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Abstract

In this paper we study the model of decision under uncertainty con-
sistent with con�dence preferences. In that model, a decision maker held
beliefs represented by a fuzzy set of priors and tastes captured by a stan-
dard a¢ ne utility index on consequences. First, we �nd some interest-
ing properties concerning the well-known maxmin expected utility model,
taking into account the point of view of the con�dence preferences model.
Further, we provide new examples of preferences that capture ambiguity
averse attitudes weaker than ambiguity attitudes featured by maxmin ex-
pected utility theory. Finally, we discuss the axiomatic foundations for
the con�dence preferences model with optimistic behavior. Journal of
Economic Literature Classi�cation Number : D81.

Key words: Con�dence functions; Decision analysis; Economics; Fuzzy
priors; Multiple priors model; Non-additive measures.

1 Introduction

Seminal works in economic theory have pointed out the relevance of unmeasur-
able uncertainty to economic life. The original distinction comes from Knight
[14] and Keynes [13], and the main point is that well speci�ed subjective prob-
abilities, as later proposed in the classical Subjective Expected Utility (SEU)
theory of Savage [18], are not behaviorally consistent with vagueness about the
relative likelihood of events. Such ambiguity, according to Ellsberg [8], relates
to

a quality depending on the amount, type, reliability and unanimity
of information, and giving rise to one´s degree of "con�dence" in an
estimative of relative likelihood [page 657].

�Corresponding author. Tel.: +55-11-45-04-24-22; fax: +55-45-04-09-23-90; e-mail adress:
jhfaro@gmail.com (J.H. Faro).
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Indeed, as demonstraded by Ellsberg [8], agents often make choices that can-
not be generated by a unique prior, thereby exhibiting an aversion to choices
involving ambiguity. In modern decision theory, ambiguity has been an im-
portant issue and its main contribution is to provide rigorous foundations for
situations where there may be no probabilities on the states of nature that
rationalize the decision maker�s behavior.
An important line of research replaces the subjective expected utility func-

tion with a more general functional capturing ambiguity aversion, such as the
Choquet expected utility (CEU) of Schmeidler ([19], [20]) or the maxmin ex-
pected utility (MEU) of Gilboa and Schmeidler [11]1 . Decision makers with
MEU preferences evaluate an act using the minimum expected utility over a
given nonempty, convex and (weakly�) compact subset C of the set � of all
probabilities on the state space, while decision makers with CEU preferences
evaluate an act using its expected utility computed according to a capacity
(fuzzy measure or nonadditive probability)2 . Although these models are not
the same in general, they coincide in the case of ambiguity aversion, that is, for
CEU with a convex capacity. In this case, the Choquet expected utility with
respect to a capacity v reduces to the minimum expected value over the set of
probability distributions given by the core of capacity v3 .
Chateauneuf and Faro [5] propose a model for which the ambiguity is mea-

sured by a (regular�) fuzzy set of priors ' : �! [0; 1]; called con�dence function.
Intuitively, for each probability measure p the value of ' (p) describes the rel-
ative con�dence of the decision maker in the probabilistic model p, describing
her belief as a fuzzy set in the sense proposed by Zadeh [27]. We note that the
multiple priors model might be viewed as a special case of con�dence prefer-
ences by imposing a binary assessment of con�dence in the universe of priors4 .
Concerning its functional representation, con�dence preferences feature agents
that rank acts f according to the following criterion

J(f) = min
p2fq2�:'(q)��0g

1

'(p)

Z
u(f)dp;

where ' : �! [0; 1] is a mapping representing the agent´s degree of con�dence
on the possible models p in �, �0 is the threshold level of con�dence below
which a model is discarded, u is a positive valued a¢ ne utility index. In this
sense, vagueness about the true probability law in this model is captured by a
fully subjective fuzzy set of priors ', which seems to be a meaningful way for
modeling a decision maker who has a relative assessment of probability measures
over the states of nature. Note also that we recover the MEU model if, and only

1The MEU model is also widely known as multiple priors model. See also, Chateauneuf
[4].

2An interesting case has been proposed by Wakker [25], providing a behavioral foundation
for fuzzy measures given by possibility measures.

3See Schmeidler ([19], [20]).
4A similar idea of replacing a set of probabilities by a fuzzy set was independently proposed

by Walley [26].
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if, �0 = 0 or ' is a characteristic function 1C of some set of priors C5 .
In this paper we study ambiguity averse preferences consistent with the

con�dence preferences model. First, we study some properties of the MEU
model from the point of view of the con�dence preferences model showing how
we can recover the maximal con�dence function related to MEU preferences by a
family of maximal con�dence functions generated by SEU preferences. Further,
we provide new examples of preferences that capture ambiguity-averse attitudes
weaker than that captured by MEU preferences. Finally, we discuss axiomatic
foundations for ambiguity-loving con�dence preferences.
The remainder of the paper is organized as follows. After introducing the

notations and setup in Section 2, we recall the axiomatic foundation and the
main representation result of [5] in Subsection 3.1. In Subsection 3.2, we show
how to recover the maximal con�dence function of a MEU preference by a fam-
ily of SEU preferences. In Subsection 3.3, we introduce a new special case of
con�dence preferences, namely the �-con�dence preferences generated by a per-
turbation of SEU preferences and we study its ambiguity attitudes in the sense
Ghirardato and Marinacci [9]. In Subsection 3.4, we introduce another kind of
new con�dence preference inspired by the well-known index of relative entropy,
namely entropic con�dence preference, and also compare the obtained represen-
tation with the constraint preferences of Hansen and Sargent [12]. Subsection
3.5 presents a study of monotony continuity properties of con�dence preferences.
In Section 4 we discuss the axiomatic foundations related to ambiguity-loving
con�dence functions. Proofs are collected in the Appendix.

2 Notation and Framework

Consider a set S of states of nature, endowed with a �-algebra � of subsets
called events, and a non-empty set X of consequences. We denote by F the set
of all (simple) acts: �nite-valued functions f : S ! X which are �-measurable6 .
Moreover, we denote by B0(S;�) the set of all real-valued �-measurable simple
functions a : S ! R. The norm in B0(S;�) is given by kak1 = sups2S ja(s)j
(called sup norm) and we can de�ne the space of all bounded and �-measurable
functions by B(S;�) := B0(S;�)

k�k1 , i.e., B(S;�) consists of all uniform limits
of �nite linear combinations of characteristic functions of sets in � (see Dunford
and Schwartz [6], page 240). Also, given a set K � R, we de�ne B0 (K) :=
fa 2 B0(S;�) : a (s) 2 K;8s 2 Sg, B(K) := B0(K)

k�k1 , and B+ := B (R+).
A set-function v : � ! [0; 1] is a capacity if: (i) v(;) = 0; v(S) = 1 and

(ii) 8 E;F 2 � such that E � F ) v(E) � v(F ). Also, v is convex if for any
A;B 2 �, v (A [B) + v (A \B) � v (A) + v (B). A capacity p is a (�nitely
additive) probability when for any E;F 2 � such that E \ F = ; we have that

5That is,
1C : p 2 �! 1C (p) 2 f0; 1g ;

where 1C (p) = 1 i¤ p 2 C.
6Let %0 be a binary relation on X, we say that a function f : S ! X is �-measurable if,

for all x 2 X, the sets fs 2 S : f(s) %0 xg and fs 2 S : f(s) �0 xg belong to � .

3



p (E [ F ) = p (E)+ p (F ). A countably additive probabilities is a capacity such

that, for any family of disjoint events fEkgk2N, p
 1[
k=1

Ek

!
=

1X
k=1

p (Ek).

We denote by � := �(�) the set of all (�nitely additive) probability mea-
sures p : � ! [0; 1] endowed with the natural restriction of the well-known
weak* topology � (ba;B). Moreover, we denote by �� the set of all countably
additive probabilities in �. In particular, given q 2 ��, we denote by �� (q)
the set of all probabilities in �� that are absolutely continuous w.r.t. q, i.e.,
�� (q) = fp 2 �� : p� qg, where p � q means that 8A 2 �; q (A) = 0 )
p (A) = 0.
Given a function a 2 B, the Choquet integral of a with respect to v is given

by Z
adv =

Z 0

�1
[v (fa � �g)� 1] d�+

Z +1

0

v (fa � �g) d�.

Of course, if v is a probability measure we back to the usual additive notion of
integration.
We say that a mapping ' : � ! [0; 1] is normal if f' = 1g 6= ;. Also,

recall that ' is weak� upper semicontinuous if f' � rg is weak� closed for each
r � 0 and ' is quasi-concave if for all p; q 2 � and � 2 [0; 1] it is true that
' (�p+ (1� �) q) � min f' (p) ; ' (q)g. A mapping ' : � ! [0; 1] is a regular�

fuzzy set if ' is normal, weak� upper semicontinuous and quasi-concave.
Throughout the paper we will call a regular� fuzzy set ' by a con�dence

function, which is the central concepty in this paper. Let ' : � ! [0; 1] be a
con�dence function and � 2 [0; 1], we denote the related level set by L�' :=
fp : ' (p) � �g. Recall that ' is a regular� fuzzy set (i.e., a con�dence functions)
if and only if for all � 2 [0; 1] the level set L�' is nonempty, convex and weak�
closed.
Clearly, note that u(f) 2 B0(S;�) whenever u : X ! R and f belongs

to F , where the function u(f) : S ! R is the mapping de�ned by u(f)(s) =
u(f(s)); for all s 2 S.
Let x belong to X, de�ne x 2 F to be the constant act such that x(s) = x

for all s 2 S: Hence, we can identify X with the set Fc of constant acts in F .
Additionally, we assume that X is a convex subset of a vector space. For

instance, this is the case if X is the set of all �nite-support lotteries on a set of
prizes Z, as in the classic setting of Anscombe and Aumann [1].
Using the linear structure of X we can de�ne as usual for every f; g 2 F and

� 2 [0; 1] the act:

�f + (1� �)g : S ! X

(�f + (1� �)g)(s) = �f(s) + (1� �)g(s)

The decision maker�s preferences are given by a binary relation % on F ,
whose usual symmetric and asymmetric components are denoted by s and �.
Finally, for any f 2 F , an element xf 2 X is a certainty equivalent of f if
xf s f .
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Following the discussion and terminologies used in the Introduction, a pref-
erence relation % is called a CEU preference (Schmeidler, [20]) if there is a
function u : X ! R, called utility index, and a capacity v such that for all acts
f; g 2 F

f % g i¤
Z
u (f) dv �

Z
u (g) dv.

If the capacity v satis�es v = p 2 �, then we say that % is a SEU preference
(Anscombe and Aumann [1]). Another important class of preferences is de�ned
by: a preference relation % is said to be a MEU preference (Gilboa and Schmei-
dler, [11]) if there is a utility index u : X ! R and a weak� closed and convex
set of probabilities C � � such that for all acts f; g 2 F

f % g i¤ min
p2C

Z
u (f) dp � min

p2C

Z
u (g) dp.

Finally, given a CEU preference represented by the pair (u; v), if the v is a
convex capacity by a well know result (see, for instance, Schmeidler [19]) we have
that the set of priors core (v) := fp 2 � : p (E) � v (E) 8E 2 �g is nonempty,
convex and weak� closed, and for any act f 2 FZ

u (f) dv = min
p2core(v)

Z
u (f) dp:

The immediate consequence is that CEU preferences with convex capacities is
a subclass of MEU preferences.
Ghirardato and Marinacci [9] proposed a notion of absolute ambiguity aver-

sion by building upon a notion of comparative ambiguity. This comparative
ambiguity attitude says that: Given two preferences %1and %2, the preference
relation %1 is more ambiguity averse than %2, if for all x 2 X and f 2 F ,

f %1 x) f %2 x.

Note that two preference relations %1 and %2 satisfying the comparative
ambiguity attitude above induces preferences relation on X that can be repre-
sented by the same utility index u on consequences7 . Hence, ambiguity aversion
is comparable across two decision makers only if their risk attitudes coincide.
The absolute notion of ambiguity aversion de�ned by Ghirardato and Mari-

nacci [9] considers SEU preferences as benchmarks for ambiguity neutrality: We
say that a preference relation % is ambiguity averse if it is more ambiguity averse
than some SEU preference. Moreover, we will use a strictly notion of ambiguity
averse saying that a preference relation % is strictly ambiguity averse if % is
ambiguity averse but not a SEU preference.

7See, for instance, Chateauneuf and Faro [5], page 542, footnote 16.
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3 Ambiguity-Averse Con�dence Preferences

3.1 Axiomatic foundation and main representation

Chateauneuf and Faro [5] introduced and axiomatized a class of preferences in
which ambiguity is measured by a con�dence function ' : � ! [0; 1], i:e:; '
is a weak� regular fuzzy set of priors. The value of ' describes the decision
maker�s con�dence in the probabilistic model p; in particular '(p) = 1 means
that the decision maker has full con�dence in p. Preferences in this model are
represented by:

J(f) = min
p2L�0'

1

'(p)

Z
u(f)dp

where L�0' is a set of measures with con�dence above �0.
The con�dence function ' is not unique and an interesting characterization

is obtained for the maximal con�dence function '� : �! [0; 1] ;

'�(p) = inf
f2F

�R
u(f)dp

u(cf )

�
:

Also, by considering the con�dence function '� we are able to rewrite the
formula for the utility functional J as

J(f) = min
p2�

1

'�(p)

Z
u(f)dp

Such mapping '� could be viewed as the maximal con�dence function, spec-
ifying upper con�dence among priors that the decision maker may face in order
to be consistent with the utility functional J : F ! R.
In order to characterize the con�dence preferences model, Chateauneuf and

Faro [5] consider a preference relation % on F and impose a set of axioms as
described below8 .
First of all, there exists x� 2 X such that f % x� for every f belonging to

F . The constant act x� is called the worst consequence and in this case we say
that % is a bounded below preference relation.
Axiom 1 - Weak order non-degenerate. If f; g; h 2 F :

(completeness) either f % g or g % f
(transitivity) f % g and g % h imply f % h
there exists (f; g) 2 F2 such that (f; g) 2�

Axiom 2 - Continuity. For all f; g; h 2 F the sets:

f� 2 [0; 1] : �f + (1� �)g % hg, f� 2 [0; 1] : h % �f + (1� �)gg are closed.

Axiom 3 - Monotonicity. For all f; g 2 F :
8For a discussion on the meanings of the axioms, see [5], page 538.
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if f(s) % g(s) for all s 2 S then f % g:

Axiom 4 - Uncertainty aversion. If f; g 2 F and � 2 (0; 1) :

f s g ) �f + (1� �)g % f

Axiom 5 - Worst independence. For all f; g 2 F and � 2 (0; 1) :

f s g ) �f + (1� �)x� s �g + (1� �)x�:

Axiom 6 - Independence on X. For all x; y; z 2 X :

x s y ) 1
2x+

1
2z s

1
2y +

1
2z:

Axiom 7 - Bounded attraction for certainty. There exists � � 1 such that
for all f 2 F and x; y 2 X :

x s f ) 1
2x+

1
2y %

1
2f +

1
2 (
1
� y + (1�

1
� )x�):

As discussed previously, in the MEU model the beliefs are represented by
a nonempty, convex and weak� closed sets of priors. Such model implies in a
stronger set of axioms than the list of axioms related to con�dence preferences.
In fact, a necessary condition for a preference % to be representable by a multiple
prior functional J (f) = minp2C

R
u (f) dp is that such preference should satisfy

Axioms 1-4, and the certainty independence axiom that says:
Axiom 8 - Certainty independence. For all f; g 2 F , x 2 X and � 2 (0; 1) :

f s g ) �f + (1� �)x s �g + (1� �)x:

Next we recall the main results of Chateauneuf and Faro [5] regarding the
axiomatic foundation of con�dence preferences9 , with a special mention to the
MEU model:

Theorem 1 ([5], Theorem 3 and Remark 4) Let % be a binary relation on F ,
the following conditions are equivalent:
(i) The preference relation % satis�es Axioms A.1-A.7
(ii) There exist a unique non-constant a¢ ne function u : X ! R+, such that

u (x�) = 0, de�ned up to a positive multiplication, a minimal con�dence level
�0 2 (0; 1], and a regular� fuzzy set ' : �! [0; 1] such that, for all f; g 2 F

f % g , min
p2L�0'

1

'(p)

Z
u(f)dp � min

p2L�0'

1

'(p)

Z
u(g)dp.

Moreover, � in (i) and �0 in (ii) are linked by the relationship �0 = ��1.
Importantly it turns out that our model reduces to the MEU model as soon
as � = 1 and in this case the Axiom 8 (certainty independence) holds.

9The family of con�dence preferences represents an important subclass of ambiguity-averse
preferences and it has been studied in some topics of economic theory. See, for instance,
Cerreia-Vioglio et al [3], Ghirardato and Siniscalchi [10], Rigotti, Shannon and Strzalecki [17],
Strzalecki [23], Strzalecki and Werner [24], Martins-da-Rocha [16].
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Also, an interesting conjugation between any con�dence function and its
related functional representation can be achieved as:

Corollary 2 ([5], Corollary 5) Under the conditions of Theorem 1, there exists
a maximal con�dence function '� given by

'�(p) = inf
f2F

�R
u(f)dp

u(cf )

�
such that, for all f; g 2 F

f % g , min
p2L�0'�

1

'�(p)

Z
u(f)dp � min

p2L�0'�
1

'�(p)

Z
u(g)dp.

Furthermore, under the maximal con�dence function, the con�dence level �0 is
not relevant10 , i.e., for all f; g 2 F

f % g , min
p2�

1

'�(p)

Z
u(f)dp � min

p2�

1

'�(p)

Z
u(g)dp.

Chateauneuf and Faro [5] also investigated the ambiguity attitude featured
by the class of con�dence preferences . It will be useful to recall the obtained
results on this important topic:

Proposition 3 ([5], Proposition 7) Any con�dence preference % is ambiguity
averse.

Note that any con�dence preference can be identi�ed with a pair (u; '�) of an
a¢ ne utility index, such that u (x�) = 0, and a maximal con�dence function '�.
The following result shows that the comparative ambiguity attitudes featured
by con�dence preferences are determined by the con�dence function '�.

Proposition 4 ([5], Proposition 8) Given two con�dence preferences, the fol-
lowing conditions are equivalent:
(1) %1 is more ambiguity averse than %2;
(2) There exist pairs (u; '�i ) that represents %i(i = 1; 2), where '�1 � '�2.

This proposition says that more ambiguity averse preference relations are
characterized, up to index normalization, by greater functions '�. In particular,
note that if the pair (u1; '�1) represents a more ambiguity averse preference than
the pair (u2; '�2) ; then there exists � > 0 such that u2 = �u1 and '

�
1 � '�2.

10 In fact, the importance of �0 is implicit in the determination of the maximal con�dence
function.
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3.2 Characterizing a MEU preference through a family of
SEU agents.

Subjective expected utility is the most well-known model about decision under
uncertainty. The axiomatic foundation proposed by Anscombe and Aumann
[1] has as its key axiom a stronger condition than the certainty independence
axiom proposed in [11] saying that:
Axiom 9 - Independence. For all f; g; h 2 F and � 2 (0; 1) :

f s g ) �f + (1� �)h s �g + (1� �)h.

The usual idea concerning a decision maker consistent with subjective ex-
pected utility theory is that her behavior is as if she held a unique prior, well-
de�ned in the Anscombe and Aumann´s representation. However, if we consider
the maximal con�dence function related to a subjective expected utility decision
maker, we have that:

Lemma 5 ([5], Corollary 18) Let % be a bounded below preference relation that
satis�es Axioms 1-4 and Axiom 9, then % is a expected utility preference and
its maximal con�dence function '� := '�q satis�es

'�q(p) = inf
E2�

p(E)

q(E)
;8p 2 �

for some subjective probability q.

An interesting fact is that a SEU decision maker does not necessarily presents
non-null con�dence only in a unique prior q, but the con�dence among priors
other than q implies that such priors are negligible. However, small perturba-
tions in the decision maker´s con�dence functions might invalidate the possibil-
ity of a SEU representation.
Let '�C be the maximal con�dence function for a MEU preference with a set

C of multiple priors. Next, we present an interesting characterization of MEU:

Proposition 6 Let % be a bounded below preference relation that satis�es Ax-
ioms 1-4 and Axiom 8, then % has a maxmin expected utility representation
and its maximal con�dence function '�C is the upper envelope of a family of
SEU-maximal con�dence functions

�
'�q
	
q2C , i.e.,

'�C(p) = sup
q2C

'�q(p);8p 2 �:

This result sounds very natural because it says that the degree of con�-
dence for each plausible prior p 2 C for a multiple prior decision maker with
con�dence function '�C is determined by the maximal level of con�dence asso-
ciated to p across every subjective expected utility decision maker holding its
full con�dential prior in the set of multiple priors C.
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3.3 Approaching subjective probabilities

We now introduce a new class of preference induced by a special con�dence
function for which the SEU model can be obtained as a special case. In fact,
this class of preferences is very close to the standard expected utility case in
the sense that the degree of con�dence among the universe of probabilities laws
could be a small perturbation around the maximal con�dence function related
to the subjective expected utility case.
We assume there is an underlying probability measure q 2 �. Given a quasi-

concave continuous function � : [0; 1]! [0; 1] such that � (0) = 0 and � (1) = 1,
the �-con�dence level of a probability p 2 � is given by

'�q (p) = inf
E2�

�

�
p (E)

q (E)

�
.

We dub the mapping '�q : � ! R as a �-con�dence function (with respect to
q).

Lemma 7 A �-con�dence function is a regular* fuzzy set. Furthermore, if �
is concave then '�q is concave.

Thanks to Lemma 7, preferences represented by the functional

J(f) = min
p2L�0('

�
q )

1

'�q (p)

Z
u(f)dp;

where u : X ! R+ is an a¢ ne function, �0 2 (0; 1) is the minimal level of
con�dence11 , and � : [0; 1] ! [0; 1] is a concave and continuous function s.t.
� (0) = 0 and � (1) = 1, belongs to the class of preferences that satis�es the
Axioms A1-A7 as in our main result.
A �-con�dence preference (w.r.t. q and �0) is the preference relation %� on

F such that

f %� g , min
p2L�0('

�
q )

1

'�q (p)

Z
u(f)dp � min

p2L�0('
�
q )

1

'�q (p)

Z
u(g)dp.

Proposition 8 The �-con�dence function preferences %�are preferences
satisfying the Axioms A1-A7 with con�dence function given by '�q . In particular,
these preferences are
a) ambiguity neutral if �(x) = x on [0; 1];
b) strictly ambiguity averse if � (x0) > x0 for some x0 2 (0; 1)12 .

11The case �0 = 1 is trivial: It entails the SEU representation with subjective probability
q if [� (x) = 1 i¤ x = 1]; otherwise, we obtain the MEU model with set of priors given by�

p 2 � : '�q (p) 2 f� = 1g
	
.

12Since � (0) = 0, � (1) = 1; and � is concave, it is easy to see that the existence of some
x0 such that � (x0) > x0 implies that � (x) > x for any x 2 (0; 1). Also, strictly concavity in
� implies that � (x) < 1 for any x 2 (0; 1).
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We conclude this subsection by reporting that if we consider the CEU model
with convex capacity v : �! [0; 1] we might de�ne a �-con�dence function with
respect to v by

'�v (p) = inf
E2�

�

�
p (E)

v (E)

�
.

We note that analogue results as obtained for probabilities are true when we
consider convex capacities. Also, in a more general way it is possible to consider
the distortion of the MEU model generated by con�dence functions given by

'�C(p) = sup
q2C

'�q (p).

3.4 Entropic con�dence and Hansen and Sargent´s con-
straint preferences.

Relative entropy is a classical measure of "distance" between two probability
measures also known as Kullback-Leibler divergence. Formally, the relative
entropy with respect to a probability q 2 �� is the mapping R (� k q) from ��

to [0;1] satisfying

R (p k q) =
�R

ln
�
dp
dq

�
dp if p 2 �� (q) ;

1 otherwise.

Hansen and Sargent [12] proposed a criterion for decision making building on
the notion of relative entropy where the preference relation, called multiplier
preference, is induced by the following functional

V (f) =

�
min
p2��

Z
u(f)dp+ �R (p k q)

�
:

Such criterion captures in a particular way the lack of trust in a single prior: the
decision maker thinks that q is the most plausible true probability distribution,
but he considers that other probabilities p are also plausible and such plausibil-
ity is proportional to their respective relative entropy w.r.t. q. One important
fact is that multiplier preferences are a particular case of variational prefer-
ences as introduced by Maccheroni, Marinacci and Rustichini [15]. Variational
preferences are represented by the functional

V (f) = min
p2��

�Z
u(f)dp+ c (p)

�
;

where c : � ! [0;+1] is interpreted as an ambiguity index13 . So, variational
preferences recover the multiplier preferences model when c (p) = �R (p k q).
13An ambiguity index satis�es: the set fc = 0g is nonempty, c is convex and weak� lower

semicontinuous. The multiple prior model is also a particular case of variational preferences,
and it is obtained by taking the ambiguity index given by the indicator function

�C : p 2 �! �C (p) 2 f0;+1g ;
where �C (p) = 0 i¤ p 2 C.

11



Strzalecki [22] provided a set of behaviorally meaningful axioms as foundations
for the multiplier preferences.
Hence, as a particular case of variational preferences with behavior foun-

dations incompatible with the multiple prior model, we have that multiplier
preferences cannot be viewed as a particular case of preferences as in our main
result. However, the intuitive appeal of multiplier preferences goes in the same
direction as the notion of con�dence functions. So, what is the corresponding
con�dence function that can recover the same type of subjective plausibility as
captured by the ambiguity index given by the relative entropy R (p k q)? Next,
we propose the notion of entropic con�dence:

De�nition 9 Given an underlying probability measure q 2 �� we denote by
'e (p) the entropic con�dence where for any p 2 �

'e (p) =

�
exp (�R (p k q)) ; if p 2 �� (q)

0, otherwise.

Remark 10 Building on the results obtained by Dupuis and Ellis ([7], Lemma
1.4.3.), we have the following: Denote by � the class of all �nite measurable
partitions of S, given a probability measure q it is easy to show that the entropic
con�dence of p satisfying p� q is also given by

'e(p) = inf
�2�

Y
E2�

�
q (E)

p (E)

�p(E)
.

Moreover, we can rewrite the entropic con�dence as

'e (p) =

�
infa2B+

�
exp

�R
adp
� R
exp (�a) dq

	
; if p 2 �� (q)

0, otherwise.

Proposition 11 The entropic con�dence is a regular� fuzzy set.

An entropic con�dence function preference (w.r.t. q and �0) is the preference
relation %e on F such that

f %e g , min
p2L�0 ('e)

1

'e(p)

Z
u(f)dp � min

p2L�0 ('e)

1

'e(p)

Z
u(g)dp.

A direct consequence of Theorem 1 follows,

Proposition 12 The entropic con�dence function preferences %eare prefer-
ences satisfying the Axioms A1-A7, where � = ��10 , with a con�dence function
given by 'e.

This class of preferences models decision makers that behaves as if eval-
uating each distorced expected utility 'e (p)

�1 R
u (f) dp by considering only

priors p beloging to the set of con�dence priors fp 2 �� (q) : 'e (p) � �0g =

12



fp 2 �� (q) : R (p k q) � ln �g. Note that the lower con�dence level �0 is re-
lated to the constant given in Axiom 714 .
Hansen and Sargent [12] also proposed a subclass of multiple priors prefer-

ence called constraint preferences where the set of multiple priors C depends on
the relative entropy R (p k q) and on a positive constant r0:

C := fp 2 � : R (p k q) � r0g ;

so, the functional form satis�es

V (f) = min
p2fp2�:R(pkq)�r0g

Z
u (f) dp.

Since 'e(p) = exp (�R (p k q)), we obtain that entropic con�dence function
preferences can be rewritten as

J (f) = min
p2fp2�:R(pkq)�r0g

exp (R (p k q))
Z
u (f) dp;

where r0 := ln �, which is similar to constraint preferences because in both
cases we have the same set of multiple priors, but while in the Hansen and
Sargent´s constraint preferences every prior in C holds the same degree of plau-
sibility, in our case the level of relative entropic matters for choice. Also, note
that Proposition 4 indicated that an entropic con�dence preference cannot be
more ambiguity averse than the related multiple priors preference with the same
utility index u and same set of plausible priors C.

3.5 Monotone continuity

In order to derive subjective expected utility representations with countable
additive priors, Arrow [2] introduced the monotone continuity axiom saying,
Axiom 10 - For any acts f; g 2 F , x 2 X, and a sequence of events fEngn�1

such that En # ; (i.e., E1 � E2 � ::: and \n�1En = ;), then f � g implies that
there exists n0 � 1 such that xEn0f � g.
An important question concerning the representation of con�dence prefer-

ences (through its maximal con�dence function '�) is whether the monotone
continuity axiom is a su¢ cient condition for each con�dence level f'� � � > 0g
to be contained in the set of countable additive priors.
For instance, consider an expected utility agent with belief q 2 ��, i.e., an

agent that satis�es conditions of Lemma 5 and the monotone continuity axiom.
Now, let p be a probability measure given by p := 1

2q +
1
2p, where p 2 �n�

�.
Hence, p is not countable additive and

'�q(p) = inf
E2�

1
2q (E) +

1
2p (E)

q(E)

= inf
E2�

�
1

2
+
1

2

p (E)

q (E)

�
=
1

2
+
1

2
'�q (p) > 0.

14For a discussion concerning the meaning of such constant see Chateauneuf and Faro [5],
page 539
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Hence, the maximal con�dence function of a SEU monotone continuous pref-
erences does not discard �nitely additive priors, which could be important if
we consider distortions like '�q as discussed in Lemma 7. On the other hand,
by Cerreia-Vioglio et al [3], Corollary 22, for a monotone continuous con�dence
preference represented by (u; '; �0), it follows that for any � � �0 we have
f' � �g � ��.
Another interesting fact is presented in the following proposition:

Proposition 13 Consider a SEU preference with maximal con�dence function
'�q , where q is not countably additive. Then for any � 2 (0; 1]; the set of priors�
'�q � �

	
belongs to �n��.

A consequence of Proposition 13 is that if we consider q 2 �n��and the
con�dence function '�q as in the Proposition 8, we obtain that for any � 2
(0; 1] the set of priors

�
'�q � �

	
belongs to �n��, and this kind of con�dence

preferences may be useful in the study of some problems in economic theory
where the lack of countably additive has, for instance, meaningful consequences
for equilibrium prices.

4 Ambiguity-Loving Con�dence Preferences

Since the beginning we have been concentrate on the pessimistic attitudes to-
ward ambiguity, now we change our focus to optimist attitude. Indeed, in a
similar way of uncertainty averse preferences it is possible to provide axiomatic
foundations for ambiguity-loving behavior without extremely optimistic atti-
tudes. In fact, �rst we need to replace the uncertainty-aversion axiom of Gilboa
and Schmeidler [11] by uncertainty-loving as introduced by Schmeidler [20],
Axiom 4# - For any acts f; g 2 F and � 2 [0; 1],

f � g ) f % �f + (1� �) g.

Also, we should replace Axiom 7 (bounded attraction for certainty) by the
following axiom,
Axiom 7# - Bounded attraction for uncertainty : There exists a constant

� � 1 such that for any act f 2 F , and any consequences x; y 2 X :

f s x) 1

2
f +

1

2
y % 1

2
x+

1

2
(
1

�
y + (1� 1

�
)x�):

Building on Axiom 1,2, 3, 4#, 5, 6 and 7#, we obtain a preference relation
with a functional representation J : F ! R such that

J (f) = max
p2L�0'

' (p)

Z
u(f)dp:

14



More precisely, we obtain the following result15 :

Theorem 14 Let % be a binary relation on F , the following conditions are
equivalent:
(i) The preference relation % satis�es Axioms 1,2, 3, 4#, 5, 6 and 7#.
(ii) There exist a unique non-constant a¢ ne function u : X ! R+, such that

u (x�) = 0, de�ned up to a positive multiplication, a minimal con�dence level
�0 2 (0; 1], and a regular� fuzzy set ' : �! [0; 1] such that, for all f; g 2 F

f % g , max
p2L�0'

' (p)

Z
u(f)dp � max

p2L�0'
' (p)

Z
u(g)dp.

Moreover, � in (i) and �0 in (ii) are linked by the relationship �0 = �
�1.

Also, similarly to ambiguity-averse con�dence preferences, we obtain the
following conjugation between any con�dence function and its related functional
representation16 ,

Corollary 15 Under the conditions of Theorem 14, there exists a maximal con-
�dence function '# given by

'#(p) = inf
f2F

u (cf )R
u(f)dp

such that, for all f; g 2 F

f % g , max
p2L�0'#

'# (p)

Z
u(f)dp � max

p2L�0'#
'# (p)

Z
u(g)dp.

Furthermore, for all f; g 2 F

f % g , max
p2�

'# (p)

Z
u(f)dp � max

p2�
'# (p)

Z
u(f)dp.
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15We note that the functional I : B (u (X))! R de�ned by I (a) = J (f), where a = u (f),
satis�es the key condition: 8a, 8k

I (a+ k1S) � I (a) + ��1k.

And the proof follows in a similar way of ambiguity-averse con�dence preferences.
16We note that 1='# = supa2B+

�R
adp=I (a)

	
on

�
'# > 0

	
and this mapping is weak�

upper semicontinuous and convex. Hence, '# is lower semicontinous and quasi-concave. Also,
a similar argument as done in [5] shows that '# is a normal fuzzy set. The rest is very similar
to the case of ambiguity-averse con�dence preferences.
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5 APPENDIX

First, we recall the following important result that we will use in the next proof:

Theorem 16 (Sion [21], Corollary 3.3)Let M and N be convex spaces one of
which is compact, and f a function on M �N , quasi-concave and u.s.c. on M
and quasi-convex and l.s.c. on N , then supM infN f = infN supM f .

PROOF OF PROPOSITION 6: Denoting by '�C the maximal con�dence
function related to the multiple prior model, we know that there exists a func-
tional I : B+ ! R, where I (a) = minp2C

R
adp, such that

'�C (p) = inf
a2B+

R
adp

I (a)
= inf

a2B+

R
adp

minq2C
R
adq

= inf
a2B+

sup
q2C

R
adpR
adq

.

Now, we de�ne the mapping

�p (� o �) : ��B+ ! R

(q; a) 7! �p (q o a) :=
Z
adp=

Z
adq:

We note that

1. For any a 2 B+, the mapping �p (� o a) : � ! R is quasi�convex and
weakly� lower semi-continuous: For a 2 B+ such that

R
adp = 0 the as-

sertion is trivial. So, consider the case where
R
adp > 0. Recall that in this

case if
R
adq = 0 then

R
adp=

R
adq =1. But, in fact we can ignore this

possibility because infa2B+

�R
adp=I (a)

	
= inffI>0g

�R
adp=I (a)

	
. Also,

note that a 2 fI > 0g implies that
R
adq > 0 for any q 2 C. For quasi-

convexity consider a real number c and the related �c := fq 2 C : �p (q o a) � cg.
Let q1; q2 2 �c, so for i = 1; 2R

adpR
adqi

� c)
Z
adp � c

Z
adqi;

hence for any � 2 [0; 1] ;

�

Z
adp � �c

Z
adq1 and (1� �)

Z
adp � (1� �) c

Z
adq2;

so, Z
adp � �c

Z
adq1 + (1� �) c

Z
adq2 ;

i:e:;

R
adpR

ad (�q1 + (1� �) q2) � c ) �q1 + (1� �) q2 2 �c.

For lower semicontinuity, given a real number c consider the set �c. If
c � 0 then �c = ;. Now, if c > 0 and denoting by �a (q) :=

R
adq we

obtain that �c =
�
q 2 C : �a (q) � c�1

R
adp
	
= ��1a

�
[c�1

R
adp;1)

�
\C

which is � (B;�)-compact because �a (�) is � (B;�)-continuous and C is
� (B;�) -compact.
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2. For any q 2 C, the mapping �p (q o �) :
�
a 2 B+ :

R
adq > 0

	
! R is

quasi-concave and continuous: For continuity, note that each mapping a!R
adp and a!

R
adq is k�k1-continuous, so the mapping a!

R
adp=

R
adq

is k�k1-continuous on
�
a 2 B+ :

R
adq > 0

	
. For quasi-concavity, con-

sider a real number c and the set �c := fa 2 B+ : �p (q o a) � cg. For
a1; a2 such that

R
aidp=

R
aidq � c we obtain for any � 2 [0; 1]Z
�a1dp � c

Z
�a1dq andZ

(1� �) a2dp � c

Z
(1� �) a2dq;

so, Z �
�a1 + (1� �) a2

�
dp � c

Z �
�a1 + (1� �) a2

�
dq,

i.e., �a1 + (1� �) a2 2 �c.

Hence, the mapping �p (� o �) satis�es the conditions of the Minimax theorem
as shown by Sion [21] and presented before this proof. So,

'�C (p) = inf
a2B+

sup
q2C

R
adpR
adq

(minmax theorem)
= sup

q2C
inf
a2B+

R
adpR
adq

= sup
q2C

'�q(p).

PROOF OF LEMMA 7: '�q is normal because '
�
q (q) = 1

17 . Now, we note
that given an event E, the mapping

p 7! �

�
p (E)

q (E)

�
is weakly� continuous. So, the mapping

p 7! inf
E2�

�

�
p (E)

q (E)

�
is weakly� upper semicontinuous.
Consider p1; p2 2 � and � 2 [0; 1], and let p� = �p1 + (1 � �)p2. For all

E 2 �, p� (E) = �p1 (E) + (1� �)p2 (E) and

�

�
p� (E)

q (E)

�
= �

�
�p1 (E) + (1� �)p2 (E)

q (E)

�
� min

�
�

�
p1 (E)

q (E)

�
; �

�
p2 (E)

q (E)

��
:

Hence,

'�q (p
�) = inf

E2�
�

�
p� (E)

q (E)

�
� inf

E2�
min

�
�

�
p1 (E)

q (E)

�
; �

�
p2 (E)

q (E)

��
= min

�
inf
E2�

�

�
p1 (E)

q (E)

�
; inf
E2�

�

�
p2 (E)

q (E)

��
= min

�
'�q (p

1); '�q (p
2)
	
.

17Note that under the additional assumption saying that � (x) = 1 i¤ x = 1, we obtain that
'�q (p) = 1 i¤ p = q.
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By a similar reasoning, if � is concave then '�q is concave.
PROOF OF PROPOSITION 8: By Lemma 7 and Theorem 1, it is imme-

diate that �-con�dence function preferences satisfy Axioms A1-A7, hence this
class of preferences characterizes a subclass of ambiguity-averse preferences by
Propositions 3 and 4. Item (a) follows from Lemma 5 about the characterization
of SEU maximal con�dence functions. For item (b), note that %� is more am-
biguity averse than the SEU preference induced by the probability q (with the
same utility index) and denoted by %q. If the preference %qis not the unique
SEU preference for which %� can be comparable in the sense of the relation
"more ambiguity averse than", it is clear that %� is not a SEU preference. Oth-
erwise, since � (x) > x for any x 2 (0; 1), we obtain that for any p such that
'�q (p) 2 [�0; 1)

'�q(p) = inf
E2�

p (E)

q (E)
< �

�
inf
E2�

p (E)

q (E)

�
= inf

E2�
�

�
p (E)

q (E)

�
= '�q (p);

hence, %� is not a SEU preference.
PROOF OF PROPOSITION 11: Note that, since R (� k q) is convex and

weakly* lower semicontinous, we obtain that exp (R (� k q)) is also convex and
weakly* lower semicontinous, which entails that exp (�R (� k q)) = [exp (R (� k q))]�1
is weakly* upper semicontinous and quasiconcave.
PROOF OF PROPOSITION 13: Since q is not countably additive there

exists some sequence of events fAngn�1 such that An # ; where q (An) # � for
some � > 0. If p 2 �� we have that p (An) # 0 and

inf
E2�

p (E)

q (E)
� p (An)

q (An)
� p (An)

�
; 8n � 1:

Hence, 0 � '�q(p) �
p(An)
� ! 0.
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