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Abstract. Since the seminal work of Sinai one studies chaotic properties of
planar billiards tables. Among them is the study of decay of correlations for
these tables. There are examples in the literature of tables with exponential
and even polynomial decay.

However, until now nothing is known about mixing properties for billiard
tables with non-compact cusps. There is no consensual definition of mixing for
systems with infinite invariant measure. In this paper we study geometric and
ergodic properties of billiard tables with a non-compact cusp. The goal of this
text is, using the definition of mixing proposed by Krengel and Sucheston for
systems with invariant infinite measure, to show that the billiard whose table is
constituted by the x-axis and and the portion in the plane below the graph of
f(x) = 1

x+1
is mixing and the speed of mixing is polynomial.

1. Introduction

The planar billiard is the dynamical system defined by the free motion of a
particle in the interior of a domain D ⊂ IR2 (usually called table) subjected to
elastic collisions to the boundary of D, that is, angle of incidence equals angle of
reflexion. In a seminal work, Sinai [22] proved that the billiard map of a system in
a two-dimensional torus with finitely many convex obstacles is a K-automorphism.

For billiards with non-compact cusps, that generate a dynamical system with an
infinite invariant measure, in [15] Lenci proved an extension of the results of Katok
and Strelcyn [11] for the infinite measure case and, as an application, he showed
that certain tables with non-compact cusps have hyperbolic structure, that is, ex-
istence of absolutely continuous local stable and unstable manifolds. Furthermore,
adapting arguments contained in [17], Lenci proved that these billiards maps are
ergodic.

About the finite measure case, in [2], Bunimovich and Sinai proved a “stretched”
exponential decay of correlations for dispersing billiards. Young [23] showed that
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the decay of correlations is actually exponential. This later result was extended
by Chernov [3] for billiards with positive-angle corners.

In [18], Markarian, based on [24], showed that billiards in the Bunimovich sta-
dium has polynomial decay of correlations. More recently, Chernov and Markarian
[6] proved that semi-dispersing billiard tables with compact cusps also have poly-
nomial decay of correlations. Improved estimates for correlations in different types
of billiard tables were also proved by Chernov and Zhang [7].

We are interested in tables of the form D = {(x, y) ∈ IR2 : x ≥ 0, 0 ≤ y ≤ f(x)},
where f : IR+

0 → IR+ is a three times differentiable bounded convex function,
satisfying the hypotheses (H1) to (H5) listed in Section 2.

Theorem A. The billiard map defined in a table D with a non-compact cusp is
an infinite K-automorphism.

Following Krengel and Sucheston [13], we say that an endomorphism F on a
σ-finite infinite measure space (X,B, µ) is F-mixing if for all measurable set A
with µ(A) <∞,

µ(FnA ∩ A) → 0 as n→ ∞.

As it was commented before, there is no consensual definition of mixing for
systems with infinite measure. A discussion on different definitions of mixing for
systems with infinite measure was recently done by Lenci [16].

Parry [19] showed that “an infinite K-automorphism has countable Lebesgue
spectrum” and in [13], Krengel and Sucheston showed that “if an endomorphism
has countable Lebesgue spectrum then this endomorphism is F-mixing”. Therefore
we get

Corollary 1.1. The billiard map defined in a table D with a non-compact cusp is
F-mixing.

For a conservative endomorphism F on a σ-finite measure space (X,B, µ), we
define its entropy [12] by

h(F) = sup{h(FE, µE) | E ⊂ X, 0 < µ(E) <∞}.

In [12, p. 172], Krengel showed that “every conservative K-automorphism on a
σ-finite measure space has positive entropy”. Hence

Corollary 1.2. The entropy of the billiard map defined in a table D with a non-
compact cusp is positive.

Furthermore we can study the speed of convergence to zero in this definition of
F-mixing. We say that an endomorphism F is polynomially F-mixing if

µ(F−nA ∩ A) ≥ C
1

nα
,

for some “good” (e.g., with piecewise differentiable boundary) set A with 0 <
µ(A) < ∞ and some α > 0. The constant C depends on A but the exponent α
depends only on F .
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Using f(x) = (x+ 1)−1 in the definition of the table D we show

Theorem B. The billiard map defined in a table D with a non-compact cusp is
polynomially F-mixing.

2. Definition of the dynamical system

As mentioned in the previous section, we are interested in tables of the form
D = {(x, y) ∈ IR2 : x ≥ 0, 0 ≤ y ≤ f(x)}, where f : IR+

0 → IR+ is a three times
differentiable bounded convex function.

U
D

L

V

Figure 1. Introducing D, U , L e V .

We denote by U the dispersing part of the table D and by L the leftmost vertical
wall in D. The angle in the vertex V = (0, f(0)) is π/2 + arctan f ′(0+) and it can
be zero. So the billiard table might have a compact cusp besides the non-compact
one on x = +∞.

We present two other tables, that will be used in the definitions below:

D2 = {(x, y) ∈ IR+
0 × IR : |y| ≤ f(x)},

D4 = {(x, y) ∈ IR× IR : |y| ≤ f(|x|)}.

For f, g : IR+
0 → IR+ we use the following notations: f(x) << g(x) indicates

that there exists a constant C such that f(x) ≤ Cg(x), as x → ∞, analogously

for the symbol >> and we denote by f = o(g) if f(x)
g(x)

tends to zero, as x → ∞.

Moreover, we use the same symbols when x → 0, if there is no ambiguity. Also,
we indicate by A ≍ B if there exists a constant C > 0 such that C−1 < A/B < C
and we write A = O(B) if there exists a constant C > 0 such that |A|/B < C.

Define xt = xt(x), for each x on D2, implicitly by

f(x) + f(xt)

x− xt

= −f ′(xt).

One can see that xt is the x-coordinate of the tangent point on U .
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Figure 2. The point xt.

In [15], Lenci studied tables with f : IR+
0 → IR+ satisfying the following assump-

tions

(H1) f ′′(x) → 0 as x→ +∞;
(H2) |f ′(xt)| << |f ′(x)|;

(H3)
f(x)f ′′(x)

(f ′(x))2
>> 1;

(H4)
|f ′′′(x)|

f ′′(x)
<< 1;

(H5) |f ′(x)| >> (f(x))θ, for some θ > 0.

It is not difficult to see that f(x) =
1

x+ 1
satisfies the conditions above.

Following [15], choosing as cross-section the rebounds against the dispersing
part U . we parametrize these line elements as z = (r, ϕ), r ∈ (−∞, 0] is the arc
length variable along U (with r = 0 for the vertex V ) and ϕ ∈ [−π/2, π/2] is the
angle between the velocity vector and the normal at the point of collision, as in
Figure 3. We define the manifold M = (−∞, 0)× (−π/2, π/2) and the return map
T defined on M , preserving the measure dµ = cosϕdrdϕ.

−π/2 π/2

ϕ = 0

r

Figure 3. the choice of orientation for r and ϕ
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We do not define T on those points that hit tangentially U or that would end
up in the vertex V . That is, we exclude T−1∂M . These points make up the
singularity set of T , denoted by S. This set consists of two lines (see [15, p.138])
S+ = S1+ ∪ S2+ (as shown in Figure 4). The curve S1+ corresponds to tangencies
on ∂D4 in the third quadrant (on D, tangencies on U , after a rebound on the
vertical side); this curve is as regular as f . As for S2+, its first part corresponds
to line elements pointing to V (on D, after a rebound on the horizontal side); as
r decreases, these become tangencies on ∂D. the boundary between these two
behaviors is the only non-regular point of S2+.

Analogously we define S− = S1− ∪ S2−, where Si−, i = 1, 2 are the singularity
lines of T−1, obtained from Si+ using the time-reversal operator (r, ϕ) 7→ (r,−ϕ).
We denote by S±

n =
⋃n

i=0 T
∓iS± e S±

∞ = limn→∞ S±
n .

0r
−π/2

M

2 +

S

S1 +

ϕ

π/2

Figure 4. Singularity lines.

On TM we define the cone bundles [15, Section 4],

Cu(z) = {(dr, dϕ) ∈ TzM : drdϕ ≥ 0}
Cs(z) = {(dr, dϕ) ∈ TzM : drdϕ ≤ 0},

which will be denoted unstable and stable cones, respectively. They are strictly
invariant under the action of T .

Remark 2.1. We note that our choice of parametrization is different from the one
in [15]. This leads to a different choice of the cone bundles. However, it does not
alter the results obtained in that paper.

Let L be the leftmost wall on D and M4 the phase space defined by the vectors
based on L. Since L is a global cross-section we can define a return map T4 and
let µM4

be the measure µ induced on M4. Denote by M3 the region of M located
above S2+. From the definition of S2+, the line elements of M3 are precisely the
ones that,on D2, hits y-axis. We call T3 the return map to M3 and one can see
that (M3, T3, µM3

) is isomorphic (with respect to µ) to (M4, T4, µM4
).
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Lenci [15] showed that the billiard map T has a hyperbolic structure, i.e., ex-
istence of local stable and unstable manifolds almost everywhere and these local
foliations are absolutely continuous with respect to the invariant measure [15, The-
orem 6.2,Theorem 7.5] and adapting the formulation of Liverani and Wojtkowski
[17] to the infinite measure case, he proved a local ergodicity property [15, Theorem
8.5] and as consequences its global ergodicity [15, Theorem 8.5]. The definition
of ergodicity used in these two results is that the Birkhoff average are constant
almost everywhere for all integrable functions, a weaker definition than the usual
one, for systems with invariant finite measure. However Lenci also proved that
(M3, T3, µ) is ergodic [15, Proposition 8.11], which implies that the billiard map is
ergodic in the sense that invariant sets are measurably indecomposable.

Remark 2.2. It is not difficult to see that T n
3 is ergodic, for all positive integer

n. Indeed, it is just repeated the argument in the proof of [15, Proposition 8.11] .

Next we introduce auxiliary first return maps associated with the billiard system
we are considering. Recall that we already defined T4 : M4 →M4 that corresponds
for the bouncing at the vertical wall L and T : M → M corresponding to the
bouncing at the dispersing part U of D. We point out that a priori, the bouncing
at the dispersing part U contains the most of the chaotic behavior, but this gives
a system with an infinity measure, one of the major difficulties in analyzing this
billiard system. To bypass this difficulty, we consider as well the bouncing at the
vertical wall, that gives a finite measure system. Thus we set M5 = M ∪M4, that
consider the bouncing at the dispersing part and the bouncing at the vertical wall
and denote T5 : M5 → M5 the return map to M5. Note that by construction M5

comes from bouncing at a global cross section to the billiard, constituted by the
union of U and L, the dispersing and the vertical wall respectively.

Thus T5 is a billiard map that preserves the infinite measure dµ = cosϕdrdϕ
defined at M5. When no ambiguity exists, we will use the same notation for the
(infinite) measure invariant by the map T : M →M .

As in [15, Corollary 3.3] we conclude that T5 is conservative. Moreover, since
T4 : M4 →M4 is ergodic and it is induced by T5, so is T5.

The map T5 describes all the dynamics of our system and this is the map we
shall deal with from now on.

3. K-automorphisms and proof of Theorem A

Definition 3.1. Let (X,B, µ) be an infinite σ-finite measure space and F : X → X
an automorphism. We say that F is an infinite K-automorphism if there exists a
sub-σ-algebra K ⊂ B such that

(i) FK ⊃ K;
(ii)

∨∞
n=0 F

nK = B mod µ;
(iii)

⋂∞
n=0 F

−nK = N = {∅, X} mod µ.
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ϕ

r
1

−π/2

π/2

M M4

5M

0

Figure 5. The phase space M5. The line r = 0, corresponds to
the vertex V and r = 1 corresponds to the vertex in the point (0, 0)
of D.

The next proposition is an extension for K-automorphisms of a similar result
for ergodic maps in spaces with infinite measure. See [1, p. 42].

Proposition 3.2. Let F be an ergodic measure preserving map of the σ-finite
measure space (X,B, µ) and suppose there exists E ∈ B such that µ(E) > 0 and
⋃∞

n=0 F
−nE = X mod µ. If FE is a (finite or infinite) K-automorphism then F

is a (finite or infinite) K-automorphism.

Proof. Since FE is a K-automorphism, there exists KE, sub-σ-algebra of BE =
B ∩ E such that

(1) FEKE ⊃ KE;
(2)

∨∞
n=0 F

n
EKE = BE mod µE;

(3)
⋂∞

n=0 F
−n
E KE = NE = {∅, E = X ∩ E} mod µE.

Let K =
∨0

i=−∞ F iKE. Then

(i) FK =
∨0

i=−∞ F i+1KE =
∨1

i=−∞ F iKE ⊃
∨0

i=−∞F iKE = K.

(ii)
∨∞

n=0 F
nK =

∨∞
n=0 F

n
∨0

i=−∞F iKE =
∨∞

i=−∞ F iKE = B mod µ; since,

by condition (2), BE ⊂
∞
∨

i=−∞

F iKE, and given A ∈ B,

A = A ∩X = A ∩
∞
⋃

i=0

F−iE =
∞
⋃

i=0

(A ∩ F−iE) =
∞
⋃

i=0

F−i(F iA ∩ E).

Because F iA∩E ∈ BE, it follows that F−i(F iA∩E) ∈ F−iBE, soA ∈
∨∞

i=−∞ F iKE.
Thus B ⊂

∨∞
i=−∞ F iKE.

(iii) We must show that
⋂∞

n=0 F
−nK =

⋂∞
n=0 F

−n
∨0

i=−∞ F iKE = N mod µ.
To do this, we just need to show that

⋂∞
n=0 F

−nK ⊂ N mod µ.
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Let A ∈
∞
⋂

n=0

F−n

0
∨

i=−∞

F iKE and suppose that µ(A) > 0. Furthermore, we may

suppose that µ(A ∩ E) > 0 because, if not, we take Ac as the set.
Then A ∈

⋂∞
n=0 F

−n
∨0

i=−∞F iKE ⇒ A∩E ∈
⋂∞

n=0 F
−n
∨0

i=−∞ F iKE∩E which

is equal to
⋂∞

n=0 F
−n
E

∨0
i=−∞F i

EKE, by the definition of FE.

By condition (1),
∨0

i=−∞F i
EKE = KE , so

⋂∞
n=0 F

−n
E

∨0
i=−∞ F i

EKE =
⋂∞

n=0 F
−n
E KE =

NE mod µE, by condition (3). Then µE((A ∩ E) △ E) = 0 and µE(Ac ∩ E) = 0.
Thus µ(Ac ∩ E) = 0.

Also, µE(Fk
E(Ac∩E)) = µE(Fk

EA
c∩E) = 0, for all k ≥ 0. Then µE(F jAc∩E) =

0, for all j ≥ 0, because µE(F jAc ∩ E) ≤
∑j

k=1 µE(Fk
EA

c ∩ E) = 0. Since
Ac = Ac ∩X = Ac ∩

⋃∞
j=0 F

−jE =
⋃∞

j=0 F
−j(F jAc ∩ E), we get µ(Ac) = 0 hence

⋂∞
n=0 F

−nK ⊂ N mod µ. �

We also need the following theorem due to Pesin and Katok and Strelcyn:

Theorem 3.3. (Pesin [20, Theorem 7.2] , Katok and Strelcyn [11, Theorem 13.1])
Let V be a finite union of compact Riemannian manifolds V1,V2 . . .Vs (possibly with
boundaries and corners), all of them with dimension d ≥ 2, glued along finitely
many C1 submanifolds of positive codimension and F a map on V preserving
a Borel probability measure µ, both satisfying the Katok and Strelcyn conditions
indicated in [11, Section 1.1] . Suppose that

Σ(F) = {x ∈ V : the Lyapunov exponents on V are non-zero}

has positive µ-measure. Then there exist sets Σi ⊂ Σ(F), i = 0, 1, 2, . . ., such that

(1) Σ(F) =
⋃

i≥0 Σi, Σi ∩ Σj = ∅ for i 6= j, i, j = 0, 1, 2, . . .;
(2) µ(Σ0) = 0, µ(Σi) > 0, for i > 0;
(3) for i > 0: F(Σi) = Σi, F|Σi is ergodic;
(4) for i > 0, there exists a splitting Σi =

⋃ni

j=1 Σj
i , ni ∈ Z

+ such that

(a) Σj1
i ∩ Σj2

i = ∅ for j1 6= j2;

(b) F(Σj
i ) = Σj+1

i para j = 1, 2, . . . , ni − 1, F(Σni

i ) = Σ1
i ;

(c) Fni|Σ1
i is a finite K-automorphism.

Returning to the billiard map case:

Lemma 3.4. Let M4 be the phase space associated to the rebounds in the vertical
wall. Then T4 is a finite K-automorphism.

Proof. We know that T n
4 is ergodic for all n ≥ 1. Also, the Lyapunov exponents

for T4 are non-zero. So we may apply Theorem 3.3. However, by the ergodicity of
T n

4 , all the decompositions are trivial and we get that T4 is a K-automorphism.
�

From Proposition 3.2, it follows that (M5, T5, µ) an infinite K-system, concluding
the proof of Theorem A.
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4. Geometric conditions

This section and the next one are inspired in the analysis for trajectories in a
finite cusp studied by Chernov and Markarian [6].

We are in the same setting as in the previous sections. Fix N0 >> 1. Let us
study the behavior of a trajectory that leaving L (with coordinates (r, ϕ) in M4),
enters in the cusp, and comes back after N > N0 rebounds. In order to do this, we
shall adopt a new system of coordinates from now on. Let xn ∈ [0,∞), 0 ≤ n ≤ N ,
be the x-coordinate associated to the n-th rebound on U , (where x0 = 0, leaving
L),and γn ∈ [0, π/2], 0 ≤ n ≤ N , the positive angle between the trajectory and
the tangent at the point of collision with coordinate xn (γ0 = π/2 − |ϕ|).

Define
xN2

:= max {xn : n = 1, 2, . . . , N},

that is, the x-coordinate of the most interior point inside the cusp.
If n ≤ N2 − 1 then

(4.1) γn+1 = γn + tan−1 |f ′(xn)| + tan−1 |f ′(xn+1)|

(4.2) xn+1 = xn +
f(xn) + f(xn+1)

tan(γn + tan−1 |f ′(xn)|)
.

If n ≥ N2 then

γn = γn+1 + tan−1 |f ′(xn)| + tan−1 |f ′(xn+1)|

xn = xn+1 +
f(xn) + f(xn+1)

tan(γn+1 + tan−1 |f ′(xn+1)|)
.

Lemma 4.1. Using the notation above, |N2 −N/2| = O(1).

Proof. Suppose that, without lost of generality, xN2+1 ≥ xN2−1. Then

γN2
= γN2−1 + tan−1 |f ′(xN2−1)| + tan−1 |f ′(xN2

)|.

On the other hand,

γN2
= γN2+1 + tan−1 |f ′(xN2+1)| + tan−1 |f ′(xN2

)|.

So,

γN2−1 + tan−1 |f ′(xN2−1)| = γN2+1 + tan−1 |f ′(xN2+1)|

≤ γN2+1 + tan−1 |f ′(xN2−1)|,

That is,
γN2−1 ≤ γN2+1.

Now, we must show that xN2−i ≤ xN2+i and γN2−i ≤ γN2+i, for all i = 1, 2, . . .
while the collisions remain inside the cusp. Indeed, suppose that for i it is true
and we shall show it for i+ 1. Then

xN2−i = xN2−(i+1) +
f(xN2−i) + f(xN2−(i+1))

tan(γN2−(i+1) + tan−1 |f ′(xN2−(i+1))|)
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xN2+i = xN2+(i+1) +
f(xN2+i) + f(xN2+(i+1))

tan(γN2+(i+1) + tan−1 |f ′(xN2+(i+1))|)

γN2−i = γN2−(i+1) + tan−1 |f ′(xN2−(i+1))| + tan−1 |f ′(xN2−i)|

γN2+i = γN2+(i+1) + tan−1 |f ′(xN2+(i+1))| + tan−1 |f ′(xN2+i)|.

By the induction hypothesis, the following holds

γN2−(i+1) + tan−1 |f ′(xN2−(i+1))| + tan−1 |f ′(xN2−i)|

≤ γN2+(i+1) + tan−1 |f ′(xN2+(i+1))| + tan−1 |f ′(xN2+i)|

≤ γN2+(i+1) + tan−1 |f ′(xN2+(i+1))| + tan−1 |f ′(xN2−i)|.

So

(4.3) γN2−(i+1) + tan−1 |f ′(xN2−(i+1))| ≤ γN2+(i+1) + tan−1 |f ′(xN2+(i+1))|.

Using the hypothesis of induction and by (4.3), we get

xN2−(i+1) +
f(xN2−i) + f(xN2−(i+1))

tan(γN2−(i+1) + tan−1 |f ′(xN2−(i+1))|)

≤ xN2+(i+1) +
f(xN2+i) + f(xN2+(i+1))

tan(γN2+(i+1) + tan−1 |f ′(xN2+(i+1))|)

≤ xN2+(i+1) +
f(xN2+i) + f(xN2+(i+1))

tan(γN2−(i+1) + tan−1 |f ′(xN2−(i+1))|)
.

Thus
xN2−(i+1) + f(xN2−(i+1)) ≤ xN2+(i+1) + f(xN2+(i+1)).

Since xi ≥ 1, for all i = 1, 2, . . . , N ,

xN2−(i+1) ≤ xN2+(i+1) e γN2−(i+1) ≤ γN2+(i+1),

as we wish to demonstrate. Thus |N2 −N/2| = O(1). �

Let us now split the trajectories going through the cusp in three regions. For
this, we choose γ̄ sufficiently small, that the exact value is not important, e.g.
γ̄ = 10−10. This choice allows us to make estimates in three different regions,
defining

N1 = max{n < N2; γn ≤ γ̄}

N3 = min{n > N2; γn ≤ γ̄}.

We call the series of rebounds between 1 and N1 the entering period, between N1

and N3 the turning period and between N3 and N the exiting period. Furthermore,
consider x1 large enough, e.g. x1 > 106.

From now on, we use the table D defined by f(x) = (x+ 1)−1. Until the end of
this section, we use the following change of variables:

tn = xn + 1, ∀1 ≤ n ≤ N.
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Lemma 4.2. We have

N1 ≍ N2 −N1 ≍ N3 −N2 ≍ N −N3 ≍ N,

so all segments have size of order N . Moreover

(4.4) x1 ≍ N
1

6 e xN2
≍ N

1

2

and

xn ≍ n
1

3N
1

6 ∀n = 2, . . . , N1.

Also

(4.5) γ1 = O(N−1/3) e γ2 ≍ N−1/3

and

γn ≍ n
1

3N− 1

3 ∀n = 2, . . . , N1.

Proof. For each n = 1, 2, . . . , N1, we define ωn =
γn

1
|f ′(tn)|

. Using the definition of

f , we obtain ωn = γnt
2
n. Also we define un =

tn
tn+1

. Multiplying (4.1) by t2n+1 and

expanding tan−1 in its Taylor’s series we get

(4.6) ωn+1 =
ωn + 1

u2
n

+ 1 +O(x−4
n ).

From (4.1), we get

(4.7) γ1 +
1

t21
+

2

t22
+ . . .+

2

t2n−1

+
1

t2n
+O

(

n
∑

i=1

t−6
i

)

= γn ≤
π

2
.

Thus

(4.8)
n
∑

i=1

t−2
i = O(1).

From equation (4.6),we obtain

(4.9) ωn > 2n− 2.

From (4.2) and using the fact that tanx > x, we have

(4.10)
1

un

< 1 +
2

ωn + 1
(1 +O(t−6

n )).

Replacing (4.10) in (4.6):

ωn+1 < 1 + (ωn + 1)

(

1 +
2

ωn + 1
(1 +O(t−6

n ))

)2

+O(t−4
n )

= 6 + ωn +
4

ωn + 1
+O(t−4

n ) < 6 + ωn +
4

2n− 1
+O(t−4

n ).
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So

(4.11) ωn < 6n+ 2 lnn+O(1).

From (4.9) and (4.11) we conclude that ωn = γnt
2
n ≍ n. Since γN2

≈ π/2, it follows
that x2

N2
≍ N2 ≍ N , by Lemma 4.1.

For n = 1, 2, . . . , N1,

tn+1 = tn +

1

tn
+

1

tn+1

γn +
1

t2n
+O

(

(

γn +
1

t2n

)3
) = tn +

tn +
t2n
tn+1

ωn + 1 + t2nO

(

(

γn +
1

t2n

)3
) .

Dividing by tn we obtain

1

un

= 1 +
1 + un

wn + 1













1

1 +
t2n

γnt2n + 1
O

(

(

γn +
1

t2n

)3
)













.

Since the choices of γn < 10−10 and x1 > 106 imply that O

(

(

γn +
1

t2n

)3
)

= O(γ3
n)

and because
t2n

γnt2n + 1
O
(

γ3
n

)

= O
(

γ2
n

)

, we obtain

1

un

= 1 +
1 + un

wn + 1

(

1

1 +O(γ2
n)

)

= 1 +
1 + un

wn + 1
(1 +O(γ2

n)),

since O(γ2
n) is sufficiently small. From (4.10) we get

1

un

> 1 +

(

1

ωn + 1
+

1

ωn + 3 +O(t−6
n )

)

(1 +O(γ2
n)) > 1 +

2

ωn + 3
+O

(

γ2
n

n

)

> 1 +
2

6n+ 2 lnn+O(1)
+O

(

γ2
n

n

)

> exp

(

2

6n+ 2 lnn+O(1)
−

4

(6n+ 2 lnn+O(1))2
+O

(

γ2
n

n

))

,

in the last inequality we use the fact that 1 + x > exp(x− x2) for small x.
Multiplying from i = 1 to n− 1, we get

n−1
∏

i=1

u−1
i > exp

(

∑ 2

6i+ 2 ln i+O(1)
−
∑ 4

(6i+ 2 ln i+O(1))2
+O

(

∑ γ2
i

i

))

> exp(lnn1/3 − C) = C ′n1/3,
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because
n−1
∑

i=1

γ2
i

i
≤ 12

n−1
∑

i=1

γ2
i

ωi

= 12
n−1
∑

i=1

γi

x2
i

= O(1),

since γi < π/2 and
∑n

i=1 t
−2
i = O(1), as obtained in (4.8). We obtain

(4.12)
tn
t1
> C ′n1/3.

However

ωn+1 = 1 +
ωn + 1

u2
n

+O(t−4
n )

> 1 + (ωn + 1)

(

1 +
2

ωn + 3
+O

(

γ2
n

n

))2

+O(t−4
n )

> 2 + ωn + 4

(

1 −
2

ωn + 3

)

+ 4

(

1

ωn + 3
−

2

(ωn + 3)2

)

+O(γ2
n) +O(t−4

n )

> ωn + 6 −
4

2n+ 1
−

4

(2n+ 1)2
+O(γ2

n) +O(t−4
n ).

This implies that
ωn > 6n− 2 lnn+O(1).

Thus

1

u2
n

=
ωn+1 − 1 +O(t−4

n )

ωn + 1
<
ωn + 1 + 4 +

4

ωn + 1
+O(t−4

n )

ωn + 1

= 1 +
4

ωn + 1
+

4

(ωn + 1)2
+O

(

t−4
n

n

)

< 1 +
4

6n− 2 lnn+O(1)
+

4

(6n− 2 lnn+O(1))2
+O

(

t−4
n

n

)

.

Multiplying from i = 1 to n− 1,

n−1
∏

i=1

u−2
i < exp

(

∑ 4

6i− 2 ln i+O(1)
+
∑ 4

(6i− 2 ln i+O(1))2
+O

(

∑ x−4
i

i

))

< exp(lnn2/3 + C) = C ′n2/3.

And we obtain

(4.13)

(

tn
t1

)2

< C ′n2/3.

From (4.12) and (4.13) we get

tn
t1

≍ n1/3.
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So

n ≍ γnt
2
n ≍ γnn

2/3t21.

However γN1
≈ γ̄ = constant, then

N1 ≍ γN1
N

2/3
1 x2

1 ⇒ x1 ≍ N
1/6
1 .

And thus

tn ≍ n1/3N
1/6
1 and γn ≍ n1/3N

−1/3
1 ,

for all n = 2, . . . , N1.
To show that N1 ≍ N , just notice that at the turning period, i.e., N1 ≤ n ≤ N2,

the angle γn increases from γ̄ to approximately π/2 and

1

t2n
=
γn

ωn

>
γ̄

6n+ 2 lnn+ C
.

It follows from (4.7) and (4.8) that

N2
∑

n=N1

(γn − γn−1) ≥
N2
∑

n=N1

C ′

6n+ 2 lnn+ C
≥ C ′′ ln

N2

N1

,

for some constants C ′, C ′′ > 0. This implies that N1 < N2 < C ′′′N1, for some
C ′′′ > 0. �

In the proof of Lemma 4.2, we obtained the following

ωn + 1 = 6 + ωn +O

(

1

n
+ γ2

n + t−4
n

)

,

ωn = 6n+O(lnn),

1

un

= 1 +
1

3n
+O

(

lnn

n2
+
γ2

n

n
+
t−4
n

n

)

,

un = 1 −
1

3n
+O

(

lnn

n2
+
γ2

n

n
+
t−4
n

n

)

,

and we shall use the values from now on.
For 1 ≤ n ≤ N2, let τn be the time between two consecutive collisions in the

billiard table:

τn =
f(tn) + f(tn+1)

sin(γn + tan−1(|f ′(tn)))
.
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Then, using the values above,

τn =

1

tn
+

1

tn+1
(

γn +
1

t2n

)

+O

(

(

γn +
1

t2n

)3
) =

tn +
t2n
tn+1

ωn + 1 +O(t2nγ
3
n)

=
tn(1 + un)

ωn(1 + ω−1
n +O(γ2

n))
=
tn
ωn

2 +O(n−1)

1 +O(n−1) +O(γ2
n)

=
2tn
ωn

1

1 +O(n−1) +O(γ2
n)

1 +O(n−1)

=
2tn
ωn

(1 +O(n−1) +O(γ2
n))

≍ n−2/3N1/6,

for 1 ≤ n ≤ N2.
Furthermore, if we denote by Kn the curvature of the dispersing part of the

table at the point of collision (rn, ϕn), we have that, as w enter in the cusp (n =
1, 2, . . . , N2)

Kn =
f ′′(tn)

(1 + (f ′(tn))2)3/2
=

2

t3n
(

1 +

(

1

t2n

)2
)3/2

=

2

t3n
(

t4n + 1

t4n

)3/2
=

2

t3n
,

since x1 > 106.
We also have that

τnKn

sin γn

=
2tnω

−1
n (1 +O(n−1) +O(γ2

n))

γn +O(γ3
n)

2

t3n
=

4

t2n

(1 +O(1/n) +O(γ2
n))

ωnγn(1 +O(γ2
n))

=
4

t2n
(1 +O(1/n) +O(γ2

n))(1 +O(γ2
n)) =

4

ω2
n

(1 +O(n−1) +O(γ2
n))

=
4

(6n+O(lnn))2
(1 +O(n−1) +O(γ2

n))

=
4

36n2 +O(n lnn) +O((lnn)2)
(1 +O(n−1) +O(γ2

n))

=
4

36n2(1 +O(lnn/n) +O((lnn/n)2))
(1 +O(n−1) +O(γ2

n))

=
1

9n2

(

1 +O

(

lnn

n

))

(1 +O(n−1) +O(γ2
n))

=
1

9n2
+O

(

lnn

n3
+ +

γ2
n

n2

)

.(4.14)
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Moreover

τn+1

τn
=
f(tn+1) + f(tn+2)

f(tn) + f(tn+1)

sin(γn + tan−1(|f ′(tn)|))

sin(γn+1 + tan−1(|f ′(tn+1)|))
= F1F2.

To obtain F1, we notice that

F1 =

1

tn+1

+
1

tn+2

1

tn+1

+
1

tn

=

1

tn+1

(

1 +
tn+1

xn+2

)

1

xn

(

1 +
tn
tn+1

)

= un
(1 + un+1)

(1 + un)
.

This last one can be computed as

1 + un+1

1 + un

=

1 + 1 −
1

3(n+ 1)
+O

(

ln(n+ 1)

(n+ 1)2
+

γ2
n+1

n+ 1
+

t−4
n+1

n+ 1

)

1 + 1 −
1

3n
+O

(

lnn

n2
+
γ2

n

n
+
t−4
n

n

)

=

6(n+ 1) − 1 +O

(

ln(n+ 1)

n+ 1
+ γ2

n+1 + t−4
n+1

)

6n− 1 +O

(

lnn

n
+ γ2

n + t−4
n

)

3n

3(n+ 1)

=

(

1 −
1

6(n+ 1)
+O

(

lnn+ 1

n+ 12 +
γ2

n+1

n+ 1
+

t−4
n+1

n+ 1

))

×

×

(

1 +
1

6n
+O

(

lnn

n2
+
γ2

n

n
+
t−4
n

n

))

= 1 +
5

36n2

(

1 +O

(

1

n

))

+O

(

lnn

n2
+
γ2

n

n
+
t−4
n

n

)

= 1 +
5

36n2
+O

(

lnn

n2
+
γ2

n

n
+
t−4
n

n

)

.
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And to obtain F2,

F2 =

γn +
1

t2n
+O(γ3

n)

γn+1 +
1

t2n+1

+O(γ3
n+1)

=
t2n
t2n

t2n+1

t2n+1

γn +
1

t2n
+O(γ3

n)

γn+1 +
1

t2n+1

+O(γ3
n+1)

=
t2n+1

t2n

ωn + 1 +O(γ2
nωn)

ωn+1 + 1 +O(γ2
n+1ωn+1)

=
1

u2
n

ωn + 1 +O(γ2
nωn)

ωn+1 + 1 +O(γ2
n+1ωn+1)

=
1

u2
n

ωn + 1 +O(γ2
nωn)

ωn + 7 +O(γ2
n+1ωn+1 + n−1 + γ2

n + t−4
n )

=
1

u2
n

(

1 −
1

n
+

7

6n2
+O

(

lnn

n2
+
γ2

n

n
+
t−4
n

n

))

.

Hence

τn+1

τn
= un

(

1 +
5

36n2
+O

(

lnn

n2
+
γ2

n

n
+
t−4
n

n

))

×

×
1

u2
n

(

1 −
1

n
+

7

6n2
+O

(

lnn

n2
+
γ2

n

n
+
t−4
n

n

))

=
1

un

(

1 +
5

36n2
+O

(

lnn

n2
+
γ2

n

n
+
t−4
n

n

))

×

×

(

1 −
1

n
+

7

6n2
+O

(

lnn

n2
+
γ2

n

n
+
t−4
n

n

))

=

(

1 +
1

3n

)(

1 +
5

36n2

)(

1 −
1

n
+

7

6n2

)

+O

(

lnn

n2
+
γ2

n

n
+
t−4
n

n

)

= 1 −
2

3n
+O

(

lnn

n2
+
γ2

n

n
+
t−4
n

n

)

.(4.15)

Remark 4.3. Due to the reversibility property of the billiard map, all the formulas
obtained above hold for the exiting period as well. So

(4.16) xN ≍ N1/6 e γN = O(N−1/3).

During the exiting period we can use the countdown index m = N+1−n obtaining
asymptotic rates for m = N3 − 1, . . . , N1, as for example, xm ≍ m1/3N1/6, τm ≍
m−2/3N1/6, etc.

5. Hyperbolicity

We use in this section the p-norm, defined by

‖dx‖p = cosϕ|dr|,
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for vectors dx ∈ TxM of a point x = (r, ϕ). For billiard maps, the expansion rate
of unstable vectors (i.e., in an unstable cone) in the p-norm is given by

‖DxT
n+1(dx)‖p

‖dx‖p

=
n
∏

i=0

|1 + τiBi|

(see [5, p.58]). Here Bi denotes the curvature of a small arc transverse to the
wave front. For further details we suggest Chernov and Markarian’s book [4,
Chapter IV]. Moreover, for semi-dispersing billiards, unstable vectors are expanded
monotonically in the p-norm, and this is not necessarily true in the Euclidean norm
(see [5, Section 4.4]).

The values B+
i can be calculated inductively as

B+
n+1 =

2Kn+1

sin γn+1

+
B+

n

1 + τnB+
n

.

From the equations (4.5) and (4.16), we know that γ1 = O(N−1/3) and γN =
O(N−1/3), hence they can be arbitrarily close to zero, which implies that the
expansion rate would be extremely high. However B+

n+1 is an increasing function

of B+
n and

1

sin γn+1

. So if γn increases, B+
n decreases. In this way, we can obtain

an upper bound for the expansion rate taking lower bounds for γ1 and γN . Thus
we introduce the following assumption

(5.1) γ1 ≍ N−1/3 and γN ≍ N−1/3.

Let

EN = {x ∈M4 | R(x) = N + 1},

N > N0, where

R(x) = inf{n ≥ 1 : T n
5 x ∈M4},

i.e., R(x) − 1 indicates the amount of rebounds in the dispersing part before
returning to the vertical wall L. So, EN is the subset of M4 that return for the
first time to M4 after N + 1 iterations of T5.

The main goal of this section is to prove the following theorem

Theorem 5.1. For all x ∈ EN , satisfying γ1 ≍ N−1/3 e γN ≍ N−1/3,

‖DxT
N+1
5 (dx)‖p

‖dx‖p

≍ N.

Let us denote τiBi by λi. For n ≥ 1,

(5.2) λn+1 =
2τn+1Kn+1

sin γn+1

+
τn+1

τn
·

λn

1 + λn

.
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Lemma 5.2. We have that

λn ≍
1

n
, 1 ≤ n ≤ N1,

λn ≍
1

n
≍

1

N
, N1 ≤ n ≤ N3,

λn ≍
1

(N − n)
, N3 ≤ n < N.

Proof. For 1 ≤ n ≤ N1, λn+1 >
a

n2
+
(

1 − b
n

) λn

1 + λn

, for some a, b > 0. Suppose

that λn > c/n. Then

λn+1 >
a

n2
+

(

1 −
b

n

)

c/n

1 + c/n
=

a

n2
+

(

1 −
b

n

)(

c

n+ c

)

=
a

n2
+

c

n+ c
−

bc

(n+ c)n
=
a(n+ c) + cn2 − bcn

(n+ c)n2

=
c+ (a− bc+ ac/n) /n

n+ c
.

If c > 0 is small enough, the expression in parenthesis is positive and λn+1 >
c

n+ c
>

c

n+ 1
. Similarly λn+1 <

A

n2
+
(

1 − B
n

) λn

1 + λn

.

Supposing λn < C/n, we get λn+1 <
C + (A−BC + AC/n) /n

n+ C
.

If C > 0 is large enough, the expression in parenthesis is negative for N large

and λn+1 <
C

n+ C
<

C

n+ 1
, completing the induction.

For N1 ≤ n ≤ N3, λN1
≍

1

N
e τn ≍ n−2/3N1/6 ≍ N−1/2. So B+

N1
=
λN1

τN1

≍ N−1/2.

We have that

Kn+1 ≍ N−3/2 ⇒ ∃ a,A > 0 such that aN−3/2 ≤ Kn+1 ≤ AN−3/2,

τn ≍ N−1/2 ⇒ ∃ b, B > 0 such that bN−1/2 ≤ τn ≤ BN−1/2,

B+
N1

≍ N−1/2 ⇒ ∃ c, C > 0 such that cN−1/2 ≤ B+
N1

≤ CN−1/2.

Moreover

2 ≤
2

sin γn+1

≤
2

sin γ̄
=: G, ∀N1 ≤ n ≤ N3.

So

B+
N1+1 =

2KN1+1

sin γN1+1

+
B+

N1

1 + τN1
B+

N1

≤ GAN−3/2 + CN−1/2.

B+
N1+2 =

2KN1+2

sin γN1+2

+
B+

N1+1

1 + τN1+1B
+
N1+1

≤ GAN−3/2 +B+
N1+1

≤ 2GAN−3/2 + CN−1/2.
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Thus

B+
n =

2Kn

sin γn

+
B+

n−1

1 + τn−1B
+
n−1

≤ (n−N1)GAN
−3/2 + CN−1/2

≤ DNGAN−3/2 + CN−1/2 = (DGA+ C)N−1/2

= EN−1/2.

On the other hand

B+
N1+1 =

2KN1+1

sin γN1+1

+
B+

N1

1 + τN1
B+

N1

≥ 2aN−3/2 +
cN−1/2

1 +BEN−1
.

B+
N1+2 =

2KN1+2

sin γN1+2

+
B+

N1+1

1 + τN1+1B
+
N1+1

≥ 2aN−3/2 +
1

(1 +BEN−1)

(

2aN−3/2 +
cN−1/2

1 +BEN−1

)

= 2aN−3/2

(

1 +
1

(1 +BEN−1)

)

+
cN−1/2

(1 +BEN−1)2
.

B+
n =

2Kn

sin γn

+
B+

n−1

1 + τn−1B
+
n−1

≥ 2aN−3/2

(

n−N1−1
∑

i=0

1

(1 +BEN−1)i

)

+
cN−1/2

(1 +BEN−1)n−N1

.

There exist constants f > 0 and h > 0 such that
∑n−N1−1

i=0
1

(1+BEN−1)i ≥ fN and

also 1
(1+BEN−1)n−N1

≥ h, because
∑n−N1−1

i=0
1

(1+BEN−1)i ≥
∑n−N1−1

i=0
1

(1+BEN−1)N3−N1
≍

N , and 1
(1+BEN−1)n−N1

is a bounded sequence.

So

B+
n ≥ 2afN−1/2 + chN−1/2

= (2af + ch)N−1/2

= eN−1/2.

Thus B+
n ≍ N−1/2, and therefore λn = B+

n τn ≍ N−1/2N−1/2 = N−1.
For N3 ≤ n < N , using the reversibility property of the billiard map,

λm−1 =
2τm−1Km−1

sin γm−1

+
τm−1

τm
·

λm

1 + λm

,

for m = N + 1 − n. In particular,

a

m2
<

2τm−1Km−1

sin γm−1

<
A

M2
e 1 +

b

m
<
τm−1

τm
< 1 +

B

m
,

for some 0 < a < A <∞ and 0 < b < B <∞.
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Supposing λm > c/m,

λm−1 >
a

m2
+

(

1 +
b

m

)

c/m

1 + c/m

=
c+ [a+ bc− c− c2 + (ac− a− bc− ac/m)/m]/(m+ c)

m− 1

If c > 0 is small enough, the expression between brackets is positive, for m large,
and we obtain that λm−1 > c/(m− 1).

Supposing that λm < C/m,

λm−1 <
A

m2
+

(

1 +
B

m

)

C/m

1 + C/m

=
C + [A+BC − C − C2 + (AC − A−BC − AC/m)/m]/(m+ C)

m− 1

If C > 0 is large enough, the expression between brackets is negative, for m large,
and we obtain λm−1 < C/(m− 1), completing the proof. �

Lemma 5.2 implies that
N−1
∑

n=1

λ2
n = O(1). Therefore, for 1 ≤ N ′ < N ′′ ≤ N ,

(5.3)
N ′′−1
∏

n=N ′

(1 + λn) = exp

(

N ′′−1
∑

n=N ′

ln(1 + λn)

)

≍ exp

(

N ′′−1
∑

n=N ′

λn

)

.

in the turning period, we have that
∑N3−1

n=N1
λn ≍ 1, showing that the expansion

during this period is negligible.

Lemma 5.3. For all x ∈ EN satisfying (5.1),
∏N1

n=1(1 + λn) ≍ N2/3.

Proof. According to the equation (5.3), it is sufficient to show that

λn =
2

3n
+ χn; where

N1
∑

n=1

χn = O(1).

We have that, by (5.2)

λn+1 =
2

9n2
+ an +

(

1 −
2

3n
+ bn

)

λn

1 + λn

,

where

an = O

(

lnn

n3
+
γ2

n

n2

)

e bn = O

(

lnn

n2
+
γ2

n

n
+
x−4

n

n

)

,

are relative to the equations (4.14) and (4.15).
Note that |an| ≤ c/n2 and |bn| ≤ c/n, for some c > 0 small enough.
Take

λn = 2
1 + Zn

3n
.
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We get that

2
1 + Zn+1

3(n+ 1)
=

2

9n2
+ an +

(

1 −
2

3n
+ bn

)

×

×

(

2

3n
+

2Zn

3n

)(

1 −
2

3n
−

2Zn

3n
+O

(

1

n2
+
Z2

n

n2

))

=
2

9n2
+ an +X1 ·X2 ·X3,

X2 ·X3 =
2

3n
+

2Zn

3n
−

4

9n2
−

8Zn

9n2
−

−
4Z2

n

9n2
+O

(

1

n3
+
Zn

n3
+
Z2

n

n3
+
Z3

n

n3

)

X1 ·X2 ·X3 =
2

3n
−

8

9n2
+

2bn
3n

+
2Zn

3n
−

12Zn

9n2
+

+
2bnZn

3n
−

4Z2
n

9n2
+O

(

1

n3
+
Zn

n3
+
Z2

n

n3
+
Z3

n

n3

)

,

Therefore

Zn+1 = Rn + Zn ×
(

1 −
1

n
+ bn +O

(

1

n2

)

− Zn

(

2

3n
+O

(

1

n2

))

+O

(

Z2
n

n2

))

,

where

Rn =
3

2
nan + bn +O

(

1

n2

)

.

If we fix a small δ > 0, then for n large enough

|Zn+1| ≤ |Rn| + |Zn|

(

1 −
δ

n

)

.

Without affecting the asymptotic behavior of Zn, we can assume that the upper
bound holds for all n. Using it recurrently we get that

|Zn| ≤ |Rn| +
n−1
∑

k=1

|Rk|
n−1
∏

i=k

(

1 −
δ

i+ 1

)

≤ const
n
∑

k=1

(

|Rk| exp

(

−
n
∑

i=k

δ

(i+ 1)

))

≤ const
n
∑

k=1

|Rk|(k/n)δ.
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Then

N1
∑

n=1

|χn| ≤
N1
∑

n=1

|Zn|/n

≤ const

N1
∑

n=1

n
∑

k=1

|Rk|k
δ/nδ+1

≤ const

N1
∑

k=1

|Rk|
N1
∑

n=k

kδ/nδ+1

≤ const

N1
∑

k=1

|Rk|.

The last sum is uniformly bounded on N , which completes the proof. �

Lemma 5.4. For all x ∈ EN satisfying (5.1)
∏N

n=N3
(1 + λn) ≍ N1/3.

Proof. It is sufficient to show that, for m = N − n+ 1,

λm =
1

3m
+ χm; where

N−N3
∑

m=2

χm = O(1).

We have that

λm−1 =
2

9m2
+ am +

(

1 +
2

3m
+ bm

)

λm

1 + λm

,

where

am = O

(

lnm

m3
+
γ2

m

m2

)

e bm = O

(

lnm

m2
+
γ2

m

m
+
x−4

m

m

)

.

Note that |am| ≤ c/m2 and |bm| ≤ c/m, for some c > 0 small enough.
Take

λm =
1 + Zm

3m
.

We have that

1 + Zm−1

3(m− 1)
=

2

9m2
+ am +

(

1 +
2

3m
+ bm

)

×

×

(

1

3m
+
Zm

3m

)(

1 −
1

3m
−
Zm

3m
+O

(

1

m2

)

+O

(

Z2
m

m2

))

=
2

9m2
+ am +X1 ·X2 ·X3.
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X2 ·X3 =
1

3m
+
Zm

3m
−

1

9m2
−

2Zm

9m2
−

−
Z2

m

9m2
+O

(

1

m3
+
Zm

m3
+
Z2

m

m3
+
Z3

m

m3

)

,

X1 ·X2 ·X3 =
1

3m
−

1

9m2
+
bm
3m

+
Zm

3m
+
bmZm

3m
−

−
Z2

m

9m2
+O

(

1

m3
+
Zm

m3
+
Z2

m

m3
+
Z3

m

m3

)

,

Therefore

Zm−1 = Rm + Zm ×
(

1 −
1

m
+ bm +O

(

1

m2

)

− Zm

(

1

3m
+O

(

1

m2

))

+O

(

Z2
m

m2

))

,

where

Rm = 3mam + bm +O

(

1

m2

)

.

If we fix a small δ > 0, then for n large enough

|Zm−1| ≤ |Rm| + |Zm|

(

1 −
δ

m

)

.

Without affecting the asymptotic behavior of Zm, we can assume that the bound
above holds for all m ≥ 3. Using it recurrently we get

|Zm| ≤
N−N3
∑

k=m

|Rk|
k
∏

i=m

(

1 −
δ

i

)

≤ const

N−N3
∑

k=m

(

|Rk| exp

(

−
k
∑

i=m

δ

(i)

))

≤ const

N−N3
∑

k=m

|Rk|(m/k)
δ.
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Then
N−N3
∑

m=2

|χm| ≤
N−N3
∑

m=2

|Zm|/m

≤ const

N−N3
∑

m=2

N−N3
∑

k=m

|Rk|m
δ−1/kδ

≤ const

N−N3
∑

k=2

|Rk|
k
∑

m=2

mδ−1/kδ

≤ const
N
∑

k=2

|Rk|.

The last sum is uniformly bounded on N , which completes the proof. �

Proof of Theorem 5.1. Let dx be an unstable vector. At the exiting period, λm ≍
1/m and τm ≍ m−2/3N1/6, for m = 2, . . . , N − N3. Therefore B+

m = λm

τm
≍

m−1/3N−1/6, m = 2, . . . , N −N3. When m = 1, τN ≍ N1/6.
For m = 1 (or n = N),

B+
N ≍ B+

N−1 ≍ N−1/6.

Hence, from Lemma 5.3 and Lemma 5.4, we get

‖DxT
N5+1(dx)‖p

‖dx‖p

≍ N2/3 ×N1/3 ≍ N,

for all x ∈ EN satisfying γ1 ≍ N−1/3 and γN ≍ N−1/3. �

6. Proof of Theorem B

Let EN = {x ∈M4 | R(x) = N+1}. This set is as in Figure 6. It is bounded by
curves, denoted by S∗, S∗

N−1 and S∗
N , and by the line r = 1. The curve S∗ is made

up of points from M4 that, leaving L, they hit the dispersing part U tangentially
at the first collision. This is a decreasing curve, since it is a singularity line for T5

for positive values of ϕ until (1, 0) ∈M5; and it is not hard to calculate the slope
of this line, obtaining that it has an horizontal tangency at (1, 0) ∈ M5 Besides,
the lines S∗

N separating EN and EN+1 are constituted of trajectories which the
last collision in U leaving out the cusp is tangent. So, they are singularity lines
for TN

5 , and then , decreasing lines and regular as consequence of the results in [5,
Chapter 4].

The images FN = T4(EN) = TN+1
5 (EN) are domains bounded by singularity

lines for T−i
5 , i = 1, 2, . . . , N , which are curves with positive slope. Moreover, by

the property of time-reversing of the billiard map, (r, ϕ) ∈ EN if, and only if,,
(r,−ϕ) ∈ FN . So FN is obtained reflecting EN along the line ϕ = 0.
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E
 

N

E
N

S*

r

− π/2

0

π/2

ϕ

1

Ε
Ν

= Ε
N

U E
N

Figure 6. The sets E ′
N and E ′′

N .

The domain EN close to (1, 0) ∈ M5 is made up of two strips: the inferior
strip E ′′

N , which consists of points that leave the vertical wall and hit the cusp
directly; and the superior strip E ′

N , which consists of points that hit the cusp after
a rebound in the horizontal part of the table D. The sets EN , N > N0, make up
a nested structure that shrink to (1,0) as N goes to infinity (it is enough to note
that in order to achieve more rebounds inside the cusp, on D, we must begin closer
to the point (0, 0) and the particle must be thrown almost parallel with respect to
the axis x).

The point from EN farthest from (1, 0) ∈ M5 over S∗ is at a distance ≍ N−1/6

because x1 ≍ N1/6 on D (given by equation (4.4)). Over r = 1, using the values
of x1 and γ1 obtained in (4.4) and (4.5), respectively, and a simple geometric
construction, we get that the distance of the strip E ′′

N to the point (1, 0) is ≍ N−1/3.
Since the lines S∗, S∗

N−1 and S∗
N are decreasing and S∗ has horizontal tangent

on(1, 0), the “length” of each strip of EN is ≍ N−1/6.
Now consider an unstable curve W inside one of the strips of EN , transverse

to the direction of S∗
N , by the relation between cones and singularity lines given

by condition (C6) from [15, Section 8]. Using the symmetry of TN+1
5 (EN), the

set TN+1
5 (W ) is a line stretching ”from top to bottom” one of the strips of FN =

TN+1
5 (EN), therefore, it has “length” ≍ N−1/6. Using the fact that the derivative

of TN+1
5 has an expansion rate of ≍ N for unstable vectors, given by Theorem 5.1,

we get that |W | ≍ N−1/6/N = N−7/6. This is the “width” of each of the strips of
EN .
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r

− π/2

0

π/2

ϕ

1

Ε
Ν

F
N

S*
W

W

Since the sets EN are away from ϕ = ±π/2, the measure µ is equivalent to the
Lebesgue measure on IR2. Thus,

µ(EN) ≍ N−1/6 ×N−7/6 = N−4/3,

so

µ

(

∞
⋃

n=N

En

)

≍ N−1/3,

hence A =
⋃∞

n=N En has finite measure.
Also the measure of the intersection Em ∩ Tm

5 Em can be computed using the
symmetry of the sets Em and Fm,

µ (Em ∩ Tm
5 Em) ≍ m−7/6 ×m−7/6 = m−7/3.

Thus

µ (A ∩ Tm
5 A) = µ

(

∞
⋃

n=N

En ∩ Tm
5

(

∞
⋃

n=N

En

))

≥ µ (Em ∩ Tm
5 Em) ≍ m−7/3,

showing that the speed of decay is at most polynomial.
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Appendix A. Mixing systems and another proof of Corollary 1.1

In this section we explain a sufficient condition for a system to be F-mixing. It
is based on the work of Coudene [8] adapted to our definition of F-mixing. From
now on X is a metric space, A the Borel σ-algebra of X, µ an infinite σ-finite
regular measure on X and F : X → X a µ-measure preserving transformation.

Definition A.1. ([8, Definition 1]) We define the stable distribution of F of a
point x ∈ X as

W s(x) = {y ∈ X : d(Fn(x),Fn(y)) → 0 as n→ ∞}.

A measurable function f : X → IR is called W s-invariant when there exists
a set Ω ⊂ X with full measure such that for all x, y ∈ Ω, y ∈ W s(x) implies
f(x) = f(y).

If F is invertible we define the unstable distribution W u(x) of a point x for F
as the stable distribution for F−1. In a similar way , we define a W u-invariant
function.

We say that the stable distribution W s is ergodic if every W s-invariant function
is µ-almost everywhere.

The propositions below are slight modifications of Theorem 2 and Theorem 3
from [8]. Indeed, since the main elements used in the proof are the Banach-Alaoglu
Theorem and Banach-Saks Theorem, which are true in Hilbert spaces, there will be
few changes in the proofs. We also assume that the measure is regular because we
use the fact that continuous functions with compact support are dense in L2

µ(X)
[21, p.69].

Proposition A.2. (Based on [8, Theorem 2]) Let X be a metric space, µ a regular
infinite σ-finite measure on X, F : X → X a µ-measure-preserving transformation
and f ∈ L2

µ(X). Then any weak limit of f ◦ Fn is W s-invariant.

Proof. Let g be a weak limit of f ◦Fni . First assume that f is continuous with com-
pact support (thus uniformly continuous). The Banach-Saks theorem guarantees
that there exist subsequences ml and nik such that

Ψl(x) =
1

ml

ml
∑

k=1

f ◦ Fnik
l→∞
−→ g µ− q.t.p..

If y ∈ W s(x), then

|Ψl(x) − Ψl(y)| ≤
1

ml

ml
∑

k=1

|f ◦ Fnik (x) − f ◦ Fnik (y)|
l→∞
→ 0.

So g is W s-invariant.
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Let f ∈ L2
µ. For all ε > 0, there exists a continuous function f0 with compact

support such that ‖f − f0‖2 < ε. Passing to a subsequence, by Banach-Alaoglu
Theorem, we can assume that f0 ◦ F

ni converges weakly to a function g0 which is
W s-invariant. It follows that (f − f0) ◦ F

ni −→ g − g0 weakly, which implies that

‖g − g0‖2 ≤ lim inf ‖(f − f0) ◦ F
ni‖2 ≤ ‖f − f0‖2 < ε.

Thus there exists a sequence of W s-invariant functions that converges to g in the
L2

µ-norm and, passing to a subsequence, almost everywhere. Hence, for a set Ω
with full measure, if y, x ∈ Ω, y ∈ W s(x), we get that

g(y) = lim gn(y) = lim gn(x) = g(x).

This shows that g is W s-invariant. �

Using the proposition above, the next one is proved as in [8].

Proposition A.3. (Based on [8, Theorem 3]) Let X be a metric space, µ a regular
infinite σ-finite measure on X, F : X → X an invertible µ-measure-preserving
transformation and f ∈ L2

µ(X). Then any weak limit of f ◦ Fn is W s-invariant
and W u-invariant.

Corollary A.4. If W s is ergodic then F is F-mixing.

Proof. Let f ∈ L2
µ. If f ◦Fn has a weak limit, by Proposition A.2 and hypothesis,

this limit is constant at almost every point; thus it is equal to zero at almost every
point. Therefore F is F-mixing.

Suppose that f ◦ Fn does not converge weakly to zero. Thus there exist an
ε > 0, a subsequence ni and a function h ∈ L2

µ such that

lim
i→∞

∫

(f ◦ Fni)h dµ > 0.

However by Banach-Alaoglu Theorem there exists a subsequence nik such that
f ◦ Fnik converges weakly to a function W s-invariant, by Proposition A.2, which
is constant by hypothesis and hence must be zero almost everywhere. This con-
tradiction shows that F is F-mixing. �

Proof of Corollary 1.1. Take a function ψ : X → IR which is W s-invariant and
W u-invariant. By the property of absolute continuity of the local stable and un-
stable manifolds [15], Theorem 7.5, W s-invariance and W u-invariance imply that
this function must be constant almost everywhere in the ergodic component of
T5. However, since T5 has only one ergodic component ψ is constant almost every-
where, that is, W s and W u are ergodic. Thus, by Corollary A.4, T5 is F-mixing �
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