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ABSTRACT. In this paper, we prove a generalized integral inequality for an n-
dimensional oriented closed C-totally real submanifold M with parallel mean
curvature vector h in a (2m + 1)-dimensional closed A-Sasakian space form
M(c) of constant ¢-sectional curvature ¢ with 0 < ¢ < A, n > 2 and if a
tensor ¢ related to h and the second fundamental form satisfies a certain
inequality. As a consequence we obtain that M is totally umbilic or minimal
with S = (n(c+3X\)+(c—X\))/6, which generalize the Theorem 3 of [8]. Finally,
we prove that if M is f-pseudo-parallel in a (2n + 1)-dimensional A-Sasakian
space form with f > (n(c+3X\)+(c—X))/4n, then M is totally geodesic, which
generalize the Theorem 1 of [11], when A = 1.

1. INTRODUCTION

Let M be a (2m + 1)-dimensional manifold and ['(M) the Lie algebra of vector
fields on M. An almost contact structure on M is deﬁneq by a (1,1)-tensor ¢, a
vector field £ and a 1-form 1 on M such that for any p € M, we have

or =T+, @&, np(&) =1,

where I denote the identity transformation of the tangent space TpM at p. Then
©(&) = 0 and n o ¢ = 0. Manifolds equipped whit an almost contact structure are
called almost contact manifolds. A Riemannian manifold M with metric tensor
(, ) and an almost contact structure (¢, &, n) such that

(X, 9Y) = (X, Y) = n(X)n(Y),
or equivalently

(X,9Y) = =(pX,Y) and (X,§) = n(X),

for all X,Y € I'(M), is an almost contact metric manifold. The existence of an
almost contact metric structure on M is equivalent with the existence of a reduction
of the structural group to U(m) x 1, i. e. all the matrices of O(2m + 1) of the form

A B 0
-B A 0 |,
0 0 1

where A and B are real (n x n)-matrices. The fundamental 2-form ¥ of an almost
contact metric manifold (M, p,&,n, (, )) is defined by

\I’(X7Y) = <X7 SOY>7
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forall X,Y € F(M), and this form satisfies n A U™ £ 0. When ¥ = %dn, A # 0 the

associated structure is a contact structure and M is an almost A-Sasakian manifold.
An almost A-Sasakian manifold (M, ¢, &, n, (, ) is called a A-Sasakian manifold if

[pX, 0]+ @*[X, Y] — o[ X, 0Y] — p[eX,Y] = —2dn(X,Y)¢

for all X,Y € I'(M). A necessary and sufficient condition for an almost contact
metric manifold (M, ¢, &, n,(, )) to be a A-Sasakian manifold is

(1.1) (Vo) Y = MUX, YV)g — ()X},

for all X,Y € T'(M), where V is the Levi-Civita connection of the Riemannian
metric (, ). Moreover, a A-Sasakian manifold satisfies:

see [4]. If A =1 a A-Sasakian manifold is a Sasakian manifold [2].

An n-dimensional Riemannian manifold M isometrically immersed in M is said
to be anti-invariant in M if ©T,M C T,M~ for each p of M, where T, M and T,,M~*
denote respectively the tangent and the normal space to M at p . Thus, for any
vector X tangent to M, ¢X is normal to M. In this case, ¢ is necessarily of rank
2m and hence n < m+ 1. An n-dimensional Riemannian manifold M isometrically
immersed in M is said to be C-totally real if € is a normal vector field to M. Recall
that a direct consequence of this definition is that M is a anti-invariant submanifold
in M and n < m . A plane section ¢ in TPM of a A-Sasakian manifold is called
a p-section if it is spanned by X and ¢ X, where X is a unit tangent vector field
orthogonal to £. The sectional curvature I;(a) with respect a @-section o is called
a @-sectional curvature. In this paper a A-Sasakian manifold M complete simply
connected with constant y-sectional curvature c is called a A-Sasakian space form
and is denoted by M(c). The curvature tensor R of M(c) is given by [7]:

Rz =2 vz 4 A o2y
(1:3) —n(Y)(Z)X + (X, Z)n(¥)§ — (V. Z)n(X)¢
+ (Y, Z)pX — (pX, Z)pY —2(pX,Y)pZ},

where X AY is the operator defined by (X AY)Z = (Y, 2)X — (X, Z)Y.

The purpose of present paper is to study n-dimensional C-totally real submani-
folds M, with parallel mean curvature in A-Sasakian space form M (c).

It is we need considerer ® : T,M x T,M — T,M + a bilinear map defined
as follows: choose an orthonormal frame {e, 41, ..., eam+1} of T,M* and for each
a=n+1,...,2m + 1, define maps @, : T, M — T,M by

(1.4) D, X = (h,ea)X — A X,

where h is the mean curvature vector and A._’s are the shape operators. Then ®
is given by

(1.5) O(X,Y) =) (2aX,Y)eq.

«

Therefore both ® and |®| not depend on the choice of {e,}, moreover, if S be the
squared norm of the second fundamental form of M, then

(1.6) B = tr (®a)* = S —nH?,

where H = |h|. We recall that |®|? = 0 if and only if M is totally umbilic; H = 0
if and only if M is minimal; and S = 0 if and only if M is totally geodesic.
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Now, for any H € R, we define the polynomial P . x by

-2 A - A
A7) Puo(e) = Sa?+ 022 gy <”(C+3 ) Fe +nH2).
2 n(n—1) 4
Denoting by 95 the square of the positive root of P . x(x) = 0, our results can be
stated as:

Theorem 1.1. Let M be an n-dimensional oriented complete closed C'-totally real
submanifold with parallel mean curvature vector in a closed A-Sasakian space form
M(c),n>2and 0 <c<\ If|®]?> <9y on M, then

(1.8) / |®|? Py o2 (|®])dM > 0.
M

As a consequence Theorem 1.1 , we get:

Theorem 1.2. Let M be an n-dimensional oriented complete closed C-totally real
submanifold with parallel mean curvature vector in a closed A-Sasakian space form
M(c),n>2and 0 <c<\ If|®> <9y on M, then either M is totally umbilical
or M is minimal, non-totally geodesic and

S = é{n(c+3)\) +c— A}

In particular, if c = X\ = 1, then M is either a totally geodesic submanifold or a
Veronese surface.

A submanifold M is f-pseudo-parallel if its second fundamental form h satisfies
the following condition
RX,)Y) - oc=fXAY -0,
for some real valued smooth function f on M and for any X and Y vectors tangent
to M, where R(X,Y) is the curvature operator of the Van der Waerden-Bortolotti
connection V of M, which with the operator X AY act on o as a derivation [1].

We prove a result that generalize the Theorem 1 of [11].

Theorem 1.3. Let M be an n-dimensional C-totally real submanifold with parallel
mean curvature vector in a (2n + 1)-dimensional A-Sasakian space form M(c). If
M is f-pseudo-parallel and f > (n(c+3X\) +c¢—N)/4n, then M is totally geodesic.

Finally, we get the following results for closed f-pseudo-parallel submanifolds
with parallel mean curvature vector in a A-Sasakian space form.

Theorem 1.4. Let M be an n-dimensional closed C-totally real submanifold with
parallel mean curvature vector in a (2m + 1)-dimensional A\-Sasakian space form

M(c) If M is f-pseudo-parallel and f > 0, then M is parallel, i.e. Vo = 0.

Corollary 1.1. Let M be an n-dimensional closed C-totally real submanifold with
pgmllel mean curvature vector in a (2n + 1)-dimensional A-Sasakian space form
M(c). If M is f-pseudo-parallel and f > 0, then M is totally geodesic.

2. PRELIMINARIES

Let M(c) be a (2m + 1)-dimensional \-Sasakian space form with structure
(p,&€,n,(, )) and M an n-dimensional C-totally real submanifold (n < m). As
usual, V (resp. V) be the Riemannian connection with respect to ( , ) (resp.
(, |ar) and V+ the connection in the normal bundle on M. Theses connections

are related by the Gauss and the Weingarten formulas
VxY = VxY +0(X,Y),
(2.1)
VxN = —ANX+V§‘(N,
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for any X,Y vectors tangent to M and any N vector normal to M, where Ay is
the shape operator (which is auto-adjunt) in the direction N and o is the second
fundamental form on M. The shape operator and second fundamental form are
related by

(2.2) (ANX,Y) = (0(X,Y),N).

Let R, R and Rt the curvature tensors of V, V and V<, respectively. Then, the
Gauss and the Ricci equations are given by

(R(X,Y)Z, W)= (R(X,Y)Z, W)+ (c(X,W),0(Y,Z))

(2.3)
_<U(X’ Z)v U(Yv W)>v
(2.4) (R(X,Y )Ny, Na) = (R(X,Y )Ny, No) + ([An,, Ax,], V).
The Codazzi-Mainardi equation is
(2.5) (Vo)(X,Y,2) = (Vo)(X, Z,Y),

where Vo is the first covariant derivative of o is defined by

2.6
= Vio(X,Y)] - o(VzY, X) - o(Y,V2X),

and the second covariant derivative is defined by

(V'o)(X,Y,Z2,W) = (VwV20)(X,Y)
(2.7) = VJV-V[(VZU)(X, Y)] - (ﬁza)(VWX, Y)

—(Vz0)(X,VwY) = (Vg,, ,0)(X.Y).
Then, we have
25 RHX,Y)[o(Z,W)] = (VxVyo)(Z,W) = (VyVx0o)(Z,W)
= +o(R(X,Y)Z, W)+ o(Z,R(X,Y)W).
In this work we use the following convention of index:
1<AB,C, - <2m+1,

1<4,5,k,---<n, *=m+i,

n+1<apB,7--<2m+1.

As M is a C-totally real submanifold, we can choose a local orthonormal frame
{e1, s €nnits s €my €15 = Q€1 oy €(ngl)s = Plnils ey €mx = Pem,€ami1 = &}
in M(c) such that {e;} at each point of M span the tangent space of M.

Let {wa} be the dual of {e4} and let {wap} be the connection 1-forms of M (c).
Then the structure equations of Cartan are given by

(2.9) de:—ZwAB Awp, wap+wpa =0,
B
1 ~
(2.10) deBzzc;wAc/\wCB+§CZDRABCD wo Nwp.

The (wap) is a real representation of a skew-Hermitian matrix. Hence

(211) Wixj = Wjg.
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Moreover,
(212) Wij = Wix j= and Wix = —wi(2m+1).
Thus, we have along M that
wa =0,
which implies 0 = dw, = — ZZ Wi A wj along M. From Cartan’s Lemma, we write
(2.13) wai = Y _hw;,  h; = hS,
J
where h{; denoted the components of second fundamental form o, that is
(2.14) h; = (Ae,eise5) = (a(eirej), €a)-
Therefore, from (2.11) and (2.2) we have
it _ it gkt ()T
(2.15) ik =l = iy s hyj =0.

From (1.3), we get

. 3\
(2.16) Riju = C+4

and

(0ir0j1 — 0i10;%),

c—A
5 _ 4
(2.17) Rogrl =
0, otherwise,
where (e;,e;) = d;;. Using (2.16) in (2.3), we obtain

(2.18) Rijut = — (0indjt — Sudje) + Y (hShS — hGhSy) |

(Oirdji — 6adjr), if a=i*, B=j%

and subtituting (2.17) in (2.4), we get

- )\ «@ « . .k -k
¢ 1 (5ik5jl — 5il5jk) + Z (hrkhfl - hrlhfk) , if a=4d",8=77;

Z (hfkhfl — hy hfk) »  otherwise.

r

(219) Rapw =

Let S be the squared norm of second fundamental form, A denote the mean curvature
vector field and H the mean curvature of M, that is

(2.20) S = Z.(h;’j)z, h = %Z (Z h?i) ea, H=|h|
i, g @ i

The Ricci curvature tensor { Ry} and the scalar curvature K are expressed, respectively,
as follows:

(2.21) Ry =° Z?’A (n =10+ (Z hié) hig — Z hiihil,
(2.22) K=° ZgAn(n — 1)+ (n2H - S).
The components of the covariant derivative of o are given by
(223) ik = ((Vero) (ei,€5), €a) = Ve, hij,
hence, the square of the length of third fundamental form of M is given
(2.24) Vo> = > (hi)®.

gk

The components of the second covariant derivative of o are given by

(2.25) hiii = ((Ve,Vero) (eir€)),€a) = Ve hije = Ve, Ve b
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Hence, we get

(2.26) > hpwr = dhiy =Y hSwr = Y hiwr; + Y bl was,
k T s B

> hfuwr =dh$n — > hjrwri — Y hipwr
l T "
S W+ 3 W
r B

(2.27)

From (2.5), we have

and by (2.8), we obtain the following Ricci formula

(2.29) Wi — B = D hiReise + > b Rejir — Y i Rapr-
T T B

From (2.12), (2.11) and (2.26), we get
2m+1 k*
(2.30) il ke
The Laplacian Ahf; of hf; is defined by AL = 37, hilge = >, hiijr. Using (2.28) and
(2.29), we obtain

Ahgy = Z Ry Rrijr + Z hyiRekjk — Z hfiRiﬁka‘
kr kr k,B

= (hirRrije + hiRowse) + Y Wi Ragr;

(2.31) k,r k.8
+ 3 (RS R 4 2k R R — hRchi bl
rk,B

— hishi by — W3R,

Since
1 « a a |2
(2.32) FAS =D hGARG+ D ()
«@,i,] a,t,j,k
we have
1 a aja P apa
§AS: Z (h,-jk)2+ Z (hijhirRriji + hishej Regir)
a,i,j,k o,t,j,k,r
+ 3 hGhYRaski— > hGRRAGRL,
(2.33) a,B,i,5,k a,B,i,4,k,r
+ >0 RGRGHS R,
a,3,1,7,k,r
— > (AR — R (B — hihl).
o,B,i,7,k,m

3. ESTIMATES AND PROOFS OF THEOREMS 1.2 AND 1.3

Now, we assume that the mean curvature vector h of M is parallel (i.e., V*h = 0),
and M is a complete submanifold in M (c).

In this section ®, denoted the matrix (®7;), where ®f; = (®neq,e;). Note that to
H = 0 (i.e., M is minimal submanifold), we get ®, = —H,, for all «, where H, is the
matrix (h{;). If H # 0, we choose a local orthonormal frame {e1, ..., en, €ny1, ..., €m, €1+ =
D€L, ey (g 1)* = PCnil, ., Cm* = PCm,€2m+1 = &} such that e 11 = % With this
choose
(3.1) ®p41 = HI — Hopr, 9 = Ho, a#n+1,
where I = (§;;). Since eny1 is a parallel direction,

(3.2) HoHpp1 = Hop1He, Wagngn) =0 and Y A, =0,
k
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In this case, we obtain

(3.3) tr Hoy1 =nH, tr Hy, =0, a#n+1 and R(lnﬂ)mj =0.
Furthermore,
(3.4) |®pi1]® =tr H2 (1 — nH?,
(3.5) 3 @af= Y (hfj)Q,
a#n+1 B#n+1
and
(3.6) tr &, =0,

for all a. Thus,
(3.7) S=> |2

Now, we need the following algebraic lemmas:

Lemma 3.1. [9] If A and B are two symmetric linear maps of R™ with AB — BA =0
andtr A=tr B=0. Then

(3.8) [tr A*B| < Mtr A*Vtr B2

vn(n—1)
and the equality holds if only if n — 1 of eigenvalues x; of A and the corresponding eigen-
values y; of B satisfy

tr A2
i = ) i '>01
[l n(n —1) Ti%i =
o tr B2 res o tr B2
vi= n(n —1) P Y= nn—1) /"

Lemma 3.2. [3, 8]. Let A1, Aa, ..., A be symmetric (n X n)-degree matrices, where k > 2.
Denote L;; = tr AiAE and L = L11 + Loa + ... + L. Then

3
. E iAj— AjA; i)’} < SL?
(3.9) {N(AAJ AJA)+(L])}_2L,
where N(A) = tr AAY, for all matriz A.

The ideas used for proving the following lemmas are analogous to that found in [6].

Lemma 3.3.

(3.10) D> (hhk Reig + hishi Rexir) =

a,i,5,k,r

n|®|>.

c+ 3\
4

Proof. Fix a vector e, and let {e;} be a local orthogonal frame on M such that the
matrix H, (resp. ®,) takes the diagonal form with hj; = pi':; (resp. ®F; = Afds;, where
Ay = (h,eq) — pf'). Then, of (2.16) we get

Z (h5he Reijie + hishes Renir) = Z(M?M?ékiik + (1) Rikir)

i4,k,r i,k
= ((18)? = pf 1) R
ik
= > (A = ATAD) Riran
i,k
= ¢ +43/\n tr i)i
= c+43/\n|<I>a|2.
Hence 3
S (BT + B hS Reva) = S n|0f?,

o,iyg,k,r
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Lemma 3.4. Ifc < )\, then
018 B =X 22
> hhiRapr; > e
o,B,%,5,k

Proof. If a # r* or 8 # s*, then from (2.17) we have

> hihg Rage; = 0.
«,B,t,7,k
If « =" and 8 = s, from (2.17) we obtain
Z h;‘;hlsgzér*s*kj = Z h;: ;;RT*S*IW'

r*,5* 1,5,k r*,s*,1,k

S (i - nint)

T,8,1

c—\ 2 c— A\ 2 c— A 2
= tr &« = D |7 > ——|D|°.
S RS

4 4

and the lemma is proved. O

Lemma 3.5.

— > hGhuhGhg == (tr @a®p)® — n®H' — 2nH? (@[,

o,B,1,5,k,1 o,B
Proof. If H =0, we have &, = —H, for all a. Hence,

— > h§hRRGRY = =) (tr HoHp)® = =) (tr ®a®p)?,
a,B,1,7,k,l a,B a,B

which proves the lemma in this case. If H # 0, choose a local orthonormal frame
{€1, ey €ny Ently..Cm, €15, .oy €mx, ) such that e 41 = %, and thus

- Z hz‘ajhgzhfjhfl

a,B8,4,5,k,1

— Y (tr HyHg)?
o,B

= — D (tr®a®p)’ =2 Y (tr (HI — py1)®a)?

a,f>n+1 a>n+1
— (tr (HI = ®p41)%)?
== > (r®a®s)?—2 > (Hir (®a) — tr Pnp1®a)’
a,B>n+1 a>n+1
— (tr (HT = 2H®p 41 + ¥} 41))°
== > (r®a®s)’ -2 > (tr Ppupa®a)’
o,f>n+1 a>n+1
— (TLH2 + tr ¢i+1)2
= =) (tr ©a®p)’ —n’H' — 2nHtr 7,
a,B
= = (tr 2a®p)’ —n’H' — 2nH|®, 1|7,
o,

Lemma 3.6.

n(n —2
> hgRGRG R, —¥H|®|3 + 2nH?|®p i1 |* + nH?|®)? + n*H*.
@, Bring kL n(n—1)

\Y]
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Proof. Note that the inequality is obvious if H = 0. If H # 0, we obtain
> GRS, = tr Ha tr HoHj
a,B,1,7,k,l o,
nH» tr Hoy1 Hj,

[e3

nH? > tr (HI = ©,41)®5 + nH tr (HI — ®)°

a>n+1
2 2 2
=nH E tr &, —nH E tr ®,41P,
a>n+1 a>n+1

+nH tr (H*I —3H*®,41 + 3H® | — D> ,1)
=nH® Y tr @3 —nHY tr &p®)

a>n+1

+nH* + 3nH” tr &2,
= nH?|®* —nH Y tr ®pi1®; + n’H' + 20 H? [0y ]

@

Using lemma 3.1, we have

(3.11) B2 ®% < — L2 [y 4a]| D,
v/n(n—1)
and so
-2
3.12 tr ®p,1®2 < — 2 1B, [|B)
( ) ; +1 = \/ml +1|| |
Hence,

[N 72 3
> hGRIRGRE, > _Mm@r‘ + 2nH?|®, 41 |* + nH?|®* + n*H*.

a,B,i,4,k,1 ~ Wnn-1)

Lemma 3.7.

o,B,4,3,k,m o,B,4,5,k,m
3
> —5|<1>|4 —n’H* — 2nH?|®, 41|,

Proof. Note that
> (hhi, = BRI (RRE, — hishl) = =D N(@a®s — ®pda),
«,B,t,7,k,T a,B

and
= Y hGhhLRL, == (tr(@a®p))® — n*H' — 2nH? (@44 |7
,B,i,5,k,r a,B

From lemma 3.2, we have
3
= 3T N(Bas — Baba) = 3 (tr(Bap))? > — 2",
o,B o,B

and so

— Y (bbb — hSRG)(RERG — h§ihE) — > Ry,
a,B,1,7,k,l a,B,1,7,k,l

> —g|<1>|4 —n’H* = 2nH?|®p 1.
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3.1. Proof of the Theorem 1.1. Now, using lemmas 3.3, 3.4, 3.5, 3.6 and 3.7, we get
the following result:

Proposition 3.1. Let M(c) an (2m + 1)-dimensional A\-Sasakian space form with struc-
ture (p,&,m,(, )) and M an n-dimensional C-totally real submanifold with parallel mean
curvature vector in M(c). If ¢ < X, then

N > [Vol? - §|q>|4 _ MHVI)P
(3.13) 2 2 n(n —1)

Suppose now that M is a closed n-dimensional C-totally real submanifold with parallel
mean curvature vector in M (c). From proposition 3.1, we have

(3.14) 0§/ |€a|2dM§/ |®|* Prr.ex (|®])dM,
M M

where

3
Priea(®) = 52"+ —7o—=5

This proof the Theorem 1.1.

n(n — 2) Ha — <n(c+3)\)—|—c—)\ +nH2>
—_— — .

3.2. Proof of the Theorem 1.2. If |®|*> < 9y, we have that Ppy..(|®|) < 0. Then,
follows from Theorem 1.1 that

(3.15) og/ |®|° Pp,o(|®|)dM < 0.
M

Thus, |®|>P,.(|®|) = 0. Therefore, |®|*> = 0 and M is totally umbilical or |®|? = 9g.

If |®]*> = 9, from (3.15) we have that in all the inequalities of the lemmas above
become equalities. Then, from lemma 3.4, we obtain 3.7 | |®+[* = |®> and m = n.
Hence M is minimal by Theorem 1.1 given in [10]. Note that, in this case

Paea(e]) = o - N TN
and
S=|of = n(c+3)\é+cf)\.
In particular, if ¢ = A = 1, then M(c) is the Sakakian unit sphere $2"1(1) ¢ C™*! with
contact structure induced and S = 2%. Hence, from Theorem 3 in [8], M is a Veronese

3
surface in S*(1) C S2™+(1).

4. PROOFS OF THE THEOREMS 1.3 AND 1.4

4.1. Proof of theorem 1.3. Let M be a n-dimensional C-totally real submanifold in a
(2n + 1)-dimensional A-Sasakian space form M (c). We choose a local orthonormal frame
{e1, . ensenit, oy en,e1x = Pe1, ..., €(ni1)r = PEnils ..y €n* = Pen,e2ny1 = &}. From [2]
follows that

1 oS = nc+3X)+c—A
5 AS = Z hi;Ve; Ve, (tr Ha) + fs
(4.1) bhe o
= [(tr HaHp)® + |[Ha, Hp® = tr Hg tr HoHpHa) + [Vo |,
a,B
And the other hand, we have that f is pseudo-parallel if and only if
(4.2) Rk = b — f {Okihiy — Suhi; + Skihit — Si5h5; )

where i,j,k,l=1,..,nand a =n+1,...,2n+1, see [1]. Using (4.2), (2.16), (2.17), (2.18)
and Codazzi equation in (2.33), we get

1 e = _
(4.3) 308 = > Ve Ve, (tr Ha) + nf|®* 4 [Vo|*.

4,7,
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Therefore, for a C-totally real f-pseudo-parallel submanifold of a A-Sasakian space form
of yp-sectional curvature ¢, we have:

nc+3\)+c— A

1 S

0=>_[(tr HoHpg)? +|[Ha, Hp]|* — tr Hg tr HoHgHa] + nf|®|* —
o,

Now, the condition V1th = 0 in an n-dimensional C-totally real submanifold M of a
(2n + 1)-dimensional A-Sasakian space form M(c) is equivalent to the condition H = 0,
see [5] to A = 1. Hence, we have that tr H, = 0, for all a and we get:

0 (nf_ %) g+; [(tr HoHps)® + |[Ha, Hs]] .

If f > (n(c+ 3)\) +c— \)/4n, then tr (HoHg) = 0, for all a, 8. In particular [A,|> =
tr H2 =0, hence o = 0. This proof Theorem 1.3.

4.2. Proof of Theorem 1.4. If M is f-pseudo-parallel and V1 h = 0, then we obtain
1 _
S O8= nf|®]* 4 |Vol|*.

If f <0, we get % A S > 0. Hence, if M is compact, then we have Vo = 0. This proof
our result.
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