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Abstract. In this paper, we prove a generalized integral inequality for an n-

dimensional oriented closed C-totally real submanifold M with parallel mean
curvature vector h in a (2m + 1)-dimensional closed λ-Sasakian space form

M̃(c) of constant ϕ-sectional curvature c with 0 < c ≤ λ, n ≥ 2 and if a

tensor φ related to h and the second fundamental form satisfies a certain
inequality. As a consequence we obtain that M is totally umbilic or minimal

with S = (n(c+3λ)+(c−λ))/6, which generalize the Theorem 3 of [8]. Finally,

we prove that if M is f -pseudo-parallel in a (2n + 1)-dimensional λ-Sasakian
space form with f ≥ (n(c+3λ)+(c−λ))/4n, then M is totally geodesic, which

generalize the Theorem 1 of [11], when λ = 1.

1. Introduction

Let M̃ be a (2m + 1)-dimensional manifold and Γ(M̃) the Lie algebra of vector
fields on M̃ . An almost contact structure on M̃ is defined by a (1,1)-tensor ϕ, a
vector field ξ and a 1-form η on M̃ such that for any p ∈ M̃ , we have

ϕ2
p = −I + ηp ⊗ ξp, ηp(ξp) = 1,

where I denote the identity transformation of the tangent space TpM̃ at p. Then
ϕ(ξ) = 0 and η ◦ ϕ = 0. Manifolds equipped whit an almost contact structure are
called almost contact manifolds. A Riemannian manifold M̃ with metric tensor
〈 , 〉 and an almost contact structure (ϕ, ξ, η) such that

〈ϕX, ϕY 〉 = 〈X, Y 〉 − η(X)η(Y ),

or equivalently

〈X, ϕY 〉 = −〈ϕX, Y 〉 and 〈X, ξ〉 = η(X),

for all X, Y ∈ Γ(M̃), is an almost contact metric manifold. The existence of an
almost contact metric structure on M̃ is equivalent with the existence of a reduction
of the structural group to U(m)× 1, i. e. all the matrices of O(2m+1) of the form A B 0

−B A 0
0 0 1

 ,

where A and B are real (n× n)-matrices. The fundamental 2-form Ψ of an almost
contact metric manifold (M̃, ϕ, ξ, η, 〈 , 〉) is defined by

Ψ(X, Y ) = 〈X, ϕY 〉,
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for all X, Y ∈ Γ(M̃), and this form satisfies η∧Ψm 6= 0. When Ψ = 1
λdη, λ 6= 0 the

associated structure is a contact structure and M̃ is an almost λ-Sasakian manifold.
An almost λ-Sasakian manifold (M̃, ϕ, ξ, η, 〈 , 〉) is called a λ-Sasakian manifold if

[ϕX,ϕY ] + ϕ2[X, Y ]− ϕ[X, ϕY ]− ϕ[ϕX, Y ] = −2dη(X, Y )ξ

for all X, Y ∈ Γ(M̃). A necessary and sufficient condition for an almost contact
metric manifold (M̃, ϕ, ξ, η, 〈 , 〉) to be a λ-Sasakian manifold is

(1.1)
(
∇̃Xϕ

)
Y = λ{〈X, Y 〉ξ − η(Y )X},

for all X, Y ∈ Γ(M̃), where ∇̃ is the Levi-Civita connection of the Riemannian
metric 〈 , 〉. Moreover, a λ-Sasakian manifold satisfies:

(1.2) ∇̃Xξ = −λϕX,

see [4]. If λ = 1 a λ-Sasakian manifold is a Sasakian manifold [2].
An n-dimensional Riemannian manifold M isometrically immersed in M̃ is said

to be anti-invariant in M̃ if ϕTpM ⊂ TpM
⊥ for each p of M , where TpM and TpM

⊥

denote respectively the tangent and the normal space to M at p . Thus, for any
vector X tangent to M , ϕX is normal to M . In this case, ϕ is necessarily of rank
2m and hence n ≤ m+1. An n-dimensional Riemannian manifold M isometrically
immersed in M̃ is said to be C-totally real if ξ is a normal vector field to M . Recall
that a direct consequence of this definition is that M is a anti-invariant submanifold
in M̃ and n ≤ m . A plane section σ in TpM̃ of a λ-Sasakian manifold is called
a ϕ-section if it is spanned by X and ϕX, where X is a unit tangent vector field
orthogonal to ξ. The sectional curvature k̃(σ) with respect a ϕ-section σ is called
a ϕ-sectional curvature. In this paper a λ-Sasakian manifold M̃ complete simply
connected with constant ϕ-sectional curvature c is called a λ-Sasakian space form
and is denoted by M̃(c). The curvature tensor R̃ of M̃(c) is given by [7]:

(1.3)
R̃(X, Y )Z =

c + 3λ

4
(X ∧ Y )Z +

c− λ

4
{η(X)η(Z)Y

− η(Y )η(Z)X + 〈X, Z〉η(Y )ξ − 〈Y, Z〉η(X)ξ
+ 〈ϕY, Z〉ϕX − 〈ϕX, Z〉ϕY − 2〈ϕX, Y 〉ϕZ},

where X ∧ Y is the operator defined by (X ∧ Y )Z = 〈Y, Z〉X − 〈X, Z〉Y .
The purpose of present paper is to study n-dimensional C-totally real submani-

folds M , with parallel mean curvature in λ-Sasakian space form M̃(c).
It is we need considerer Φ : TpM × TpM → TpM

⊥ a bilinear map defined
as follows: choose an orthonormal frame {en+1, ..., e2m+1} of TpM

⊥ and for each
α = n + 1, . . . , 2m + 1, define maps Φα : TpM → TpM by

(1.4) ΦαX = 〈h, eα〉X −Aeα
X,

where h is the mean curvature vector and Aeα
’s are the shape operators. Then Φ

is given by

(1.5) Φ(X, Y ) =
∑
α

〈ΦαX, Y 〉eα.

Therefore both Φ and |Φ| not depend on the choice of {eα}, moreover, if S be the
squared norm of the second fundamental form of M , then

(1.6) |Φ|2 =
∑
α

tr (Φα)2 = S − nH2,

where H = |h|. We recall that |Φ|2 ≡ 0 if and only if M is totally umbilic; H ≡ 0
if and only if M is minimal; and S ≡ 0 if and only if M is totally geodesic.
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Now, for any H ∈ R, we define the polynomial PH,c,λ by

(1.7) PH,c,λ(x) =
3
2
x2 +

n(n− 2)√
n(n− 1)

Hx−
(

n(c + 3λ) + c− λ

4
+ nH2

)
.

Denoting by ϑH the square of the positive root of PH,c,λ(x) = 0, our results can be
stated as:

Theorem 1.1. Let M be an n-dimensional oriented complete closed C-totally real
submanifold with parallel mean curvature vector in a closed λ-Sasakian space form
M̃(c), n ≥ 2 and 0 < c ≤ λ. If |Φ|2 ≤ ϑH on M , then

(1.8)
∫

M

|Φ|2PH,c,λ(|Φ|)dM ≥ 0.

As a consequence Theorem 1.1 , we get:

Theorem 1.2. Let M be an n-dimensional oriented complete closed C-totally real
submanifold with parallel mean curvature vector in a closed λ-Sasakian space form
M̃(c), n ≥ 2 and 0 < c ≤ λ. If |Φ|2 ≤ ϑH on M , then either M is totally umbilical
or M is minimal, non-totally geodesic and

S =
1
6
{n(c + 3λ) + c− λ}.

In particular, if c = λ = 1, then M is either a totally geodesic submanifold or a
Veronese surface.

A submanifold M is f-pseudo-parallel if its second fundamental form h satisfies
the following condition

R(X, Y ) · σ = f X ∧ Y · σ,

for some real valued smooth function f on M and for any X and Y vectors tangent
to M , where R(X, Y ) is the curvature operator of the Van der Waerden-Bortolotti
connection ∇ of M , which with the operator X ∧ Y act on σ as a derivation [1].
We prove a result that generalize the Theorem 1 of [11].

Theorem 1.3. Let M be an n-dimensional C-totally real submanifold with parallel
mean curvature vector in a (2n + 1)-dimensional λ-Sasakian space form M̃(c). If
M is f-pseudo-parallel and f ≥ (n(c + 3λ) + c− λ)/4n, then M is totally geodesic.

Finally, we get the following results for closed f -pseudo-parallel submanifolds
with parallel mean curvature vector in a λ-Sasakian space form.

Theorem 1.4. Let M be an n-dimensional closed C-totally real submanifold with
parallel mean curvature vector in a (2m + 1)-dimensional λ-Sasakian space form
M̃(c). If M is f-pseudo-parallel and f ≥ 0, then M is parallel, i.e. ∇σ = 0.

Corollary 1.1. Let M be an n-dimensional closed C-totally real submanifold with
parallel mean curvature vector in a (2n + 1)-dimensional λ-Sasakian space form
M̃(c). If M is f-pseudo-parallel and f > 0, then M is totally geodesic.

2. Preliminaries

Let M̃(c) be a (2m + 1)-dimensional λ-Sasakian space form with structure
(ϕ, ξ, η, 〈 , 〉) and M an n-dimensional C-totally real submanifold (n ≤ m). As
usual, ∇̃ (resp. ∇) be the Riemannian connection with respect to 〈 , 〉 (resp.
〈 , 〉|M ) and ∇⊥ the connection in the normal bundle on M . Theses connections
are related by the Gauss and the Weingarten formulas

(2.1)
∇̃XY = ∇XY + σ(X, Y ),

∇̃XN = −ANX +∇⊥XN,
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for any X, Y vectors tangent to M and any N vector normal to M , where AN is
the shape operator (which is auto-adjunt) in the direction N and σ is the second
fundamental form on M . The shape operator and second fundamental form are
related by

(2.2) 〈ANX, Y 〉 = 〈σ(X, Y ), N〉.

Let R, R̃ and R⊥ the curvature tensors of ∇, ∇̃ and ∇⊥, respectively. Then, the
Gauss and the Ricci equations are given by

(2.3)
〈R(X, Y )Z,W 〉 = 〈R̃(X, Y )Z,W 〉+ 〈σ(X, W ), σ(Y, Z)〉

−〈σ(X, Z), σ(Y,W )〉,

(2.4) 〈R⊥(X, Y )N1, N2〉 = 〈R̃(X, Y )N1, N2〉+ 〈[AN1 , AN2 ], Y 〉.
The Codazzi-Mainardi equation is

(2.5) (∇σ)(X, Y, Z) = (∇σ)(X, Z, Y ),

where ∇σ is the first covariant derivative of σ is defined by

(2.6)
(∇σ)(X, Y, Z) = (∇Zσ)(X, Y )

= ∇⊥Z [σ(X, Y )]− σ(∇ZY, X)− σ(Y,∇ZX),

and the second covariant derivative is defined by

(2.7)

(∇2
σ)(X, Y, Z,W ) = (∇W∇Zσ)(X, Y )

= ∇⊥W [(∇Zσ)(X, Y )]− (∇Zσ)(∇W X, Y )

−(∇Zσ)(X,∇W Y )− (∇∇W Zσ)(X, Y ).

Then, we have

(2.8)
R⊥(X, Y )[σ(Z,W )] = (∇X∇Y σ)(Z,W )− (∇Y ∇Xσ)(Z,W )

+σ(R(X, Y )Z,W ) + σ(Z,R(X, Y )W ).

In this work we use the following convention of index:

1 ≤ A,B, C, · · · ≤ 2m + 1,

1 ≤ i, j, k, · · · ≤ n, i∗ = m + i,

n + 1 ≤ α, β, γ, · · · ≤ 2m + 1.

As M is a C-totally real submanifold, we can choose a local orthonormal frame
{e1, ..., en, en+1, ..., em, e1∗ = ϕe1, ..., e(n+1)∗ = ϕen+1, ..., em∗ = ϕem, e2m+1 = ξ}
in M̃(c) such that {ei} at each point of M span the tangent space of M .

Let {ωA} be the dual of {eA} and let {ωAB} be the connection 1-forms of M̃(c).
Then the structure equations of Cartan are given by

(2.9) dωA = −
∑
B

ωAB ∧ ωB , ωAB + ωBA = 0,

(2.10) dωAB =
∑
C

ωAC ∧ ωCB +
1
2

∑
C,D

R̃ABCD ωC ∧ ωD.

The (ωAB) is a real representation of a skew-Hermitian matrix. Hence

(2.11) ωi∗j = ωj∗i.
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Moreover,

(2.12) ωij = ωi∗j∗ and ωi∗ = −ωi(2m+1).

Thus, we have along M that
ωα = 0,

which implies 0 = dωα = −
∑

i ωαi ∧ωi along M . From Cartan’s Lemma, we write

(2.13) ωαi =
∑

j

hα
ijωj , hα

ij = hα
ji,

where hα
ij denoted the components of second fundamental form σ, that is

(2.14) hα
ij = 〈Aeα

ei, ej〉 = 〈σ(ei, ej), eα〉.
Therefore, from (2.11) and (2.2) we have

(2.15) hi∗

jk = hj∗

ik = hk∗

ij , h
(n+1)∗

ij = 0.

From (1.3), we get

(2.16) R̃ijkl =
c + 3λ

4
(δikδjl − δilδjk),

and

(2.17) R̃αβkl =


c− λ

4
(δikδjl − δilδjk), if α = i∗, β = j∗;

0, otherwise,

where 〈ei, ej〉 = δij . Using (2.16) in (2.3), we obtain

(2.18) Rijkl =
c + 3λ

4
(δikδjl − δilδjk) +

∑
α

(
hα

ikhα
jl − hα

ilh
α
jk

)
,

and subtituting (2.17) in (2.4), we get

(2.19) R⊥
αβkl =

8>><
>>:

c− λ

4
(δikδjl − δilδjk) +

X
r

�
hα

rkhβ
rl − hα

rlh
β
rk

�
, if α = i∗, β = j∗;X

r

�
hα

rkhβ
rl − hα

rlh
β
rk

�
, otherwise.

Let S be the squared norm of second fundamental form, h denote the mean curvature
vector field and H the mean curvature of M , that is

(2.20) S =
X
α,i,j

(hα
ij)

2, h =
1

n

X
α

 X
i

hα
ii

!
eα, H = |h|.

The Ricci curvature tensor {Rkl} and the scalar curvature K are expressed, respectively,
as follows:

(2.21) Rkl =
c + 3λ

4
(n− 1)δkl +

X
α

 X
i

hα
ii

!
hα

kl −
X
α,i

hα
kih

α
il,

(2.22) K =
c + 3λ

4
n(n− 1) + (n2H2 − S).

The components of the covariant derivative of σ are given by

(2.23) hα
ijk =


�
∇ekσ

�
(ei, ej), eα

�
= ∇ekhα

ij ,

hence, the square of the length of third fundamental form of M is given

(2.24) |∇σ|2 =
X

α,i,j,k

�
hα

ijk

�2
.

The components of the second covariant derivative of σ are given by

(2.25) hα
ijkl =


�
∇el∇ekσ

�
(ei, ej), eα

�
= ∇elh

α
ijk = ∇el∇ekhα

ij .
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Hence, we get

(2.26)
X

k

hα
ijkωk = dhα

ij −
X

r

hα
jrωri −

X
r

hα
irωrj +

X
β

hβ
ijωαβ ,

(2.27)

X
l

hα
ijklωl =dhα

ijk −
X

r

hα
rjkωri −

X
r

hα
irkωrj

−
X

r

hα
ijrωrk +

X
β

hα
ijkωαβ .

From (2.5), we have

(2.28) hα
ijk − hα

ikj = 0,

and by (2.8), we obtain the following Ricci formula

(2.29) hα
ijkl − hα

ijlk =
X

r

hα
rjRrikl +

X
r

hα
riRrjkl −

X
β

hβ
ijR

⊥
αβkl.

From (2.12), (2.11) and (2.26), we get

(2.30) h2m+1
ijk = −hk∗

ij .

The Laplacian 4hα
ij of hα

ij is defined by 4hα
ij =

P
k hα

ijkk =
P

k hα
kijk. Using (2.28) and

(2.29), we obtain

(2.31)

∆hα
ij =

X
kr

hα
krRrijk +

X
kr

hα
riRrkjk −

X
k,β

hβ
kiR

⊥
αβkj

=
X
k,r

(hα
krR̃rijk + hα

riR̃rkjk) +
X
k,β

hβ
kiR̃αβkj

+
X
r,k,β

(hβ
rih

β
rjh

β
kk + 2hα

krh
β
rjh

β
ik − hα

krh
β
kkrh

β
ij

− hα
rih

β
krh

β
kj − hα

rjh
β
kih

β
kr).

Since

(2.32)
1

2
∆S =

X
α,i,j

hα
ij∆hα

ij +
X

α,i,j,k

�
hα

ijk

�2
,

we have

(2.33)

1

2
∆S =

X
α,i,j,k

�
hα

ijk

�2
+

X
α,i,j,k,r

(hα
ijh

α
krR̃rijk + hα

ijh
α
rjR̃rkik)

+
X

α,β,i,j,k

hα
ijh

β
kiR̃αβkj −

X
α,β,i,j,k,r

hα
ijh

α
krh

β
ijh

β
kr

+
X

α,β,i,j,k,r

hα
ijh

α
irh

β
jrh

β
kk

−
X

α,β,i,j,k,r

(hα
rjh

β
kr − hα

krh
β
rj)(h

α
ijh

β
ki − hα

kih
β
ij).

3. Estimates and proofs of Theorems 1.2 and 1.3

Now, we assume that the mean curvature vector h of M is parallel (i.e., ∇⊥h = 0),

and M is a complete submanifold in M̃(c).
In this section Φα denoted the matrix (Φα

ij), where Φα
ij = 〈Φαei, ej〉. Note that to

H = 0 (i.e., M is minimal submanifold), we get Φα = −Hα, for all α, where Hα is the
matrix (hα

ij). If H 6= 0, we choose a local orthonormal frame {e1, ..., en, en+1, ..., em, e1∗ =

ϕe1, ..., e(n+1)∗ = ϕen+1, ..., em∗ = ϕem, e2m+1 = ξ} such that en+1 = h
H

. With this
choose

(3.1) Φn+1 = HI −Hn+1, Φα = Hα, α 6= n + 1,

where I = (δij). Since en+1 is a parallel direction,

(3.2) HαHn+1 = Hn+1Hα, ωα(n+1) = 0 and
X

k

hα
kki = 0.
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In this case, we obtain

(3.3) tr Hn+1 = nH, tr Hα = 0, α 6= n + 1 and R⊥
(n+1)αij = 0.

Furthermore,

(3.4) |Φn+1|2 = tr H2
n+1 − nH2,

(3.5)
X

α 6=n+1

|Φα|2 =
X

β 6=n+1

�
hβ

ij

�2

,

and

(3.6) tr Φα = 0,

for all α. Thus,

(3.7) S =
X

α

|Φα|2.

Now, we need the following algebraic lemmas:

Lemma 3.1. [9] If A and B are two symmetric linear maps of Rn with AB − BA = 0
and tr A = tr B = 0. Then

(3.8) |tr A2B| ≤ (n− 2)p
n(n− 1)

tr A2
√

tr B2

and the equality holds if only if n− 1 of eigenvalues xi of A and the corresponding eigen-
values yi of B satisfy

|xi| =

s
tr A2

n(n− 1)
, xixj ≥ 0,

yi =

s
tr B2

n(n− 1)

 
resp. yi = −

s
tr B2

n(n− 1)

!
.

Lemma 3.2. [3, 8]. Let A1, A2, ..., Ak be symmetric (n×n)-degree matrices, where k ≥ 2.
Denote Lij = tr AiA

t
j and L = L11 + L22 + ... + Lkk. Then

(3.9)
X�

N(AiAj −AjAi) + (Lij)
2	 ≤ 3

2
L2,

where N(A) = tr AAt, for all matrix A.

The ideas used for proving the following lemmas are analogous to that found in [6].

Lemma 3.3.

(3.10)
X

α,i,j,k,r

(hα
ijh

α
rkR̃rijk + hα

ijh
α
rjR̃rkik) =

c + 3λ

4
n|Φ|2.

Proof. Fix a vector eα and let {ei} be a local orthogonal frame on M such that the
matrix Hα (resp. Φα) takes the diagonal form with hα

ij = µα
i δij (resp. Φα

ij = λα
i δij , where

λα
i = 〈h, eα〉 − µα

i ). Then, of (2.16) we getX
i,j,k,r

(hα
ijh

α
rkR̃rijk + hα

ijh
α
rjR̃rkik) =

X
i,k

(µα
i µα

k R̃kiik + (µα
i )2R̃ikik)

=
X
i,k

((µα
i )2 − µα

i µα
k )R̃ikik

=
X
i,k

((λα
i )2 − λα

i λα
k )R̃ikik

=
c + 3λ

4
n tr Φ2

α

=
c + 3λ

4
n|Φα|2.

Hence X
α,i,j,k,r

(hα
ijh

α
rkR̃rijk + hα

ijh
α
rjR̃rkik) =

c + 3λ

4
n|Φ|2.

�
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Lemma 3.4. If c ≤ λ, then

X
α,β,i,j,k

hα
ijh

β
kiR̃αβkj ≥

c− λ

4
|Φ|2.

Proof. If α 6= r∗ or β 6= s∗, then from (2.17) we haveX
α,β,i,j,k

hα
ijh

β
kiR̃αβkj = 0.

If α = r∗ and β = s∗, from (2.17) we obtainX
r∗,s∗,i,j,k

hr∗
ij hs∗

ki R̃r∗s∗kj =
X

r∗,s∗,i,k

hi∗
jrh

i∗
ksR̃r∗s∗kj

=
X
r,s,i

c− λ

4

�
(hi∗

sr)
2 − hi∗

rrh
i∗
ss

�

=
c− λ

4

X
i

tr Φ2
i∗ =

c− λ

4

X
i

|Φi∗ |2 ≥
c− λ

4
|Φ|2.

and the lemma is proved. �

Lemma 3.5.

−
X

α,β,i,j,k,l

hα
ijh

α
klh

β
ijh

β
kl = −

X
α,β

(tr ΦαΦβ)2 − n2H4 − 2nH2|Φn+1|2.

Proof. If H = 0, we have Φα = −Hα for all α. Hence,

−
X

α,β,i,j,k,l

hα
ijh

α
klh

β
ijh

β
kl = −

X
α,β

(tr HαHβ)2 = −
X
α,β

(tr ΦαΦβ)2,

which proves the lemma in this case. If H 6= 0, choose a local orthonormal frame
{e1, ..., en, en+1, ..em, e1∗ , ..., em∗ , ξ} such that en+1 = h

H
, and thus

−
X

α,β,i,j,k,l

hα
ijh

α
klh

β
ijh

β
kl = −

X
α,β

(tr HαHβ)2

= −
X

α,β>n+1

(tr ΦαΦβ)2 − 2
X

α>n+1

(tr (HI − Φn+1)Φα)2

− (tr (HI − Φn+1)
2)2

= −
X

α,β>n+1

(tr ΦαΦβ)2 − 2
X

α>n+1

(Htr (Φα)− tr Φn+1Φα)2

− (tr (H2I − 2HΦn+1 + Φ2
n+1))

2

= −
X

α,β>n+1

(tr ΦαΦβ)2 − 2
X

α>n+1

(tr Φn+1Φα)2

− (nH2 + tr Φ2
n+1)

2

= −
X
α,β

(tr ΦαΦβ)2 − n2H4 − 2nH2tr Φ2
n+1

= −
X
α,β

(tr ΦαΦβ)2 − n2H4 − 2nH2|Φn+1|2.

�

Lemma 3.6.X
α,β,i,j,k,l

hα
ijh

α
ilh

β
jlh

β
kk ≥ − n(n− 2)p

n(n− 1)
H|Φ|3 + 2nH2|Φn+1|2 + nH2|Φ|2 + n2H4.
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Proof. Note that the inequality is obvious if H = 0. If H 6= 0, we obtainX
α,β,i,j,k,l

hα
ijh

α
ilh

β
jlh

β
kk =

X
α,β

tr Hα tr HαH2
β

= nH
X

α

tr Hn+1H
2
α

= nH2
X

α>n+1

tr (HI − Φn+1)Φ
2
α + nH tr (HI − Φ)3

= nH2
X

α>n+1

tr Φ2
α − nH

X
α>n+1

tr Φn+1Φ
2
α

+ nH tr (H3I − 3H2Φn+1 + 3HΦ2
n+1 − Φ3

n+1)

= nH2
X

α>n+1

tr Φ2
α − nH

X
α

tr Φn+1Φ
2
α

+ n2H4 + 3nH2 tr Φ2
n+1

= nH2|Φ|2 − nH
X

α

tr Φn+1Φ
2
α + n2H4 + 2nH2|Φn+1|2

Using lemma 3.1, we have

(3.11) tr Φn+1Φ
2
α ≤

n− 2p
n(n− 1)

|Φn+1||Φα|2,

and so

(3.12)
X

α

tr Φn+1Φ
2
α ≤

n− 2p
n(n− 1)

|Φn+1||Φ|2.

Hence, X
α,β,i,j,k,l

hα
ijh

α
ilh

β
jlh

β
kk ≥ − n(n− 2)p

n(n− 1)
H|Φ|3 + 2nH2|Φn+1|2 + nH2|Φ|2 + n2H4.

�

Lemma 3.7.X
α,β,i,j,k,r

(hα
rjh

β
kr − hα

krh
β
rj)(h

α
ijh

β
ki − hα

kih
β
ij)−

X
α,β,i,j,k,r

hα
ijh

α
krh

β
ijh

β
kr

≥ −3

2
|Φ|4 − n2H4 − 2nH2|Φn+1|2.

Proof. Note thatX
α,β,i,j,k,r

(hα
rjh

β
kr − hα

krh
β
rj)(h

α
ijh

β
ki − hα

kih
β
ij) = −

X
α,β

N(ΦαΦβ − ΦβΦα),

and

−
X

α,β,i,j,k,r

hα
ijh

α
krh

β
ijh

β
kr = −

X
α,β

(tr(ΦαΦβ))2 − n2H4 − 2nH2|Φn+1|2.

From lemma 3.2, we have

−
X
α,β

N(ΦαΦβ − ΦβΦα)−
X
α,β

(tr(ΦαΦβ))2 ≥ −3

4
|Φ|4,

and so

−
X

α,β,i,j,k,l

(hα
ikhβ

jk − hα
jkhβ

ik)(hα
ilh

β
jl − hα

jlh
β
il)−

X
α,β,i,j,k,l

hα
ijh

α
klh

β
ijh

β
kl

≥ −3

2
|Φ|4 − n2H4 − 2nH2|Φn+1|2.

�
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3.1. Proof of the Theorem 1.1. Now, using lemmas 3.3, 3.4, 3.5, 3.6 and 3.7, we get
the following result:

Proposition 3.1. Let M̃(c) an (2m + 1)-dimensional λ-Sasakian space form with struc-
ture (ϕ, ξ, η, 〈 , 〉) and M an n-dimensional C-totally real submanifold with parallel mean

curvature vector in M̃(c). If c ≤ λ, then

(3.13)

1

2
∆S ≥ |∇σ|2 − 3

2
|Φ|4 − n(n− 2)p

n(n− 1)
H|Φ|3

+

�
n(c + 3λ) + c− λ

4
+ H2

�
|Φ|2.

Suppose now that M is a closed n-dimensional C-totally real submanifold with parallel
mean curvature vector in M̃(c). From proposition 3.1, we have

(3.14) 0 ≤
Z

M

|∇σ|2dM ≤
Z

M

|Φ|2PH,c,λ(|Φ|)dM,

where

PH,c,λ(x) =
3

2
x2 +

n(n− 2)p
n(n− 1)

Hx−
�

n(c + 3λ) + c− λ

4
+ nH2

�
.

This proof the Theorem 1.1.

3.2. Proof of the Theorem 1.2. If |Φ|2 ≤ ϑH , we have that PH,c(|Φ|) ≤ 0. Then,
follows from Theorem 1.1 that

(3.15) 0 ≤
Z

M

|Φ|2PH,c(|Φ|)dM ≤ 0.

Thus, |Φ|2PH,c(|Φ|) ≡ 0. Therefore, |Φ|2 = 0 and M is totally umbilical or |Φ|2 = ϑH .
If |Φ|2 = ϑH , from (3.15) we have that in all the inequalities of the lemmas above

become equalities. Then, from lemma 3.4, we obtain
Pn

i=1 |Φi∗ |2 = |Φ|2 and m = n.
Hence M is minimal by Theorem 1.1 given in [10]. Note that, in this case

PH,c,λ(|Φ|) =
3

2
|Φ|2 − n(c + 3λ) + c− λ

4
,

and

S = |Φ|2 =
n(c + 3λ) + c− λ

6
.

In particular, if c = λ = 1, then M̃(c) is the Sakakian unit sphere S2n+1(1) ⊂ Cm+1 with
contact structure induced and S = 2n

3
. Hence, from Theorem 3 in [8], M is a Veronese

surface in S4(1) ⊂ S2m+1(1).

4. Proofs of the Theorems 1.3 and 1.4

4.1. Proof of theorem 1.3. Let M be a n-dimensional C-totally real submanifold in a
(2n + 1)-dimensional λ-Sasakian space form M̃(c). We choose a local orthonormal frame
{e1, ..., en, en+1, ..., en, e1∗ = ϕe1, ..., e(n+1)∗ = ϕen+1, ..., en∗ = ϕen, e2n+1 = ξ}. From [2]
follows that

(4.1)

1

2
4 S =

X
i,j,α

hα
ij∇ei∇ej (tr Hα) +

n(c + 3λ) + c− λ

4
S

−
X
α,β

�
(tr HαHβ)2 + |[Hα, Hβ ]|2 − tr Hβ tr HαHβHα

�
+ |∇σ|2.

And the other hand, we have that f is pseudo-parallel if and only if

(4.2) hα
ijkl = hα

ijlk − f
�
δkih

α
lj − δlih

α
kj + δkjh

α
il − δljh

α
ik

	
,

where i, j, k, l = 1, ..., n and α = n+1, ..., 2n+1, see [1]. Using (4.2), (2.16), (2.17), (2.18)
and Codazzi equation in (2.33), we get

(4.3)
1

2
4 S =

X
i,j,α

hα
ij∇ei∇ej (tr Hα) + nf |Φ|2 + |∇σ|2.
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Therefore, for a C-totally real f -pseudo-parallel submanifold of a λ-Sasakian space form
of ϕ-sectional curvature c, we have:

0 =
X
α,β

�
(tr HαHβ)2 + |[Hα, Hβ ]|2 − tr Hβ tr HαHβHα

�
+ nf |Φ|2 − n(c + 3λ) + c− λ

4
S

Now, the condition ∇⊥h = 0 in an n-dimensional C-totally real submanifold M of a
(2n + 1)-dimensional λ-Sasakian space form M̃(c) is equivalent to the condition H = 0,
see [5] to λ = 1. Hence, we have that tr Hα = 0, for all α and we get:

0 =

�
nf − n(c + 3λ) + c− λ

4

�
S +

X
α,β

�
(tr HαHβ)2 + |[Hα, Hβ ]|2

�
.

If f ≥ (n(c + 3λ) + c − λ)/4n, then tr (HαHβ) = 0, for all α, β. In particular |Aα|2 =
tr H2

α = 0, hence σ = 0. This proof Theorem 1.3.

4.2. Proof of Theorem 1.4. If M is f -pseudo-parallel and ∇⊥h = 0, then we obtain

1

2
4 S = nf |Φ|2 + |∇σ|2.

If f ≤ 0, we get 1
2
4 S ≥ 0. Hence, if M is compact, then we have ∇σ = 0. This proof

our result.
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