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Abstract

In this paper we present a new non-linear interpolatory curve sub-
division scheme, suitable for designing curves on surfaces.

We show that the scheme converges and the subdivision curve is
continuous. Moreover, starting with a certain natural parametrization
of the initial polygon, we obtain a subdivision curve parametrized by
a multiple of the arc-length.

1 Introduction

Subdivision curves are very important for several science and engineering
applications. In the Euclidean space Rn, they are easy to define by just
selecting a small set of control points. A drawing algorithm typically performs
some subdivision steps, thus approximating the limit curve by a polygonal
line in a matter of milliseconds. In this setting, there are many references on
the convergence of these schemes.
Given their good properties and the advantages of using these curves, it is
natural to extend them to non-euclidean geometries, such as Riemannian
manifolds, Lie groups or triangulations. In [12, 14, 13] one may find some of
these extensions.
In this paper we propose a simple method to define a subdivision scheme
on a two dimensional manifold S that is easy to be implemented on triangle
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meshes. Under mild conditions, the limit curve of the proposed scheme is a
continuous curve on S. Higher order continuity has not been explored in this
work, since it depends also on the smoothness of S.

Figure 1: The limit curve of the 4-point subdivision scheme (1) with the
initial parametrization (2) with β = 0 (left), β = 0.5 (middle) and β = 1
(right)

The classical 4-point scheme [2, 5] is one of the earliest and most popu-
lar interpolatory curve subdivision schemes. It is a member of the Dubuc-
Deslauriers family of subdivision schemes [1], where the new points lie on a
polynomial interpolating consecutive vertices of the control polygon. More
precisely, starting from an initial polygon P 0 = {P 0

i , i ∈ Z} the 4-point
scheme is defined by the equations

P j+1
2i = P j

i , P j+1
2i+1 = gj

i (t
j+1
2i+1) (1)

where gj
i (t) is the cubic polynomial interpolating the points P j

k at uniform
parameter values tjk = k/2j for k = i−1, i, i+1, i+2, and tj+1

2i+1 = (2i+1)/2j+1.
Several authors [7, 4] have noticed that the limit curves of the 4-point scheme
fit tightly to the long edges of the initial control polygon and loosely to the
short edges, see Figure 1, left. This is a result of the uniform parametrization
t0i = i for all i: the same time is used to travel between two consecutive points
P 0

i , P 0
i+1 of the initial polygon, regardless of their distance. In other words,

the limit curve of the uniform 4-point subdivision scheme is far away from
being arc-length parametrized.
One way to address this problem is to use a non-uniform parameterization
for P 0

t0i+1 = t0i + ‖P 0
i+1 − P 0

i ‖β (2)

Then, the parameter values at the step j + 1, are computed from the para-
meters of the previous step as

tj+1
2i = tji , tj+1

2i+1 =
tji + tji+1

2
(3)
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Figure 2: After 6 iterations of the subdivison scheme [6].

Taking this idea one step further, in [4], a reparametrization is introduced in
each step, defined by the equation

tj0 = 0, tji+1 = tji + ‖P j
i+1 − P j

i ‖β (4)

Points in the step j + 1 are given by P j+1
2i = P j

i , P j+1
2i+1 = f j

i ((tji + tji+1)/2),

where f j
i (t) is the cubic polynomial interpolating (tjk, P

j
k ) for k = i− 1, i, i +

1, i + 2. The limit curve of this nonlinear scheme is smooth and when the
centripetal parametrization is used, it is relatively close to the initial polygon
and its shape is pleasing.
In Figure 1 we also show the limit curves of the 4-point subdivision scheme
corresponding to different values of β. Notice that the change in the para-
meterization of the initial polygon affects the shape of the limit curve.

Motivated by the idea of keeping some control on the geometry of the limit
curves by means of a simple non-linear subdivision scheme, in [6] is presented
a non-stationary, interpolatory, plane curve subdivision scheme, whose limit
curve is continuous and parametrized by a multiple of the arc-length. The
itermediate polygons P j are provided with non-uniform parametrizations
reflecting the relationship between the length of a side P j

i P j
i+1 of P j and the

length of the subpolygon of P j+1 obtained applying the subdivision scheme
to P j

i P j
i+1.

Based on this result, it becomes a natural idea to try to extend this scheme
to a curved surface S in the most intrinsic way, i.e., using the geometry of
the surface S.
The problem of designing curves on smooth manifolds has been addressed
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in several works [12, 14, 13], and also on triangulations [8]. Some general
frameworks for linear subdivision on smooth and discrete manifolds have
been defined [17, 15, 16, 9] in the last years.
In this work, we take another way. We translate the geometric ideas from
[6] to the geometry of the manifold. Doing so, we are able to prove some
properties of the new curves, which are defined on the manifold, in a way
similar to [6]. In the interpolatory scheme proposed in this paper, the new
points do not necessarily lie on the cubic polynomial (1). Instead, starting
from a parametrization t0 of the original polygon P 0 computed from the arc-
lengths ρ0

i of the geodesic curves on S joining two consecutive vertices P 0
i

and P 0
i+1, we control the length of the j-th subdivision polygons P j in such a

way that, after k subdivision steps applied to the side P j
i P j

i+1 of polygon P j,
the length of the obtained polygon tends to be proportional, with the same
proportionality factor for all i, to the length of the parameter interval tji+1−
tji corresponding to the parametrization tj assigned to P j. Furthermore, the
limit curve is continuous and it is parametrized by a multiple of the arc-
length.
A bound for the Hausdorff distance between the limit curve and the initial
polygon is also obtained.
The proposed scheme is nonlinear, hence we cannot study its properties
through the Laurent polynomials formalism [3]. Instead, we rely on ana-
lytical and geometric arguments that are particular to this type of schemes.

2 The subdivision scheme

2.1 General definitions

Let P 0 = {P 0
i , i ∈ Z} be an initial polygon with vertices on a given surface

S, where three consecutive vertices are always noncollinear. The equations
giving the polygon at step j + 1 can be written as

P j+1
2i = P j

i , P j+1
2i+1 = gj

i (P
j
i+1, P

j
i , αj) (5)

where P j+1
2i+1 is a point on S and the control parameters αj > 1 satisfy the

condition
α :=

∏
j

αj < ∞ (6)
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Figure 3: Some geodesic ellipses.

For any pair of points Q1, Q2 ∈ S denote by dg(Q1, Q2) the arc-length of
the geodesic curve on S ( we use the term geodesic meaning the locally
shortest curve or shortest geodesic, if S is a triangulation, see [11]) with initial
point Q1 and final point Q2. In particular, for two consecutive vertices of
polygon P k, P k

r+1, P
k
r ∈ S, we denote dg(P

k
r , P k

r+1) by ρk
r . The new vertex

P j+1
2i+1 = gj

i (P
j
i+1, P

j
i , αj) is computed in such a way, that for a given parameter

αj > 1
ρj+1

2i + ρj+1
2i+1 = αj ρj

i (7)

Condition (7) means that the new point P j+1
2i+1 is in the set

Eg := {Q ∈ S / dg(Q,P j
i ) + dg(Q,P j

i+1) = αj ρj
i} (8)

due its similarity with the classical definition of an ellipse, we will call this
set the geodesic ellipse on S with foci P j

i , P j
i+1 and eccentricity 1/αj.

2.2 Convergence

To study the convergence of the subdivision scheme, we first define the para-
metric values corresponding to each point on the subdivision polygon.
For the initial a non-uniform parametrization t0 of polygon P 0, we set:

t00 = 0 , t0i+1 = t0i + ρ0
i (9)

For the parametrization tj of polygon P j, we keep the parameters of the even
indices at level j + 1 the same as at level j, and set the new parameter tj+1

2i+1

in the interval [tji , t
j
i+1] in such a way that

ρj+1
2i

tj+1
2i+1 − tji

=
ρj+1

2i+1

tji+1 − tj+1
2i+1
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Figure 4: Conditions for convergence.

That is,
tj+1
2i = tji , tj+1

2i+1 = δj
i t

j
i + (1− δj

i )t
j
i+1 (10)

with δj
i =

ρj+1
2i+1

ρj+1
2i +ρj+1

2i+1

.

Theorem 1 Consider the subdivision scheme (5)-(7) using the parametriza-
tion (9)-(10). If the new points P j+1

2i+1 are selected in such a way that, for all
i, j

ρj+1
k ≤ Γ ρj

i for k = 2i, 2i + 1 with Γ < 1 (11)

then the subdivision scheme converges and the limit curve c(t) is continuous.

Proof. Let P j(t) be the piecewise linear function interpolating (tji , P
j
i ). We

will show that ‖P j(t) − P j+1(t)‖∞ tends uniformly to 0 when j → ∞. We
have

‖P j(t)− P j+1(t)‖∞ =

max
i

max
tji≤ttji+1

‖P j(t)− P j+1(t)‖ =

max
i
‖P j(tj+1

2i+1)− P j+1(tj+1
2i+1)‖ (12)

Since P j(t) is linear in [tji , t
j
i+1] and tj+1

2i+1 is given by (10) we obtain,

P j(tj+1
2i+1) = δj

i P
j
i + (1− δj

i )P
j
i+1 (13)

6



Substituting (13) in (12), using the value of δj
i in (10), and recalling that

P j+1(tj+1
2i+1) = P j+1

2i+1, we obtain

‖P j − P j+1‖∞ = max
i
‖P j+1

2i+1 − (δj
i P

j
i + (1− δj

i )P
j
i+1)‖ =

max
i
‖δj

i (P
j+1
2i+1 − P j

i ) + (1− δj
i )(P

j+1
2i+1 − P j

i+1)‖ ≤
max

i
{δj

i ‖P j+1
2i+1 − P j

i ‖+ (1− δj
i )‖P j+1

2i+1 − P j
i+1‖} ≤

max
i
{δj

i ρ
j+1
2i + (1− δj

i )ρ
j+1
2i+1} ≤

2 max
i
{ρj+1

2i+1ρ
j+1
2i

αj ρj
i

} (14)

since P k
r = P k+1

2r and , ‖P k
r+1−P k

r ‖, the euclidean distance from P k
r to P k

r+1,
is smaller than the geodesic distance (on S) ρk

r from P k
r to P k

r+1. Using (7)
and the arithmetic-geometric mean inequality, we get

2
ρj+1

2i+1ρ
j+1
2i

αjρj
i

= 2
ρj+1

2i+1ρ
j+1
2i

ρj+1
2i+1 + ρj+1

2i

≤ ρj+1
2i+1 + ρj+1

2i

2
=

αjρj
i

2

Therefore, from (14) we obtain,

‖P j(t)− P j+1(t)‖∞ ≤ αj

2
max

i
{ ρj

i}
Assuming (11), we get

‖P j(t)− P j+1(t)‖∞ ≤ Γ(
αj

2
max

i
{ρj−1

i }) ≤ Γ2(
αj

2
max

i
{ρj−2

i })

≤ · · · ≤ Γj(
αj

2
max

i
{ρ0

i })
Observe that Γ < 1 and that (11) implies αj ≤ 2, therefore passing to the
limit we obtain, limj→∞ ‖P j − P j+1‖∞ = 0. The last expression means that
the sequence {P j(t)} is a Cauchy sequence in the sup norm and in conse-
quence it converges. Since we have proved that {P j(t)} converges uniformly,
the limit function c(t) has to be continuous.

Remark 1 Notice that (11) is sufficient but not necessary condition. In
particular, if the hypothesis holds only after a certain step j0, the scheme
still converges to a continuous curve as we can see by applying the same
proof to the polygon P j0.
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3 Properties of the limit curve

3.1 Distance from the subdivision curve to the polygon

In this section a bound for the Hausdorff distance between the limit curve
and the initial polygon P 0 is obtained.

Lemma 1 Any vertex P j
k of the j-th subdivision of the edge P 0

i P 0
i+1 belongs

to the set

P j
k ∈ {Q ∈ S / dg(Q,P 0

i ) + dg(Q,P 0
i+1) ≤ (α0α1 · · ·αj−1) ρ0

i } (15)

i.e. , P j
k is inside the geodesic ellipse with foci P 0

i , P 0
i+1 and eccentricity

(α0α1 · · ·αj−1)−1.

Proof We have P 0
i = P j

2ji
and P 0

i+1 = P j
2j(i+1)

. The vertices in j-th step

corresponding to the edge P 0
i P 0

i+1 are P j
k , for k = 2ji, ..., 2j(i + 1) and

dg(P
0
i , P j

k ) + dg(P
j
k , P 0

i+1) =

dg(P
j
2ji

, P j
k ) + dg(P

j
k , P j

2j(i+1)
) ≤

k−1∑

l=2ji

ρj
l +

2j(i+1)−1∑

l=k

ρj
l =

2j(i+1)−1∑

l=2ji

ρj
l =

αj−1

2j−1(i+1)−1∑

l=2j−1i

ρj−1
l =

· · ·
= αj−1αj−2 · · ·α0ρ0

i

Hence, the sum of the geodesic distances from P j
k to P 0

l , l = i, i+1 is smaller
or equal to αj−1αj−2 · · ·α0 times the geodesic distance from P 0

i to P 0
i+1, ρ

0
i .

Using Lemma 1, we obtain an upper bound of the Hausdorff distance dH

between the segment of the limit curve {c(t), t ∈ [tji , t
j
i+1]} and the edge

P 0
i P 0

i+1.
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Theorem 2 Let c(t) be the limit curve of the subdivision scheme (5). As-
sume that α =

∏∞
j=0 αj is finite. Then

dH({c(t), t ∈ [t0i , t
0
i+1]}, P 0

i P 0
i+1) ≤

‖P 0
i+1 − P 0

i ‖
√

ω2 − 1

2
(16)

with ω :=
αρ0

i

‖P 0
i+1−P 0

i ‖
.

Proof From Lemma 1, we know that all points P j
k obtained at the j-th

subdivision of the edge P 0
i P 0

i+1 are contained in the geodesic ellipse with
foci P 0

i , P 0
i+1 and eccentricity (α0α1 · · ·αj−1)−1, given by

{Q ∈ S / dg(Q,P 0
i ) + dg(Q,P 0

i+1) = (α0α1 · · ·αj−1)ρ0
i }

Let be Q a point on the curve segment c[t0i , t
0
i+1], and denote by ΠQ the plane

spanned by Q, P 0
i and P 0

i+1. Since the euclidean distance is smaller than the
geodesic distance, then Q is in the interior of the euclidean ellipse on ΠQ

with foci P 0
i , P 0

i+1 and eccentricity 1/ω, defined by

EQ := {R ∈ ΠQ / ‖R− P 0
i ‖+ ‖R− P 0

i+1‖ = αρ0
i }

with ω :=
αρ0

i

‖P 0
i+1−P 0

i ‖
.

Observe that the length of the semiminor axis of the euclidean ellipse EQ

is
‖P 0

i+1−P 0
i ‖
√

ω2−1

2
, while the euclidean distance from each focus to the clos-

est intersection point between the semimajor axis of EQ and the euclidean

ellipse EQ is
‖P 0

i+1−P 0
i ‖(ω−1)

2
. Since ω ≥ 1, the first one is bigger than the

second one. Therefore, the Hausdorff distance from the section of the limit
curve corresponding to the parameter interval [t0i , t

0
i+1] to the edge P 0

i P 0
i+1 is

bounded above by
‖P 0

i+1−P 0
i ‖
√

ω2−1

2
.

3.2 Parametrization

In this section we prove properties of the subdivision scheme, when t0 is the
parametrization defined in (9).

Theorem 3 Consider the subdivision scheme (5)-(7) using the parametriza-
tion (9)-(10) and assume that conditions (6) and (11) hold. Denote by
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lj(P j
0 , P j(t)) the length of the subdivision curve P j in the step j between

points P j
0 and P j(t). Then, for any ε > 0 exists j0, such that

| lj0+k(P j0+k
0 , P j0+k(t))− R(j0)

R(j0 + k)
t | < ε

holds, for all k > 0, where R(k) :=
∏

j≥k αj.

Proof Assume that tj0i < t ≤ tj0i+1. Then, it is not difficult to show that
using the recurrence (7) we obtain

lj0+k(P j0+k
0 , P j0+k(tj0i )) =

R(j0)

R(j0 + k)
tj0i

Therefore, the equality

| lj0+k(P j0+k
0 , P j0+k(t))− R(j0)

R(j0 + k)
t | =

|lj0+k(P j0+k(tj0i ), P j0+k(t))− R(j0)

R(j0 + k)
(t− tj0i )| (17)

holds for tj0i < t ≤ tj0i+1.

Let be sj0+k
i the sum of the geodesic distances between two consecutive ver-

tices of the subpolygon of P j0+k that is obtained after k subdivision steps of
the side P j0

i P j0
i+1 of P j0 . Clearly, holds

lj0+k(P j0+k(tj0i ), P j0+k(t)) ≤ sj0+k
i (18)

On the other hand, if we take P j0 as initial polygon and tj0 as initial para-
metrization, we get the same limit curve c(t) as when we take P 0 as initial
polygon and t0 as initial parametrization, thus after a similar argument to
the one used in Lemma 1, we get that sj0+k

i has the upper bound

sj0+k
i ≤ R(j0)

R(j0 + k)
ρj0

i (19)

Therefore, sustituting (18) and (19) in (17), we get the following inequalities,

| lj0+k(P j0+k
0 , P j0+k(t))− R(j0)

R(j0 + k)
t | =

10



|lj0+k(P j0+k(tj0i ), P j0+k(t))− R(j0)

R(j0 + k)
(t− tj0i )| ≤

R(j0)

R(j0 + k)
(ρj0

i − (t− tj0i )) <

R(j0)

R(j0 + k)
ρj0

i

Recall that (6) implies that R(j0 + k) →k→∞ 1. On the other hand, after
Hence, if we choose j0 sufficiently large, such that

R(j0)

R(j0 + k)
< 2 and max

i
{ρj0

i } < ε/2

hold, we get the desired result.

Remark 2 The above result means that for sufficiently large j, the piecewise
linear function P j(t) interpolating (tji , P

j
i ) is approximately parametrized by a

multiple of the arc-length. Indeed, let c(t) be the limit curve and assume that
conditions (6) and (11) hold. Defining L(0, t) := limk→∞ lj0+k(P 0

0 , P j0+k(t))
as the arc-length of the section of c(t) between points c(0) = P 0

0 and c(t), we
get that L(0, t) ' R(j0) t holds. Hence, c(t) is parametrized approximately
by a multiple of the arc-length.

4 Conclusions

We described a subdivision scheme with control over the length of the limit
curve, suitable for designing curves on surfaces.
At each subdivision step, similarly to the classic 4-point scheme, the existing
vertices are retained, making the scheme interpolatory.

Despite the parametrization is not uniform, it is possible to compute a se-
quence of m points approximately on the subdivision curve, with approxi-
mately uniform arc-length distribution. Recall that even when these points
are not exactly on the subdivision curve, a bound for the Hausdorff distance
between any point of the polygon in the last step and the subdivision curve
can be computed.
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Figure 5: Sequences of points approximately on the subdivision curve, with
approximately uniform arc-length distribution.

The formulation of the scheme is presented for general two dimensional man-
ifolds. In the particular case of triangulated surfaces, we believe that the
results obtained in [8, 10] will make it possible to obtain efficient implemen-
tations. That should be discussed in detail in a future work.
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