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Abstract

In this article Iterative regularization methods of Landweber-Kaczmarz type are consid-
ered for solving systems of ill-posed equations modeled (finitely many) by operators acting
between Banach spaces. Using assumptions of uniform convexity and smoothness on the
parameter space, we are able to prove a monotony result for the proposed method, as well
as to establish convergence (for exact data) and stability results (in the noisy data case).
Regularity assumptions on the solution, such as source conditions, are not required in the
analysis.

Keywords. Nonlinear systems; Banach spaces; Regularization; Landweber iteration, Kaczmarz method.

AMS Classification: 65J20 (47J06 47J25)

1 Introduction

1.1 Systems of nonlinear ill-posed equations

In this paper we propose a new method for obtaining regularized approximations of systems of
nonlinear ill-posed operator equations in Banach spaces.

The inverse problem we are interested in consists of determining an unknown physical quan-
tity x ∈ X from the set of data (y1, . . . , ym) ∈ Y m, where X, Y are Banach spaces, X uniformly
convex and smooth [6], and m ≥ 1.

In practical situations, we do not know the data exactly. Instead, we have only approximate
measured data yδi ∈ Y satisfying

‖yδi − yi‖ ≤ δi , i = 1, . . . ,m , (1)

with δi > 0 (noise level). The finite set of data above is obtained by indirect measurements of
the parameter, this process being described by the model

Fi(x) = yi , i = 1, . . . ,m , (2)

where Fi : Di ⊂ X → Y , and Di are the corresponding domains of definition.
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Standard methods for the solution of system (2) are based in the use of Iterative type regu-
larization methods [1, 8, 15, 21, 16] or Tikhonov type regularization methods [8, 18, 23, 20] after
rewriting (2) as a single equation F (x) = y, where

F := (F1, . . . , Fm) :
⋂m

i=1
Di =: D → Y m (3)

and y := (y1, . . . , ym). However these methods become inefficient if m is large or the evaluations
of Fi(x) and F ′

i (x)
∗ are expensive. In such a situation, Kaczmarz type methods [14, 17, 19]

which cyclically consider each equation in (2) separately are much faster [19] and are often the
method of choice in practice (see Subsection 1.3 below).

1.2 Regularization in Banach spaces

Ill-posed operator equations in Banach spaces is a fast growing area of research. Over the last
seven years several theoretical results have been derived in this field, e.g,
— The classical paper on regularization of ill-posed problems in Banach spaces by Resmerita
[20];
— Tikhonov regularization in Banach spaces is also investigated in [4], where two distinct iter-
ative methods for finding the minimizer of norm-based Tikhonov functionals are proposed and
analyzed (convergence is proven). Moreover, convergence rates results for Tikhonov regulariza-
tion in Banach spaces are considered in [13].
— In [21] a nonlinear extension of the Landweber method to linear operator equations in Banach
spaces is investigated using duality mappings. The same authors considered in [22] the solution
of convex split feasibility problems in Banach spaces by cyclic projections;
— In [16] the nonlinear Landweber method and the IRGN method are considered for a single
(nonlinear) operator equation in Banach spaces, and convergence results are derived. Moreover,
the applicability of the proposed methods to parameter identication problems for elliptic PDEs
is investigated;
— The Gauss-Newton method in Banach spaces is considered in [1] for a single operator equa-
tion in the special case X = Y . A convergence result is obtained and convergence rates (under
strong source conditions) are provided.

The starting point of our approach is the Landweber method [21, 16] for solving ill-posed
problems in Banach spaces.1 In the case of a single operator equation, i.e., m = 1 in (2), this
method is defined by

x∗n = Jp(xn)− µnF
′(xn)

∗Jr
(

F (xn)− yδ
)

, xn+1 = Jq(x
∗
n) , (4)

where F ′(x) is the Fréchet derivative of F at point x, and Jp, Jr, Jq are duality mappings from
X, Y , X∗ to their duals respectively. Moreover, x0 ∈ D and p, q, r ∈ (1,∞) satisfy p+ q = pq.

The step-size µn depends on the constant of the tangential cone condition, the constant of
the discrepancy principle, the residual at xn, and a constant describing geometrical properties
of the Banach spaces (see [21, Section 3]).

Convergence analysis for the linear case F ∈ L(X,Y ) can be found in [21], while convergence
for nonlinear operator equations is derived in [16], where X is assumed to be uniformly smooth
and uniformly convex (actually, X is assumed to be p-convex, which is equivalent to the dual
being q-smooth, i.e., there exists a constant Cq > 0 such that for all x∗, y∗ ∈ X∗ it follows
‖x∗ − y∗‖q ≤ ‖x∗‖q − q〈Jq(x

∗), y∗〉+Cq‖y
∗‖q; see [16, Section 2.2]). For a detailed definition of

smoothness, uniform smoothness and uniform convexity in Banach spaces, we refer the reader
to [6, 21].

1See also [1, 8, 15] for the analysis of the Landweber method in Hilbert spaces.

2



1.3 Landweber-Kaczmarz method in Banach spaces

The Landweber-Kaczmarz method in Banach spaces (LKB) consists in incorporating the (cyclic)
Kaczmarz strategy to the Landweber method depicted in in (4) for solving the system of operator
equations in (2).

This strategy is analog to the one proposed in [10, 9] regarding the Landweber-Kaczmarz
(LK) iteration in Hilbert spaces. See also [7] for the Steepest-Descent-Kaczmarz (SDK) itera-
tion, [11] for the Expectation-Maximization-Kaczmarz (EMK) iteration, [3] for the Levenberg-
Marquardt-Kaczmarz (LMK) iteration, and [2] for the iterated-Tikhonov-Kaczmarz (iTK) it-
eration.

Motivated by the ideas in the above mentioned papers (in particular by the approach in [11],
where X = L1(Ω) and convergence is measured with respect to the Kullback-Leibler distance),
we propose in this article the LBK method, which is sketched as follows:

x∗n = Jp(xn)− µnF
′
in
(xn)

∗Jr
(

Fin(xn)− yδin
)

, xn+1 = Jq(x
∗
n) , (5)

for n = 0, 1, . . . Moreover, in := (n mod m)+ 1 ∈ {1, ...,m}, and x0 ∈ X\{0} is an initial guess,
possibly incorporating a priori knowledge about the exact solution (which may not be unique).

Here µn ≥ 0 is chosen analogously as in (4) if ‖Fin(xn) − yδin‖ ≥ τδin (see Section 3 for
the precise definition of µn and the discrepancy parameter τ > 0). Otherwise, we set µn = 0.
Consequently, xn+1 = Jq(x

∗
n) = Jq(Jp(xn)) = xn every time the residual of the iterate xn w.r.t.

the in-th equation of system (2) drops below the discrepancy level given by τδin .
Due to the bang-bang strategy used in to define the sequence of parameters (µn), the iteration

in (5) is alternatively called loping Landweber-Kaczmarz method in Banach spaces.
As usual in Kaczmarz type algorithms, a group of m subsequent steps (beginning at some

integer multiple of m) is called a cycle. The iteration should be terminated when, for the first
time, all of the residuals ‖Fin(xn+1)−yδin‖ drop below a specified threshold within a cycle. That
is, we stop the iteration at the step

n̂ := min{ℓm+ (m− 1) : ℓ ∈ N , ‖Fi(xℓm+i−1)− yδi ‖ ≤ τδi , for 1 ≤ i ≤ m} . (6)

In other words, writing n̂ := ℓ̂m+ (m− 1), (6) can be interpreted as ‖Fi(xℓ̂m+i−1)− yδi ‖ ≤ τδi,
i = 1, . . . ,m. In the case of noise free data (δi = 0 in (1)) the stop criteria in (6) may never be
reached, i.e., n̂ = ∞ for δi = 0.

Outline of the manuscript

In Section 2 we introduce the notation used in this article and briefly recall some results on
convex analysis and Bregman distances, which are necessary for the analysis presented in the
forthcoming sections. In Section 3 the Landweber-Kaczmarz algorithm for solving systems of
nonlinear ill-posed equations in Banach spaces is formulated. Moreover, some preliminary results
are derived. Namely, boundedness and monotony of iteration error and residual. In Section 4 the
main results of the manuscript are presented. A convergence analysis of the proposed method
is given, and stability results are proven. Section 5 is devoted to conclusions and discussion of
future work perspectives.

2 Overview on convex analysis and Bregman distances

2.1 Convex analysis

Let X be a (nontrivial) real Banach space with topological dual X∗. By ‖ · ‖ we denote the
norm on X and X∗. The duality product on X ×X∗ is a bilinear symmetric mapping, denoted

3



by 〈·, ·〉, and defined as 〈x, x∗〉 = x∗(x), for all (x, x∗) ∈ X ×X∗.
Let f : X → (−∞,∞] be convex, proper and lower semicontinuous. Recall that f is convex

lower semicontinuous when its epigraph epi(f) := {(x, λ) ∈ X×R : f(x) ≤ λ} is a closed convex
subset of X × R. Moreover, f is proper when its domain dom(f) := {x ∈ X : f(x) < ∞} is
nonempty. The subdifferential of f is the (point-to-set) operator ∂f : X → 2X

∗
defined at x ∈ X

by
∂f(x) = {x∗ ∈ X∗ : f(y) ≥ f(x) + 〈x∗, y − x〉, ∀y ∈ X}. (7)

Notice that ∂f(x) = ∅ whenever x /∈ dom(f). The domain of ∂f is the set dom(∂f) = {x ∈
X : ∂f(x) 6= ∅}. Next we present a very useful characterization of ∂f using the concept of
Fenchel Conjugation. The Fenchel-conjugate of f is the lower semicontinuous convex function
f∗ : X∗ → (−∞,∞] defined at x∗ ∈ X∗ by

f∗(x∗) = sup
x∈X

〈x, x∗〉 − f(x). (8)

It is well known that f∗ is also proper whenever f is proper. It follows directly from (8) the
Fenchel-Young inequality

f(x) + f∗(x∗) ≥ 〈x, x∗〉, ∀(x, x∗) ∈ X ×X∗. (9)

Proposition 2.1. Let f : X → (−∞,∞] be proper convex lower semicontinuous and (x, x∗) ∈
X ×X∗. Then x∗ ∈ ∂f(x) ⇐⇒ f(x) + f∗(x∗) = 〈x, x∗〉.

Proof. Assume first that x∗ ∈ ∂f(x). Then 〈x, x∗〉 ≥ f(x) + (〈y, x∗〉 − f(y)) , ∀y ∈ X. Taking
the supremum over all y ∈ X on the right hand side of the above inequality we obtain 〈x, x∗〉 ≥
f(x) + f∗(x∗). Using (9) we obtain the desired identity. The proof of the reverse inequality
follows the same reasoning.

An important example considered in this article is given by f(x) = p−1‖x‖p, where p ∈
(1,∞). In this particular case, the following result can be found in [6].

Proposition 2.2. Let p ∈ (1,∞) and f : X ∋ x 7→ p−1‖x‖p ∈ R. Then

f∗ : X∗ → R, x∗ 7→ q−1‖x∗‖q , where p+ q = pq .

For p ∈ (1,∞), the duality mapping Jp : X → 2X
∗
is defined by

Jp := ∂p−1‖ · ‖p .

From the proposition above, we conclude that

x∗ ∈ Jp(x) ⇐⇒ p−1‖x‖p + q−1‖x∗‖q = 〈x, x∗〉 , p+ q = pq.

It follows from the above identity that Jp(0) = {0}. On the other hand, when x 6= 0, Jp(x) may
not be singleton.

Proposition 2.3. Let X and the duality mapping Jp be defined as above. The following identities
hold:

Jp(x) = {x∗ ∈ X∗ : ‖x∗‖ = ‖x‖p−1 and 〈x, x∗〉 = ‖x‖ ‖x∗‖}

= {x∗ ∈ X∗ : ‖x∗‖ = ‖x‖p−1 and 〈x, x∗〉 = ‖x‖p}

= {x∗ ∈ X∗ : ‖x∗‖ = ‖x‖p−1 and 〈x, x∗〉 = ‖x∗‖q} .

Moreover, Jp(x) 6= ∅ for all x ∈ X.
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Proof. See [21, Section 2].

Since f(x) = p−1‖x‖p is a continuous convex functions, Jp(x) is a singleton at x ∈ X iff f
is Gâteaux differentiable at x [5, Corollary 4.2.5]. This motivates us to consider X a smooth
Banach space, i.e., a Banach space having a Gâteaux differentiable norm ‖ · ‖X on X\{0}. As
already observed, Jp(0) = {0} in any Banach space. In particular in a smooth Banach space
f(x) = p−1‖x‖p is Gâteaux differentiable everywhere.

The next theorem describes a coercivity result related to geometrical properties of uniformly
smooth Banach spaces. For details on the proof (as well as the precise definition of the constant
Gq) we refer the reader to [21, Section 2.1].

Theorem 2.4. Let X be uniformly convex, q ∈ (1,∞) and ρX∗(·) the smoothness modulus of
X∗ [6]. There exists a positive constant Gq such that the function

σ̃(x∗, y∗) := q Gq

∫ 1

0
(‖x∗ − ty∗‖ ∨ ‖x∗‖)q t−1 ρX∗

(

t‖y∗‖ / 2(‖x∗ − ty∗‖ ∨ ‖x∗‖)
)

dt

satisfies
‖x∗‖q − q 〈Jq(x

∗), y∗〉+ σ̃q(x
∗, y∗) ≥ ‖x∗ − y∗‖q , ∀ x∗, y∗ ∈ X∗ .

2.2 Bregman distances

Let f : X → (−∞,∞] be a proper, convex and lower semicontinuous function which is Gâteaux
differentiable at int(dom(f)). Let f ′ denotes its Gâteaux derivative. The Bregman distance
induced by f is defined as Df : dom(f)× int(dom(f)) → R

Df (y, x) = f(y)−
(

f(x) + 〈f ′(x), y − x〉
)

.

The following proposition is a useful characterization of Bregman distances using conjugate
function.

Proposition 2.5. Let f : X → (−∞,∞] be a proper lower semicontinuous convex function
which is Gâteaux differentiable at int(dom(f)). Then

Df (y, x) = f(y) + f∗(f ′(x))− 〈f ′(x), y〉, ∀(y, x) ∈ dom(f)× int(dom(f)).

In the particular case f(x) = p−1‖x‖p (p ∈ (1,∞)) we use the notation Dp instead of Df .

Corollary 2.6. Let X be a smooth Banach space. Then Jp : X → X∗ is a single-valued mapping
for which Dp : X ×X → R satisfies

Dp(y, x) = p−1‖y‖p + q−1‖Jp(x)‖
q − 〈y, Jp(x)〉 = p−1‖y‖p + q−1‖x‖p − 〈y, Jp(x)〉.

Corollary 2.7. Let X be a smooth Banach space. Then Jp : X → X∗ is a single-valued mapping
for which Dp : X ×X → R satisfies

Dp(y, x) = q−1 (‖x‖p − ‖y‖p) + 〈Jp(y)− Jp(x), y〉.
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3 A Landweber-Kaczmarz type algorithm in Banach spaces (LKB)

In this section we introduce an algorithm for solving the system of nonlinear ill-posed equations
(2) with data satisfying (1). We denote by

B
1
p(x, ρ) = {y ∈ X : Dp(x, y) ≤ ρ} , B

2
p(x, ρ) = {y ∈ X : Dp(y, x) ≤ ρ} .

the balls with respect to the Bregman distance Dp(·, ·).
A solution of (2) is any x̄ ∈ D satisfying simultaneously the operator equations in (2), while

a minimum-norm solution of (2) in S (S ⊂ X) is any solution x† ∈ S satisfying

‖x†‖ = min {‖x‖ : x ∈ S is a solution of (2)} .

Assumption 3.1. Let p, q, r ∈ (1,∞) be given with p + q = pq. The following assumptions
will be required in the forthcoming analysis:

(A0) Each operator Fi is of class C1 in D. Moreover, the system of operator equations (2) has
a solution x̄ ∈ X satisfying x0 ∈ B

1
p(x̄, ρ̄) ⊂ D, for some ρ̄ > 0, where x0 will be used as initial

guess of the Landweber-Kaczmarz algorithm.

(A1) The family {Fi}1≤i≤m satisfies the tangential cone condition in B
1
p(x̄, ρ̄), i.e., there exists

η ∈ (0, 1) such that

‖Fi(y)− Fi(x)− F ′
i (x)(y − x)‖ ≤ η ‖Fi(y)− Fi(x)‖ ,

for all x, y ∈ B
1
p(x̄, ρ̄), i = 1, · · · ,m.

(A2) The family {Fi}1≤i≤m satisfies the tangential cone condition in B
2
p(x0, ρ0) ⊂ D for some

ρ0 > 0, i.e., there exists η ∈ (0, 1) such that

‖Fi(y)− Fi(x)− F ′
i (x)(y − x)‖ ≤ η ‖Fi(y)− Fi(x)‖ ,

for all x, y ∈ B
2
p(x0, ρ0), i = 1, · · · ,m.

(A3) For every x ∈ B
1
p(x̄, ρ̄) we have ‖F ′

i (x)‖ ≤ 1, i = 1, 2, · · · ,m.

In the sequel we formulate our Landweber-Kaczmarz algorithm for approximating a solution
of (2), with data given as in (1):

ALGORITHM 3.1. Under assumptions (A0), (A1), choose c ∈ (0, 1), and τ ∈ (0,∞) such
that β := η + τ−1(1 + η) < 1.

Step 0: Set n = 0 and take x0 6= 0 satisfying (A0) and Dp(x̄, x0) ≤ p−1‖x̄‖p;

Step 1: Set in = n(modm) + 1 and evaluate the residual Rn = Fin(xn)− yδin ;

Step 2: IF (‖Rn‖ ≤ τδin) THEN
µn := 0;

ELSE
Find τn ∈ (0, 1] solving the equation

ρX∗(τn) τ
−1
n =

(

c(1− β) ‖Rn‖
[

2q Gq(1 ∨ ‖F ′
in
(xn)‖) ‖xn‖

]−1
)

∧ ρX∗(1) ; (10)

µn := τn‖xn‖
p−1 /

[

(1 ∨ ‖F ′
in
(xn)‖) ‖Rn‖

r−1
]

;
ENDIF

x∗n := Jp(xn)− µnF
′
in
(xn)

∗Jr(Fin(xn)− yδin);
xn+1 = Jq(x

∗
n) ; (11)
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Step 3: IF (in = m) AND (xn+1 = xn = · · · = xn−(m−1)) THEN STOP;

Step 4: SET n = n+ 1; GOTO Step 1.

The next remark guarantees that the above algorithm is well defined.

Remark 3.1. It is worth noticing that a solution τn ∈ (0, 1] of equation (10) can always be
found. Indeed, since X∗ is uniformly smooth, the function (0,∞) ∋ τ 7→ ρX∗(τ)/τ ∈ (0, 1] is
continuous and satisfies limτ→0 ρX∗(τ)/τ = 0 (see, e.g., [21, Definition 2.1]). For each n ∈ N,
define

λn :=
(

c(1− β) ‖Rn‖
[

2q Gq(1 ∨ ‖F ′
in
(xn)‖) ‖xn‖

]−1
)

∧ ρX∗(1) . (12)

It follows from [21, Section 2.1] that ρX∗(1) ≤ 1. Therefore, λn ∈ (0, 1], n ∈ N and we can
can find σn ∈ (0, 1] satisfying ρX∗(σn)/σn < λn ≤ ρX∗(1). Finally, the mean value theorem
guarantees the existence of corresponding τn ∈ (0, 1], such that λn = ρx∗(τn)/τn, n ∈ N.

Algorithm 3.1 should be stopped at the smallest iteration index n̂ ∈ N of the form n̂ =
ℓ̂m+ (m− 1), ℓ̂ ∈ N, which satisfies

‖Fin(xn)− yδin‖ ≤ τδin , n = ℓ̂m, . . . , ℓ̂m+ (m− 1) (13)

(notice that in̂ = m). In this case, xn̂ = xn̂−1 = · · · = xn̂−(m−1) within the ℓ̂th cycle. The next
result guarantees monotonicity of the iteration error (w.r.t. the Bregman distance Dp) until the
discrepancy principle in (13) is reached.

Lemma 3.2 (Monotonicity). Let assumptions (A0), (A1) be satisfied and (xn) be a sequence
generated by Algorithm 3.1. Then

Dp(x̄, xn+1) ≤ Dp(x̄, xn) , n = 0, 1, · · · , n̂ ,

where n̂ = ℓ̂m + (m − 1) is defined by (13). From the above inequality, it follows that xn ∈
B

1
p(x̄, ρ̄) ⊂ D, n = 0, 1, · · · , n̂.

Proof. Let 0 ≤ n ≤ n̂ and assume that xn is a nonzero vector satisfying xn ∈ B
1
p(x̄, ρ̄). From

assumption (A0) follows xn ∈ D.
If ‖Rn‖ ≤ τδin , then xn+1 = xn and the lemma follows trivially. Otherwise, it follows from

Corollary 2.6 that

Dp(x̄, xn+1) = p−1‖x̄‖p + q−1‖Jp(xn+1)‖
q − 〈x̄, Jp(xn+1)〉 . (14)

Since Rn = Fin(xn)− yδin , we conclude from (11) and Jq = (Jp)
−1 [6] that

Jp(xn+1) = Jp(xn) − µnF
′
in
(xn)

∗Jr(Rn) .

Thus, it follows from Theorem 2.4 that

‖Jp(xn+1)‖
q = ‖Jp(xn)− µnF

′
in(xn)

∗Jr(Rn)‖
q

≤ ‖Jp(xn)‖
q − qµn〈Jq(Jp(xn)), F

′
in(xn)

∗Jr(Rn)〉+ σ̃q(Jp(xn), µnF
′
in(xn)

∗Jr(Rn))

= ‖Jp(xn)‖
q − qµn〈xn, F

′
in(xn)

∗Jr(Rn)〉+ σ̃q(Jp(xn), µnF
′
in(xn)

∗Jr(Rn)) . (15)

In order to estimate the last term on the right hand side of (15), notice that for all t ∈ [0, 1] the
inequality

‖Jp(xn)− tµnF
′
in
(xn)

∗Jr(Rn)‖ ∨ ‖Jp(xn)‖ ≤ ‖xn‖
p−1 + µn(1 ∨ ‖F ′

in
(xn)‖)‖Rn‖

r−1

≤ (1 + τn)‖xn‖
p−1 ≤ 2‖xn‖

p−1
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holds true (to obtain the first inequality we used Proposition 2.3).
Moreover, ‖Jp(xn) − tµnF

′
in
(xn)

∗Jr(Rn)‖ ∨ ‖Jp(xn)‖ ≥ ‖Jp(xn)‖ = ‖xn‖
p−1. These last two

estimates together with the monotonicity of ρX∗(t)/t, it follows that (see Theorem 2.4)

σ̃q(Jp(xn), µnF
′
in
(xn)

∗Jr(Rn)) ≤ qGq

∫ 1

0

(2‖xn‖
p−1)q

t
ρX∗

(

tµn(1 ∨ ‖F ′
in
(xn)‖)‖Rn‖

r−1

‖xn‖p−1

)

dt .

Consequently,

σ̃q(Jp(xn), µnF
′
in
(xn)

∗Jr(Rn)) ≤ 2q q Gq ‖xn‖
p

∫ 1

0
ρX∗(tτn)/tdt

= 2q q Gq ‖xn‖
p

∫ τn

0
ρX∗(t)/tdt

≤ 2q q Gq ρX∗(τn)/τn‖xn‖
p

∫ τn

0
dt

= 2q q Gq ρX∗(τn)‖xn‖
p . (16)

Now, substituting (16) in (15) we get the estimate

‖Jp(xn+1)‖
q ≤ ‖Jp(xn)‖

q − qµn〈xn, F
′
in
(xn)

∗Jr(Rn)〉 + q 2q Gq ρX∗(τn)‖xn‖
p .

From this last inequality, Corollary 2.6 and (14) we obtain

Dp(x̄, xn+1) ≤ Dp(x̄, xn)− µn 〈xn − x̄, F ′
in
(xn)

∗Jr(Rn)〉+ 2q Gq ρX∗(τn)‖xn‖
p. (17)

Next we estimate the term 〈xn − x̄, F ′
in
(xn)

∗Jr(Rn)〉 in (17). Since x̄, xn ∈ B
1
p(x̄, ρ̄), it follows

from (A1) and simple algebraic manipulations (including Proposition 2.3) that

〈x̄− xn, F
′
in(xn)

∗Jr(Rn)〉 = 〈yin − Fin(xn)− F ′
in(xn)(x̄− xn),−Jr(Rn)〉 − 〈R̃n, Jr(Rn)〉

≤ η‖R̃n‖‖Jr(Rn)‖ − 〈Rn, Jr(Rn)〉 + 〈yin − yδin , Jr(Rn)〉

≤ η (‖Rn‖+ δin) ‖Rn‖
r−1 − ‖Rn‖

r + δin‖Rn‖
r−1

= (η(‖Rn‖+ δin) + δin)‖Rn‖
r−1 − ‖Rn‖

r

≤ [(η + τ−1(1 + η)] ‖Rn‖) ‖Rn‖
r−1 − ‖Rn‖

r

= −(1− β)‖Rn‖
r ,

where R̃n := Fin(xn) − yin and β > 0 is defined as in Algorithm 3.1. Substituting this last
inequality in (17) yields

Dp(x̄, xn+1) ≤ Dp(x̄, xn) − (1− β)µn‖Rn‖
r + 2q Gq ρX∗(τn) ‖xn‖

p. (18)

Moreover, from the explicit formula for µn and τn (see Algorithm 3.1) we can estimate the last
two terms on the right hand side of (18) by

−(1− β)µn‖Rn‖
r + 2q Gq ρX∗(τn)‖xn‖

p = −(1− β)
τn‖xn‖

p−1‖Rn‖

1 ∨ ‖F ′
in
(xn)‖

+ 2q Gq ρX∗(τn)‖xn‖
p

= −(1− β)
τn‖xn‖

p−1‖Rn‖

1 ∨ ‖F ′
in
(xn)‖

(

1−
2q Gq(1 ∨ ‖F ′

in
(xn)‖)‖xn‖

(1− β)‖Rn‖

ρX∗(τn)

τn

)

≤ −(1− β)(1− c)
τn‖xn‖

p−1‖Rn‖

1 ∨ ‖F ′
in
(xn)‖

. (19)
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Finally, substituting (19) in (18) we obtain

Dp(x̄, xn+1) ≤ Dp(x̄, xn)− (1− β)(1 − c)τn‖xn‖
p−1‖Rn‖

[

1 ∨ ‖F ′
in
(xn)‖

]−1
, (20)

concluding the proof.

Remark 3.3. In the proof of Lemma 3.2 we used the fact that the elements xn ∈ X generated
by Algorithm 3.1 are a nonzero vectors. This can be verified by an inductive argument. Indeed,
x0 6= 0 is chosen in Algorithm 3.1. Assume xk 6= 0, k = 0, . . . , n. If ‖Rn‖ ≤ τδin , then
xn+1 = xn is also a nonzero vector. Otherwise, ‖Rn‖ > τδin > 0 and it follows from (20)
that Dp(x̄, xn+1) < Dp(x̄, xn) ≤ · · · ≤ Dp(x̄, x0) ≤ p−1‖x̄‖p (the last inequality follows from
the choice of x0 in Algorithm 3.1). If xn+1 were the null vector, we would have p−1‖x̄‖p =
Dp(x̄, 0) < Dp(x̄, xn) ≤ p−1‖x̄‖p (the identity follows from Corollary 2.6), which is clearly a
contradiction. Therefore, xn is a nonzero vector, for n = 0, 1, . . . , n̂.

In the case of exact data (δi = 0), we have xn 6= 0, n ∈ N.

The next lemma guarantees that, in the case of noisy data, Algorithm 3.1 is stopped after a
finite number of cycles, i.e., n̂ < ∞ in (13).

Lemma 3.4. Let assumptions (A0), (A1), (A3) be satisfied and (xn) be a sequence generated
by Algorithm 3.1. Then

∑

n∈Σ̂

τn‖xn‖
p−1‖Rn‖ ≤ (1 − β)−1(1− c)−1Dp(x̄, x0) , (21)

where Σ̂ := {n ∈ {0, 1, · · · , n̂− 1} : ‖Rn‖ > τδin}. Additionally,
i) In the noisy data case, min {δi}1≤i≤m > 0, Algorithm 3.1 is stopped after finitely many steps;
ii) In the noise free case we have limn→∞ ‖Rn‖ = 0.

Proof. Given n ∈ Σ̂, it follows from (20) and (A3) that

(1− β)(1 − c)τn‖xn‖
p−1‖Rn‖ ≤ Dp(x̄, xn)−Dp(x̄, xn+1) . (22)

Moreover, if n 6∈ Σ̂ and n < n̂, we have 0 ≤ Dp(x̄, xn) − Dp(x̄, xn+1). Inequality (21) follows
now from a telescopic sum argument using the above inequalities.

Add i): Assume by contradiction that Algorithm 3.1 is never stopped by the discrepancy prin-
ciple. Therefore, n̂ defined in (13) is not finite. Consequently, Σ̂ is an infinite set (at least one
step is performed in each iteration cycle).
Since (Dp(x̄, xn))n∈Σ̂ is bounded, it follows that (‖xn‖)n∈Σ̂ is bounded [21, Theorem 2.12(b)].
Therefore, the sequence (λn)n∈Σ̂ in (12), is bounded away from zero (see (10) and Remark 3.1),
from what follows that (τn)n∈Σ̂ is bounded away from zero as well. From this fact

and (21) we obtain
∑

n∈Σ̂

‖xn‖
p−1 < ∞ .

Consequently, (xn)n∈Σ̂ converges to zero in X and, arguing with the continuity of Dp(x̄, ·) [21,
Theorem 2.12(c)]), we conclude

p−1‖x̄‖p = Dp(x̄, 0) = lim
n∈Σ̂

Dp(x̄, xn) ≤ Dp(x̄, xn′+1) < Dp(x̄, xn′) ≤ p−1‖x̄‖p ,

where n′ ∈ N is an arbitrary element of Σ̂ (notice that (20) holds with strict inequality for all
n′ ∈ Σ̂). This is clearly a contradiction. Thus, n̂ must be finite.
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Add ii): Notice that in the noise free case we have δi = 0, i = 1, 2, · · · ,m. In this particular
case, (22) holds for all n ∈ N. Consequently,

∑

n∈N

τn‖xn‖
p−1‖Rn‖ ≤ (1− β)−1(1− c)−1Dp(x̄, x0) .

Assume the existence of ε > 0 such that the inequality ‖Rnk
‖ > ε holds true for some subse-

quence, and define Σ̂ := {nk; k ∈ N}. Using the same reasoning as in the proof of the second
assertion we arrive at a contradiction, concluding the proof.

4 Convergence analysis

In this section the main results of the manuscript are presented. A convergence analysis of the
proposed method is given, and stability results are derived. We start the presentation discussing
a result related to the existence of minimum-norm solutions.

Lemma 4.1. Assume the continuous Fréchet differentiability of the operators Fi in D. More-
over, assume that (A2) is satisfied and also that problem (2) is solvable in B

2
p(x0, ρ0), where

x0 ∈ X and ρ0 > 0 is chosen as in (A2).
i) There exists a unique minimum-norm solution x† of (2) in B

2
p(x0, ρ0).

ii) If x† ∈ int
(

B
2
p(x0, ρ0)

)

, it can be characterized as the solution of (2) in B
2
p(x0, ρ0) satisfying

the condition
Jp(x

†) ∈ N(F ′
i (x

†))⊥, i = 1, 2, · · · ,m (23)

(here A⊥ ⊂ X∗ denotes the annihilator of A ⊂ X).

Proof. As an immediate consequence of (A2) we obtain [12, Proposition 2.1]

Fi(z) = Fi(x) ⇐⇒ z − x ∈ N(F ′
i (x)) , i = 1, 2, · · ·m, (24)

for x, z ∈ B
2
p(x0, ρ0). Next we define for each x ∈ B

2
p(x0, ρ0) the set Mx := {z ∈ B

2
p(x0, ρ0) :

Fi(z) = Fi(x), i = 1, 2, · · · ,m}. Notice that Mx 6= ∅, for all x ∈ B
2
p(x0, ρ0). Moreover, it follows

from (24) that

Mx =

m
⋂

i=1

(

x+N(F
′

i (x))
)

∩B
2
p(x0, ρ0). (25)

Since Dp(·, x0) is continuous (see Corollary 2.6) and B
2
p(x0, ρ0) is convex (by definition), it

follows from (25) that Mx is nonempty closed and convex, for all x ∈ B
2
p(x0, ρ0). Therefore,

there exists a unique x† ∈ X corresponding to the projection of 0 on Mx̄, where x̄ is a solution
of (2) in B

2
p(x0, ρ0) [6]. This proves the first assertion.

Add ii): From the definition of x† and Mx̄ = Mx† , we conclude that [21, Theorem 2.5 (h)]

〈Jp(x
†), x†〉 ≤ 〈Jp(x

†), y〉 , ∀y ∈ Mx† . (26)

From the assumption x† ∈ int
(

B
2
p(x0, ρ0)

)

, it follows that given h ∈ ∩m
i=1N(F ′

i (x
†)), there exists

a ε0 > 0 such that
x† + εh , x† − εh ∈ Mx† , ∀ε ∈ [0, ε0) . (27)

Thus, (23) follows from (26), (27) in an straightforward way. In order to prove uniqueness, let
x̃ be any solution of (2) in B

2
p(x0, ρ0) satisfying

Jp(x̃) ∈ N(F
′

i (x̃))
⊥ , i = 1, 2, · · · ,m . (28)
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Let i ∈ {1, 2, · · · ,m}. We claim that

N(F
′

i (x
†)) ⊂ N(F

′

i (x̃)). (29)

Indeed, let h ∈ N(F
′

i (x
†)) and set xθ = (1 − θ)x† + θx̃, with θ ∈ R. Since x† ∈ int

(

B
2
p(x0, ρ0)

)

,
we obtain a θ0 > 0 such that xθ ∈ int

(

B
2
p(x0, ρ0)

)

, for all θ ∈ [0, θ0). Take θ ∈ (0, θ0) and
define xθ,µ = xθ + µh, for µ ∈ R. Using the same reasoning we obtain µ0 > 0 such that
xθ,µ ∈ B2

p(x0, ρ0), ∀µ ∈ [0, µ0).

For a fixed µ ∈ (0, µ0), note that xθ,µ − x† = θ(x̃ − x†) + µh. Using (24) we get x̃ − x† ∈
N(F

′

i (x
†)) and consequently xθ,µ − x† ∈ N(F

′

i (x
†)). From (24) it follows that F (xθ,µ) = F (x†)

and consequently F (xθ,µ) = F (x̃). Applying the same reasoning as above (based on (24)) we
conclude that xθ,µ − x̃ ∈ N(F

′

i (x̃)).
Since xθ,µ− x̃ = (1− θ)(x†− x̃)+µh and x†− x̃ ∈ N(F

′

i (x̃)) it follows h ∈ N(F
′

i (x̃)), completing
the proof of our claim.

Combining (28) and (29) we obtain Jp(x̃) ∈ N(F
′

i (x
†))⊥. Consequently, Jp(x

†) − Jp(x̃) ∈
N(F

′

i (x
†))⊥. Since x†− x̃ ∈ N(F

′

i (x
†)) we conclude that 〈Jp(x

†)− Jp(x̃), x
† − x̃〉 = 0. Moreover,

since Jp is strictly monotone [21, Theorem 2.5(e)], we obtain x† = x̃.

Theorem 4.2 (Convergence for exact data). Assume that δi = 0, i = 1, 2, · · · ,m. Let the
assumptions (A0), (A1), (A2) and (A3) be satisfied (for simplicity we assume ρ̄ = ρ0). Then
any iteration (xn) generated by Algorithm 3.1 converges (strongly) to a solution of (2).
Additionally, if x† ∈ int

(

B
2
p(x0, ρ0)

)

, Jp(x0) ∈ N(F ′
i (x

†))⊥ and N(F ′
i (x

†)) ⊂ N(F ′
i (x)), x ∈

B1
p(x̄, ρ̄), i = 1, 2, · · · ,m, then (xn) converges (strongly) to x†.

Proof. From Lemma 3.2 it follows that Dp(x̄, xn) is bounded and so (‖xn‖) is bounded. In par-
ticular, (Jp(xn)) is also bounded. Define εn = q−1‖xn‖

p − 〈x̄, Jp(xn)〉, n ∈ N. From Lemma 3.2
and Corollary 2.6 it follows that (εn) is bounded and monotone non–increasing. Thus, there
exists ε ∈ R such that εn → ε, as n → ∞.

Let m,n ∈ N such that m > n. It follows from Corollary 2.7 that

Dp(xn, xm) = q−1 (‖xm‖p − ‖xn‖
p)+〈Jp(xn)− Jp(xm), xn〉 = (εm−εn)+〈Jp(xn)− Jp(xm), xn − x̄〉.

The first term of the above identity converges to zero, as m,n → ∞. Notice that

|〈Jp(xn)− Jp(xm), xn − x̄〉| =

∣

∣

∣

∣

∣

〈

m−1
∑

k=n

(Jp(xk+1)− Jp(xk)), xk − x̄

〉∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

〈

m−1
∑

k=n

µk F
′
ik
(xk)

∗Jr(Rk), xk − x̄

〉∣

∣

∣

∣

∣

≤
m−1
∑

k=n

µk‖Jr(Rk)‖‖F
′
ik
(xk)(xk − x̄)‖ .

Moreover, from (A1) we have

‖F ′
ik
(xk)(xk − x̄)‖ ≤ ‖Fik(xk)− Fik(x̄)− F ′

ik
(xk)(xk − x̄)‖+ ‖Fik(xk)− Fik(x̄)‖

≤ (1 + η) ‖Rk‖ .
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Therefore, using (A3) and the definition of µk in Algorithm 3.1, we can estimate

|〈Jp(xn)− Jp(xm), xn − x̄〉| ≤ (1 + η)
m−1
∑

k=n

µk‖Rk‖
r−1‖Rk‖

= (1 + η)
m−1
∑

k=n

τk‖xk‖
p−1‖Rk‖

r

(1 ∨ ‖F ′
ik
(xk)‖)‖Rk‖r−1

≤ (1 + η)
m−1
∑

k=n

τk‖xk‖
p−1‖Rk‖

(notice that the last two sums are carried out only for the terms with µk 6= 0). Consequently,
〈Jp(xn)− Jp(xm), xn − x̄〉 converges to zero, from what follows Dp(xn, xm) → 0, as m, n → ∞.
Therefore, we conclude that (xn) is a Cauchy sequence, converging to some element x̃ ∈ X [21,
Theorem 2.12(b)]. Since xn ∈ B1

p(x̄, ρ̄) ⊂ D, for n ∈ N, it follows that x̃ ∈ D. Moreover, from
the continuity of Dp(·, x̃), we have Dp(xn, x̃) → Dp(x̃, x̃) = 0, proving that ‖xn − x̃‖ → 0.

Let i ∈ {1, 2, · · · ,m} and ε > 0. Since Fi is continuous, we have Fi(xn) → Fi(x̃), n → ∞.
This fact together with Rn → 0, allow us to find an n0 ∈ N such that

‖Fi(xn)− Fi(x̃)‖ < ε/2 , ‖Fin(xn)− yin‖ < ε/2 , ∀n ≥ n0 .

Let ñ ≥ n0 be such that iñ = i. Then ‖Fi(x̃) − yi‖ ≤ ‖Fi(xñ) − Fi(x̃)‖ + ‖Fiñ(xñ) − yiñ‖ < ε.
Thus, Fi(x̃) = yi, proving that x̃ is a solution of (2).

For each n ∈ N it follows from (11) and the theorem assumption that

Jp(xn)− Jp(x0) ∈
n−1
⋂

k=0

N(F ′
ik
(xk))

⊥ ⊂
n−1
⋂

k=0

N(F ′
ik
(x†))⊥ .

Moreover, due to Jp(x0) ∈ N(F ′
i (x

†))⊥, i = 1, 2, · · · ,m, we have Jp(xn) ∈
⋂m

j=1 N(F ′
j(x

†))⊥,

n ≥ m. Then Jp(xn) ∈ N(F ′
i (x

†))⊥, for n ≥ m. Since Jp is continuous and xn → x̃, we
conclude that Jp(x̃) ∈ N(F ′

i (x
†))⊥. However, due to N(F

′

i (x̃)) = N(F
′

i (x
†)) (which follows from

Fi(x̃) = Fi(x
†)) we conclude that Jp(x̃) ∈ N(F ′

i (x̃))
⊥, proving that x̃ = x†.

In the sequel we prove a convergence result in the noisy data case. For simplicity of the
presentation, we assume for the rest of this section that δ1 = δ2 = · · · = δm = δ > 0. Moreover,
we denote by (xn), (x

δ
n) the iterations generated by Algorithm 3.1 with exact data and noisy

data respectively.

Theorem 4.3 (Semi-convergence). Let Y be an uniformly smooth Banach space and assump-
tions (A0), (A1), (A2) and (A3) be satisfied (for simplicity we assume ρ̄ = ρ0). Moreover, let
(δk > 0)k∈N be a sequence satisfying δk → 0 and yki ∈ Y be corresponding noisy data satisfying
‖yki − yi‖ ≤ δk, i = 1, . . . ,m, and k ∈ N.
If (for each k ∈ N) the iterations (xδkn ) are stopped according to the discrepancy principle (13)
at n̂k = n̂(δk), then (xδkn̂k

) converges (strongly) to a solution x̃ ∈ B1
p(x̄, ρ̄) of (2) as k → ∞.

Additionally, if x† ∈ int
(

B
2
p(x0, ρ0)

)

, Jp(x0) ∈ N(F ′
i (x

†))⊥ and N(F ′
i (x

†)) ⊂ N(F ′
i (x)), x ∈

B1
p(x̄, ρ̄), i = 1, 2, · · · ,m, then (xδkn̂k

) converges (strongly) to x† as k → ∞.

Proof. For each k ∈ N we can write n̂k in (13) in the form ℓ̂km+(m− 1). Thus, xδkn̂k
= xδkn̂k−1 =

· · · = xδk
n̂k−(m−1) and

∥

∥Fin

(

xδkn
)

− ykin
∥

∥ ≤ τ δk , n = ℓ̂km, · · · , ℓ̂km+ (m− 1) .
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Since in = 1, 2, · · · ,m as n = ℓ̂km, · · · , ℓ̂km+ (m− 1), it follows that
∥

∥Fi

(

xδkn̂k

)

− yki
∥

∥ ≤ τ δk , i = 1, 2, · · · ,m . (30)

At this point we must consider two cases separately:
Case 1: The sequence (n̂k) ∈ N is bounded.
If this is the case, we can assume the existence of n̂ ∈ N such that n̂k = n̂, for all k ∈ N. Notice
that, for each k ∈ N, the sequence element xδkn̂ depends continuously on the corresponding data
(

yki
)m

i=1
(this is the point where the uniform smoothness of Y is required). Therefore, it follows

that
xδkn̂ → xn̂ , Fi

(

xδkn̂
)

→ Fi(xn̂) , k → ∞ , (31)

for each i = 1, 2, · · · ,m. Since each operator Fi is continuous, taking limit as k → ∞ in (30)
gives Fi(xn̂) = yi, i = 1, 2, · · · ,m, which proves that x̃ := xn̂ is a solution of (2).
Case 2: The sequence (n̂k) ∈ N is unbounded.
We can assume that n̂k → ∞, monotonically. Due to Theorem 4.2, (xn̂k

) converges to some
solution x̃ ∈ B1

p(x̄, ρ̄) of (2). Therefore, Dp(x̃, xn̂k
) → 0. Thus, given ε > 0, there exists N ∈ N

such that
Dp(x̃, xn̂k

) < ε/2 , ∀n̂k ≥ N .

Since xδkN → xN as k → ∞, and Dp(x̃, ·) is continuous, there exists k̃ ∈ N such that
∣

∣Dp

(

x̃, xδkN
)

−Dp(x̃, xN )
∣

∣ < ε/2 , ∀k ≥ k̃ .

Consequently,

Dp(x̃, x
δk
N ) = Dp(x̃, xN ) + Dp

(

x̃, xδkN
)

− Dp(x̃, xN ) < ε , ∀k ≥ k̃ .

Since Dp(x̃, x
δk
n̂k
) ≤ Dp(x̃, xN ), for all n̂k > N , it follows that Dp(x̃, x

δk
n̂k
) < ε for k large enough.

Therefore, due to [21, Theorem 2.12(d)], we conclude that (xδkn̂k
) converges to x̃.

To prove the last assertion, it is enough to observe that, due to the extra assumption, x̃ = x†

must hold.

5 Conclusions and future work

In this manuscript we proposed a Landweber-Kaczmarz type iteration for regularizing systems
of nonlinear ill-posed operator equations in Banach spaces. We extended the results in [21],
which considered the case of a single linear operator equation and obtained convergence and
stability results for the Landweber iteration. Our results also extend the one obtained in [16],
where nonlinear operator equations are considered in Banach spaces, but under the stronger
assumption that X is p-convex.

One future perspective is to perform numerical experiments for the LKB method applied
to parameter identification problems related to elliptic equations as the ones described in the
last section of [16]. Another possible research direction is to extend the convergence analysis in
this article (in the framework of Banach spaces) to the Steepest-Descent-Kaczmarz (SDK) iter-
ation [7], the Levenberg-Marquardt-Kaczmarz (LMK) iteration [3], and the iterated-Tikhonov-
Kaczmarz (iTK) iteration [2]
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