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Abstract

In this paper we obtained a classification of hypersurfaces in the
Euclidean sphere with two principal curvatures and nonnegative cur-
vature.
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1 Introduction and statements of results

Let Mn be an oriented Riemannian n-manifold, n ≥ 3, K the sectional
curvature of Mn and Ric its Ricci curvature. f : Mn −→ Sn+1 is a hyper-
surface, where Sn+1 is the unity sphere. Let Skc be the sphere with constant
sectional curvature c and let M̃n be the universal covering of Mn. Consider
Λ = {r ∈ R | ∃x ∈Mn,∃λ | λ(x) = r}, where λ is a principal curvature of f
and Λ± = Λ ∩ R±. Note that if Mn is compact then Λ = Λ is compact.
In [S], Brian Smith proved that if Λ+ = Ø or Λ− = Ø then Mn is difeomor-
phic to Sn. Moreover, if Λ± 6= Ø Smith considered α = inf Λ− ≤ a = sup
Λ− ≤ 0 ≤ b = inf Λ+ ≤ β = sup Λ+ and proved the following :

”Let f : Mn −→ Sn+1, n ≥ 3, complete oriented such that αβ ≥ −1 or ab ≤
−1 and 0 6∈ Λ. Then M̃n is homeomorphic to Sn or f(Mn) = Src1 × Sn−rc2

.”

1A part of present article was written when the second author visited Universidade
Federal do Ceara(Brasil).
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The condition αβ ≥ −1 implies that Mn has sectional curvature K ≥ 0
in Mn. On the other hand, the condition ab ≤ −1 implies the following :

(*) If there is x ∈ Mn and exist eigenvalues λ, µ of f such that λ(x) ∈ Λ+

and µ(x) ∈ Λ−, then 1 + λ(x)µ(x) ≤ 0

We could improve the result of Smith:

Theorem 1.1 - Let f : Mn −→ Sn+1, n ≥ 3, be a complete oriented hyper-
surface, K the sectional curvature of Mn and M̃n be the universal covering
of Mn. If K ≥ 0 in Mn or 0 6∈ Λ ∩ Λ and the condition (*) holds, then M̃n

is homeomorphic to Sn, M̃n is homeomorphic to Rn, f(Mn) = Src1 × Sn−rc2
or

f(Mn) = R× Sn−1
c2

.

If f : Mn −→ Sn+1 has nonnegative Ricci curvature, we have

Theorem 1.2 - Let f : Mn −→ Sn+1, n ≥ 3, complete oriented where
Mn has Ricci curvature Ric ≥ 0 in Mn. If Mn is compact and has infinity
fundamental group then f(Mn) = S1

c1
× Sn−1

c2
. If Mn is non compact and has

at least two ends then f(Mn) = R× Sn−1
c2

.

Let us consider hypersurfaces with two principal curvatures. In view of the
Classification theorem (see [LLWZ, p. 438]), the Corollary 3.6 of [LLWZ]
and the Theorem 2.2 of [HL], we have

Theorem of local classification- Let f : Mn −→ Sn+1, n ≥ 3, be a
hypersurface , where Mn is a n-dimensional Riemannian manifold. If f has
two and distinct principal curvatures then Mn is difeomorphic to an open
part of one the following manifolds :

i) Sr × Sn−r,

ii) Sr × Rn−r,

iii) Sr ×Hn−r,

where Hn−r is the hyperbolic space.
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The theorem of local classification is essential in the proof the following
theorem :

Theorem 1.3 - Let f : Mn −→ Sn+1, n ≥ 3, complete oriented such that f
has two principal curvatures λ, µ. Let K be the sectional curvature of Mn

and Ric its Ricci curvature.

a) If Mn is compact, K ≥ 0 in Mn and λ 6= µ in Mn then f(Mn) =
Src1 × Sn−rc2

.

b) If Mn is compact and for all x ∈ Mn exists a two plane P ⊂ TxM
such that K(P ) ≤ 0 then f(Mn) = Src1 × Sn−rc2

.

c) If Mn is compact, Ric ≥ 0 in Mn and λ and µ has multiplicity 1 and
n− 1, respectively then f(Mn) = S1

c1
× Sn−1

c2
.

d) If Ric ≥ 0 in Mn and for all x ∈ Mn exists v ∈ TxM , | v | = 1,
such that Ric(v) = 0 then f(Mn) = S1

c1
× Sn−1

c2
or f(Mn) = R× Sn−1

c2
.

e) If Ric ≥ 0, f has constant mth mean curvature Hm and λ and µ has
multiplicities 1 and n− 1, then f(Mn) = S1

c1
× Sn−1

c2
or f(Mn) = R× Sn−1

c2
.

Corollary 1.4 - It does not exists compact hypersurface f : Mn −→ Sn+1,
n ≥ 3, with only two principal curvatures in each point of Mn such that Mn

has scalar curvature τ ≤ 0 in Mn.

Remark 1.5

a) Corollary 1.4 fails if f has more that two principal curvatures. In fact,
the Cartan hypersurface in S4 has tree principal curvatures and has constant
scalar curvature τ = 0.

b) If f has constant mth mean curvature Hm, and f has two principal cur-
vatures of multiplicity r > 1 and n − r > 1 it easy proved that f(Mn) =
Src1 × Sn−rc2

.

c) The theorems 1.2, 1.3 and 1.4 of Guoxin Wei [W] are consequences of
Theorem 1.3(a). In fact, the condition (1.1) of [W] implies that the Gauss
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map of f is a hypersurface with nonnegative sectional curvature and two
distinct principal curvatures. So, Theorem 1.2 of [W] follows from Theorem
1.3(a). Similarly, the condition (1.2) of [W] and the condition of Theorem
1.4 of [W] implies that Mn has nonnegative Ricci curvature.

d) Theorem 1.3 of Q. Wang and C. Xia [WX] and the Theorem 1.4 of G.
Wei and Y. Jin Suh [SW] are consequences from Theorem 1.3(a). In fact, if
f : Mn −→ Sn+1 has only two principal curvatures λ and µ of multiplicty 1
and n−1 such that λµ ≤ −1 then the Gauss map of f is a hypersurface with
nonnegative sectional curvature and two distinct principal curvatures. So,
Theorem 1.3 of [WX] and Theorem 1.4 of [SW] follow from Theorem 1.3(a).

e) Theorem 1.1 of Q. Wang and C. Xia [WX1] follows from Theorem 1.3
(c). In fact, the condition (1.1) of [WX1] implies that Mn has nonnegative
Ricci curvature.

We could improve some previous results if will consider hypersurfaces of
spheres with nonnegative isotropic curvature (see [MM]).

Theorem 1.6 - Let f : Mn −→ Sn+1, n ≥ 4, be a compact oriented hy-
persurface with nonnegative isotropic curvature. Then we have

a) If Mn is reducible then f(Mn) = Src1 × Sn−rc2
.

b) If Mn is irreducible then universal covering M̃n is homeomorphic to Sn
or Mn has infinite fundamental group and the Betti numbers of Mn are
bi(M

n,Z) = 0, for i = 2, ...., n− 2.

c) If f has only two principal curvatures of multiplicity r > 1 and n− r > 1
then f(Mn) = Src1 × Sn−rc2

.

Proof of Theorem 1.1-

If Mn is compact and has sectional curvature K ≥ 0, the Theorem 1.1 is
essentially the theorem B of [C]. Consider now Mn complete such 0 6∈ Λ∩Λ
and the condition (*) holds. Then the Gauss map N : Mn −→ Sn+1 admits
a complete metric (see [S]). Moreover, N is hypersurface with principal cur-
vatures 1/λi, i=1,...n, where the λi are the principal curvatures of f . Let
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i 6= j and x ∈Mn. Then we have only the possibilities :

i) λi(x) > 0 and λj(x) > 0,

ii) λi(x) < 0 and λj(x) < 0,

iii) λi(x) < 0 and λj(x) > 0.

So, by the condition (*) we have that 1
λi(x)λj(x)

+ 1 ≥ 0 an this proof that

N has nonnegative sectional curvature. In this case, Theorem 1.1 reduces to
previous case.

Proof of Theorem 1.2-

If Mn is compact and has infinite fundamental group, then the Theorem
1.2 follows from Theorem 1 of [BBCL]. Suppose now that Mn is complete
non compact with nonnegative Ricci curvature. By the splitting theorem
of Cheeger-Gromoll, Mn = R × Mn−1

1 . So, Mn is reducible and by the
Lemma 1.2 of [C] we have that f has two principal curvatures λ and µ of
multiplicity r and n − r such that λµ = −1. Let A the Weingarten op-
erator of f and consider the distributions Dλ = {X : AX = λX} and
Dµ = {X : AX = µX}. Suppose that r= dim Dλ > 1 and n − r = dim
Dµ > 1. Since that λµ = −1, by Codazzi equation we have that λ and µ are
constants and f(Mn) = Src1 × Sn−rc2

, which contradicts that Mn = R×Mn−1
1 .

So, r= dim Dλ = 1 and n− 1 = dim Dµ > 1. Using the condition λµ = −1
and the Codazzi equation, we have that < ∇X

X , Y >= 0, for X ∈ Dλ and
Y ∈ Dµ and this proves that the orthogonal distribution D⊥µ = Dλ is totally
geodesic. Since that Mn has nonnegative Ricci curvature, then it follows
from Corollary 2 of [BW] that the distribution Dµ is totally geodesic. Again,
using the Codazzi equation, we have that X(µ) = 0 for all X ∈ Dλ, λ and µ
are constants and so f(Mn) = R× Sn−1

c2
.

Proof of Theorem 1.3

a) Let Mn compact with K ≥ 0. Since that Mn is compact, by the Theorem
of local classification (see Introduction) we deduce that Mn is difeomorphic
to Sr × Sn−r. Using the theorem 1.1, we have that f(Mn) = Sr × Sn−r.
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b) Let Mn compact such that ∀x ∈ Mn, exist a two-plane P ⊂ TxM with
K(P ) ≤ 0. Let x ∈ Mn, λ and µ the principal curvatures of f such that
λ(x) = λ and µ(x) = µ, where λ and µ has multiplicity r and n − r. The
principal sectional curvatures (in x) are λ2 + 1, λµ + 1 > 0 and µ2 + 1 > 0.
If λµ+ 1 > 0, then Mn has positive sectional curvature in x (contradiction).
So, λµ + 1 ≤ 0 and holds the condition (*). Moreover λ 6= 0, µ 6= 0 and
λ 6= µ. Then the Gauss map N : Mn −→ Sn+1 is compact and has nonnega-
tive sectional curvature. By the same arguments of proof of (a) we have that
f(Mn) = Sr × Sn−r.

c) Let Mn compact with Ric ≥ 0 such that f has two principal curva-
tures of multiplicity r and n-r. Is easy see that Mn has nonnegative sectional
curvature. Using (a) we have that f(Mn) = S1 × Sn−1.

d) Let Mn complete with Ric ≥ 0. Consider λ and µ principal curvatures of
f , of multiplicity r and n−r, respectively. The principal Ricci curvatures are

(λ2 + 1)(r − 1) + (λµ+ 1)(n− r) ≥ 0 and

(µ2 + 1)(n− r − 1) + (λµ+ 1)r ≥ 0.

Since that ∀x ∈Mn ∃v, | v |= 1 with Ric(v) = 0, then

(λ2 + 1)(r − 1) + (λµ+ 1)(n− r) = 0 [1.1]

or

(µ2 + 1)(n− r − 1) + (λµ+ 1)r = 0 [1.2].

Let r > 1 and (n − r) > 1. Note that λ 6= 0, µ 6= 0 and λ 6= µ in Mn

and consider the sets

M1= int {x ∈Mn | [1.1]holds} and M2= int {x ∈Mn | [1.2]holds}.

Let A the Weingarten operator of f , X ∈ Dλ = {X ∈ TM | AX = λX}
and Y ∈ Dµ = {Y ∈ TM | AY = µY }. Note that X(λ) = 0, Y (µ) = 0.
Moreover, follows from [1.1] and [1.2] that X(µ) = Y (λ) = 0 in M1 ∪M2.
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Since that Mn = M1 ∪M2 ∪M3, where int(M3) = Ø, by continuity we have
that λ and µ are constants in Mn and in this case, f(Mn) = Src1 × Sn−rc2

,
where r > 1 and n − r > 1, which contradicts the fact of that Ric(v) = 0.
So, r = 1 or n−r = 1 and 1+λµ = 0. Using the same arguments of the proof
of Theorem 1.2 we deduce that f(Mn) = Sc1 × Sn−1

c2
or f(Mn) = R× Sn−1

c2
.

e) Assumes that f has two principal curvatures λ and µ of multiplicities 1 and
n− 1 and has constant mean curvature. The proof in the general case where
f has constant mth mean curvature Hm is similar. Let Mn with Ric ≥ 0 such
that λ + (n − 1) = nH is constant. Using a similar argument of the proof
of Theorem 1.3(b), we obtain that f(Mn) = Sc1×Sn−1

c2
or f(Mn) = R×Sn−1

c2
.

Proof of Corollary 1.4 - Assumes that Mn has scalar curvature τ ≤ 0.
Then ∀x ∈ Mn exists a two plane P ⊂ TxM such that K(P ) ≤ 0 and by
Theorem 1.3(b), f(Mn) = Src1 × Sn−rc2

which has Mn has constant scalar cur-
vature τ > 0 (contradiction).

Proof of Theorem 1.6-

a) Let Mn reducible. By Lemma 1.2 of [C] f has two principal curvatures
λ and µ such that λµ = −1. As in the proof of Theorem 1.2 we can deduce
that f(Mn) = Sr × Sn−r.

b) Let Mn irreducible. By [DN], we have that the Betti numbers of Mn

are bi(M
n,Z) = 0 for 2 ≤ n ≤ n− 2. Using Theorem 1.1 of [H], we have the

possibilities

b1) M
n is homeomorphic to CP n. Since that b2(CPn,Z) = 1, this case

can’t occur.

b2) M̃
n is a compact irreducible symmetric space. In this case, follows from

Proposition 4.2 of [DMN] that M̃ = Sc.

b3) M
n admits a metric with positive isotropic curvature. Then Mn has

finite fundamental group and follows from [MM] that M̃n is homeomorphic
to Sn or Mn has infinite fundamental group.

c) Assumes that f has two principal curvatures with multiplicity r > 1
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and n − r > 1. Since that Mn has nonnegative isotropic curvature is
easy see that Mn has nonnegative sectional curvature. By Theorem 1.3(a)
f(Mn) = Src1 × Sn−rc2

.
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