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SECTIONAL LYAPUNOV EXPONENTS

ALEXANDER ARBIETO

Abstract. We define sectional Lyapunov exponents and use it to characterize Sectional
Anosov flows in terms of dominated splittings. In particular we improve a result in [10].

1. Introduction

The theory of hyperbolic systems appeared in the sixties, with the seminal works of Smale,
introducing the horseshoe. The main feature of this dynamical system was the presence of
complementary directions in the tangent bundle, one of them presenting a contractive behaviour
and the other presenting an expansive behaviour. Since then the theory of hyperbolic dynamics
grew, in particular to understand Anosov diffeomorphisms, which presents this behaviour in the
entire manifold, and expanding automorphisms, which presents only expansion in all directions
but are non-invertible.

Furthermore the theory evolved in direction to go beyond uniform hyperbolicity, and one
of the directions was the study of non-uniformly dynamical systems, with the aid of the so
called Lyapounov exponents. These exponents, when they exist and are nonzero, indicates
asymptotic contraction or expansion along the orbit. The celebrated Oseledets theorem says
that these exponents exist, and vary in a measurable way, in a set of full measure, for any
invariant probability measure of the system.

It turns out that, for local diffeomorphisms, if all the Lyapunov exponents are positive in a set
of total probability, i.e. a full measure set for any invariant measure, then the map is expanding,
as showed in Alves-Arajo-Saussol [2] and Cao [7]. An analogous statement is true in the case
of diffeomorphisms with an invariant dominated splitting, if all the Lyapunov are negative in
one subbundle and positive in the other in a set of total probability then the diffeomorphism is
Anosov.

In the case of vector fields, the hyperbolic theory also has a good understanding. In particular
for Anosov flows, but now, the hyperbolic behaviour occurs transversally to the direction of
the vector field. This automatically rules out the presence of singularities when the manifold is
closed. Also, the Anosov flows share many features of hyperbolic diffeomorphism, like stability,
spectral decomposition, etc.

In the presence of singularities there exist still flows which present some dynamical properties
in a robust way and some weak form of hyperbolicity, where the so called Lorenz attractor is
the paradigmatic example [11], which are called sectional Anosov flows [8]. These flows occur in
manifolds with boundary and also posses a dominated splitting, where one direction is uniformly
contractive and the other uniformly expands area of 2-planes inside it. There are much efforts
to understand dynamical properties of this flows, for instance see [3], [4] [6] and [8].
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In this note, we characterize sectional Anosov flows in terms of the Lyapunov exponents in
a set of total probability as in the above cited works, but now we also use sectional Lyapunov
exponents to study these flows, these exponents are Lyapunov exponents of the cocycle defined
by the second exterior power of the derivative, see the next section for precise definitions.
The case of Anosov flows are included in our result, considering closed manifolds instead only
compact manifolds. Moreover we also extend a result found in Sataev’s paper [10].

2. Statement of the results

Let M be a C∞ n-dimensional connected compact Riemannian manifold, M may have
boundary or not.

Let {ϕt : M → M}t∈R be a flow generated by a C1-vector field X. We say that a probability
measure µ is an invariant measure if µ(ϕt(A)) = µ(A) for every measurable set A and every
t ∈ R. We say that a subset Y ⊂ M is a set of total probability if µ(Y ) = 1 for every invariant
measure µ.

We will assume that X is inwardly transverse to the boundary ∂M . The maximal invariant
set of the flow is defined as M(X) =

⋂
t≥0

ϕt(M). As usual, we say that a singularity is hyperbolic

if the eigenvalues of the derivative of the vector field at the singularity have nonzero real part.

Definition 2.1. We say that the flow is sectional-Anosov if every singularity is hyperbolic and
there exists a continuous invariant splitting TM(X)M = E ⊕ F over the maximal invariant set
and constants C > 0 and λ > 0 such that for every x ∈ M(X) and t ≥ 0:

(i) The splitting is not trivial: Ex 6= {0} and Fx 6= {0}.
(ii) The splitting is dominated: ‖Dϕt|Ex‖‖Dϕ−t|Fϕt(x)‖ < Ce−λt.
(iii) The subbundle E is contracting: ‖Dϕt(x)v‖ ≤ Ce−λt, for every v ∈ Ex − {0}.
(iv) The subbundle F is sectionally expanding: For every 2-plane section L ⊂ F , if we

denote Lx ⊂ Fx the 2-plane in the subspace Fx then

|det(Dϕt(x)|Lx | > Ceλt.

If only the items (i) and (ii) are satisfied we say that the splitting E ⊕ F is a dominated
splitting over M(X).

We observe that if the splitting F decomposes as a continuous splitting F = 〈X〉⊕G, where
〈X〉 is the one-dimensional distribution generated by the vector field then Λ is a hyperbolic
set, indeed since in the direction of the vector field the dynamics is an isometry, the expansion
of area must come from the G subbundle and this will imply that G is uniformly expanding.
In particular, in this case the continuity of the splitting implies that there are no singularities.
Moreover, if ∂M = ∅ then M(X) = M and we recover the definition of an Anosov flow. For
more details, see for instance [5].

By Oseledet’s theorem [9], for any invariant probability measure µ there exists a subset Y
with µ(Y ) = 1 such that, for every x ∈ Y there exists an invariant splitting:

TxM = 〈X〉 ⊕ E1
x ⊕ · · · ⊕ Es(x)

x

And the following limits exists:

λi(x) = lim
t→+∞

1
t

log ‖Dϕt(x).v‖ , for every v ∈ Ei
x − {0} , i = 1, . . . , s(x).

Moreover, the functions λi and s are measurable and invariant by the flow i.e. s(ϕt(x)) = s(x)
and λi(ϕt(x)) = λi(x). Also, the splitting varies measurably. The numbers λi(x) are called the
Lyapounov exponents of the flow at the point x. If E is a subbundle of the tangent bundle then
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by “the Lyapounov exponents of E” we mean the Lyapounov exponents of the nonzero vectors
in E.

Let V be a vector space, we denote by Λ2V the second exterior power of V , defined as follows.
If v1, . . . , vn is a basis of V then Λ2V is generated by {vi ∧ vj}i 6=j . Any linear transformation
A : V → W induces a transformation Λ2A : Λ2V → Λ2W . Moreover, vi ∧ vj can be viewed as
the 2-plane generated by vi and vj if i 6= j. See for instance [1] for more informations.

Definition 2.2. The sectional Lyapunov exponents of x along F are the limits

lim
t→+∞

1
t

log ‖Λ2Dϕt(x).ṽ‖
whenever they exists, where ṽ ∈ Λ2Fx − {0}.

It turns out that if µ is an invariant probability measure, Y is the subset given by Oseledet’s
theorem and {λi(x)}s(x)

i=1 are the Lyapunov exponents then the sectional Lyapunov exponents
of a point x ∈ Y are {λi + λj}1≤i<j≤s(x). Moreover, the (iv) condition in the definition of
sectional Anosov flow can be obtained as follows. If Lx is a 2-plane, then it can be saw as
ṽ ∈ Λ2(Fx)− {0} of norm one. Hence, to obtain the sectional expansion we only need to show
that for some λ > 0 and every t > 0 the following inequality holds

‖Λ2Dϕt(x).ṽ‖ > Ceλt.

Our main result is the following.

Theorem 2.3. Let {ϕt} be a flow with a dominated splitting TM(X)M = E⊕F over the maximal
invariant set and such that every singularity is hyperbolic. The flow {ϕt} is a sectional Anosov
flow if, and only if, the Lyapunov exponents in the E direction are negative and the sectional
Lyapunov exponents in the F direction are positive on a set of total probability. If the manifold
has no boundary, the flow has no singularities and it is an Anosov flow.

We remark that this theorem improves a result found in [10]. First, let us recall the notation
used by Sataev and set the scenario.

Assume that M(X) has a dominated splitting TM(X)M = E ⊕F , where the subbundle E is
uniformly contractive, and suppose that dimF = 2. Moreover, we assume that the fibers of E
are oriented.

Let Ω be the volume form of the manifold, now we define a 2-form ω given by:

ω(w1, w2) = Ω(w1, . . . , wn) for w1, w2 ∈ TxM

where w3, . . . , wn form a parallelepiped of Ex with unit volume and positive orientation. Hence
the rank space of ω is the orthogonal complement of E.

Using the invariance of the subbundle E, Sataev proves that there exists a function θ(x)
such that

ω̇(x) = −ω(x)D2(x) + θ(x)ω(x)
where D2 acts as follows. Denote by D(x) the matrix with elements {∂Xi

∂xj
}, where Xi are the

coordinates of the vector field X in the local coordinates {xj}. Now, given two one-forms p1

and p2 and p = p1 ∧ p2 we set

pD2 = p1D ∧ p2 + p1 ∧ p2D

finally D2 is defined by linearity.
As noticed in [10][p.54], it turns out that if Kx is a small cone field containing the F subbundle

then there exists constants C1 and C2, such that for any v1 and v2 in the cone, if we denote
A(L) as the area, defined by the Riemannian metric, of the plane generated by this two vectors
then we have

C1|ω(v1, v2)| ≤ A(L) ≤ C2|ω(v1, v2)|.
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Let x ∈ M(X), the previous remark shows that the linear growth of the integral of the
function θ along the orbit of x is equivalent to the function log ‖Λ2Dϕt(x)ṽ‖, where ṽ ∈ Λ2Fx

has norm equal to one.
Indeed, Sataev proves that the following equality holds:

ω(ϕt(x)) = e
R t
0 θ(ϕs(x))dsD∗2ϕt(ω(x)),

where D∗2 is the action of the differential on 2-forms. But the expansion of area is equivalent
to the existence of constants C > 0 and γ > 0 such that:

ω(ϕt(x))(Dϕt(x)v1, Dϕt(x)v2) > Ceγtω(v1, v2).

Hence our theorem implies:

Corollary 2.4 (Lemma 2.12 of [10]). In this setting, the flow is sectional Anosov if and only if
all singularities are hyperbolic and there exists constants C ∈ R and D > 0 such that for every
orbit ϕt(x) and every T > 0 the following inequality holds:

∫ T

0

θ(ϕt(x))dt > C + DT.

Proof. The last statement obviously is a necessarily condition to the flow be sectional Anosov.
Now, if the inequality holds for every orbit, then dividing by T and taking limits we have that
the sectional Lyapunov exponents in the F direction are positive for every orbit, in particular
in a set of total probability hence theorem 2.3 applies. ¤

We also remark that our results also holds to sectional hyperbolic sets, i.e. with the same
definition using a compact invariant set Λ instead of the maximal invariant set M(X).

3. Proof of the Theorem

In this section we prove theorem 2.3, following the lines in [7].

Lemma 3.1. Let f : M(X) → R be a continuous function such that
∫

fdµ < λ for any
invariant probability measure µ, then for every x ∈ M(X) there exists t(x) > 1 such that:

1
t(x)

∫ t(x)

0

f(ϕs(x))ds < λ.

Proof. If not, there exists x such that 1
t

∫ t

0
f(ϕs(x))ds ≥ λ for every t > 0. Hence we define the

measures µt = 1
t

∫ t

0
δϕs(x)ds, where δx is the Dirac measure at x. Now, we take µ = lim

k→∞
µtk

,

as a cluster point of this sequence, with tk →∞.
It is well know that µ is an invariant measure, moreover since f is continuous we have that

∫
fdµ = lim

k→∞

∫
fdµtk

= lim
k→∞

1
tk

∫ tk

0

f(ϕs)ds ≥ λ.

¤

Corollary 3.2. If f : M(X) → R is a continuous function such that
∫

fdµ < λ for any
invariant probability measure µ, then there exists T > 0 such that for any t ≥ T we have:

1
t

∫ t

0

f(ϕs(x))ds < λ for all x ∈ M(X).
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Proof. The previous lemma says that for every x there exists some t(x) > 1 and ε(x) > 0 such
that

∫ t(x)

0
f(ϕs(x))ds < t(x)(λ− ε(x)).

Since f is continuous, there exists some neighborhood Ux such that for any y ∈ Ux we have
that

∫ t(x)

0
f(ϕs(y))ds < t(x)(λ− ε(x)).

By compactness, we can cover M by a finite number of such neighborhoods, say Ux1 , . . . , Uxn ,
and define T0 = max{t(x1), . . . t(xn)} and ε = min{ε(x1), . . . ε(xn)}.

Now, we define by induction a sequence of functions Tk : M → {1, . . . , T0} for k ≥ 1 as
follows;

T0(x) = 0
T1(x) = min{t(xi); x ∈ Uxi

, i = 1, . . . n}
Tk+1(x) = Tk(x) + T1(ϕTk(x)(x)).

Hence, for any x ∈ M and t > 0 there exists k such that Tk(x) ≤ t ≤ Tk+1(x), since Tk(x) →∞.
In particular, ∫ t

0

f(ϕs(x))ds ≤ Tk(x)(λ− ε) + ‖f‖0T0.

Hence if T = 2‖f‖0T0
ε we have that, for any x ∈ M and t ≥ T :

1
t

∫ t

0

f(ϕs(x))ds < λ.

¤

We say that a family of functions {ft : M(X) → R}t∈R is sub-additive if for every x ∈ M and
t, s ∈ R we have that ft+s(x) ≤ fs(x)+ft(ϕs(x)). The Subadittive Ergodic theorem shows that
the function f(x) = lim inf

t→+∞
ft(x)

t coincides with f̃(x) = lim
t→+∞

1
t ft(x) in a set of total probability.

Remark 3.3. For any invariant measure µ we have that
∫

f̃dµ = lim
t→+∞

∫
ft

t dµ.

Proposition 3.4. Let {t 7→ ft : M(X) → R}t∈R be a continuous family of continuous function
which is sub-additive and suppose that f(x) < 0 in a set of total probability. Then there exists
constants C > 0 and λ < 0 such that for every x ∈ M and every t > 0:

eft(x) ≤ C−1e
λt
2 .

Proof. The hypothesis says that f̃(x) < 0 in a set of total probability. Hence,
∫

f̃dµ < 0 for
every invariant measure µ. By the previous remark, for any invariant measure µ there exist
t(µ) ∈ R such that for every t ≥ t(µ):

∫
ft

t
dµ <

1
2

∫
f̃dµ.

Hence, there exists a neighborhood Uµ of µ in the weak-* topology such that if η ∈ Uµ then:
∫

ft(µ)

t(µ)
dη <

1
4

∫
f̃dµ.

By weak compactness, the set of invariant measures can be cover by a finite number of such
neighborhoods, say Uµ1 , . . . , Uµn . Let t(i) = t(µi) for i = 1, . . . n (we can suppose t(i) > 1) and
define

λ = max
i=1,...,n

{1
4

∫
f̃dµi} < 0.
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In particular, for every invariant measure µ there exists some i such that
∫

ft(i)dµ < λt(i) and

1
kt(i)

∫
fkt(i)(x)dµ ≤ 1

k

k−1∑

j=0

1
t(i)

∫
ft(i)(ϕjt(i)(x))dµ

=
1
k

k−1∑

j=0

1
t(i)

∫
ft(i)(x)dµ

< λ

Hence, if L = t(1)t(2) . . . t(n) then
∫

fLdµ < λL.
Now, by the previous corollary applied to the continuous function fL

L , there exists some T0

such that, for any t ≥ T0 and any x ∈ M we have:

1
t

∫ t

0

1
L

fL(ϕs(x))ds < λ.

Since fkL(x) ≤
k−1∑
j=0

fL(ϕjL(x)), then for every 0 ≤ s < L we obtain:

fkL(x) ≤ fs(x) +




k−2∑

j=0

fL(ϕjL+s(x))


 + fL−s(ϕ(k−1)L+s(x)).

Integrating,

LfkL(x) ≤
∫ L

0

k−2∑

j=0

fL(ϕjL+s(x))ds +

(∫ L

0

fs(x) + fL−s(ϕ(k−1)L+s(x))ds

)
.

Since {ft} is a continuous family of continuous functions over a compact manifold, we have
that B = sup

t∈[0,L]

sup
x∈M

|ft(x)| < ∞. Thus,

fkL(x) ≤
∫ (k−1)L

0

1
L

fL(ϕs(x))ds + 2B.

In particular,
fkL(x) ≤ L(k − 1)λ + 2B, if (K − 1)L > T0.

Now, take t ≥ T0 +2L and write t = kL+ j where 0 ≤ j < L. So, ft(x) ≤ fkL(x)+ fj(ϕkL(x)).
Hence, ft(x) ≤ L(k − 1)λ + 3B. Since (k − 1)L < t, we have:

1
t
ft(x) ≤ λ +

3B

t
.

Take K = max{T0 + 2L, 6B
−λ}, and we obtain that for every x ∈ M and t ≥ K:

1
t
ft(x) ≤ λ

2
.

Finally, define C−1 = sup
s∈[0,K]

{efs(x), 1}. And note that,

eft(x) ≤ C−1e
λt
2 for every t > 0.

¤
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Proof of theorem 2.3. Let φt(x) = log ‖Dϕt|Ex
‖ and ψt(x) = log ‖Λ2Dϕ−t|Fx

‖, both defined
on M(X) and continuous, since the subbundles are continuous.

Now, applying the proposition to the function φt we obtain that there exists some constant
C > 0 and λ < 0 such that eφt(x) ≤ C−1eλt, hence ‖Dϕt|Ex

‖ ≤ C−1eλt for every x and this
shows that E is a contractive subbundle. Analogously, using ψt we obtain a constant D > 0
and η < 0 such that ‖Λ2Dϕt|Fx

‖ ≥ De−ηt and this shows that F is a sectionally expanding
subbundle.

The proof is now complete.
¤
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