τ ′r(x)

− log r
= d+

µX
− 1, µX − a.e. .

where τ ′ is the recurrence time for the flow, as defined in the introduction.

This is the content of Theorem C in the introduction.

8. Appendix I: about regularity of the measure µF

In this section we are going to prove that the SRB measure of a Lorenz like map satisfies
item 3 of Theorem 4.7. We remark that this is a kind of regularity assumption for the
measure µF (a certain projection is BV). The proof is done in several steps and it will be
completed at the end of the section. The statement we are going to prove is:

Lemma 8.1. Let F (x, y) = (T (x), G(x, y)) be a Borel map preserving the vertical foliation,
such that:

(1) There is k ≥ 0 such that, if x1, x2 are such that 0 /∈ [x1, x2] then ∀x ∈ I :

|G(x1, y) −G(x2, y)| ≤ k · |x1 − x2|

(2) F |γ is λ-Lipschitz with λ < 1 (hence is uniformly contracting) on each leaf γ.
(3) T : I → I is onto and, piecewise monotonic, with two C1 increasing branches on

the intervals [−1
2
, c),(c, 1

2
] and T ′ > 1 where it is defined. Moreover lim

x→c−
T (x) =

1
2
, lim
x→c+

T (x) = −1
2
, T (c) = −1

2
, lim

x→c
T ′(x) = ∞.

(4) 1
T ′

has bounded variation.

then (Σ, F ) has an unique invariant SRB measure which satisfies item 3 of Theorem 4.7.



LORENZ:DECAY,HITTING,RECURRENCE 25

We recall that the existence and the uniqueness of the SRB measure can be obtained by
the general arguments exposed in Section 3. To proceed to prove the above statement, we
need to introduce some concepts.

To deal with non normalized measures as the measures µ|γ on the leaves are, we consider
the following modification of the Wasserstein distance: let b1lip(I) be the set of 1-Lipschitz
functions on I having L∞ norm less or equal than 1 (b1lip(I) = 1lip(I) ∩ {g, ‖g‖∞ ≤ 1}).

Let us consider two finite measures µ, ν and the distance

W 0
1 (µ, ν) = sup

g∈b1lip(I)

|

∫

g dµ−

∫

g dν|.

Remark 8.2. We remark that choosing g = 1 we obtain W 0
1 (µ, ν) ≥ |µ(I) − ν(I)|.

Let us consider the space M(I) of Borel finite measures over I with the distance W 0
1 .

Given a function G : I → (M(I),W 0
1 ) we define the variation of G as follows: let x1, ..., xn

be an increasing finite sequence in I (which induces a subdivision in small intervals) let
Sub be the set of such subdivisions. We define the variation of G as:

V ar(G, x1, ..., xn) =
∑

i≤n

W 0
1 (G(xi), G(xi+1))

V ar(G) = sup
(xi)∈Sub

V ar(G, x1, ..., xn).

We will consider the Lebesgue measure on the section Σ and its iterates by F . The
strategy is to disintegrate along stable leaves and estimate the variation of the induced
function I → (M(I),W 0

1 ) proving that this is uniformly bounded. Le us precise this point:
if µ is a finite measure on Σ, by disintegration this induces a function Gµ : I → M(I)
defined almost everywhere by

Gµ(γ) = µ|γ.

Suppose that Gµ is defined everywhere. The BV norm of Gµ will be an estimation of the
regularity of µ. For example, the Lebesgue measure on the square Σ induces a function
Gm which is constant everywhere and its value is the Lebesgue measure on the interval.
The variation in this case is obviously null. We remark that each iterate of the Lebesgue
measure by F ∗ induces a GF ∗n(m) which is defined everywhere (see eq. 38 ). We will give
an estimation of the variation for these iterates in our system.

Definition 8.3. We say that a measure µ on Σ is K-good if the function Gµ : I →M(I),
with Gµ(γ) = µ|γ as above is well defined and s.t. V ar(Gµ) ≤ K.

Some preliminary lemmata and remarks.

Remark 8.4. We remark that if µ is K-good then supγ(µ|γ(I)) ≤ 1 +K.

Proof. Since µ is a probability measure then for some γ, µ|γ(I) ≤ 1 if for some ξ it was
µ|ξ(I) > 1 +K then by Remark 8.2 this would contradict the assumption.

This elementary remark about real sequences will be used in the following. �
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Lemma 8.5. If a sequence an is such that an+1 ≤ λan + k for some λ < 1, k > 0, then

sup(an) ≤ max(a0,
k

1 − λ
)

Proof. If for some m, am > k
1−λ

then there is δ > 0 such that am = k+δ
1−λ

. Hence, am+1 ≤

λ · k+δ
1−λ

+ k = k+λδ
1−λ

< am. Similarly an ≤ k
1−λ

=⇒ an+1 ≤
k

1−λ
. �

The following is analogous to remark 4.8 for the distance W 0
1 , and also follows by uniform

contraction on stable leaves.

Remark 8.6. Let F be λ contracting as above. Let us consider a leaf γ and two finite
(non necessarily normalized) measures µ, ν on it. Then

W 0
1 (F ∗(µ), F ∗(ν)) ≤ |µ(γ) − ν(γ)| + λ ·W 0

1 (µ, ν).

Proof. If g is in b1lip on F (γ) then g(F (∗)) is λ-Lipschitz on γ, moreover since |g| ≤ 1then
|g ◦ F − θ| ≤ λ for some θ ≤ 1. This implies that

|

∫

F (γ)

g d(F ∗µ) −

∫

F (γ)

g d(F ∗ν)| = |

∫

γ

g ◦ F dµ−

∫

γ

g ◦ F dν| ≤

θ · |µ(I) − ν(I)| + |

∫

γ

(g ◦ F ) − θ dµ−

∫

γ

(g ◦ F ) − θ dν| ≤

|µ(I) − ν(I)| + λ ·W 0
1 (µ, ν).

�

Now we are ready to prove the main technical lemma estimating the regularity of the
iterates F ∗n(m). We will explicit the assumptions we need on F .

Lemma 8.7. Let F (x, y) = (T (x), G(x, y)) be a Borel map preserving the vertical foliation
such that:

(1) There is k ≥ 0 such that, if x1, x2 are such that 0 /∈ [x1, x2] then ∀x ∈ I : |G(x1, y)−
G(x2, y)| ≤ k · |x1 − x2|

(2) F |γ is λ-Lipschitz with λ < 1 on each vertical leaf γ.

Let γ1 and γ2 two close leaves with that F−1(γ1) = {α1, α2}, F
−1(γ2) = {β1, β2} and

suppose that T ′ is defined in the points αi and βi and at these points T ′ ≥ 1. Let µ0be a
probability measure on Σ such that µ0|γ is defined everywhere and

µ0|γ(I) = f0(γ)

for a bounded density function f0. Then

W 0
1 (F ∗(µ0)|γ1

, F ∗(µ0)|γ2
) ≤ |f0(α1) − f0(β1)| + λW 0

1 (µ0|α1
, µ0|β1

)+

+|f0(α2) − f 0(β2)| + λW 0
1 (µ0|α2

, µ0|β2
))+

+2 · k · sup f 0(|α1 − β1| + |α2 − β2|) + sup f 0|
1

T ′(α1)
−

1

T ′(β1)
| + sup f 0|

1

T ′(α2)
−

1

T ′(β2)
|.



LORENZ:DECAY,HITTING,RECURRENCE 27

Proof. Let F ∗(µ0)|γ1
be the restriction of F ∗(µ0) to the leaf γ. Remark that

(38) F ∗(µ0)|γ1
=

1

T ′(α1)
F ∗

α1
(µ0|α1

) +
1

T ′(α2)
F ∗

α2
(µ0|α2

)

where Fαi
: I → I is given by Fαi

(y) = πy(F (y, αi)) and

F ∗(µ0)|γ2
=

1

T ′(β1)
F ∗

β1
(µ0|β1

) +
1

T ′(β2)
F ∗

β2
(µ0|β2

)

with similar notation for Fβ1
. Now the remaining part of the proof is a (long) straight-

forward calculation:

W 0
1 (F ∗(µ0)|γ1

, F ∗(µ0)|γ2
) = sup

g∈1blip
|

∫

g d(F ∗(µ0)|γ1
) −

∫

g d(F ∗(µ0)|γ2
)|

and
∫

g d(F ∗(µ0)|γ1
) =

∫

g d(
1

T ′(α1)
F ∗

α1
(µ0|α1

) +
1

T ′(α2)
F ∗

α2
(µ0|α2

)),

∫

g d(F ∗(µ0)|γ2
) =

∫

g d(
1

T ′(β1)
F ∗

β1
(µ0|β1

) +
1

T ′(β2)
F ∗

β2
(µ0|β2

)).

let us estimate these two terms:
∫

gd(F ∗(µ0)|γ1
) =

∫

gd(
1

T ′(α1)
F ∗

α1
(µ0|α1

) +
1

T ′(α2)
F ∗

α2
(µ0|α2

)) =

=
1

T ′(α1)

∫

g(Fα1
(y))d(µ0|α1

) +
1

T ′(α2)

∫

g(Fα2
(y))d(µ0|α2

)

and similarly
∫

gd(F ∗(µ0)|γ2
) =

1

T ′(β1)

∫

g(Fβ1
(y))d(µ0|β1

) +
1

T ′(β2)

∫

g(Fβ2
(y))d(µ0|β2

).

Hence

|

∫

gd(F ∗(µ0)|γ1
) −

∫

gd(F ∗(µ0)|γ2
)| =

|
1

T ′(α1)

∫

g(Fα1
(y))d(µ0|α1

) +
1

T ′(α2)

∫

g(Fα2
(y))d(µ0|α2

)

−
1

T ′(β1)

∫

g(Fβ1
(y))d(µ0|β1

) −
1

T ′(β2)

∫

g(Fβ2
(y))d(µ0|β2

)|.

To estimate the last expression by the triangle inequality, let us add and subtract

1

T ′(β1)

∫

g(Fβ1
(y))d(µ0|α1

) +
1

T ′(β2)

∫

g(Fβ2
(y))d(µ0|α2

)

obtaining

|

∫

gd(F ∗(µ0)|γ1
) −

∫

gd(F ∗(µ0)|γ2
)| ≤ |A| + |B|,
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where

A =
1

T ′(α1)

∫

g(Fα1
(y))d(µ0|α1

) +
1

T ′(α2)

∫

g(Fα2
(y))d(µ0|α2

)

−
1

T ′(β1)

∫

g(Fβ1
(y))d(µ0|α1

) −
1

T ′(β2)

∫

g(Fβ2
(y))d(µ0|α2

)

and

B =
1

T ′(β1)

∫

g(Fβ1
(y))d(µ0|α1

) +
1

T ′(β2)

∫

g(Fβ2
(y))d(µ0|α2

)

−
1

T ′(β1)

∫

g(Fβ1
(y))d(µ0|β1

) −
1

T ′(β2)

∫

g(Fβ2
(y))d(µ0|β2

)

Estimation of A. Now let us estimate A:

|A| ≤ |
1

T ′(α1)

∫

g(Fα1
(y))d(µ0|α1

) −
1

T ′(β1)

∫

g(Fβ1
(y))d(µ0|α1

)| +

|
1

T ′(α2)

∫

g(Fα2
(y))d(µ0|α2

) −
1

T ′(β2)

∫

g(Fβ2
(y))d(µ0|α2

)| = I + II

let us analyze the first term in the sum (the estimation of the other term is similar)

I = |
1

T ′(α1)

∫

g(Fα1
(y))d(µ0|α1

) −
1

T ′(β1)

∫

g(Fβ1
(y))d(µ0|α1

)| =

= |

∫

1

T ′(α1)
g(Fα1

(y)) −
1

T ′(β1)
g(Fβ1

(y)) d(µ0|α1
)|

adding and subtracting 1
T ′(α1)

g(Fβ1
(y)) we obtain

|

∫

1

T ′(α1)
g(Fα1

(y)) −
1

T ′(β1)
g(Fβ1

(y)) +
1

T ′(α1)
g(Fβ1

(y)) −
1

T ′(α1)
g(Fβ1

(y)) d(µ0|α1
)| ≤

≤ |

∫

1

T ′(α1)
g(Fα1

(y)) −
1

T ′(α1)
g(Fβ1

(y)) d(µ0|α1
)| +

+|

∫

1

T ′(α1)
g(Fβ1

(y)) −
1

T ′(β1)
g(Fβ1

(y)) d(µ0|α1
)|.

Now, since f 0 is bounded µ0|α1
(I) ≤ sup(f0) and then

|

∫

1

T ′(α1)
g(Fβ1

(y)) −
1

T ′(β1)
g(Fβ1

(y)) d(µ0|α1
)| ≤ sup f0|

1

T ′(α1)
−

1

T ′(β1)
|.

The other summand is

|

∫

1

T ′(α1)
g(Fα1

(y)) −
1

T ′(α1)
g(Fβ1

(y)) d(µ0|α1
)| ≤ |

∫

g(Fα1
(y)) − g(Fβ1

(y)) d(µ0|α1
)|

By assumption (1) then |F (y, α1) − F (y, β1)| ≤ k · |α1 − β1| and hence

|

∫

g(Fα1
(y)) − g(Fβ1

(y)) d(µ0|α1
)| ≤ k · |α1 − β1| · sup f0.
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summarizing

(39) I ≤ sup f0|
1

T ′(α1)
−

1

T ′(β1)
| + k · |α1 − β1| · sup f 0.

Considering in the same way the summand II in the expression of A, this gives

|A| ≤ k · sup f0(|α1 − β1| + |α2 − β2|)+

sup f 0|
1

T ′(α1)
−

1

T ′(β1)
| + sup f 0|

1

T ′(α2)
−

1

T ′(β2)
|.

Estimation of B. The upper bound on B follows by contraction on stable leaves. Indeed,

|B| ≤ |
1

T ′(β1)

∫

g(Fβ1
(y))d(µ0|α1

) −
1

T ′(β1)

∫

g(Fβ1
(y))d(µ0|β1

)| +

+|
1

T ′(β2)

∫

g(Fβ2
(y))d(µ0|α2

) −
1

T ′(β2)

∫

g(Fβ2
(y))d(µ0|β2

)|

now, since F contracts all the leaves by a factor at least λ by Remark 8.6 it holds

|B| ≤
1

T ′(β1)
(|µ0|α1

(I) − µ0|β1
(I)| + λW1(µ0|α1

, µ0|β1
)) +

+
1

T ′(β2)
(|µ0|α2

(I) − µ0|β2
(I)| + λW1(µ0|α2

, µ0|β2
)).

Summarizing, ∀ g ∈ b1lip
∣

∣

∣

∣

∫

gd(F ∗(µ0)|γ1
) −

∫

gd(F ∗(µ0)|γ2
)

∣

∣

∣

∣

≤(40)

≤
1

T ′(β1)
(|µ0|α1

(I) − µ0|β1
(I)| + λW1(µ0|α1

, µ0|β1
))+

+
1

T ′(β2)
(|µ0|α2

(I) − µ0|β2
(I)| + λW1(µ0|α2

, µ0|β2
))+

+2k sup f 0(|α1 − β1| + |α2 − β2|) + sup f 0|
1

T ′(α1)
−

1

T ′(β1)
| + sup f0|

1

T ′(α2)
−

1

T ′(β2)
|

finishing the proof. �

Remark 8.8. We remark that this last step in the proof (equations 40 and following) is
the only one where the expansivity of T is explicitly used. In fact, an equivalent result can
be obtained with the weaker assumption λ(inf

x∈I
T ′(x)) < 1, instead of T ′ > 1.

A similar lemma holds for the case where the pre-image of γ1 and γ2 is only one leaf.
The proof is similar to the previous one.

Lemma 8.9. Let F : Σ → Σ be as above, satisfying points (1)–(3) of Lemma 8.7. Let
γ1and γ2 be two leaves and suppose that F−1(γ1) = {α1}, F

−1(γ2) = {β1}. Let us consider
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a probability measure µ0 on Σ such that µ0|γ(I) = f 0(γ) for a bounded function f 0 , then

W 0
1 (F ∗(µ0)|γ1

, F ∗(µ0)|γ2
) ≤ |f0(α1) − f0(β1)| + λ ·W1(µ0|α1

, µ0|β1
)+

+2 · k · sup(f 0)(|α1 − β1|) + sup(f 0)|
1

T ′(α1)
−

1

T ′(β1)
|.

The above lemmata give the following result, in the spirit of the Lasota Yorke inequality
(see in the following proof, eq. 42 and compare with [25], [26] e.g.) giving an upper bound
on the variation of iterates F ∗n(µ0).

We recall that by the classical Lasota-Yorke inequalities, for piecewise expanding maps
of the interval, iterating a bounded variation density g0 we get a sequence of uniformly
bounded variation densities,

(41) V ar(T ∗n(g0m)) ≤ Cg0

where Cg0
depends on g0 and on the dynamics T .

Theorem 8.10. Let F : Σ → Σ be as above, satisfying assumptions (1)–(4) of Lemma
8.1. Let µn = F ∗n(µ0) where µ0 is K-good and has BV density on the x axis, f0. Then,

each µn is K ′-good, where K ′ = max(K,
3+C

f0
+(C

f0
+1)V ar( 1

T ′
)+2k(C

f0
+1)

1−λ
).

Proof. Let us consider a subdivision γ1, ..., γn made of small intervals and set si = T−1([γi, γi+1)).
If we are in the case of Lemma 8.7 si consists of two small intervals, if we are in the case
of Lemma 8.9 si consists of one small interval and in the remaining case we have one
small interval and an interval of the type (α2,

1
2
) or (−1

2
, β1) (this can happen only in two

intervals containing the points T (−1
2
) and T (1

2
) ) of the subdivision). The endpoints of all

these pre-image intervals (si)i∈(1,...,n) constitute another subdivision γ∗1 , ..., γ
∗
m of I.

Let us estimate the variation of µ1 = F ∗(µ0) on the subdivision γ1, ..., γn. Let us suppose
that the intervals of γ1, ..., γn which are of the third type are (γj1, γj1+1) and (γj2, γj2+1).

In this case we bound trivially from above the variation: W 0
1 (µ1|γji

, µ1|γji+1
) ≤ sup f0 (for

i = 1, 2). Lemma 8.7 and Lemma 8.9 imply

V ar(Gµ1
, γ1, ..., γn) =

∑

i≤n

W1(µ1|γ, µ1|γi+1
) ≤ 2 sup f 0 +

∑

i≤m

|f0(γ
∗
i ) − f0(γ

∗
i+1)| + λW1(µ0|γ∗

i
, µ0|γ∗

i+1
))+

+
∑

i≤m

2k sup f0(|γ
∗
i − γ∗i+1|) + sup f 0|

1

T ′(γ∗i )
−

1

T ′(γ∗i+1)
|.

Hence

V ar(Gµ1
, γ1, ..., γn) ≤ 2 sup f 0 + V ar(f0) + sup f 0V ar(

1

T ′
) + sup f02k + λV ar(Gµ0

)

and we conclude that

(42) V ar(Gµ1
) ≤ 2 sup f 0 + V ar(f 0) + sup f0V ar(

1

T ′
) + sup f02k + λV ar(Gµ0

).
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If f iare the marginals of µi then as recalled before V ar(f i) ≤ Cf0
. This allows to Iterate

the above inequality and obtain, by Lemma 8.5

sup
i

(V ar(Gµi
)) ≤ max(V ar(Gµ0

),
2 + 3Cf0

+ (Cf0
+ 1)V ar( 1

T ′
) + 2k(Cf0

+ 1)

1 − λ
),

(remark that sup f 0 ≤ V ar(f0) + 1) finishing the proof. �

If µ is a good measure, the measure fµ associated to a Lipschitz observable f is also a
good measure:

Lemma 8.11. If µn is a sequence of K−good measures on Σ and νn = fµn with f be
ℓ-Lipschitz and ‖f‖∞ ≤ ℓ then each νn is a (3ℓK + ℓ)-good measure.

Proof. let γ1 and γ2 be two close leaves

W 0
1 (νn|γ1

, νn|γ2
) = sup

g∈b1lip

∣

∣

∣

∣

∫

γ1

g(∗)f(∗, γ1)d(µn|γ1
) −

∫

γ2

g(∗)f(∗, γ2)d(µn|γ2
)

∣

∣

∣

∣

we recall that |g| ≤ 1, hence
∣

∣

∣

∣

∫

g(∗)f(∗, γ1) d(µ|γ1
) −

∫

g(∗)f(∗, γ2) d(µ|γ2
)

∣

∣

∣

∣

≤

≤

∣

∣

∣

∣

∫

g(∗)f(∗, γ1) d(µ|γ1
) −

∫

g(∗)f(∗, γ1) d(µ|γ2
)

∣

∣

∣

∣

+

+

∣

∣

∣

∣

∫

g(∗)f(∗, γ1) d(µ|γ2
) −

∫

g(∗)f(∗, γ2) d(µ|γ2
)

∣

∣

∣

∣

≤

≤ 2ℓ ·W 0
1 (µn|γ1

, µn|γ2
) + ℓ|γ1 − γ2| sup

γ
(µ|γ(I))

hence V ar(Gνn
) ≤ 2ℓK + ℓ(K + 1). �

Remark 8.12. If µn is K-good for each n and gn : I → I is the marginal, such that

gn(γ) = µn|γ(I),

since |gn(γ1) − gn(γ2)| ≤W 0
1 (µn|γ1

, µn|γ2
) then it holds

(43) V ar(gn) ≤ K

for each n.

Remark 8.13. If µn → µ and νn = fµn , ν = fµ with f be ℓ-Lipschitz then νn → ν.(this is
easily obtained because

∫

hf dµn →
∫

hf dµ, for each continuous h since hf is continuous).

We are finally ready to end the proof of the main proposition of the section.

Proof. (of Lemma 8.1) We prove that f as defined at item 3 of Theorem 4.7 has bounded
variation and V ar(f) ≤ 3ℓK ′ + ℓ, where ℓ is the Lipschitz constant of f and K ′ is given in
Theorem 8.10 and does not depend on f . Let µn = F ∗n(m) be the sequence of iterates of
the Lebesgue measure. By Theorem 8.10 these are K ′-good. Since the invariant measure
µ is a SRB with full basin, hence µn → µ in the weak topology. Then for each continuous
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h it holds µn(h) → µ(h). In particular this holds for the functions which are constant
on each contracting leaf. Let h be such a function. Then

∫

Σ
h dµn =

∫

I
hgndx where

gn(x) = µn|γx
(I) are the densities of µn on the x axis as in Remark 8.12.

Let f be ℓ-Lipschitz, νn = fµn and ν = fµ as required by Lemma 8.1. Since h is
constant along the leaves, again

∫

Σ
h dν =

∫

I
hfdx and

∫

Σ
h dνn =

∫

I
hfndx where fn(γ) =

∫

γ
f d(µn|γ) as above. By Remark 8.13

∫

Σ

h dνn →

∫

Σ

h dν

hence
∫

I

hfndx→

∫

I

hfdx.

We have to prove that f is BV. By Lemma 8.11 the measures νn are (3ℓK ′ + ℓ)-good.
Now by Remark 8.12, V ar(fn) ≤ 3ℓK ′ + ℓ . By the Helly theorem there is a sub-sequence

fni
converging in the L1 norm to some bounded variation function f̃ such that V ar(f̃) ≤

3ℓK ′ + ℓ.
Hence

∫

hfni
dx→

∫

hf̃dx for each h as above and so
∫

hfdx =
∫

hf̃dx for each contin-

uous h and then this implies that they coincide a.e.. Hence f can be supposed to be BV
and having V ar(f) ≤ 3ℓK ′ + ℓ . �

9. Appendix II: Exact dimensionality

In several of the above results we used the local dimension of the system at certain
points. In this section we recall a result of of Steinberger ([40]) about the local dimension
of Lorenz like systems and prove that for the geometric Lorenz system the local dimension
is defined at almost every point.

Let us consider a map F : [0, 1]2 → [0, 1]2 F (x, y) = (T (x), g(x, y)) where

(1) T : [0, 1] → [0, 1] is piecewise monotonic. This means that there are ci ∈ [0, 1] for
0 ≤ i ≤ N with 0 = c0 < · · · < cN = 1 such that T |(ci, cI+1) is continuous and
monotone for 0 ≤ i < N . Furthermore, for 0 ≤ i < N , T |(ci, ci+1) is C1 and that
infx∈S |T

′(x)| > 0 holds where P = [0, 1] \ ∪0≤i<Nci.
(2) g : [0, 1]2 → (0, 1) is C1 on P× [0, 1]. Furthermore, sup |∂g/∂x| <∞, sup |∂g/∂y| <

1 and |(∂g/∂y)(x, y)| > 0 for (x, y) ∈ P × [0, 1].
(3) F ((ci, ci+1) × [0, 1]) ∩ F ((ci, ci+1) × [0, 1]) = ∅ for distinct i, j with 0 ≤ i, j < N .

Now consider the projection πx : I2 → I, set V = {(−1/2, 0), (0, 1/2)} and Vk =
∨k

i=0 f
−iV, which is a partition of E =

⋂∞
i=0H

−1(I \ {0}) into open intervals. For x ∈ E
let Jk(x) be the unique element of Vk which contains x. We say that V is a generator if
the length of the intervals Jk(x) tends to zero for n→ ∞ for any given x. Set

ψ(x, y) = log |T ′(x)| and ϕ(x, y) = − log |(∂g/∂y)(x, y)|.

The result of Steinberger that we shall use is the following
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Theorem 9.1. [40, Theorem 1] Let F be a two-dimensional map as above and µ an
ergodic, F -invariant probability measure on I2 with the entropy hµ(F ) > 0. Suppose V
is a generator,

∫

ψ · dµF < ∞ and 0 <
∫

ϕdµF < ∞. If the maps y 7→ ψ(x, y) are
uniformly equicontinuous for x ∈ I \ {0} and 1/|f ′| is BV then

dµ(x, y) = hµ(F )
( 1
∫

ψ · dµ
+

1
∫

ϕ · dµ

)

for µ-almost all (x, y) ∈ I2.

Now we verify that the Lorenz geometric system as defined in Section 3 is exact dimen-
sional. First we observe that for the first return map F : Σ \ Γ → Σ associated to the
Lorenz geometric flow its entropy hµ(F ) > 0, see [5, 4, pp.188]. Next, equations (17), (18),
and the properties of fLo described in Subsections 2.4 and 2.5 guaranty that F = (fLo, gLo)
is a two-dimensional transformation satisfying the above points (1–3). So, all we need to
prove that (Σ, F, dµF ) is exact dimensional is to verify that F (x, y) = (fLo(x), gLo(x, y))
satisfies the hypothesis of Theorem 9.1. For this, let

ψ(x, y) = log |f ′
Lo(x)| and ϕ(x, y) = − log |(∂gLo/∂y)(x, y)|.

Then the following result holds:

Proposition 9.2. For q = (x, y) ∈ Σ∗, let ϕ(q) = − log |∂gLo/∂y(q)| and ψ(q) = log |f ′
Lo(x)|.

Then

(1)
∫

ϕdµF <∞,
(2) 0 <

∫

ψdµF <∞, and
(3) the maps y 7→ ϕ(x, y) are uniformly equicontinuous for x ∈ I \ {0}.

where µF is the invariant ergodic SRB measure described in Subsection 3.

Proof. Given q = (x, y) ∈ [−1/2, 1/2]2, we provide the calculations for x > 0, the other
case being analogous.

By equation (16) we have

DF (x, y) =

(

∂xfLo ∂yfLo

∂xgLo ∂ygLo

)

=

(

M · α · x(α−1) 0
σ · β · yx(β−α) σxβ

)

.

Proof of (1): By the expression above we have ∂gLo/∂y(q) = σ·xβ and so log |∂gLo/∂y(q)| =
log |σ · xβ| does not depend on y. Since the measure µF is constant at each leaf ℓ ∈ F and
the projection of µF on the x-axis, µfLo

, is absolutely continuous with respect to Lebesgue
measure (and even has a finite density), see Proposition 2.2, we immediately conclude that

∫

log |∂gLo/∂y(q)|dµF <∞.

proving (1).
Proof of (2): Again from the expression for DF (x, y) above we get f ′

Lo(x) = M ·α · x(α−1),
recall 0 < α < 1. Hence, for 0 < x < 1/2, log(f ′

Lo(x)) = log(M · α · x(α−1)). Thus

0 <

∫

log(f ′
Lo(x))dµF ≤ K0 + (α− 1)[x · log(x) − x] ≤ K0 + (α− 1)K1,
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proving (2).
Proof of (3)

Note that ϕ(x, y) = − log |(∂gLo/∂y)(x, y)| = log(σ) + β · log(|x|) and so the maps
y 7→ ϕ(x, y) are obviously uniformly equicontinuous for x 6= 0.

All together finishes the proof of Proposition 9.2 establishing that µF is exact dimen-
sional. �
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Maria José Pacifico, Instituto de Matemática, Universidade Federal do Rio de Janeiro,

C. P. 68.530, 21.945-970 Rio de Janeiro, Brazil

E-mail address : pacifico@im.ufrj.br


