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1 Introduction and the main result

Consider the generalized equation (GE)

Φ(x) +N(x) ∋ 0, (1.1)

where Φ : IRn → IRn is a (single-valued) mapping, and N is a set-valued mapping from IRn to
the subsets of IRn (i.e., N(x) ⊂ IRn for each x ∈ IRn). This problem setting is a very general
framework including the most important cases of variational problems [7]. In particular, the
case of usual nonlinear equation

Φ(x) = 0, (1.2)

corresponds to (1.1) with N(·) ≡ {0}.
In this note, we prove a stability result for solutions of GE (1.1), unifying two classical

facts of variational analysis. The first fact belongs to Robinson; it is a particular case of the
implicit function theorem proved in [11], and it relies on the following fundamental concept
assuming that Φ is differentiable at the solution in question (its Jacobian will be denoted by
Φ′).

Definition 1.1 ([11]) GE (1.1) is said to be strongly regular at a solution x̄ if there exist
neighborhoods U of x̄ and V of 0 such that for every η ∈ V , the perturbed (partially)
linearized GE

Φ(x̄) + Φ′(x̄)(x− x̄) +N(x) ∋ η

has in U a unique solution x(η), and the mapping η → x(η) : V → U is Lipschitz-continuous.

Theorem 1.1 ([11]) Let Φ : IRn → IRn be differentiable in a neighborhood of x̄ ∈ IRn, with
its derivative being continuous at x̄. Let N be a multifunction from IRn to the subsets of IRn.
Assume that x̄ is a strongly regular solution of the GE (1.1).

Then there exist neighborhoods U of x̄ and V of 0 such that for every y ∈ V there exists
a unique x(y) ∈ U satisfying the perturbed GE

Φ(x) +N(x) ∋ y, (1.3)

and the mapping y → x(y) : V → U is Lipschitz-continuous.

The second result is Clarke’s inverse function theorem [3] (see also [2, Theorem 7.1.1]),
which is concerned with the case of a usual nonlinear equation (1.2), but which assumes local
Lipschitz continuity of Φ rather than smoothness. In order to state this result, we need to
recall the related terminology.

The B-differential of Φ at x̄ ∈ IRn is the set

∂BΦ(x̄) = {J ∈ IRn×n | ∃ {xk} ⊂ SΦ such that {xk} → x̄, {Φ′(xk)} → J},

where SΦ is the set of points at which Φ is differentiable. Then the Clarke generalized
Jacobian of Φ at x̄ is given by

∂Φ(x̄) = conv ∂BΦ(x̄),

where conv stands for the convex hull.
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Definition 1.2 ([10]) The mapping Φ : IRn → IRn is referred to as CD-regular at x̄ ∈ IRn

if each matrix J ∈ ∂Φ(x̄) is nonsingular.

Theorem 1.2 ([3]) Let Φ : IRn → IRn be Lipschitz-continuous in a neighborhood of x̄ ∈ IRn.
Assume that x̄ is a solution of (1.2), and that Φ is CD-regular at x̄.

Then there exist neighborhoods U of x̄ and V of 0 such that for every y ∈ V there exists
a unique x(y) ∈ U satisfying

Φ(x) = y,

and the mapping y → x(y) : V → U is Lipschitz-continuous.

In order to state our main result, we introduce the following concept extending Defi-
nition 1.1 to the nonsmooth case, and at the same time, extending Definition 1.2 to the
setting of GE. Observe that the single-valued part of GE (1.4) below is affine, and hence
differentiable, with the Jacobian identically equal to J .

Definition 1.3 A solution x̄ of GE (1.1) is said to be CD-regular if for each J ∈ ∂Φ(x̄) the
GE

Φ(x̄) + J(x− x̄) +N(x) ∋ 0 (1.4)

is strongly regular at the solution x̄.

Theorem 1.3 (main result) Let Φ : IRn → IRn be Lipschitz-continuous in a neighborhood
of x̄ ∈ IRn. Let N be a multifunction from IRn to the subsets of IRn. Assume that x̄ is a
CD-regular solution of GE (1.1).

Then there exist neighborhoods U of x̄ and V of 0 such that for every y ∈ V there exists
a unique x(y) ∈ U satisfying the perturbed GE (1.3), and the mapping y → x(y) : V → U is
Lipschitz-continuous.

This theorem extends Theorem 1.1 to the case of a nonsmooth mapping Φ, and at the
same time, it extends Theorem 1.2 from usual equations to GEs.

The proof of Theorem 1.1 in [11] relies on the classical contraction mapping principle.
Theorem 1.2 can be proven in many ways, but perhaps one of the most prominent is the
following: one only needs to show that Φ is locally injective, and then apply Brouwer’s
invariance of domain theorem (see, e.g., [7, Theorem 2.1.11]) in order to show the existence of
solutions. However, apparently, neither the contraction mapping principle nor the invariance
of domain theorem are applicable in our general context, and we employ Brouwer’s fixed-point
theorem in the proof given in the next section.

The property asserted in Theorem 1.3, as well as in Theorems 1.1 and 1.2, is referred to
as strong metric regularity of the multifinction Φ+N at x̄ for 0 in the terminology of [5], or
the existence of Lipschitzian localization of the solution mapping in the terminology of [12].
Note that strong regularity in Definition 1.1 can be regarded as strong metric regularity for
the partially linearized multifunction Φ(x̄) + Φ′(x̄)(· − x̄) +N(·) at x̄ for 0.

Strong metric regularity has multiple applications, e.g., in numerical variational analysis;
see [4, Chapter 6], where it appears as an assumption in the analysis of conditioning issues,
and of local convergence and rate of convergence of some iterative schemes for GEs and of
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their particular instances. Therefore, Theorem 1.3 says that in the case of local Lipschitz
continuity of Φ, strong metric regularity is implied by CD-regularity. In its turn, the lat-
ter property has verifiable characterizations in some more specific problem settings, and in
particular, for the Karush–Kuhn–Tucker systems of mathematical programming problems
with Lipschitzian first derivatives but possibly without second derivatives. Specifically, in [9,
Proposition 3, Remark 1] it was demonstrated that in this case, CD-regularity is implied by
the linear independence constraint qualification and the strong second-order sufficient opti-
mality condition for all (infinitely many, in general) matrices in the generalized Hessian (that
is, the generalized Jacobian of the gradient) of the Lagrangian. Note, however, that it is
evidently sufficient to verify the latter assumption only for matrices in the B-differential of
the gradient of the Lagrangian, and the latter set can be much smaller and even finite. For
instance, it is always finite in the important case when the derivatives of the problem data are
piecewise smooth. In [8], these results are further applied to the very general Newton-type
scheme for GEs, and to augmented Lagrangian and linearly constrained Lagrangian methods
for optimization problems with specified smoothness properties.

The rest of the paper is organized as follows. In Section 2 we give a proof of Theo-
rem 1.3. In Section 3 we provide the implicit function counterpart of Theorem 1.3, allowing
for arbitrary Lipschitzian perturbations rather than right-hand side perturbations only.

2 Proof of the main result

The following observations will be used in the proof below.

Remark 2.1 Assuming Lipschitz continuity of Φ in a neighborhood of x̄, due to the fact that
the generalized Jacobian of a mapping with this property is compact [2, Proposition 2.6.2],
and that strong metric regularity is stable subject to small Lipschitzian perturbations of Φ
(see, e.g., [5, Theorem 1.4]), CD-regularity of the solution x̄ implies the following: there exist
neighborhoods O of x̄ and W of 0, and ℓ > 0, such that for all J ∈ ∂Φ(x̄) and all η ∈ W
there exists the unique φJ(η) ∈ O satisfying the GE

Φ(x̄) + J(x− x̄) +N(x) ∋ η, (2.1)

and the mapping φJ(·) : W → O is Lipschitz-continuous on W with the constant ℓ. This is
demonstrated, e.g., in [9, Proposition 2]. Observe that by necessity

φJ(0) = x̄ ∀J ∈ ∂Φ(x̄). (2.2)

We complete this remark with an argument demonstrating that φJ(·) is locally Lipschitz-
continuous with respect to J as well1. This can be shown in many ways. One possibility is to

1Recently it was pointed out by R. Cibulka and A.L. Dontchev in [1] that the earlier versions of this paper
were missing the argument demonstrating that φJ(·) is continuous with respect to J . By that time the author
was also informed about this gap in the proof by E.I. Uskov. This missing fact is quite simple, but the author
agrees that it cannot be considered completely evident. That is why this version of the paper provides a fix
for this gap, quite similar to the one suggested at Step 3 of the argument in [1], but demonstrating not merely
continuity but Lipschitz-continuity. The author is grateful to the colleagues mentioned above for pointing out
the need of such fix, and to A.S. Kurennoy and M.V. Solodov for useful discussions of this issue.
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apply the implicit function theorem from [11] to the GE (2.1) with a smooth base mapping,
considering (J, η) as a parameter. However, below we present a more direct argument.

Specifically, we will next directly verify that for the objects defined above in this remark,
there exists a neighborhood W̃ ⊂ W of 0 such that the mapping (J, η) → φJ(r) is Lipschitz-
continuous on ∂Φ(x̄)× W̃ .

Indeed, for every J1, J2 ∈ ∂Φ(x̄) and every η1, η2 ∈ W we have

Φ(x̄) + J1(φJ1(η
1)− x̄) +N(φJ1(η

1)) ∋ η1,

implying that

Φ(x̄) + J2(φJ1(η
1)− x̄) +N(φJ1(η

1)) ∋ η1 − (J1 − J2)(φJ1(η
1)− x̄). (2.3)

Furthermore, according to (2.2) and by Lipschitz continuity of φJ1(·) with a constant ℓ, it
holds that

∥φJ1(η
1)− x̄∥ = ∥φJ1(η

1)− φJ1(0)∥ ≤ ℓ∥η1∥. (2.4)

Since ∂Φ(x̄) is bounded, the latter implies the existence of a neighborhood W̃ ⊂ W of 0 such
that φJ1(η

1) ∈ O and η1−(J1−J2)(φJ1(η
1)− x̄) ∈ W provided η1 ∈ W̃ . Therefore, according

to (2.3),
φJ1(η

1) = φJ2(η
1 − (J1 − J2)(φJ1(η

1)− x̄)),

and hence,

∥φJ1(η
1)− φJ2(η

2)∥ = ∥φJ2(η
1 − (J1 − J2)(φJ1(η

1)− x̄))− φJ2(η
2)∥

≤ ℓ∥η1 − η2 − (J1 − J2)(φJ1(η
1)− x̄)∥

≤ ℓ(∥η1 − η2∥+ ℓ∥η1∥∥J1 − J2∥),

where the last equality is by (2.4). The needed property is now evident.

Remark 2.2 If Φ is Lipschitz-continuous in a neighborhood of x̄, then the following approx-
imation property is valid: for any ε > 0 there exists δ > 0 such that the inequality

min
J∈∂Φ(x̄)

∥Φ(x1)− Φ(x2)− J(x1 − x2)∥ ≤ ε∥x1 − x2∥ (2.5)

holds for all x1, x2 ∈ Bδ(x̄). Here and throughout Br(x) stands for the closed ball of radius
r > 0 centered at x ∈ IRn.

Indeed, by the mean-value theorem [2, Proposition 2.6.5], for any x1, x2 ∈ IRn close
enough to x̄ there exists

M ∈ conv
∪

t∈[0, 1]

∂Φ(tx1 + (1− t)x2) (2.6)

such that
Φ(x1)− Φ(x2) = M(x1 − x2). (2.7)
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By upper semicontinuity of generalized Jacobian [2, Proposition 2.6.2 (c)] it follows that for
any ε > 0 there exists δ > 0 such that

∂Φ(x) ⊂ ∂Φ(x̄) +Bε(0) ∀x ∈ Bδ(x̄),

and hence,

∂Φ(tx1 + (1− t)x2) ⊂ ∂Φ(x̄) +Bε(0) ∀x1, x2 ∈ Bδ(x̄), ∀ t ∈ [0, 1].

By convexity of generalized Jacobian (and hence, of the set ∂Φ(x̄)+Bε(0)) it further follows
that

conv
∪

t∈[0, 1]

∂Φ(tx1 + (1− t)x2) ⊂ ∂Φ(x̄) +Bε(0) ∀x1, x2 ∈ Bδ(x̄).

Therefore, according to (2.6), for any x1, x2 ∈ Bδ(x̄) there exists J ∈ ∂Φ(x̄) such that
∥M − J∥ ≤ ε, and according to (2.7),

∥Φ(x1)− Φ(x2)− J(x1 − x2)∥ = ∥(M − J)(x1 − x2)∥ ≤ ε∥x1 − x2∥.

Since ε is arbitrary, this proves (2.5), taking into account that ∂Φ(x̄) is compact [2, Propo-
sition 2.6.2 (a)] (and hence, minimum in (2.5) is attained).

When for some J it holds that for every ε > 0 there exists δ > 0 such that (2.5) holds
without the minimum, then Φ is strictly differentiable at x̄, and J is its true Jacobian, by
necessity. The point here is that in (2.5), J moves with x1 and x2, as it depends on them
through this minimum operation, and of course, (2.5) does not subsume any differentiability
of Φ at x̄.

Apparently, the property discussed in this remark was for the first time explicitly observed
in [6]. This property might suggest to pick up any J = Jx ∈ Φ(x̄) for which minimum in the
left-hand side of (2.5) is attained, and to consider the mapping h : IRn → IRn,

h(x) = Φ(x̄) + Jx(x− x̄),

as an estimator of Φ at x̄ (see [4, p. 37] for the definition of an estimator). However, unfortu-
nately, Theorem 2B.7 in [4] or similar results cannot be applied with this h. The problem is
that this theorem requires the estimator to be strict, that is, the error mapping Φ− h must
be Lipschitz-continuous in a neighborhood of x̄ with a small Lipschiz constant, which is not
guaranteed by the properties of Jx.

We proceed with the proof of Theorem 1.3.
For any J ∈ ∂Φ(x̄) and any y ∈ IRn, GE (1.3) is equivalent to (2.1) with η = ηJ(x, y),

where the mapping ηJ : IRn × IRn → IRn is defined by

ηJ(x, y) = −(Φ(x)− Φ(x̄)− J(x− x̄)) + y. (2.8)

Let O, W , ℓ > 0 and the family of mappings φJ(·) : W → O, J ∈ ∂Φ(x̄), be defined
according to Remark 2.1. Since ∂Φ(x̄) is compact, there exist δ > 0 and ρ > 0 such that for
any x ∈ Bδ(x̄) ⊂ O and any y ∈ Bρ(0) it holds that ηJ(x, y) ∈ W and ηJ is continuous on
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Bδ(x̄)× IRn, for all J ∈ ∂Φ(x̄), and therefore, for such x, y and J , (1.3) is further equivalent
to the usual equation

x = φJ(ηJ(x, y)). (2.9)

The main part of the proof consists of showing that with an appropriate choice of J (as a
function of x!), equation (2.9) is solvable.

Fix any ε ∈ (0, 1/(3ℓ)], and define the function ω : IRn → IR+,

ω(x) = min
J∈∂Φ(x̄)

∥Φ(x)− Φ(x̄)− J(x− x̄)∥. (2.10)

Then from Remark 2.2 it follows that by further reducing δ > 0, if necessary, we can ensure
that

ω(x) ≤ εδ ∀x ∈ Bδ(x̄). (2.11)

Now for each x ∈ Bδ(x̄) we will select the specific J = Jx ∈ ∂Φ(x̄) as follows. Consider
the parametric optimization problem

minimize ∥Φ(x)− Φ(x̄)− J(x− x̄)∥+ α∥J∥2∗
subject to J ∈ ∂Φ(x̄),

(2.12)

where x ∈ IRn and α > 0 are parameters, and ∥ · ∥∗ is any norm defined by an inner product
in IRn×n (e.g., the Frobenius norm). Let v : IRn × IR+ → IR+ be the optimal-value function
of this problem:

v(x, α) = min
J∈∂Φ(x̄)

(∥Φ(x)− Φ(x̄)− J(x− x̄)∥+ α∥J∥2∗). (2.13)

Then, according to (2.10), v(x, 0) = ω(x) for all x ∈ IRn, and since ∂Φ(x̄) is compact, for any
fixed ᾱ > 0 the function v is continuous on the compact set Bδ(x̄)× [0, ᾱ]. Since a continuous
function on a compact set is uniformly continuous, this further implies the existence of α > 0
such that

v(x, α) ≤ ω(x) + εδ ∀x ∈ Bδ(x̄). (2.14)

Furthermore, with this positive α fixed, the objective function of problem (2.12) is strongly
convex, and therefore, this problem with a convex feasible set has the unique solution Jx for
any x ∈ IRn. This implies that the mapping x → Jx : Bδ(x̄) → ∂Φ(x̄) is continuous.
Moreover, according to (2.11), (2.13) and (2.14),

∥Φ(x)− Φ(x̄)− Jx(x− x̄)∥ ≤ v(x, α) ≤ ω(x) + εδ ≤ 2εδ ∀x ∈ Bδ(x̄). (2.15)

For any y ∈ Bρ(0), define the mapping χy : Bδ(x̄) → IRn,

χy(x) = φJx(ηJx(x, y)). (2.16)
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By further reducing δ > 0 if necessary, so that εδ ≤ ρ, for any y ∈ Bεδ(0), from (2.2), (2.8)
and (2.15) we derive

∥χy(x)− x̄∥ = ∥φJx(ηJx(x, y))− φJx(0)∥
≤ ℓ∥ηJx(x, y)∥
≤ ℓ(∥Φ(x)− Φ(x̄)− Jx(x− x̄)∥+ ∥y∥)
≤ ℓ(2εδ + εδ)

= 3ℓεδ

≤ δ ∀x ∈ Bδ(x̄),

where the last inequality holds because ε ≤ 1/(3ℓ). Therefore, recalling again Remark 2.1,
χy continuously maps Bδ(x̄) into itself, and hence, by Brouwer’s fixed-point theorem (see,
e.g., [7, Theorem 2.1.18]), there exists x(y) ∈ Bδ(x̄) such that

x(y) = χy(x(y)).

According to (2.16), this means that for any y ∈ Bεδ(0) ⊂ Bρ(0) the point x(y) ∈ Bδ(x̄)
satisfies (2.9) with J = Jx(y), and as discussed above, this is equivalent to saying that x(y)
solves GE (1.3).

We thus proved that for any y ∈ Bεδ(0) GE (1.3) has a solution x(y) ∈ Bδ(x̄). It remains
to show that this solution is unique, and the mapping x(·) is Lipschitz-continuous on Bεδ(0),
provided δ > 0 is small enough. Then setting U = Bδ(x̄) and V = Bεδ(0), we will obtain the
needed conclusion.

We first show uniqueness. Suppose that there exist sequences {x1, k} ⊂ IRn, {x2, k} ⊂ IRn

and {yk} ⊂ IRn such that both {x1, k} and {x2, k} converge to x̄, {yk} converges to 0, and for
any k it holds that x1, k ̸= x2, k, and the points x1, k and x2, k solve (1.3) with y = yk.

According to Remark 2.2, for any k we can select Jk ∈ ∂Φ(x̄) such that

∥Φ(x1, k)− Φ(x2, k)− Jk(x
1, k − x2, k)∥ = o(∥x1, k − x2, k∥). (2.17)

Since ∂Φ(x̄) is compact, without loss of generality we can assume that {Jk} converges to
some J ∈ ∂Φ(x̄), and then (2.17) implies the estimate

∥Φ(x1, k)− Φ(x2, k)− J(x1, k − x2, k)∥ = o(∥x1, k − x2, k∥). (2.18)

Since x1, k ∈ Bδ(x̄), x
2, k ∈ Bδ(x̄) and yk ∈ Bρ(0) for all k large enough, we have that for

such k both points x1, k and x2, k satisfy (2.9) with y = yk. Employing (2.8) and (2.18), we
then have that

∥x1, k − x2, k∥ = ∥φJ(ηJ(x
1, k, yk))− φJ(ηJ(x

2, k, yk))∥
≤ ℓ∥ηJ(x1, k, yk)− ηJ(x

2, k, yk)∥
≤ ℓ∥Φ(x1, k)− Φ(x2, k)− J(x1, k − x2, k)∥
= o(∥x1, k − x2, k∥),

giving a contradiction.
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We proceed with demonstrating Lipschitz continuity of the solution mapping. Suppose
that there exist sequences {x1, k} ⊂ IRn, {x2, k} ⊂ IRn, and {y1, k} ⊂ IRn, {y2, k} ⊂ IRn, such
that both {x1, k} and {x2, k} converge to x̄, both {y1, k} and {y2, k} converge to 0, and for all
k it holds that y1, k ̸= y2, k, the point xi, k solves (1.3) with y = yi, k for i = 1, 2, and

∥x1, k − x2, k∥
∥y1, k − y2, k∥

→ ∞ as k → ∞. (2.19)

Repeating the argument used to establish uniqueness, we then obtain the estimate

∥x1, k − x2, k∥ = ∥φJ(ηJ(x
1, k, y1, k))− φJ(ηJ(x

2, k, y2, k))∥
≤ ℓ∥ηJ(x1, k, y1, k)− ηJ(x

2, k, y2, k)∥
≤ ℓ(∥Φ(x1, k)− Φ(x2, k)− J(x1, k − x1, k)∥+ ∥y1, k − y2, k∥)
= ℓ∥y1, k − y2, k∥+ o(∥x1, k − x2, k∥),

giving a contradiction with (2.19). This completes the proof.

3 The implicit function theorem

The implicit function theorem in [11] is formally more general than Theorem 1.1: it allows
for more general parametric perturbations. Theorem 1.2 also allows for an implicit function
counterpart; see [2, Corollary of Theorem 7.1.1]. In this section, we present the corresponding
extension of Theorem 1.3, covering both implicit function theorems by Robinson and Clarke.

Following [2], for a mapping Φ : IRs × IRn → IRn and a point (σ̄, x̄) ∈ IRs × IRn, by
πx∂Φ(σ̄, x̄) we denote the projection of the set ∂Φ(σ̄, x̄) in IRn×s× IRn×n onto IRn×n: the set
πx∂Φ(σ̄, x̄) consists of matrices J ∈ IRn×n such that the matrix (S J) belongs to ∂Φ(σ̄, x̄)
for some S ∈ IRn×s.

Definition 3.1 A solution x̄ of GE

Φ(σ, x) +N(x) ∋ 0 (3.1)

for σ = σ̄ is said to be parametrically CD-regular if for each J ∈ πx∂Φ(σ̄, x̄) the solution x̄
of the GE

Φ(σ̄, x̄) + J(x− x̄) +N(x) ∋ 0

is strongly regular.

Theorem 3.1 Let Φ : IRs× IRn → IRn be Lipschitz-continuous in a neighborhood of (σ̄, x̄) ∈
IRs × IRn. Let N be a multifunction from IRn to the subsets of IRn. Assume that x̄ is a
parametrically CD-regular solution of GE (3.1) for σ = σ̄.

Then there exist neighborhoods U of σ̄ and U of x̄ such that for every σ ∈ U there exists
a unique x(σ) ∈ U satisfying the GE

Φ(σ, x) +N(x) ∋ 0, (3.2)

and the mapping σ → x(σ) is Lipschitz-continuous in U .
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Theorem 3.1 can be derived from Theorem 1.3 by means of a well-known trick commonly
used to derive implicit function theorems from inverse function theorems. In particular, this
trick was employed in [2].

Define the auxiliary mapping Ψ : IRs × IRn → IRs × IRn by

Ψ(u) = (z, Φ(z, x)),

and the multifunction M from IRs × IRn to the subsets of IRs × IRn by

M(u) = {−σ̄} ×N(x),

where u = (z, x). Then ū = (σ̄, x̄) is a solution of the GE

Ψ(u) +M(u) ∋ 0. (3.3)

Moreover, the perturbed GE
Ψ(u) +M(u) ∋ v

with v = (σ − σ̄, 0), σ ∈ IRs, takes the form of the system

z = σ, Φ(z, x) +N(x) ∋ 0,

which is further equivalent to (3.2). Therefore, Theorem 3.1 will readily follow from Theo-
rem 1.3 if we will show that ū is a CD-regular solution of GE (3.3).

Evidently, ∂Ψ(ū) consists of matrices of the form

Λ =

(
I 0
S J

)
,

where I ∈ IRs×s is the unit matrix, and (S J) belongs to ∂Φ(σ̄, x̄). The GE

Ψ(ū) + Λ(u− ū) +M(u) ∋ w

with such matrix Λ, and with w = (ζ, ν) ∈ IRs × IRn, takes the form of the system

σ = σ̄ + ζ, Φ(σ̄, x̄) + S(σ − σ̄) + J(x− x̄) +N(x) ∋ ν,

which is further equivalent to the GE

Φ(σ̄, x̄) + J(x− x̄) +N(x) ∋ η

with η = ν−Sζ. From Definitions 1.1, 1.3 and 3.1, and from the inclusion J ∈ πx∂Φ(σ̄, x̄) it
now evidently follows that parametric CD-regularity of the solution x̄ of GE (3.1) for σ = σ̄
implies CD-regularity of the solution ū of GE (3.3). This completes the proof.
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