C-TOTALLY REAL SUBMANIFOLDS WITH PARALLEL MEAN CURVATURE IN λ-SASAKIAN SPACE FORMS

ALDIR BRASIL, GUILLERMO A. LOBOS, AND MAXWELL MARIANO

Dedicated to Professor Manfredo P. do Carmo on his 80th birthday

Abstract

In this paper, we prove a generalized integral inequality for an n dimensional oriented closed C-totally real submanifold M with parallel mean curvature vector h in a $(2 m+1)$-dimensional closed λ-Sasakian space form $\tilde{M}(c)$ of constant φ-sectional curvature c with $0<c \leq \lambda, n \geq 2$ and if a tensor ϕ related to h and the second fundamental form satisfies a certain inequality. As a consequence we obtain that M is totally umbilic or minimal with $S=(n(c+3 \lambda)+(c-\lambda)) / 6$, which generalize the Theorem 3 of [8]. Finally, we prove that if M is f-pseudo-parallel in a $(2 n+1)$-dimensional λ-Sasakian space form with $f \geq(n(c+3 \lambda)+(c-\lambda)) / 4 n$, then M is totally geodesic, which generalize the Theorem 1 of [11], when $\lambda=1$.

1. Introduction

Let \tilde{M} be a $(2 m+1)$-dimensional manifold and $\Gamma(\tilde{M})$ the Lie algebra of vector fields on \tilde{M}. An almost contact $\underset{\tilde{M}}{ }$. vector field ξ and a 1 -form η on \tilde{M} such that for any $p \in \tilde{M}$, we have

$$
\varphi_{p}^{2}=-I+\eta_{p} \otimes \xi_{p}, \quad \eta_{p}\left(\xi_{p}\right)=1
$$

where I denote the identity transformation of the tangent space $T_{p} \tilde{M}$ at p. Then $\varphi(\xi)=0$ and $\eta \circ \varphi=0$. Manifolds equipped whit an almost contact structure are called almost contact manifolds. A Riemannian manifold \tilde{M} with metric tensor \langle,$\rangle and an almost contact structure (\varphi, \xi, \eta)$ such that

$$
\langle\varphi X, \varphi Y\rangle=\langle X, Y\rangle-\eta(X) \eta(Y)
$$

or equivalently

$$
\langle X, \varphi Y\rangle=-\langle\varphi X, Y\rangle \quad \text { and } \quad\langle X, \xi\rangle=\eta(X),
$$

for all $X, Y \in \Gamma(\tilde{M})$, is an almost contact metric manifold. The existence of an almost contact metric structure on \tilde{M} is equivalent with the existence of a reduction of the structural group to $\mathcal{U}(m) \times 1$, i. e. all the matrices of $\mathcal{O}(2 m+1)$ of the form

$$
\left(\begin{array}{rcc}
A & B & 0 \\
-B & A & 0 \\
0 & 0 & 1
\end{array}\right)
$$

where A and B are real $(n \times n)$-matrices. The fundamental 2 -form Ψ of an almost contact metric manifold ($\tilde{M}, \varphi, \xi, \eta,\langle\rangle$,$) is defined by$

$$
\Psi(X, Y)=\langle X, \varphi Y\rangle
$$

[^0]for all $X, Y \in \Gamma(\tilde{M})$, and this form satisfies $\eta \wedge \Psi^{m} \neq 0$. When $\Psi=\frac{1}{\lambda} d \eta, \lambda \neq 0$ the associated structure is a contact structure and \tilde{M} is an almost λ-Sasakian manifold. An almost λ-Sasakian manifold $(\tilde{M}, \varphi, \xi, \eta,\langle\rangle$,$) is called a \lambda$-Sasakian manifold if
$$
[\varphi X, \varphi Y]+\varphi^{2}[X, Y]-\varphi[X, \varphi Y]-\varphi[\varphi X, Y]=-2 d \eta(X, Y) \xi
$$
for all $X, Y \in \Gamma(\tilde{M})$. A necessary and sufficient condition for an almost contact metric manifold ($\tilde{M}, \varphi, \xi, \eta,\langle\rangle$,$) to be a \lambda$-Sasakian manifold is
\[

$$
\begin{equation*}
\left(\tilde{\nabla}_{X} \varphi\right) Y=\lambda\{\langle X, Y\rangle \xi-\eta(Y) X\} \tag{1.1}
\end{equation*}
$$

\]

for all $X, Y \in \Gamma(\tilde{M})$, where $\tilde{\nabla}$ is the Levi-Civita connection of the Riemannian metric \langle,$\rangle . Moreover, a \lambda$-Sasakian manifold satisfies:

$$
\begin{equation*}
\tilde{\nabla}_{X} \xi=-\lambda \varphi X \tag{1.2}
\end{equation*}
$$

see [4]. If $\lambda=1$ a λ-Sasakian manifold is a Sasakian manifold [2].
An n-dimensional Riemannian manifold M isometrically immersed in \tilde{M} is said to be anti-invariant in \tilde{M} if $\varphi T_{p} M \subset T_{p} M^{\perp}$ for each p of M, where $T_{p} M$ and $T_{p} M^{\perp}$ denote respectively the tangent and the normal space to M at p. Thus, for any vector X tangent to $M, \varphi X$ is normal to M. In this case, φ is necessarily of rank $2 m$ and hence $n \leq m+1$. An n-dimensional Riemannian manifold M isometrically immersed in \tilde{M} is said to be C-totally real if ξ is a normal vector field to M. Recall that a direct consequence of this definition is that M is a anti-invariant submanifold in \tilde{M} and $n \leq m$. A plane section σ in $T_{p} \tilde{M}$ of a λ-Sasakian manifold is called a φ-section if it is spanned by X and φX, where X is a unit tangent vector field orthogonal to ξ. The sectional curvature $\tilde{k}(\sigma)$ with respect a φ-section σ is called a φ-sectional curvature. In this paper a λ-Sasakian manifold \tilde{M} complete simply connected with constant φ-sectional curvature c is called a λ-Sasakian space form and is denoted by $\tilde{M}(c)$. The curvature tensor \tilde{R} of $\tilde{M}(c)$ is given by [7]:

$$
\begin{align*}
\tilde{R}(X, Y) Z= & \frac{c+3 \lambda}{4}(X \wedge Y) Z+\frac{c-\lambda}{4}\{\eta(X) \eta(Z) Y \\
& -\eta(Y) \eta(Z) X+\langle X, Z\rangle \eta(Y) \xi-\langle Y, Z\rangle \eta(X) \xi \tag{1.3}\\
& +\langle\varphi Y, Z\rangle \varphi X-\langle\varphi X, Z\rangle \varphi Y-2\langle\varphi X, Y\rangle \varphi Z\}
\end{align*}
$$

where $X \wedge Y$ is the operator defined by $(X \wedge Y) Z=\langle Y, Z\rangle X-\langle X, Z\rangle Y$.
The purpose of present paper is to study n-dimensional C-totally real submanifolds M, with parallel mean curvature in λ-Sasakian space form $\tilde{M}(c)$.

It is we need considerer $\Phi: T_{p} M \times T_{p} M \rightarrow T_{p} M^{\perp}$ a bilinear map defined as follows: choose an orthonormal frame $\left\{e_{n+1}, \ldots, e_{2 m+1}\right\}$ of $T_{p} M^{\perp}$ and for each $\alpha=n+1, \ldots, 2 m+1$, define maps $\Phi_{\alpha}: T_{p} M \rightarrow T_{p} M$ by

$$
\begin{equation*}
\Phi_{\alpha} X=\left\langle h, e_{\alpha}\right\rangle X-A_{e_{\alpha}} X \tag{1.4}
\end{equation*}
$$

where h is the mean curvature vector and $A_{e_{\alpha}}$'s are the shape operators. Then Φ is given by

$$
\begin{equation*}
\Phi(X, Y)=\sum_{\alpha}\left\langle\Phi_{\alpha} X, Y\right\rangle e_{\alpha} \tag{1.5}
\end{equation*}
$$

Therefore both Φ and $|\Phi|$ not depend on the choice of $\left\{e_{\alpha}\right\}$, moreover, if S be the squared norm of the second fundamental form of M, then

$$
\begin{equation*}
|\Phi|^{2}=\sum_{\alpha} \operatorname{tr}\left(\Phi_{\alpha}\right)^{2}=S-n H^{2} \tag{1.6}
\end{equation*}
$$

where $H=|h|$. We recall that $|\Phi|^{2} \equiv 0$ if and only if M is totally umbilic; $H \equiv 0$ if and only if M is minimal; and $S \equiv 0$ if and only if M is totally geodesic.

Now, for any $H \in \mathbb{R}$, we define the polynomial $P_{H, c, \lambda}$ by

$$
\begin{equation*}
P_{H, c, \lambda}(x)=\frac{3}{2} x^{2}+\frac{n(n-2)}{\sqrt{n(n-1)}} H x-\left(\frac{n(c+3 \lambda)+c-\lambda}{4}+n H^{2}\right) . \tag{1.7}
\end{equation*}
$$

Denoting by ϑ_{H} the square of the positive root of $P_{H, c, \lambda}(x)=0$, our results can be stated as:
Theorem 1.1. Let M be an n-dimensional oriented complete closed C-totally real submanifold with parallel mean curvature vector in a closed λ-Sasakian space form $\tilde{M}(c), n \geq 2$ and $0<c \leq \lambda$. If $|\Phi|^{2} \leq \vartheta_{H}$ on M, then

$$
\begin{equation*}
\int_{M}|\Phi|^{2} P_{H, c, \lambda}(|\Phi|) d M \geq 0 . \tag{1.8}
\end{equation*}
$$

As a consequence Theorem 1.1, we get:
Theorem 1.2. Let M be an n-dimensional oriented complete closed C-totally real submanifold with parallel mean curvature vector in a closed λ-Sasakian space form $\tilde{M}(c), n \geq 2$ and $0<c \leq \lambda$. If $|\Phi|^{2} \leq \vartheta_{H}$ on M, then either M is totally umbilical or M is minimal, non-totally geodesic and

$$
S=\frac{1}{6}\{n(c+3 \lambda)+c-\lambda\} .
$$

In particular, if $c=\lambda=1$, then M is either a totally geodesic submanifold or a Veronese surface.

A submanifold M is f-pseudo-parallel if its second fundamental form h satisfies the following condition

$$
\bar{R}(X, Y) \cdot \sigma=f X \wedge Y \cdot \sigma
$$

for some real valued smooth function f on M and for any X and Y vectors tangent to M, where $\bar{R}(X, Y)$ is the curvature operator of the Van der Waerden-Bortolotti connection $\bar{\nabla}$ of M, which with the operator $X \wedge Y$ act on σ as a derivation [1]. We prove a result that generalize the Theorem 1 of [11].

Theorem 1.3. Let M be an n-dimensional C-totally real submanifold with parallel mean curvature vector in a $(2 n+1)$-dimensional λ-Sasakian space form $\tilde{M}(c)$. If M is f-pseudo-parallel and $f \geq(n(c+3 \lambda)+c-\lambda) / 4 n$, then M is totally geodesic.

Finally, we get the following results for closed f-pseudo-parallel submanifolds with parallel mean curvature vector in a λ-Sasakian space form.

Theorem 1.4. Let M be an n-dimensional closed C-totally real submanifold with parallel mean curvature vector in a $(2 m+1)$-dimensional λ-Sasakian space form $\tilde{M}(c)$. If M is f-pseudo-parallel and $f \geq 0$, then M is parallel, i.e. $\bar{\nabla} \sigma=0$.
Corollary 1.1. Let M be an n-dimensional closed C-totally real submanifold with parallel mean curvature vector in a $(2 n+1)$-dimensional λ-Sasakian space form $\tilde{M}(c)$. If M is f-pseudo-parallel and $f>0$, then M is totally geodesic.

2. Preliminaries

Let $\tilde{M}(c)$ be a $(2 m+1)$-dimensional λ-Sasakian space form with structure $(\varphi, \xi, \eta,\langle\rangle$,$) and M$ an n-dimensional C-totally real submanifold $(n \leq m)$. As usual, $\tilde{\nabla}$ (resp. ∇) be the Riemannian connection with respect to \langle,$\rangle (resp.$ $\left.\left.\langle\rangle\right|_{M},\right)$ and ∇^{\perp} the connection in the normal bundle on M. Theses connections are related by the Gauss and the Weingarten formulas

$$
\begin{equation*}
\tilde{\nabla}_{X} Y=\nabla_{X} Y+\sigma(X, Y) \tag{2.1}
\end{equation*}
$$

$$
\tilde{\nabla}_{X} N=-A_{N} X+\nabla \frac{1}{X} N,
$$

for any X, Y vectors tangent to M and any N vector normal to M, where A_{N} is the shape operator (which is auto-adjunt) in the direction N and σ is the second fundamental form on M. The shape operator and second fundamental form are related by

$$
\begin{equation*}
\left\langle A_{N} X, Y\right\rangle=\langle\sigma(X, Y), N\rangle \tag{2.2}
\end{equation*}
$$

Let R, \tilde{R} and R^{\perp} the curvature tensors of $\nabla, \tilde{\nabla}$ and ∇^{\perp}, respectively. Then, the Gauss and the Ricci equations are given by

$$
\begin{align*}
\langle R(X, Y) Z, W\rangle= & \langle\tilde{R}(X, Y) Z, W\rangle+\langle\sigma(X, W), \sigma(Y, Z)\rangle \tag{2.3}\\
& -\langle\sigma(X, Z), \sigma(Y, W)\rangle \\
\left\langle R^{\perp}(X, Y) N_{1}, N_{2}\right\rangle= & \left\langle\tilde{R}(X, Y) N_{1}, N_{2}\right\rangle+\left\langle\left[A_{N_{1}}, A_{N_{2}}\right], Y\right\rangle \tag{2.4}
\end{align*}
$$

The Codazzi-Mainardi equation is

$$
\begin{equation*}
(\bar{\nabla} \sigma)(X, Y, Z)=(\bar{\nabla} \sigma)(X, Z, Y) \tag{2.5}
\end{equation*}
$$

where $\bar{\nabla} \sigma$ is the first covariant derivative of σ is defined by

$$
\begin{aligned}
(\bar{\nabla} \sigma)(X, Y, Z) & =\left(\bar{\nabla}_{Z} \sigma\right)(X, Y) \\
& =\nabla_{Z}^{\frac{1}{Z}}[\sigma(X, Y)]-\sigma\left(\nabla_{Z} Y, X\right)-\sigma\left(Y, \nabla_{Z} X\right)
\end{aligned}
$$

and the second covariant derivative is defined by

$$
\begin{align*}
\left(\bar{\nabla}^{2} \sigma\right)(X, Y, Z, W)= & \left(\bar{\nabla}_{W} \bar{\nabla}_{Z} \sigma\right)(X, Y) \\
= & \nabla_{W}^{\perp}\left[\left(\bar{\nabla}_{Z} \sigma\right)(X, Y)\right]-\left(\bar{\nabla}_{Z} \sigma\right)\left(\nabla_{W} X, Y\right) \tag{2.7}\\
& -\left(\bar{\nabla}_{Z} \sigma\right)\left(X, \nabla_{W} Y\right)-\left(\bar{\nabla}_{\bar{\nabla}_{W} Z} \sigma\right)(X, Y)
\end{align*}
$$

Then, we have

$$
\begin{align*}
R^{\perp}(X, Y)[\sigma(Z, W)]= & \left(\bar{\nabla}_{X} \bar{\nabla}_{Y} \sigma\right)(Z, W)-\left(\bar{\nabla}_{Y} \bar{\nabla}_{X} \sigma\right)(Z, W) \tag{2.8}\\
& +\sigma(R(X, Y) Z, W)+\sigma(Z, R(X, Y) W)
\end{align*}
$$

In this work we use the following convention of index:

$$
\begin{aligned}
& 1 \leq A, B, C, \cdots \leq 2 m+1 \\
& 1 \leq i, j, k, \cdots \leq n, \quad i^{*}=m+i \\
& n+1 \leq \alpha, \beta, \gamma, \cdots \leq 2 m+1
\end{aligned}
$$

As M is a C-totally real submanifold, we can choose a local orthonormal frame $\left\{e_{1}, \ldots, e_{n}, e_{n+1}, \ldots, e_{m}, e_{1^{*}}=\varphi e_{1}, \ldots, e_{(n+1)^{*}}=\varphi e_{n+1}, \ldots, e_{m^{*}}=\varphi e_{m}, e_{2 m+1}=\xi\right\}$ in $\tilde{M}(c)$ such that $\left\{e_{i}\right\}$ at each point of M span the tangent space of M.

Let $\left\{\omega_{A}\right\}$ be the dual of $\left\{e_{A}\right\}$ and let $\left\{\omega_{A B}\right\}$ be the connection 1-forms of $\tilde{M}(c)$. Then the structure equations of Cartan are given by

$$
\begin{gather*}
d \omega_{A}=-\sum_{B} \omega_{A B} \wedge \omega_{B}, \quad \omega_{A B}+\omega_{B A}=0, \tag{2.9}\\
d \omega_{A B}=\sum_{C} \omega_{A C} \wedge \omega_{C B}+\frac{1}{2} \sum_{C, D} \tilde{R}_{A B C D} \omega_{C} \wedge \omega_{D} . \tag{2.10}
\end{gather*}
$$

The $\left(\omega_{A B}\right)$ is a real representation of a skew-Hermitian matrix. Hence

$$
\begin{equation*}
\omega_{i^{*} j}=\omega_{j^{*} i} . \tag{2.11}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\omega_{i j}=\omega_{i^{*} j^{*}} \quad \text { and } \quad \omega_{i^{*}}=-\omega_{i(2 m+1)} \tag{2.12}
\end{equation*}
$$

Thus, we have along M that

$$
\omega_{\alpha}=0
$$

which implies $0=d \omega_{\alpha}=-\sum_{i} \omega_{\alpha i} \wedge \omega_{i}$ along M. From Cartan's Lemma, we write

$$
\begin{equation*}
\omega_{\alpha i}=\sum_{j} h_{i j}^{\alpha} \omega_{j}, \quad h_{i j}^{\alpha}=h_{j i}^{\alpha}, \tag{2.13}
\end{equation*}
$$

where $h_{i j}^{\alpha}$ denoted the components of second fundamental form σ, that is

$$
\begin{equation*}
h_{i j}^{\alpha}=\left\langle A_{e_{\alpha}} e_{i}, e_{j}\right\rangle=\left\langle\sigma\left(e_{i}, e_{j}\right), e_{\alpha}\right\rangle \tag{2.14}
\end{equation*}
$$

Therefore, from (2.11) and (2.2) we have

$$
\begin{equation*}
h_{j k}^{i^{*}}=h_{i k}^{j^{*}}=h_{i j}^{k^{*}}, h_{i j}^{(n+1)^{*}}=0 \tag{2.15}
\end{equation*}
$$

From (1.3), we get

$$
\begin{equation*}
\tilde{R}_{i j k l}=\frac{c+3 \lambda}{4}\left(\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{j k}\right) \tag{2.16}
\end{equation*}
$$

and

$$
\tilde{R}_{\alpha \beta k l}=\left\{\begin{array}{l}
\frac{c-\lambda}{4}\left(\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{j k}\right), \quad \text { if } \quad \alpha=i^{*}, \quad \beta=j^{*} \tag{2.17}\\
0, \quad \text { otherwise },
\end{array}\right.
$$

where $\left\langle e_{i}, e_{j}\right\rangle=\delta_{i j}$. Using (2.16) in (2.3), we obtain

$$
\begin{equation*}
R_{i j k l}=\frac{c+3 \lambda}{4}\left(\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{j k}\right)+\sum_{\alpha}\left(h_{i k}^{\alpha} h_{j l}^{\alpha}-h_{i l}^{\alpha} h_{j k}^{\alpha}\right), \tag{2.18}
\end{equation*}
$$

and subtituting (2.17) in (2.4), we get

$$
R_{\alpha \beta k l}^{\perp}=\left\{\begin{array}{l}
\frac{c-\lambda}{4}\left(\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{j k}\right)+\sum_{r}\left(h_{r k}^{\alpha} h_{r l}^{\beta}-h_{r l}^{\alpha} h_{r k}^{\beta}\right), \text { if } \alpha=i^{*}, \beta=j^{*} ; \tag{2.19}\\
\sum_{r}\left(h_{r k}^{\alpha} h_{r l}^{\beta}-h_{r l}^{\alpha} h_{r k}^{\beta}\right), \quad \text { otherwise. }
\end{array}\right.
$$

Let S be the squared norm of second fundamental form, h denote the mean curvature vector field and H the mean curvature of M, that is

$$
\begin{equation*}
S=\sum_{\alpha, i, j}\left(h_{i j}^{\alpha}\right)^{2}, \quad h=\frac{1}{n} \sum_{\alpha}\left(\sum_{i} h_{i i}^{\alpha}\right) e_{\alpha}, \quad H=|h| . \tag{2.20}
\end{equation*}
$$

The Ricci curvature tensor $\left\{R_{k l}\right\}$ and the scalar curvature K are expressed, respectively, as follows:

$$
\begin{gather*}
R_{k l}=\frac{c+3 \lambda}{4}(n-1) \delta_{k l}+\sum_{\alpha}\left(\sum_{i} h_{i i}^{\alpha}\right) h_{k l}^{\alpha}-\sum_{\alpha, i} h_{k i}^{\alpha} h_{i l}^{\alpha}, \tag{2.21}\\
K=\frac{c+3 \lambda}{4} n(n-1)+\left(n^{2} H^{2}-S\right) . \tag{2.22}
\end{gather*}
$$

The components of the covariant derivative of σ are given by

$$
\begin{equation*}
h_{i j k}^{\alpha}=\left\langle\left(\bar{\nabla}_{e_{k}} \sigma\right)\left(e_{i}, e_{j}\right), e_{\alpha}\right\rangle=\bar{\nabla}_{e_{k}} h_{i j}^{\alpha}, \tag{2.23}
\end{equation*}
$$

hence, the square of the length of third fundamental form of M is given

$$
\begin{equation*}
|\bar{\nabla} \sigma|^{2}=\sum_{\alpha, i, j, k}\left(h_{i j k}^{\alpha}\right)^{2} \tag{2.24}
\end{equation*}
$$

The components of the second covariant derivative of σ are given by

$$
\begin{equation*}
h_{i j k l}^{\alpha}=\left\langle\left(\bar{\nabla}_{e_{l}} \bar{\nabla}_{e_{k}} \sigma\right)\left(e_{i}, e_{j}\right), e_{\alpha}\right\rangle=\bar{\nabla}_{e_{l}} h_{i j k}^{\alpha}=\bar{\nabla}_{e_{l}} \bar{\nabla}_{e_{k}} h_{i j}^{\alpha} . \tag{2.25}
\end{equation*}
$$

Hence, we get

$$
\begin{gather*}
\sum_{k} h_{i j k}^{\alpha} \omega_{k}=d h_{i j}^{\alpha}-\sum_{r} h_{j r}^{\alpha} \omega_{r i}-\sum_{r} h_{i r}^{\alpha} \omega_{r j}+\sum_{\beta} h_{i j}^{\beta} \omega_{\alpha \beta}, \tag{2.26}\\
\sum_{l} h_{i j k l}^{\alpha} \omega_{l}= \\
=d h_{i j k}^{\alpha}-\sum_{r} h_{r j k}^{\alpha} \omega_{r i}-\sum_{r} h_{i r k}^{\alpha} \omega_{r j} \tag{2.27}\\
-\sum_{r} h_{i j r}^{\alpha} \omega_{r k}+\sum_{\beta} h_{i j k}^{\alpha} \omega_{\alpha \beta} .
\end{gather*}
$$

From (2.5), we have

$$
\begin{equation*}
h_{i j k}^{\alpha}-h_{i k j}^{\alpha}=0, \tag{2.28}
\end{equation*}
$$

and by (2.8), we obtain the following Ricci formula

$$
\begin{equation*}
h_{i j k l}^{\alpha}-h_{i j l k}^{\alpha}=\sum_{r} h_{r j}^{\alpha} R_{r i k l}+\sum_{r} h_{r i}^{\alpha} R_{r j k l}-\sum_{\beta} h_{i j}^{\beta} R_{\alpha \beta k l}^{\perp} . \tag{2.29}
\end{equation*}
$$

From (2.12), (2.11) and (2.26), we get

$$
\begin{equation*}
h_{i j k}^{2 m+1}=-h_{i j}^{k^{*}} . \tag{2.30}
\end{equation*}
$$

The Laplacian $\triangle h_{i j}^{\alpha}$ of $h_{i j}^{\alpha}$ is defined by $\triangle h_{i j}^{\alpha}=\sum_{k} h_{i j k k}^{\alpha}=\sum_{k} h_{k i j k}^{\alpha}$. Using (2.28) and (2.29), we obtain

$$
\begin{align*}
\Delta h_{i j}^{\alpha}= & \sum_{k r} h_{k r}^{\alpha} R_{r i j k}+\sum_{k r} h_{r i}^{\alpha} R_{r k j k}-\sum_{k, \beta} h_{k i}^{\beta} R_{\alpha \beta k j}^{\perp} \\
= & \sum_{k, r}\left(h_{k r}^{\alpha} \tilde{R}_{r i j k}+h_{r i}^{\alpha} \tilde{R}_{r k j k}\right)+\sum_{k, \beta} h_{k i}^{\beta} \tilde{R}_{\alpha \beta k j} \tag{2.31}\\
& +\sum_{r, k, \beta}\left(h_{r i}^{\beta} h_{r j}^{\beta} h_{k k}^{\beta}+2 h_{k r}^{\alpha} h_{r j}^{\beta} h_{i k}^{\beta}-h_{k r}^{\alpha} h_{k k r}^{\beta} h_{i j}^{\beta}\right. \\
& \left.-h_{r i}^{\alpha} h_{k r}^{\beta} h_{k j}^{\beta}-h_{r j}^{\alpha} h_{k i}^{\beta} h_{k r}^{\beta}\right) .
\end{align*}
$$

Since

$$
\begin{equation*}
\frac{1}{2} \Delta S=\sum_{\alpha, i, j} h_{i j}^{\alpha} \Delta h_{i j}^{\alpha}+\sum_{\alpha, i, j, k}\left(h_{i j k}^{\alpha}\right)^{2} \tag{2.32}
\end{equation*}
$$

we have

$$
\begin{align*}
\frac{1}{2} \Delta S= & \sum_{\alpha, i, j, k}\left(h_{i j k}^{\alpha}\right)^{2}+\sum_{\alpha, i, j, k, r}\left(h_{i j}^{\alpha} h_{k r}^{\alpha} \tilde{R}_{r i j k}+h_{i j}^{\alpha} h_{r j}^{\alpha} \tilde{R}_{r k i k}\right) \\
& +\sum_{\alpha, \beta, i, j, k} h_{i j}^{\alpha} h_{k i}^{\beta} \tilde{R}_{\alpha \beta k j}-\sum_{\alpha, \beta, i, j, k, r} h_{i j}^{\alpha} h_{k r}^{\alpha} h_{i j}^{\beta} h_{k r}^{\beta} \tag{2.33}\\
& +\sum_{\alpha, \beta, i, j, k, r} h_{i j}^{\alpha} h_{i r}^{\alpha} h_{j r}^{\beta} h_{k k}^{\beta} \\
& -\sum_{\alpha, \beta, i, j, k, r}^{\alpha}\left(h_{r j}^{\alpha} h_{k r}^{\beta}-h_{k r}^{\alpha} h_{r j}^{\beta}\right)\left(h_{i j}^{\alpha} h_{k i}^{\beta}-h_{k i}^{\alpha} h_{i j}^{\beta}\right) .
\end{align*}
$$

3. Estimates and proofs of Theorems 1.2 and 1.3

Now, we assume that the mean curvature vector h of M is parallel (i.e., $\nabla^{\perp} h=0$), and M is a complete submanifold in $\tilde{M}(c)$.

In this section Φ_{α} denoted the matrix $\left(\Phi_{i j}^{\alpha}\right)$, where $\Phi_{i j}^{\alpha}=\left\langle\Phi_{\alpha} e_{i}, e_{j}\right\rangle$. Note that to $H=0$ (i.e., M is minimal submanifold), we get $\Phi_{\alpha}=-H_{\alpha}$, for all α, where H_{α} is the matrix $\left(h_{i j}^{\alpha}\right)$. If $H \neq 0$, we choose a local orthonormal frame $\left\{e_{1}, \ldots, e_{n}, e_{n+1}, \ldots, e_{m}, e_{1^{*}}=\right.$ $\left.\varphi e_{1}, \ldots, e_{(n+1)^{*}}=\varphi e_{n+1}, \ldots, e_{m^{*}}=\varphi e_{m}, e_{2 m+1}=\xi\right\}$ such that $e_{n+1}=\frac{h}{H}$. With this choose

$$
\begin{equation*}
\Phi_{n+1}=H I-H_{n+1}, \Phi^{\alpha}=H_{\alpha}, \quad \alpha \neq n+1 \tag{3.1}
\end{equation*}
$$

where $I=\left(\delta_{i j}\right)$. Since e_{n+1} is a parallel direction,

$$
\begin{equation*}
H_{\alpha} H_{n+1}=H_{n+1} H_{\alpha}, \quad \omega_{\alpha(n+1)}=0 \quad \text { and } \quad \sum_{k} h_{k k i}^{\alpha}=0 . \tag{3.2}
\end{equation*}
$$

In this case, we obtain

$$
\begin{equation*}
\operatorname{tr} H_{n+1}=n H, \quad \operatorname{tr} H_{\alpha}=0, \quad \alpha \neq n+1 \quad \text { and } \quad R_{(n+1) \alpha i j}^{\perp}=0 \tag{3.3}
\end{equation*}
$$

Furthermore,

$$
\begin{align*}
& \left|\Phi_{n+1}\right|^{2}=\operatorname{tr} H_{n+1}^{2}-n H^{2} \tag{3.4}\\
& \sum_{\alpha \neq n+1}\left|\Phi_{\alpha}\right|^{2}=\sum_{\beta \neq n+1}\left(h_{i j}^{\beta}\right)^{2} \tag{3.5}
\end{align*}
$$

and

$$
\begin{equation*}
\operatorname{tr} \Phi_{\alpha}=0 \tag{3.6}
\end{equation*}
$$

for all α. Thus,

$$
\begin{equation*}
S=\sum_{\alpha}\left|\Phi_{\alpha}\right|^{2} \tag{3.7}
\end{equation*}
$$

Now, we need the following algebraic lemmas:
Lemma 3.1. [9] If A and B are two symmetric linear maps of \mathbb{R}^{n} with $A B-B A=0$ and $\operatorname{tr} A=\operatorname{tr} B=0$. Then

$$
\begin{equation*}
\left|\operatorname{tr} A^{2} B\right| \leq \frac{(n-2)}{\sqrt{n(n-1)}} \operatorname{tr} A^{2} \sqrt{\operatorname{tr} B^{2}} \tag{3.8}
\end{equation*}
$$

and the equality holds if only if $n-1$ of eigenvalues x_{i} of A and the corresponding eigenvalues y_{i} of B satisfy

$$
\begin{gathered}
\left|x_{i}\right|=\sqrt{\frac{\operatorname{tr} A^{2}}{n(n-1)}}, \quad x_{i} x_{j} \geq 0 \\
y_{i}=\sqrt{\frac{\operatorname{tr} B^{2}}{n(n-1)}} \quad\left(\text { resp. } y_{i}=-\sqrt{\frac{\operatorname{tr} B^{2}}{n(n-1)}}\right)
\end{gathered}
$$

Lemma 3.2. $[3,8]$. Let $A_{1}, A_{2}, \ldots, A_{k}$ be symmetric $(n \times n)$-degree matrices, where $k \geq 2$. Denote $L_{i j}=\operatorname{tr} A_{i} A_{j}^{t}$ and $L=L_{11}+L_{22}+\ldots+L_{k k}$. Then

$$
\begin{equation*}
\sum\left\{N\left(A_{i} A_{j}-A_{j} A_{i}\right)+\left(L_{i j}\right)^{2}\right\} \leq \frac{3}{2} L^{2} \tag{3.9}
\end{equation*}
$$

where $N(A)=\operatorname{tr} A A^{t}$, for all matrix A.
The ideas used for proving the following lemmas are analogous to that found in [6].

Lemma 3.3.

$$
\begin{equation*}
\sum_{\alpha, i, j, k, r}\left(h_{i j}^{\alpha} h_{r k}^{\alpha} \tilde{R}_{r i j k}+h_{i j}^{\alpha} h_{r j}^{\alpha} \tilde{R}_{r k i k}\right)=\frac{c+3 \lambda}{4} n|\Phi|^{2} \tag{3.10}
\end{equation*}
$$

Proof. Fix a vector e_{α} and let $\left\{e_{i}\right\}$ be a local orthogonal frame on M such that the matrix H_{α} (resp. Φ_{α}) takes the diagonal form with $h_{i j}^{\alpha}=\mu_{i}^{\alpha} \delta_{i j}$ (resp. $\Phi_{i j}^{\alpha}=\lambda_{i}^{\alpha} \delta_{i j}$, where $\left.\lambda_{i}^{\alpha}=\left\langle h, e_{\alpha}\right\rangle-\mu_{i}^{\alpha}\right)$. Then, of (2.16) we get

$$
\begin{aligned}
\sum_{i, j, k, r}\left(h_{i j}^{\alpha} h_{r k}^{\alpha} \tilde{R}_{r i j k}+h_{i j}^{\alpha} h_{r j}^{\alpha} \tilde{R}_{r k i k}\right) & =\sum_{i, k}\left(\mu_{i}^{\alpha} \mu_{k}^{\alpha} \tilde{R}_{k i i k}+\left(\mu_{i}^{\alpha}\right)^{2} \tilde{R}_{i k i k}\right) \\
& =\sum_{i, k}\left(\left(\mu_{i}^{\alpha}\right)^{2}-\mu_{i}^{\alpha} \mu_{k}^{\alpha}\right) \tilde{R}_{i k i k} \\
& =\sum_{i, k}\left(\left(\lambda_{i}^{\alpha}\right)^{2}-\lambda_{i}^{\alpha} \lambda_{k}^{\alpha}\right) \tilde{R}_{i k i k} \\
& =\frac{c+3 \lambda}{4} n \operatorname{tr} \Phi_{\alpha}^{2} \\
& =\frac{c+3 \lambda}{4} n\left|\Phi_{\alpha}\right|^{2}
\end{aligned}
$$

Hence

$$
\sum_{\alpha, i, j, k, r}\left(h_{i j}^{\alpha} h_{r k}^{\alpha} \tilde{R}_{r i j k}+h_{i j}^{\alpha} h_{r j}^{\alpha} \tilde{R}_{r k i k}\right)=\frac{c+3 \lambda}{4} n|\Phi|^{2}
$$

Lemma 3.4. If $c \leq \lambda$, then

$$
\sum_{\alpha, \beta, i, j, k} h_{i j}^{\alpha} h_{k i}^{\beta} \tilde{R}_{\alpha \beta k j} \geq \frac{c-\lambda}{4}|\Phi|^{2} .
$$

Proof. If $\alpha \neq r^{*}$ or $\beta \neq s^{*}$, then from (2.17) we have

$$
\sum_{\alpha, \beta, i, j, k} h_{i j}^{\alpha} h_{k i}^{\beta} \tilde{R}_{\alpha \beta k j}=0 .
$$

If $\alpha=r^{*}$ and $\beta=s^{*}$, from (2.17) we obtain

$$
\begin{aligned}
\sum_{r^{*}, s^{*}, i, j, j k} h_{r_{j}^{*}}^{r^{*}} h_{k i}^{s_{i}^{*}} \tilde{R}_{r^{*}} s^{*} k j & =\sum_{r^{*}, s^{*}, i, k} h_{j r}^{i^{*}} h_{k_{s}^{*}}^{i^{*}} \tilde{R}_{r^{*} s^{*} k j} \\
& =\sum_{r, s, i} \frac{c-\lambda}{4}\left(\left(h_{s r}^{i^{*}}\right)^{2}-h_{r r}^{i^{*}} h_{s s}^{*}\right) \\
& =\frac{c-\lambda}{4} \sum_{i} \operatorname{tr} \Phi_{i^{*}}^{2}=\frac{c-\lambda}{4} \sum_{i}\left|\Phi_{i}\right|^{2} \geq \frac{c-\lambda}{4}|\Phi|^{2} .
\end{aligned}
$$

and the lemma is proved.

Lemma 3.5.

$$
-\sum_{\alpha, \beta, i, j, k, l} h_{i j}^{\alpha} h_{k l}^{\alpha} h_{i j}^{\beta} h_{k l}^{\beta}=-\sum_{\alpha, \beta}\left(\operatorname{tr} \Phi_{\alpha} \Phi_{\beta}\right)^{2}-n^{2} H^{4}-2 n H^{2}\left|\Phi_{n+1}\right|^{2} .
$$

Proof. If $H=0$, we have $\Phi_{\alpha}=-H_{\alpha}$ for all α. Hence,

$$
-\sum_{\alpha, \beta, i, j, k, l} h_{i j}^{\alpha} h_{k l}^{\alpha} h_{i j}^{\beta} h_{k l}^{\beta}=-\sum_{\alpha, \beta}\left(\operatorname{tr} H_{\alpha} H_{\beta}\right)^{2}=-\sum_{\alpha, \beta}\left(\operatorname{tr} \Phi_{\alpha} \Phi_{\beta}\right)^{2},
$$

which proves the lemma in this case. If $H \neq 0$, choose a local orthonormal frame $\left\{e_{1}, \ldots, e_{n}, e_{n+1}, . . e_{m}, e_{1^{*}}, \ldots, e_{m^{*}}, \xi\right\}$ such that $e_{n+1}=\frac{h}{H}$, and thus

$$
\begin{aligned}
-\sum_{\alpha, \beta, i, j, k, l} h_{i j}^{\alpha} h_{k l}^{\alpha} h_{i j}^{\beta} h_{k l}^{\beta}= & -\sum_{\alpha, \beta}\left(\operatorname{tr} H_{\alpha} H_{\beta}\right)^{2} \\
= & -\sum_{\alpha, \beta>n+1}\left(\operatorname{tr} \Phi_{\alpha} \Phi_{\beta}\right)^{2}-2 \sum_{\alpha>n+1}\left(\operatorname{tr}\left(H I-\Phi_{n+1}\right) \Phi_{\alpha}\right)^{2} \\
& -\left(\operatorname{tr}\left(H I-\Phi_{n+1}\right)^{2}\right)^{2} \\
= & -\sum_{\alpha, \beta>n+1}\left(\operatorname{tr} \Phi_{\alpha} \Phi_{\beta}\right)^{2}-2 \sum_{\alpha>n+1}\left(H \operatorname{tr}\left(\Phi_{\alpha}\right)-\operatorname{tr} \Phi_{n+1} \Phi_{\alpha}\right)^{2} \\
& -\left(\operatorname{tr}\left(H^{2} I-2 H \Phi_{n+1}+\Phi_{n+1}^{2}\right)\right)^{2} \\
= & -\sum_{\alpha, \beta>n+1}\left(\operatorname{tr} \Phi_{\alpha} \Phi_{\beta}\right)^{2}-2 \sum_{\alpha>n+1}\left(\operatorname{tr} \Phi_{n+1} \Phi_{\alpha}\right)^{2} \\
& -\left(n H^{2}+\operatorname{tr} \Phi_{n+1}^{2}\right)^{2} \\
= & -\sum_{\alpha, \beta}\left(\operatorname{tr} \Phi_{\alpha} \Phi_{\beta}\right)^{2}-n^{2} H^{4}-2 n H^{2} \operatorname{tr} \Phi_{n+1}^{2} \\
= & -\sum_{\alpha, \beta}\left(\operatorname{tr} \Phi_{\alpha} \Phi_{\beta}\right)^{2}-n^{2} H^{4}-2 n H^{2}\left|\Phi_{n+1}\right|^{2} .
\end{aligned}
$$

Lemma 3.6.

$$
\sum_{\alpha, \beta, i, j, k, l} h_{i j}^{\alpha} h_{i l}^{\alpha} h_{j l}^{\beta} h_{k k}^{\beta} \geq-\frac{n(n-2)}{\sqrt{n(n-1)}} H|\Phi|^{3}+2 n H^{2}\left|\Phi_{n+1}\right|^{2}+n H^{2}|\Phi|^{2}+n^{2} H^{4} .
$$

Proof. Note that the inequality is obvious if $H=0$. If $H \neq 0$, we obtain

$$
\begin{aligned}
\sum_{\alpha, \beta, i, j, k, l} h_{i j}^{\alpha} h_{i l}^{\alpha} h_{j l}^{\beta} h_{k k}^{\beta}= & \sum_{\alpha, \beta} \operatorname{tr} H_{\alpha} \operatorname{tr} H_{\alpha} H_{\beta}^{2} \\
= & n H \sum_{\alpha} \operatorname{tr} H_{n+1} H_{\alpha}^{2} \\
= & n H^{2} \sum_{\alpha>n+1} \operatorname{tr}\left(H I-\Phi_{n+1}\right) \Phi_{\alpha}^{2}+n H \operatorname{tr}(H I-\Phi)^{3} \\
= & n H^{2} \sum_{\alpha>n+1} \operatorname{tr} \Phi_{\alpha}^{2}-n H \sum_{\alpha>n+1} \operatorname{tr} \Phi_{n+1} \Phi_{\alpha}^{2} \\
& +n H \operatorname{tr}\left(H^{3} I-3 H^{2} \Phi_{n+1}+3 H \Phi_{n+1}^{2}-\Phi_{n+1}^{3}\right) \\
= & n H^{2} \sum_{\alpha>n+1} \operatorname{tr} \Phi_{\alpha}^{2}-n H \sum_{\alpha} \operatorname{tr} \Phi_{n+1} \Phi_{\alpha}^{2} \\
& +n^{2} H^{4}+3 n H^{2} \operatorname{tr} \Phi_{n+1}^{2} \\
= & n H^{2}|\Phi|^{2}-n H \sum_{\alpha} \operatorname{tr} \Phi_{n+1} \Phi_{\alpha}^{2}+n^{2} H^{4}+2 n H^{2}\left|\Phi_{n+1}\right|^{2}
\end{aligned}
$$

Using lemma 3.1, we have

$$
\begin{equation*}
\operatorname{tr} \Phi_{n+1} \Phi_{\alpha}^{2} \leq \frac{n-2}{\sqrt{n(n-1)}}\left|\Phi_{n+1}\right|\left|\Phi_{\alpha}\right|^{2} \tag{3.11}
\end{equation*}
$$

and so

$$
\begin{equation*}
\sum_{\alpha} \operatorname{tr} \Phi_{n+1} \Phi_{\alpha}^{2} \leq \frac{n-2}{\sqrt{n(n-1)}}\left|\Phi_{n+1}\right||\Phi|^{2} . \tag{3.12}
\end{equation*}
$$

Hence,

$$
\sum_{\alpha, \beta, i, j, k, l} h_{i j}^{\alpha} h_{i l}^{\alpha} h_{j l}^{\beta} h_{k k}^{\beta} \geq-\frac{n(n-2)}{\sqrt{n(n-1)}} H|\Phi|^{3}+2 n H^{2}\left|\Phi_{n+1}\right|^{2}+n H^{2}|\Phi|^{2}+n^{2} H^{4} .
$$

Lemma 3.7.

$$
\begin{aligned}
\sum_{\alpha, \beta, i, j, k, r}\left(h_{r j}^{\alpha} h_{k r}^{\beta}\right. & \left.-h_{k r}^{\alpha} h_{r j}^{\beta}\right)\left(h_{i j}^{\alpha} h_{k i}^{\beta}-h_{k i}^{\alpha} h_{i j}^{\beta}\right)-\sum_{\alpha, \beta, i, j, k, r} h_{i j}^{\alpha} h_{k r}^{\alpha} h_{i j}^{\beta} h_{k r}^{\beta} \\
& \geq-\frac{3}{2}|\Phi|^{4}-n^{2} H^{4}-2 n H^{2}\left|\Phi_{n+1}\right|^{2} .
\end{aligned}
$$

Proof. Note that

$$
\sum_{\alpha, \beta, i, j, k, r}\left(h_{r j}^{\alpha} h_{k r}^{\beta}-h_{k r}^{\alpha} h_{r j}^{\beta}\right)\left(h_{i j}^{\alpha} h_{k i}^{\beta}-h_{k i}^{\alpha} h_{i j}^{\beta}\right)=-\sum_{\alpha, \beta} N\left(\Phi_{\alpha} \Phi_{\beta}-\Phi_{\beta} \Phi_{\alpha}\right),
$$

and

$$
-\sum_{\alpha, \beta, i, j, k, r} h_{i j}^{\alpha} h_{k r}^{\alpha} h_{i j}^{\beta} h_{k r}^{\beta}=-\sum_{\alpha, \beta}\left(\operatorname{tr}\left(\Phi_{\alpha} \Phi_{\beta}\right)\right)^{2}-n^{2} H^{4}-2 n H^{2}\left|\Phi_{n+1}\right|^{2} .
$$

From lemma 3.2, we have

$$
-\sum_{\alpha, \beta} N\left(\Phi_{\alpha} \Phi_{\beta}-\Phi_{\beta} \Phi_{\alpha}\right)-\sum_{\alpha, \beta}\left(\operatorname{tr}\left(\Phi_{\alpha} \Phi_{\beta}\right)\right)^{2} \geq-\frac{3}{4}|\Phi|^{4}
$$

and so

$$
\begin{gathered}
-\sum_{\alpha, \beta, i, j, k, l}\left(h_{i k}^{\alpha} h_{j k}^{\beta}-h_{j k}^{\alpha} h_{i k}^{\beta}\right)\left(h_{i l}^{\alpha} h_{j l}^{\beta}-h_{j l}^{\alpha} h_{i l}^{\beta}\right)-\sum_{\alpha, \beta, i, j, k, l} h_{i j}^{\alpha} h_{k l}^{\alpha} h_{i j}^{\beta} h_{k l}^{\beta} \\
\geq-\frac{3}{2}|\Phi|^{4}-n^{2} H^{4}-2 n H^{2}\left|\Phi_{n+1}\right|^{2} .
\end{gathered}
$$

3.1. Proof of the Theorem 1.1. Now, using lemmas 3.3, 3.4, 3.5, 3.6 and 3.7, we get the following result:

Proposition 3.1. Let $\tilde{M}(c)$ an $(2 m+1)$-dimensional λ-Sasakian space form with structure $(\varphi, \xi, \eta,\langle\rangle$,$) and M$ an n-dimensional C-totally real submanifold with parallel mean curvature vector in $\tilde{M}(c)$. If $c \leq \lambda$, then

$$
\begin{align*}
\frac{1}{2} \Delta S \geq & |\bar{\nabla} \sigma|^{2}-\frac{3}{2}|\Phi|^{4}-\frac{n(n-2)}{\sqrt{n(n-1)}} H|\Phi|^{3} \tag{3.13}\\
& +\left(\frac{n(c+3 \lambda)+c-\lambda}{4}+H^{2}\right)|\Phi|^{2} .
\end{align*}
$$

Suppose now that M is a closed n-dimensional C-totally real submanifold with parallel mean curvature vector in $\tilde{M}(c)$. From proposition 3.1, we have

$$
\begin{equation*}
0 \leq \int_{M}|\bar{\nabla} \sigma|^{2} d M \leq \int_{M}|\Phi|^{2} P_{H, c, \lambda}(|\Phi|) d M, \tag{3.14}
\end{equation*}
$$

where

$$
P_{H, c, \lambda}(x)=\frac{3}{2} x^{2}+\frac{n(n-2)}{\sqrt{n(n-1)}} H x-\left(\frac{n(c+3 \lambda)+c-\lambda}{4}+n H^{2}\right) .
$$

This proof the Theorem 1.1.
3.2. Proof of the Theorem 1.2. If $|\Phi|^{2} \leq \vartheta_{H}$, we have that $P_{H, c}(|\Phi|) \leq 0$. Then, follows from Theorem 1.1 that

$$
\begin{equation*}
0 \leq \int_{M}|\Phi|^{2} P_{H, c}(|\Phi|) d M \leq 0 . \tag{3.15}
\end{equation*}
$$

Thus, $|\Phi|^{2} P_{H, c}(|\Phi|) \equiv 0$. Therefore, $|\Phi|^{2}=0$ and M is totally umbilical or $|\Phi|^{2}=\vartheta_{H}$.
If $|\Phi|^{2}=\vartheta_{H}$, from (3.15) we have that in all the inequalities of the lemmas above become equalities. Then, from lemma 3.4, we obtain $\sum_{i=1}^{n}\left|\Phi_{i^{*}}\right|^{2}=|\Phi|^{2}$ and $m=n$. Hence M is minimal by Theorem 1.1 given in [10]. Note that, in this case

$$
P_{H, c, \lambda}(|\Phi|)=\frac{3}{2}|\Phi|^{2}-\frac{n(c+3 \lambda)+c-\lambda}{4},
$$

and

$$
S=|\Phi|^{2}=\frac{n(c+3 \lambda)+c-\lambda}{6} .
$$

In particular, if $c=\lambda=1$, then $\tilde{M}(c)$ is the Sakakian unit sphere $S^{2 n+1}(1) \subset \mathbb{C}^{m+1}$ with contact structure induced and $S=\frac{2 n}{3}$. Hence, from Theorem 3 in [8], M is a Veronese surface in $S^{4}(1) \subset S^{2 m+1}(1)$.

4. Proofs of the Theorems 1.3 and 1.4

4.1. Proof of theorem 1.3. Let M be a n-dimensional C-totally real submanifold in a $(2 n+1)$-dimensional λ-Sasakian space form $\tilde{M}(c)$. We choose a local orthonormal frame $\left\{e_{1}, \ldots, e_{n}, e_{n+1}, \ldots, e_{n}, e_{1^{*}}=\varphi e_{1}, \ldots, e_{(n+1)^{*}}=\varphi e_{n+1}, \ldots, e_{n^{*}}=\varphi e_{n}, e_{2 n+1}=\xi\right\}$. From [2] follows that

$$
\begin{align*}
\frac{1}{2} \triangle S= & \sum_{i, j, \alpha} h_{i j}^{\alpha} \bar{\nabla}_{e_{i}} \bar{\nabla}_{e_{j}}\left(\operatorname{tr} H_{\alpha}\right)+\frac{n(c+3 \lambda)+c-\lambda}{4} S \\
& -\sum_{\alpha, \beta}\left[\left(\operatorname{tr} H_{\alpha} H_{\beta}\right)^{2}+\left|\left[H_{\alpha}, H_{\beta}\right]\right|^{2}-\operatorname{tr} H_{\beta} \operatorname{tr} H_{\alpha} H_{\beta} H_{\alpha}\right]+|\bar{\nabla} \sigma|^{2} . \tag{4.1}
\end{align*}
$$

And the other hand, we have that f is pseudo-parallel if and only if

$$
\begin{equation*}
h_{i j k l}^{\alpha}=h_{i j l k}^{\alpha}-f\left\{\delta_{k i} h_{l j}^{\alpha}-\delta_{l i} h_{k j}^{\alpha}+\delta_{k j} h_{i l}^{\alpha}-\delta_{l j} h_{i k}^{\alpha}\right\}, \tag{4.2}
\end{equation*}
$$

where $i, j, k, l=1, \ldots, n$ and $\alpha=n+1, \ldots, 2 n+1$, see [1]. Using (4.2), (2.16), (2.17), (2.18) and Codazzi equation in (2.33), we get

$$
\begin{equation*}
\frac{1}{2} \triangle S=\sum_{i, j, \alpha} h_{i j}^{\alpha} \bar{\nabla}_{e_{i}} \bar{\nabla}_{e_{j}}\left(\operatorname{tr} H_{\alpha}\right)+n f|\Phi|^{2}+|\bar{\nabla} \sigma|^{2} \tag{4.3}
\end{equation*}
$$

Therefore, for a C-totally real f-pseudo-parallel submanifold of a λ-Sasakian space form of φ-sectional curvature c, we have:

$$
0=\sum_{\alpha, \beta}\left[\left(\operatorname{tr} H_{\alpha} H_{\beta}\right)^{2}+\left|\left[H_{\alpha}, H_{\beta}\right]\right|^{2}-\operatorname{tr} H_{\beta} \operatorname{tr} H_{\alpha} H_{\beta} H_{\alpha}\right]+n f|\Phi|^{2}-\frac{n(c+3 \lambda)+c-\lambda}{4} S
$$

Now, the condition $\nabla^{\perp} h=0$ in an n-dimensional C-totally real submanifold M of a $(2 n+1)$-dimensional λ-Sasakian space form $\tilde{M}(c)$ is equivalent to the condition $H=0$, see [5] to $\lambda=1$. Hence, we have that $\operatorname{tr} H_{\alpha}=0$, for all α and we get:

$$
0=\left(n f-\frac{n(c+3 \lambda)+c-\lambda}{4}\right) S+\sum_{\alpha, \beta}\left[\left(\operatorname{tr} H_{\alpha} H_{\beta}\right)^{2}+\left|\left[H_{\alpha}, H_{\beta}\right]\right|^{2}\right]
$$

If $f \geq(n(c+3 \lambda)+c-\lambda) / 4 n$, then $\operatorname{tr}\left(H_{\alpha} H_{\beta}\right)=0$, for all α, β. In particular $\left|A_{\alpha}\right|^{2}=$ $\operatorname{tr} H_{\alpha}^{2}=0$, hence $\sigma=0$. This proof Theorem 1.3.
4.2. Proof of Theorem 1.4. If M is f-pseudo-parallel and $\nabla^{\perp} h=0$, then we obtain

$$
\frac{1}{2} \triangle S=n f|\Phi|^{2}+|\bar{\nabla} \sigma|^{2}
$$

If $f \leq 0$, we get $\frac{1}{2} \triangle S \geq 0$. Hence, if M is compact, then we have $\bar{\nabla} \sigma=0$. This proof our result.

References

[1] Asperti, A.C., Lobos, G.A. and Mercuri, F. Pseudo-parallel immersions in space forms, Mat. Contemp. 17 (1999), 59-70.
[2] Blair, D.E., Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics, Vol. 509, Springer-Verlag, Berlin and New York, (1976).
[3] Chern, S.S., do Carmo, M. and Kobayashi, S. Minimal submanifolds of a sphere with second fundamental form of constant length. In Functional Analysis and related fields, edited by F. Brower, Springer-Verlag, Berlin 1970, 59-75.
[4] Das, L. Second order parallel tensor on α-Sasakian manifold, Acta Math. Acad. Paedagog. Nyházi. (N.S.) 23 (2007), 65-69.
[5] Dillen, F. and Vrancken, L. C-totally real submanifolds of Sasakian space forms, J. Math. Pures Appl. 69 (1990), 85-93.
[6] Fontinele, F. Submanifolds with parallel mean curvature vector in pinched Riemannian manifolds, Pac. J. Math. 177 (1997), 47-70.
[7] Janssens, Vanhecke, L., Almost contact structures and curvature tensors, Kodaia Math. J., 4 (1981), 1-27.
[8] Li, A.M. and Li, J.M., An intrinsic rigity theorem for minimal submanifolds in a sphere, Arch. Math., 58 (1992), 582-594.
[9] Santos, W., Submanifolds with parallel mean Curvature vector in spheres, Tôhoku Math. J. 46 (1994), 403-415.
[10] Yano, K. and Kon, M. Anti-invariant submanifolds of Sasakian space forms, II, J. Korean Math. Soc. 13 (1976), 1-14.
[11] Yildiz, A., Murathan, C., Arslan, K. and Ezentas, R. C-totally real pseudo-parallel submanifolds of sasakian space form, Monatsh. Math. 151 (2007), 247-256.

Departamento de Matemática
Universidade Federal do Ceará
Campus do Pici, Fortaleza - CE, Brazil
CEP 60455-760
E-mail address: aldir@mat.ufc.br
URL: http://www.mat.ufc.br
Departamento de Matemática
Universidade Federal de São Carlos
Rod. Washington Luís, Km 235- São Carlos - SP, Brazil
CEP 13565-905
E-mail address: lobos@dm.ufscar.br
URL: http://www.dm.ufscar.br/
Departamento de Matemática
Universidade Federal do Maranhão
Campus do Bacanga, São Luís - MA, Brazil
CEP 65085-580
E-mail address: maxwell@demat.ufma.br
URL: http://www.demat.ufma.br

[^0]: 1991 Mathematics Subject Classification. Primary 53C42, 53A10; Secondary 53C15.
 Key words and phrases. Parallel mean curvature vector, C-totally real submanifold, α-Sasakian space form, pseudo-parallel submanifold.

 The first and second authors were partially supported by CNPq.

