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Abstract

In this paper we obtained a classification of hypersurfaces in the
Euclidean sphere with two principal curvatures and nonnegative cur-
vature.
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1 Introduction and statements of results

Let M™ be an oriented Riemannian n-manifold, n > 3, K the sectional
curvature of M™ and Ric its Ricci curvature. f : M™ — S"! is a hyper-
surface, where S"*! is the unity sphere. Let S¥ be the sphere with constant
sectional curvature ¢ and let M™ be the universal covering of M". Consider
A={reR|3Jx e M" 3I\| X(z)=r}, where X is a principal curvature of f
and A* = ANR*. Note that if M" is compact then A = A is compact.

In [S], Brian Smith proved that if At = @ or A~ = @ then M™ is difeomor-
phic to S*. Moreover, if AT # () Smith considered o = inf A~ < a = sup
A~ <0<b=inf AT <3 =sup A" and proved the following :

"Let f: M" — S”H,ﬂ > 3, complete oriented such that af > —1 or ab <
—1 and 0 ¢ A. Then M™ is homeomorphic to S™ or f(M") =S| x SL".”

LA part of present article was written when the second author visited Universidade
Federal do Ceara(Brasil).



The condition a8 > —1 implies that M™ has sectional curvature K > 0
in M™. On the other hand, the condition ab < —1 implies the following :

(*) If there is x € M™ and exist eigenvalues A,y of f such that \(x) € AT
and p(z) € A=, then 1 + Az)u(x) <0

We could improve the result of Smith:

Theorem 1.1 - Let f : M™ — S"™ n > 3, be a complete oriented hyper-
surface, K the sectional curvature of M™ and M™ be the universal covering
of M™. If K >0 in M™ or 0 ¢ AN A and the condition (*) holds, then M
is homeomorphic to S*, M™ is homeomorphic to R", f(M") = Sy, X Si or
f(M™) =R xS

If f:M™ — S has nonnegative Ricci curvature, we have

Theorem 1.2 - Let f : M™ — S*"*' n > 3, complete oriented where
M™ has Ricci curvature Ric > 0 in M™. If M™ is compact and has infinity
fundamental group then f(M™) =S} x SZt. If M™ is non compact and has
at least two ends then f(M™) =R x SI'.

Let us consider hypersurfaces with two principal curvatures. In view of the
Classification theorem (see [LLWZ, p. 438]), the Corollary 3.6 of [LLWZ]
and the Theorem 2.2 of [HL], we have

Theorem of local classification- Let f : M" — S"*' n > 3, be a
hypersurface , where M™ is a n-dimensional Riemannian manifold. If f has
two and distinct principal curvatures then M"™ is difeomorphic to an open
part of one the following manifolds :

i) S" x ST,

ii) " x R,

iii) 8" x H*T,

where H"™" is the hyperbolic space.



The theorem of local classification is essential in the proof the following
theorem :

Theorem 1.3 - Let f : M™ — S"™! n > 3, complete oriented such that f
has two principal curvatures A, p. Let K be the sectional curvature of M"
and Ric its Ricci curvature.

a) If M™ is compact, K > 0 in M™ and X # p in M™ then f(M") =
STox ST
c1 co

b) If M™ is compact and for all x € M™ exists a two plane P C T, M
such that K(P) < 0 then f(M™) =S xS} .

c) If M™ is compact, Ric > 0 in M™ and X\ and p has multiplicity 1 and
n — 1, respectively then f(M"™) =S x Si .

d) If Ric > 0 in M"™ and for all x € M" ezists v € T,M, | v | = 1,
such that Ric(v) =0 then f(M™) =S, xSt or f(M™) =R x St

e) If Ric > 0, f has constant m'™™ mean curvature H,, and \ and p has
multiplicities 1 and n — 1, then f(M™) =S} xS or f(M™) =R x S}

Corollary 1.4 - It does not exists compact hypersurface f : M™ —s S*1,
n > 3, with only two principal curvatures in each point of M™ such that M™
has scalar curvature T <0 in M™.

Remark 1.5

a) Corollary 1.4 fails if f has more that two principal curvatures. In fact,
the Cartan hypersurface in S* has tree principal curvatures and has constant
scalar curvature 7 = 0.

b) If f has constant m!* mean curvature H,,, and f has two principal cur-
vatures of multiplicity » > 1 and n — r > 1 it easy proved that f(M") =

T n—r
S, xS¢.

¢) The theorems 1.2, 1.3 and 1.4 of Guoxin Wei [W] are consequences of
Theorem 1.3(a). In fact, the condition (1.1) of [W] implies that the Gauss
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map of f is a hypersurface with nonnegative sectional curvature and two
distinct principal curvatures. So, Theorem 1.2 of [W] follows from Theorem
1.3(a). Similarly, the condition (1.2) of [W] and the condition of Theorem
1.4 of [W] implies that M™ has nonnegative Ricci curvature.

d) Theorem 1.3 of Q. Wang and C. Xia [WX] and the Theorem 1.4 of G.
Wei and Y. Jin Suh [SW] are consequences from Theorem 1.3(a). In fact, if
f: M™ — S™"! has only two principal curvatures A and p of multiplicty 1
and n — 1 such that Ay < —1 then the Gauss map of f is a hypersurface with
nonnegative sectional curvature and two distinct principal curvatures. So,
Theorem 1.3 of [WX] and Theorem 1.4 of [SW] follow from Theorem 1.3(a).

e) Theorem 1.1 of Q. Wang and C. Xia [WX1] follows from Theorem 1.3
(c). In fact, the condition (1.1) of [WX1] implies that M™ has nonnegative
Ricci curvature.

We could improve some previous results if will consider hypersurfaces of
spheres with nonnegative isotropic curvature (see [MM]).

Theorem 1.6 - Let f : M™ — S""!' n > 4, be a compact oriented hy-
persurface with nonnegative isotropic curvature. Then we have

a) If M™ is reducible then f(M™) =S x S} .

b) If M™ is irreducible then universal covering M is homeomorphic to S™
or M"™ has infinite fundamental group and the Betti numbers of M™ are
bi(M"™,Z) =0, fori =2,....mn — 2.

c) If f has only two principal curvatures of multiplicity r > 1 andn —r > 1
then f(M™) =S xS} .

Proof of Theorem 1.1-

If M™ is compact and has sectional curvature K > 0, the Theorem 1.1 is
essentially the theorem B of [C]. Consider now M™ complete such 0 ¢ AN A
and the condition (*) holds. Then the Gauss map N : M" — S"*! admits
a complete metric (see [S]). Moreover, N is hypersurface with principal cur-
vatures 1/);, i=1,...n, where the ); are the principal curvatures of f. Let
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1 # 7 and x € M"™. Then we have only the possibilities :
i) Ai(xz) > 0 and \;(z) > 0,

ii) A\;(z) < 0 and Aj(x) <0,

i) A;(z) < 0 and A;(z) > 0.

So, by the condition (*) we have that m + 1 > 0 an this proof that
i J
N has nonnegative sectional curvature. In this case, Theorem 1.1 reduces to

previous case.
Proof of Theorem 1.2-

If M™ is compact and has infinite fundamental group, then the Theorem
1.2 follows from Theorem 1 of [BBCL]. Suppose now that M" is complete
non compact with nonnegative Ricci curvature. By the splitting theorem
of Cheeger-Gromoll, M™ = R x M. So, M™ is reducible and by the
Lemma 1.2 of [C] we have that f has two principal curvatures A and p of
multiplicity r» and n — r such that Ay = —1. Let A the Weingarten op-
erator of f and consider the distributions Dy, = {X : AX = AX} and
D, = {X : AX = pX}. Suppose that r= dim Dy > 1 and n —r = dim
D, > 1. Since that Ay = —1, by Codazzi equation we have that A and p are
constants and f(M™) = S;, x S, which contradicts that M™ =R x M.
So, r=dim Dy =1 and n —1 = dim D, > 1. Using the condition Ay = —1
and the Codazzi equation, we have that < V¥,V >= 0, for X € D, and
Y € D, and this proves that the orthogonal distribution Di = D, is totally
geodesic. Since that M™ has nonnegative Ricci curvature, then it follows
from Corollary 2 of [BW] that the distribution D, is totally geodesic. Again,
using the Codazzi equation, we have that X (u) =0 for all X € Dy, X and p
are constants and so f(M") =R x S, 1.

Proof of Theorem 1.3
a) Let M™ compact with K > 0. Since that M" is compact, by the Theorem

of local classification (see Introduction) we deduce that M™ is difeomorphic
to S" x S"7". Using the theorem 1.1, we have that f(M™) =S" x S"".



b) Let M™ compact such that Va € M", exist a two-plane P C T, M with
K(P) < 0. Let x € M™, X and pu the principal curvatures of f such that
A(z) = X and p(z) = p, where A and g has multiplicity » and n — r. The
principal sectional curvatures (in x) are A2 +1, Ay +1 > 0 and p?> +1 > 0.
If Au+1 > 0, then M™ has positive sectional curvature in z (contradiction).
So, A+ 1 < 0 and holds the condition (*). Moreover A\ # 0, u # 0 and
A # . Then the Gauss map N : M™ — S™*! is compact and has nonnega-
tive sectional curvature. By the same arguments of proof of (a) we have that
f(M™) =S" x S"".

c) Let M™ compact with Ric > 0 such that f has two principal curva-
tures of multiplicity r and n-r. Is easy see that M"™ has nonnegative sectional

curvature. Using (a) we have that f(M") =S' x S"71.

d) Let M™ complete with Ric > 0. Consider A and p principal curvatures of
f, of multiplicity r and n—r, respectively. The principal Ricci curvatures are

N+Dr—-1)+Au+1)(n—7r)>0and

(WP +1Dn—r—1)+ Au+1)r >0.

Since that Vo € M™ Jv, | v |= 1 with Ric(v) = 0, then
N+1D)r—1D+Au+1)(n—r)=0[11]

(P +1)(n—r—1)+A\p+1)r=0[1.2].

Let » > 1 and (n —r) > 1. Note that A # 0, p # 0 and A # p in M"
and consider the sets

M,= int {z € M" | [1.1]holds} and Ms= int {z € M™ | [1.2]holds}.

Let A the Weingarten operator of f, X € Dy = {X € TM | AX = \X}
and Y € D, ={Y € TM | AY = uY'}. Note that X(\) =0, Y(u) = 0.
Moreover, follows from [1.1] and [1.2] that X (p) = Y(A) = 0 in M; U Ma.
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Since that M™ = M; U My U M3, where int(M3) = @, by continuity we have
that A and p are constants in M™ and in this case, f(M") = S, x SL ",
where r > 1 and n — r > 1, which contradicts the fact of that Ric(v) = 0.

So,r=1orn—r =1and 14+ Ay = 0. Using the same arguments of the proof
of Theorem 1.2 we deduce that f(M™) =S, x S ! or f(M™) =R xS

e) Assumes that f has two principal curvatures A and p of multiplicities 1 and
n — 1 and has constant mean curvature. The proof in the general case where
f has constant m" mean curvature H,, is similar. Let M™ with Ric > 0 such
that A 4+ (n — 1) = nH is constant. Using a similar argument of the proof
of Theorem 1.3(b), we obtain that f(M") =S, xS or f(M™) =RxSy .

Proof of Corollary 1.4 - Assumes that M™ has scalar curvature 7 < 0.
Then Yz € M" exists a two plane P C T, M such that K(P) < 0 and by
Theorem 1.3(b), f(M™) =S, x S}, which has M™ has constant scalar cur-
vature 7 > 0 (contradiction).

Proof of Theorem 1.6-

a) Let M™ reducible. By Lemma 1.2 of [C] f has two principal curvatures
A and g such that Ay = —1. As in the proof of Theorem 1.2 we can deduce
that f(M™) =S" x S*".

b) Let M™ irreducible. By [DN], we have that the Betti numbers of M"
are b;(M™,Z) = 0 for 2 <n <n — 2. Using Theorem 1.1 of [H], we have the
possibilities

by) M™ is homeomorphic to C'P™. Since that by(CP",Z) = 1, this case
can’t occur.

b) M™ is a compact irreducible symmetric space. In this case, follows from
Proposition 4.2 of [DMN] that M = S..

b3) M™ admits a metric with positive isotropic curvature. Then M™ has
finite fundamental group and follows from [MM] that M™ is homeomorphic
to S™ or M™ has infinite fundamental group.

c) Assumes that f has two principal curvatures with multiplicity » > 1
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and n —r > 1. Since that M"™ has nonnegative isotropic curvature is

easy see that M"™ has nonnegative sectional curvature. By Theorem 1.3(a)
f(Mn) = Szl X SZQ_T'

References

[BBCL] Barbosa, J. N., Brasil, A., Costa, E. A., Lazaro 1. C. Hypersurfaces
of the Euclidean sphere with nonnegative Ricci curvature. Arch. Math.
81(2003) 335-341.

[BW] Brito, F.G.B., Walczak, P.L.. Totally geodesic foliations with integral
normal bundles. Bol. Soc. Brasil Mat. 17(1986),41-46.

[C] Costa, Ezio Araujo. A Ricci inequality for hypersurfaces in the sphere.
Arch. Math. 85 (2005) 183-189.

[DMN] Derdzinski, A., Mercuri, F. and Noronha, M.H. Manifolds with pure
nonnegative curvature operator. Bol. Soc. Bras. Mat.,18, 2(1987), 13-
22.

[DN] Dussan, M., Noronha, M. H. Compacts manifolds of nonnegative

isotropic curvatue and pure curvature operator. Balkan J. Geom. Appl.
10, 2 (2005), 58-66.

[H] Seshadri, H. Manifolds with nonnegative isotropic curvature - avaliable
in ArXiv:0707.3894v3 [math. DG] 14 May 2008.

[HL] Hu, Z. and Li, H. Z. Classifivation of Mobius isoparametric hypersur-
faces in S*. Nagoya Math. J. 179 (2005) 147-162

[LLWZ] Li, H. Z., Liu, H. L., Wang, C. P. and Zhao, G. S. Mobius isopara-
metric hypersurfaces in S with two distinct principal curvatures. Acta
Math. Sinica, English Series. July (2002) 183 437-446.

[IMM] Micallef, M. Moore, J. Minimal two spheres and the topology of man-
ifolds with positive isotropic curvature on totally isotropic two-planes.
Ann. of Math. 127, 1 (1988) 199-227.



[S]  Smith, B. The principal curvature set of a hypersurface in a sphere.
Geometry and Topology of submanifolds, V; 260-266, World scientific,
1992.

(W] Wei, G. Complete hypersurfaces with constant mean curvature in a unit
sphere. Monatsh. Math. 149 (2006) 251-258.

[WS] Wei, G. and Suh, Y. J. Rigidity theorems for hypersurfaces with con-
stant scalar curvature in a unit sphere. Glasgow Math. J. 49 (2007)235-
241.

[WX] Wang, Q. and Xia, C. Rigidity theorems for closed hypersurfaces in
space forms. Quart. J. Math. 53(2005), 101-110.

[WX1] Wang, Q. and Xia, C. Rigidity theorems for closed hypersurfaces in
a unit sphere. J. Geom. Physics 55(2005) 227-240.

Aldir Brasil Jr. and Ezio de Araujo Costa

Instituto de Matematica

Universidade Federal do Ceara and Universidade Federal da Bahia (Brasil)
e-mail: aldirbrasil@yahoo.com.br and ezio@ufba.br



