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Abstract

Let f : [0, 1]× [0, 1]\{1/2} → [0, 1]× [0, 1] be the C∞ endomorphism given by

f(x, y) =

(
2x− ⌊2x⌋, y +

c

|x− 1/2|
−

⌊
y +

c

|x− 1/2|

⌋)
, c ∈ IR+

We prove that f is topologically mixing and if c > 1/4 then f is mixing with respect
to Lebesgue measure. Furthermore we prove that the speed of mixing is exponential.
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1 Introduction

A basic problem in dynamics is the understanding of the ergodic behavior of a given dy-
namical system. Frequently this is translated into the knowledge of mixing properties of
the system. Once mixing is established it is natural to ask for the rate or speed of mixing
of the system.

For hyperbolic systems and nonuniform hyperbolic ones , without or with singularities,
this kind of study is well understood and the techniques to do so have been developed by
several authors. We indicate the works by Sinai [Si], Pesin [Pe], Pesin and Barreira, [BP],
Dolgopyat [Do], Ruelle [Ru], Bowen [Bo], L-S Young [Yo1][Yo2], Benedicks [BY], Baladi
[Ba], Viana [Vi], Walters [Wa], and the references therein to the interested reader.

When the system T under study has singularities, the phase space is not the whole
manifold and in this case one asks zero-Lebesgue measure for the union ∪∞

n=0T
−nS of the

set of singularities S. This is the case of billiards, studied by Sinai, Chernov [Ch],[CY],
Markarian [CM], Bunimovich [Bu] and others. In these cases we have the additional diffi-
culty that the stable and unstable manifolds of points may be arbitrarily short since their
length is conditioned by the distance of the points to S.

In general, the presence of singularities adds complexity into the problem and makes
the analysis much more difficult. Nevertheless, in this paper, where we study a certain
skew-product with singularities on the fiber, it is the presence of singularities, jointly with
the expanding action in the base that enable us to obtain all the chaotic behavior of the
system.

In this paper we are interested in the mixing properties of the skew-product1 given by
the C∞-endomorphism f : [0, 1] ×

(
[0, 1]\{1/2}

)
→ [0, 1] × [0, 1] defined by

f(x, y) =

(
2x− ⌊2x⌋, y +

c

|x− 1/2|
−

⌊
y +

c

|x− 1/2|

⌋)
, c ∈ IR+.

Here, given a real number x, ⌊x⌋ stands for the greatest integer less or equal to x.

Since the denominator c
|x−1/2| vanishes at x = 1/2, the line {(1/2, y) : y ∈ [0, 1)} is

constituted by singularities of f . Besides that, for c 6= 0 we have that the vertical projection
of f(x, y) sharply varies when x ≈ 1/2.

1Recall that a skew-product T is an automorphism of the measure space X × Y where X and Y are
measure spaces and the action of T : X × Y → X × Y has the form

T (x, y) = (A(x),Bx(y)) ; x ∈ X, y ∈ Y ,

where A is an automorphism of the space X (the ”base” ) and Bx(y) , with x fixed, is an automorphism of
Y (the ”fiber” ). The concept of a skew-product extends directly to the case of endomorphisms.

2



Identifying [0, 1] × [0, 1] with the two-dimensional torus T
2, the skew-product may be

seen as defined in T
2 where the circle given by x = 1/2 is a curve of singularities of f .

The successive iterates by f of a rectangle R are transformed into a denumerable set
of strips accumulating onto the circle x = 1 in the torus. This effect together with the
fact that the pre-orbit by x 7→ 2x mod (1) of the circle x = 1/2 is dense in the torus are
responsible of the rich chaotic dynamics observed in this system.

Since the length of vertical segments are preserved under f , the action of f on the
vertical borders of R is just a translation depending continously on x ∈ [0, 1] \ {1/2}.
Hence, the stretching and accumulation of the iterates of R onto the pre-orbit of the circle
x = 1/2 in the torus is due to the slipping effect of f in the horizontal borders of R.

The skew-product f can be also immersed in a one-parameter family of expanding
skew-products with the same line of singularities:

fλ(x, y) = (2x, λy +
c

|x− 1/2|
), λ ≥ 1 .

Thus, it is interesting to detected the ergodic properties in the limit dynamics given by
λ = 1. For instance, transitivity, mixing and rate of mixing.

In this paper we prove that the skew-product f is topologically mixing, preserves the
Lebesgue measure m on the torus, is mixing with respect to m and finally we prove that
the rate of mixing is exponential.

1.1 Toy model of flows with a singularity: slipping effect.

Let M be a 3-dimensional manifold and assume that Φ : M → M is a flow containing a
transitive attractor Λ ⊂ M with a hyperbolic singularity p ∈ Λ. The geometric Lorenz
attractor and any Lorenz-like attractor satisfy these conditions, see [GW, Lo, AP].

We consider the case when the singularity has three real eigenvalues λi, 1 ≤ i ≤ 3, and
satisfy λ2(σ) < λ3(σ) < 0 < −λ3(σ) < λ1(σ). Via Hartmann-Großman theorem we assume
that we have linearized coordinates in a neighborhood U ⊃ [−1, 1]3 of the singularity p in
such a way that λ1 corresponds to 0x-axis, λ2 to 0y-axis and λ3 to 0z-axis.

Let S = {(x, y, z) ∈ U : z = 1} be a transverse section to the flow so that every
trajectory eventually crosses S in the direction of the negative z-axis. Consider also Σ =
{(x, y, z) : |x| = 1} = Σ+ ∪ Σ− with Σ± = {(x, y, z) : x = ±1} . To each (x0, y0, 1) ∈ S
the time τ such that Xτ (x0, y0, 1) ∈ Σ is given by τ(x0) =

−1
λ1

log |x0|, and it is such that
τ(x0) → ∞ when x0 → 0. This fact has the effect that different slices parallel to 0y-axis of
the section S arrives to Σ with a delay. Hence, we cannot see the return of each slice to S
at the same time, even when the expecting delay is bounded .

Assume now that we ”forget” the effect of the singularity and consider that the return
time is the same for points in a same slice. Also ”forget” the strong stable direction. Note
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that the strong stable direction does not interfere in the dynamics of the geometric Lorenz
attractor.

After these identifications, the dynamics in a neighborhood of p occurs in the (x, z)
plane, and may be seen as a slipping in the vertical direction in order to annihilate the
delay of time. Since the delay goes to infinity as x → 0 the slipping also goes to infinity
when x→ 0. Thus, the dynamics there is given by (φ(x), ψ(x, z)) with ψ(x, z) → ∞ when
x → 0. Moreover, since the ratio β = −λ2

λ1
is greater than one, the dynamics in the x

direction is expanding.
Thus, changing the name of the variable z by y, the skew-product

f(x, y) =

(
2x mod (1), y +

c

|x− 1/2|
mod (1)

)

may be seen as a simplified case of the slipping effect in singular hyperbolic attractors, as
is the case of a Lorenz-like attractor.

1.2 Statement of results.

To announce in a precise way our results let us introduce some definitions and related facts
proved elsewhere.

Definition 1.1. Let (X,A, f, µ) be a dynamical system defined on the space X, A a σ-
algebra of X, and µ an f -invariant probability measure. The map f is mixing if for all pair
of sets A,B ∈ A, we have

lim
n→∞

µ(f−n(A) ∩B) = µ(A)µ(B) .

A form of mixing that can be defined without appealing to measures is the following

Definition 1.2. Let f : X → X be a continuous map defined in the topological space X.
We say that the dynamical system defined by f is topologically mixing if for every pair of
non-empty open subsets A, B of X there is N > 0 such that ∀n ≥ N : fn(A) ∩B 6= ∅.

There is even a commonly used weaker notion: we say that the system defined by f
is topologically transitive if for every pair of non-empty open subsets A, B of X there is
n ∈ ZZ such that fn(A) ∩B 6= ∅.

It is well known that if a dynamical system is defined on topological space X, A is the
Borel σ-algebra of X and µ is a probability invariant measure such that µ(A) > 0 for every
open set A of X, then if the system is mixing it is topological mixing. This and other
general results on Ergodic Theory may be found in [Wa], for instance.

The main results in this paper are:
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Theorem A. For all positive c the skew-product f : T2 → T
2 is topologically mixing.

Theorem B. The skew-product f preserves the Lebesgue measure m in the torus and, for
c > 1/4, f is mixing with respect to m.

Theorem C. The rate of mixing is exponential, that is, there is 0 < λ < 1 such that for
all pair of sets A and B we have

|m(f−n(A) ∩B)−m(A)m(B)| < λnm(A)m(B), for all n ≥ 0 .

Next we list two interesting features of the skew-product f

(⋆) For all p = (x, y) ∈ T
2, there is no stable manifold W s(p, f). Indeed, given (x, y) and

(x+∆x, y +∆y), assuming that x < 1/2, ∆x 6= 0, x+∆x < 1/2 and computing

‖f(x+∆x, y +∆y)− f(x, y)‖ =

∥∥∥∥∥2∆x,∆y +
c

1/2− x

[
1

1− ∆x
1/2−x

− 1

]
mod 1

∥∥∥∥∥ ≥

≥ 2|∆x|, and similar result holds for x > 1/2 .

Hence, if ∆x 6= 0, dist(fn(x+∆x, y +∆y), fn(x, y)) ≥ 2n∆x mod 1 which does not
converges to 0. On the other hand, if ∆x = 0 then the distance between fn(x, y +
∆y) and fn(x, y) is preserved. Thus, for no (∆x,∆y) we have dist(fn(x + ∆x, y +
∆y), fn(x, y)) → 0 when n→ +∞.

(⋆⋆) The unstable manifolds are not unique. Indeed, for any itinerary {(xn, yn)}n∈IN
such that f(xn, yn) = (xn−1, yn−1) it is defined an unstable manifold W u((x0, y0), f)
(recall that f is an endomorphism) and so the unstable manifold of a point is not
unique. Moreover, f is not an expanding map since for any p = (x, y) we have
Dfp(0, 1) = (0, 1). Finally, it has no dominated splitting (see Section 2 for the proof
of these facts).

Thus, the standard techniques in dynamics using existence of stable and unstable manifolds,
for instance, are useless here.

2 Preliminaries

In this section we establish some preliminaries properties of f that will be used in the
proofs. We identify the set Q = [0, 1] × [0, 1] with the 2-torus T

2.
If 0 ≤ x < 1/2 then we have that f(x, y) = (2x, y + c

1/2−x − ⌊y + c
1/2−x⌋) while if

1/2 < x < 1 then f(x, y) = (2x− 1, y + c
x−1/2 − ⌊y + c

x−1/2⌋).
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The matrix
[
Df(x,y)

]
is in the case 0 ≤ x < 1/2 given by

(
2 0
c

(1/2−x)2 1

)
and in the

case 1/2 < x ≤ 1 by

(
2 0
−c

(1/2−x)2 1

)
. Therefore it depends only on x. Any vector different

of a vertical one is expanded by the action of Df which presents two eigenvalues: 1 with
eigenvector (0, 1), and 2 with eigenvector (1, c

(x−1/2)2 ) if 0 ≤ x < 1/2 and (−1, c
(x−1/2)2 ) if

1/2 < x < 1. Hence we have no stable manifold at any point of T2 (see (⋆) ) and points at
the left of the line x = 1/2 have eigenvectors corresponding to the eigenvalue 2 forming an
acute angle with the Ox axis such that when x → 1/2 the angle between the eigenvector
associated to 2 tends to be vertical. A similar picture is valid at points at the right of
x = 1/2 taking into account that in that case the eigenvector associated to 2 forms an
obtuse angle with the Ox axis. From these facts one may see that no non-trivial splitting
is preserved. Indeed, given a periodic orbit, no direction different of the vertical one is
preserved.

Given a real number a ∈ (0, 1), we write

a =

∞∑

1

ai
2i
, a ∼ 0.a1 · · · an · · · aj ∈ (0, 1)

for its binary decomposition.
Writing x ∈ [0, 1) in base 2 the dynamics in the x- coordinate is as the shift

σ : {0, 1}IN → {0, 1}IN , σ(b1b2b3 · · · ) = b2b3 · · ·

Each point x ∼ (b1b2 · · · ) has two pre-images by this map

σ−1(b1b2 · · · ) =

{
x0 ∼ (0 b1b2 · · · ) ∼ x/2
x1 ∼ (1 b1b2 · · · ) ∼ (1 + x)/2

(1)

Since f(x, y) = (2x, y+c/|x−1/2|) mod (1) equation (1) implies that any Z = (x, y) ∈ T
2,

with x = 0.b1b2 · · · has two pre-images Z0, Z1 by f given by:

(a) Z0 =
(
x
2 , y −

2c
1−x − ⌊y − 2c

1−x⌋
)
= (x0, y0),

(b) Z1 =
(
1+x
2 , y − 2c

x − ⌊y − 2c
x ⌋
)
= (x1, y1).

Inductively, given a sequence b = (b1b2 · · · bn) of length |b| = n, with bj ∈ {0, 1}, ∀j ≤ n,
and assuming that Zb2b3···bn (one of the (n − 1)-th preimages of Z)is already defined we
have that one of the n-th preimages of Z is Zb = (xb, yb) with
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(a) xb =
b1 + xb2b3···bn

2
(2)

and

(b) yb =

(
yb2···bn −

2c

(1− b1) + (2b1 − 1)xb2···bn

)
mod (1)

We remark that if Z = (x, y), W = (x′, y′) and b = (b1b2 · · · bn) then |xb − x′b| =
|x − x′|/2n. We also remark that for any x ∈ [0, 1) the set of preimages Sn of x for all
the different b’s of length n is almost uniformly distributed in [0, 1), i.e., for any interval
I ⊂ [0, 1):

lim
n→∞

#(Sn ∩ I)

#Sn
= ℓ(I). (3)

Here #X means the cardinality of X (#Sn = 2n), and ℓ(I) is the length of I.
We extend this notation to the n-th preimage of an horizontal segment I = [Z, Y ]: Zb(I)

is the n-th pre-image of I that has Zb as one of its boundaries. In the same way, if R is a
rectangle whose lower bound is I, then Zb(R) is the n-th pre-image of R with Zb(I) as one
of its “sides”.

Lemma 2.1. The vertical projection Πy(f(γ)) of the image of a monotone arc γ(t) =
(x(t), y(t)) (i.e., an arc such that x(t) and y(t) are monotone functions) whose horizontal
projection Πx(γ) has length greater or equal to 2/c covers all [0, 1).

Proof. Given a monotone arc γ : [0, 1] → T
2, γ(t) = (x(t), y(t)), the vertical projection of

the function f(x(t), y(t)) = (2x(t) mod (1), y(t) + c
|x(t)−1/2| mod (1)) varies from y(0) +

c
|x(0)−1/2| mod (1) to y(1)+ c

|x(1)−1/2| mod (1) , covering |y(1)−y(0)+ c
|x(1)−1/2|−

c
|x(0)−1/2| |

mod (1).
In order to simplify computations we suppose that γ is in IR2. Then if its horizontal

projection includes k + 1/2, k ∈ ZZ the vertical projection has infinite length. Assume now
that 3/2 > x(1) > x(0) + 2/c > x(0) > 1/2. Thus,

∣∣∣∣
c

|x(1) − 1/2|
−

c

|x(0) − 1/2|

∣∣∣∣ =
∣∣∣∣

c

x(1) − 1/2
−

c

x(0)− 1/2

∣∣∣∣ > c
x(1)− x(0)

(x(1) − 1/2)(x(0) − 1/2)
> 4 .

Thus, since −1 ≤ y(1)− y(0) ≤ 1 we have |y(1) − y(0) + c
|x(1)−1/2| −

c
|x(0)−1/2| | > 2.

3 The skew-product is topologically mixing

Recall that a map f :M →M is topologically mixing if for all pair of open sets A,B of M
there is N such that for all n ≥ N it holds fn(A) ∩B 6= ∅.

Theorem 3.1. If c ∈ IR+ then f(x, y) is topologically mixing.
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Proof. It is enough to prove the statement for open rectangles A and B of sides parallel to
the coordinate axes since they form a basis for the standard topology of the plane.

The idea of the proof is as follows: Let (xA, yA) be the coordinates of the center of A
and (xB , yB) the coordinates of the center of B. We pick a suitable pre-image of (xB , yB),
Zr = (xr, yr), as in (2) so that Zr is close to (xA, yA) and such that for some n, with
0 < n < |r|, it holds that fn(Zr) is in a small enough neighborhood of {x = 1/2} to
guarantee that the pre-image of Zrn(S) (here rn represents the sub-string of length n
contained in r), where S is the horizontal segment contained in B and passing through
(xB , yB), is almost vertical and has length greater than 1. This implies that the pre-image
Zr(S) cuts A and thus we obtain that f |r|(Zr(S)) cuts B.

To begin with the proof let 2δA be the length of Πx(A) and 2δB the length of Πx(B).
Let also, in base 2, xA = (0.a1a2a3 . . .)2 and xB = (0.b1b2b3 . . .)2 and find N such that for
δ = min{δA, δB} we have 1/2N < δ and so 2N δ > 1. Now we consider

r = 0.a1a2 . . . aN011 . . . 1︸ ︷︷ ︸
N ones

0b1b2b3 . . . bN .

Clearly Πx(Zr) is near xA and lies in [xa − δA, xA + δA] since |xr − xA| < 1/2N . Now we
choose yr ∈ (0, 1) such that Πy(Zr) belongs to y = yA.

After N iterates by f we have that fN(Zr) is at a distance less that 1/2
N from {x = 1/2}

(since Πx(f
N (Zr)) = 0.011 . . . 10b1b2b3 . . . ).

It holds that the vertical projection of fN (A) has length greater than 1 and Πx(f
2N+2(Zr)) ∈

Πx(B) and ℓ(Πy(f
2N+2(A))) > 1 too. Therefore f2N+2(A) ∩B 6= ∅.

Since the length of the horizontal projection doubles under iterations by the action
x 7→ 2x mod 1, there is N1 > 0 such that for n > N1 we have that Πx(f

n(A)) covers all
[0, 1]. It follows that fN1+2N+2+k(A)∩B 6= ∅ for all k ≥ 0. Thus f is topologically mixing,
proving Theorem A

4 Lebesgue measure preserved and mixing.

In this section we prove Theorem B. We start establishing some auxiliary lemmas. The
first says that even for the worst case, if c > 1/4 we have that the preimages by f expand
length in the vertical direction.

Lemma 4.1. There is N(c) = N > 0 such that for n ≥ N , every horizontal arc I,
l(I) = ∆x, every b = b1b2 · bn it results l(Zb(I)) > 4c∆x (l is the euclidean length in the
torus).

Proof. Given a segment [x, x+∆x] ⊂ [0, 1/2), the length of its image by any of its branches:
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Z0, Z1 is given by

∫ x/2+∆x/2

x/2

√
1 +

c2

(1/2− s)4
ds ≥

c

1/2− s

∣∣∣∣
(x+∆x)/2

x/2

>

c

1/2− s

∣∣∣∣
∆x/2

0

=
2c

1−∆x
− 2c = 2c(1 +∆x+ (∆x)2 + · · · )− 2c ≥ 2c∆x .

Analogously for the four second branches Z00, Z01, Z10, Z11 we have that the graph of
the pre-images is given by the formula

g(u) = y0 −
2c

1− 2u
−

2c

1− 4u

in appropriate coordinates (u, y), u ∈ [h, h +∆x/4] h < 1/4.
Calculating the length of the graph we have

∫ h+∆x/4

h

√
1 + (g′(u))2 du ≥

∫ h+∆x/4

h
|(g′(u))| du =

2c

1− 4u
+

2c

1− 2u

∣∣∣∣
h+∆x/4

h

=

=
2c

1− h′

(
1

1− ∆x
1−h′

− 1

)
+

2c

1− h′/2


 1

1− ∆x/2
1−h′/2

− 1




≥
2c

(1− h′)2
∆x+

2c

(1− h′/2)2
∆x

2
≥ 2c∆x+ c∆x = 3c∆x

since 1 ≥ 1− h′ > 0 (h′ = 4h).
By induction we obtain in the general case (n ≥ 3) that the length of Zb([x0, x0+∆x], y)

is bounded from above by

ℓ(Zb([x0, x0 +∆x], y))∆x ≥ (2 + 1 +
n−2∑

j=1

1

2j
)c = (3 + (1−

1

2n−2
)) · c ·∆x.

Thus, the lemma follows whenever the length of the sequence b is greater or equal to
N = N(c).

Lemma 4.2. Lebesgue measure m is preserved by the map

f(x, y) =

(
2x− ⌊2x⌋, y +

c

|x− 1/2|
−

⌊
y +

c

|x− 1/2|

⌋)
, c ∈ IR+
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Proof. Given any small box A = (a, b)× (d, e) ⊂ (0, 1)× (0, 1) it has two pre-images which
are the subsets A0 and A1 where A0 is limited by the lines

x =
a

2
, x =

b

2
,

and the graph of the broken hyperbolas

y = d−
c

1/2− x
−

⌊
d−

c

1/2− x

⌋
, y = e−

c

1/2 − x
−

⌊
e−

c

1/2 − x

⌋
, a/2 ≤ x ≤ b/2;

and A1 is limited by the lines

x =
1 + a

2
, x =

1 + b

2
,

and the graph of the broken hyperbolas

y = d−
c

x− 1/2
−

⌊
d−

c

x− 1/2

⌋
, y = e−

c

x− 1/2
−

⌊
e−

c

x− 1/2

⌋
, (1+a)/2 ≤ x ≤ (1+b)/2.

Calculating the area of A0 by integration we obtain (b− a)(e − d)/2. Similarly for A1.
Summing both areas we obtain (b−a)(e−d) = Area(A). Since the family of rectangles like
A gives a basis for the σ-algebra associated to Lebesgue measure m we have proved that m
is f -invariant.
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1

Figure 1: A small rectangle A and A0, A1, its pre-images.

Figure 1 shows A = [1/4, 1/3]× [2/3, 3/4] and its pre-images, A0 and A1, where we have
chosen c = π− 3 ≈ 0.1416. The horizontal sides of A are mapped into the broken graph of
the hyperbolas, the top corresponding to the green line and the bottom to the red one.

Theorem 4.3. Let c > 1/4. Then the map f is mixing with respect to Lebesgue measure.
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Proof. There is no loss of generality choosing A and R as rectangles contained in Q, since
the family of rectangles generates the σ-algebra associated to the Lebesgue measure [Wa],
Theorem 1.17. We have to show

lim
n→∞

|m(f−n(A) ∩R)−m(A) ·m(R)| = 0.

For this we proceed as follows. Let W = (xR, yR) ∈ R, be the center point of R and
Z = (xA, yA) the center point of A. We use the binary decomposition of xR ∼ b1b2 · · · and
let x̂ ∼ b1b2 · · · bN = b, that is, x̂ is the N -periodic point of the map x 7→ 2x mod 1.

Taking N sufficiently large, we have that the vertical line x = x̂ crosses the rectangle R
nearby its central point W . Indeed, |x̂ − xR| < 2−N . If xb = Πx(Zb), as a consequence of
the remarks after formula (2) we have |xb − x̂| < 2−N , and also |xb − xR| < 2−N .

Moreover, for n ≥ N , withN large enough, the n-th pre-image of any horizontal segment
of length ∆x in A, is almost vertical and their length is greater than 2⌊n/N⌋c∆x, see Lemma
4.1.

Claim 4.1. The distance ha between the pre-images of the top and the bottom of A by Za,
where a = a1a2 · · · an, see (2), is

ha ≈
m(A)

2n ·∆xA·
La, (4)

where ∆xA is the length of the bottom of A and La > (4c)[n/N ].

Proof. Za(A) has measure equal tom(A)/2n. Moreover, as a consequence of Lemma 4.1 the
length la of Πx(Za(A)) is given by ∆xA ·La. Thus the height ha of the almost parallelogram
given by Za(A) is

ha ≈
m(A)

2n · la
=

m(A)

2n ·∆xA · La

proving the claim.

Returning to the proof of Theorem 4.3 note that if n is large enough, as a consequence
of the remarks after equations (a) and (b) at (2), Za(A) is a long “vertical” strip almost
uniformly distributed in the torus. Then there are ∆xALa∆xR strips cutting R. By claim
4.1 each turn leaves a strip in R of area

∆yR ·m(A)

∆xA · 2n · La
.

Then the total area equals

∆yR ·m(A) ·∆xA · La ·∆xR
∆xA · 2n · La

=
∆yR ·m(A) ·∆xR

2n
.
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Since the number of pre-images satisfying the previous computations is 2n we obtain that

m(f−n(A) ∩R) ≈
M(R) ·m(A)

2n
· 2n → m(A) ·m(R) for n→ ∞ ,

finishing the proof.

Lemma 4.2 together with Theorem 4.3 prove Theorem B.

5 Rate of mixing

Next we prove that the rate of mixing for c > 1/4 is exponential. To do so we start with
an auxiliary lemma.

Lemma 5.1. Given b ∈ [0, 1),

b =
b1
2

+
b2
22

+ · · ·+
bN−1

2N−1
+
bN
2N

∼ b1b2 · · · bN−1bN ,

there is at most one point in (0, 1) where the derivative y′b(xb) can vanish. Moreover, if

y′b(xb) vanishes, the value of x at which y′b = 0 is between Σj
i=1bi/2

i and Σj
i=1bi/2

i + 1/2N

where bj is the first digit in b1b2 · · · bN−1bN different from bN (i.e.: bN = bN−1 = · · · =
bj+1 6= bj).

Proof. We will repeatedly use that yb and xb are given by equations (a) and (b) at (2). Let
(x0, y0) be given.

For N = 1 we have that

yb1 = y0 −
c

|xb1 − 1/2|
mod (1) = y0 −

c · (2b1 − 1)

xb1 − 1/2
mod (1)

where xb1 = x0+b1
2 ∈ ( b12 ,

b1+1
2 ). Observe that 2b1 − 1 = −1 if b1 = 0 and 2b1 − 1 = 1 if

b1 = 1. Thus

y′b1(xb1) =
c · (2b1 − 1)

(xb1 − 1/2)2
which does not vanish whenever it exists.

For N = 2, on account that

xb1b2 =
xb2 + b1

2
∈ (

b1
2

+
b2
22
,
b1
2

+
b2
22

+
1

22
)

we have xb2 = 2xb1b2 − b1 and

yb1b2(xb1b2) = yb2 −
c

|xb1b2 − 1/2|
= y0 −

c

|xb2 − 1/2|
−

c

|xb1b2 − 1/2|
mod (1) =

12



= y0 −
c · (2b2 − 1)

(2xb1b2 − b1 − 1/2)
−

c · (2b1 − 1)

(xb1b2 − 1/2)
mod (1)

from which we conclude that

y′b1b2(xb1b2) =
2c · (2b2 − 1)

(2xb1b2 − b1 − 1/2)2
+

c · (2b1 − 1)

(xb1b2 − 1/2)2
,

which does not change sign if b1 = b2 or changes sign only once in its domain if b1 6= b2.
In general the expression of yb = yb1b2···bN as a function of xb = xb1b2···bN is given by

yb(xb) = y0 −
c · (2bN − 1)

(2N−1xb − (2N−2b1 + 2N−3b2 + · · ·+ 2bN−2 + bN−1)− 1/2)
−

c · (2bN−1 − 1)

(2N−2xb − (2N−3b1 + 2N−4b2 + · · ·+ 2bN−3 + bN−2)− 1/2)
− · · · −

c · (2b1 − 1)

(xb − 1/2)
mod (1)

from which the derivative of yb with respect to xb, whenever it exists, is given by

y′b(xb) =
2N−1c · (2bN − 1)

(2N−1xb − (2N−2b1 + 2N−3b2 + · · ·+ 2bN−2 + bN−1)− 1/2)2
+

2N−2c · (2bN−1 − 1)

(2N−2xb − (2N−3b1 + 2N−4b2 + · · ·+ 2bN−3 + bN−2)− 1/2)2
+ · · ·+

c · (2b1 − 1)

(xb − 1/2)2
.

The last expression can be written as

y′b(xb) =
c · (2bN − 1)

2N−1
(
xb − ( b12 + b2

22
+ · · ·+ bN−2

2N−2 +
bN−1

2N−1 )−
1
2N

)2 +

c · (2bN−1 − 1)

2N−2
(
xb − ( b12 + b2

22
+ · · ·+ bN−3

2N−3 +
bN−2

2N−2 )−
1

2N−1

)2 + · · ·+
c · (2b1 − 1)
(
xb −

1
2

)2 .

Hence y′b(xb) =
c · (2bN − 1)

2N−1
(
xb − 0.b1b2 · · · bN−2bN−1 −

1
2N

)2 +

c · (2bN−1 − 1)

2N−2
(
xb − 0.b1b2 · · · bN−3bN−2 −

1
2N−1

)2 + · · · +
c · (2b1 − 1)
(
xb −

1
2

)2

where we have written b1
2 + b2

22
+ · · · + bN−2

2N−2 +
bN−1

2N−1 = 0.b1b2 · · · bN−1, and similarly for the
other terms. Observe that each term in the expression or y′b(xb) is positive or negative
depending on the values of bi and that there are N vertical asymptotes for (the lift to IR2

of) yb(xb) and for y′b(xb) which are located in

x = 0.b1b2 · · · bN−1 +
1

2N
, x = 0.b1b2 · · · bN−2 +

1

2N−1
, (5)
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x = 0.b1b2 · · · bN−3 +
1

2N−2
, . . . , x = 0.b1 +

1

22
, x =

1

2
.

Claim 5.1. All the terms with positive sign in y′b(xb) have their asymptotes at points of
coordinates less than those which have negative sign. Moreover y′b(xb) will vanish only once
for an xξ located between the closest asymptotes of different sign.

Proof. Let us prove the claim by induction.
For N = 1 there is nothing to prove. For N = 2, if b2 = 0 and b1 = 1 then we have an

asymptote x = 1
2 and the other x = 3

4 and the derivative is

y′b1b2(xb1b2) = y′10(x10) =
−c

2(x10 − 3/4)2
+

c

(x10 − 1/2)2
,

If b2 = 1 and b1 = 0 then we have an asymptote x = 1/4 and the other x = 1/2 and the
derivative is

y′b1b2(xb1b2) = y′01(x01) =
c

2(x01 − 1/4)2
+

−c

(x01 − 1/2)2
.

Hence the claim is true for N = 1, 2.
Assume that the claim is true for b2b3 · · · bN and let us prove it for b = b1b2b3 · · · bN . If

b1 = 0 then all the values of the asymptotes are divided by 2 and the corresponding asymp-
totes of the positive terms in y′b(xb) rest to the left of the smallest asymptote corresponding
to a negative term (if there is any one). By induction the difference between the smallest
asymptote of a negative term and the largest asymptote of a positive term is 1/2N−1 for
b2b3 · · · bN , when we divide by 2 the difference becomes 1/2N . Moreover, all terms are less
than 1/2 and we add a negative term corresponding to the asymptote x = 1/2. Thus the
claim is true for b1 = 0.

If b1 = 1 then all the values of the asymptotes are divided by 2 and to these values we
add 1/2. Therefore the corresponding asymptotes of the positive terms in y′b(xb) rest to
the left of the smallest asymptote corresponding to a negative term (if there is any). The
difference between the smallest asymptote of a negative term and the largest asymptote
of a positive term becomes 1/2N as above. All terms are greater than 1/2 and we add a
positive term corresponding to the asymptote x = 1/2.

If it were the case that b2 = b3 = · · · bN = 0 but b1 = 1, then all terms should be negative
till the last one. After the final step a positive term appears with asymptote x = 1/2 while
the leftmost negative term will be 1/2+1/2N . Similarly if b2 = b3 = · · · bN = 1 but b1 = 0,
then all terms should be positive till the last one. After the final step a negative term
appears with asymptote x = 1/2 while the rightmost positive term will be 1/2 − 1/2N .
Now the proof of the claim is complete.

The proof of the lemma follows readily from Claim 5.1, doing computations similar to
those for the case N = 2.
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Remark 5.2. Although the number of asymptotes is N , since x ∈ [0, 1] we have that xb
belongs to an interval of length 1

2N
and in the general case only two of the asymptotes fall

in the domain of xb. The distance between these asymptotes is 1
2N

.

Remark 5.3. Let A = [xA−∆x/2, xA+∆x/2]× [yA, yA+∆y]. From Lemma 4.1 it follows
immediately that there is a first N0 = N0(∆x) such that ℓ(Zb([xA−∆x/2, xA+∆x/2])) ≥ 1
if |b| = N0.

The following lemma says that far from the asymptotes the growth of lengths of the
pre-images is bounded from above.

Lemma 5.4. Let c > 0. Given K > 0 and ǫ > 0 there is δ > 0 such that if 0 < ∆x ≤ δ
then N0 > K for a subset of Σ of measure greater or equal than 1−Kǫ.

Proof. Let us choose a vertical strip Sǫ = [1/2 − ǫ/2, 1/2 + ǫ/2] × [0, 1) and assume that
I = [x−∆x/2, x+∆x/2]×{y} does not intersect Sǫ. Let us bound from above the length
of the pre-images of I. Recall that these pre-images are given by

Z0 =
(
x
2 , y −

2c
1−x − ⌊y − 2c

1−x⌋
)
= (x0, y0) and

Z1 =
(
1+x
2 , y − 2c

x − ⌊y − 2c
x ⌋
)
= (x1, y1).

Let us assume that x+∆x/2 < 1/2 − ǫ/2, the other cases are similar. This implies in
particular that 1− x > ǫ. We obtain:

ℓ(Z0(I)) =

∫ x/2+∆x/2

x/2−∆x/2

√
1 +

c2

(1/2 − s)4
ds =

∫ x/2+∆x/2

x/2−∆x/2

(
(1/2 − s)4 + c2

(1/2 − s)4

)1/2

ds ≤

∫ x/2+∆x/2

x/2−∆x/2

(1/16 + c2)1/2

(1/2 − s)2
ds ≤

c+ 1/4

1/2 − s

∣∣∣∣
(x+∆x)/2

(x−∆x)/2

=
2c+ 1/2

1− x

[
1

1−∆x/(1− x)
−

1

1 + ∆x/(1− x)

]
=

2c+ 1/2

(1− x)2
2∆x

[
1 +

(∆x)2

(1− x)2
+

(∆x)4

(1− x)4
+ · · ·

]
<

2c+ 1/2

ǫ2

(
1

(1− δ2/ǫ2)

)
2δ

where we have put ∆x < δ < ǫ. This gives the upper bound for the length of a pre-image
given by

ℓ(Z0(I)) <
4c+ 1

ǫ2 − δ2
δ

The same bound is valid for the case x > 1/2 and for the other pre-image given by Z1.
Let us denote by b(K) = b1b2b3 · · · bK the finite subsequence given by the first K terms

of b = {bn}n∈IN ∈ Σ and

XK(x, y) = {(xb(K) , yb(K)) : fK(xb(K) , yb(K)) = (x, y)} .
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There is ǫ > 0 such that if f j([u−∆x/2, u+∆x/2], v)∩ [1/2− ǫ/2, 1/2+ ǫ/2]× [0, 1) = ∅ for

all j = 0, 1, 2, . . . ,K − 1 then the length of Zb(K)(([u −∆x/2, u +∆x/2], v)) <
(

4c+1
ǫ2−δ2 δ

)K

from which the thesis follows choosing δ small enough.

By Remark 5.3 after N0 iterations the length of Zb(N0) is at least 1. Thus if k0 denotes
the time needed for a monotone arc γ to duplicate its length when computing Z(b)(k0) (see

Lemma 4.1) we obtain the following

Corollary 5.5. If N = N0 + k0h, h ≥ 0, then for b such that |b| = N we have that

ℓ(Zb([xA −∆x/2, xA +∆x/2]× {y})) ≥ 2h.

Corollary 5.5 implies that the pre-image Zb(A) has 2
h connected components in [0, 1]×

[0, 1] which are almost vertical strips. The value of N0 is bounded but depends on the
length of ∆x and the position of xA.

The next lemma estimates the width of each of these strips. Before we state it, let us
sort out the intersections between Zb(A) and [0, 1] × [0, 1] in the following way:

(⋆) The image in IR2 of the top side T = [xA−∆x/2, xA+∆x/2]×{y+∆y} of A is an arc
almost parallel to the vertical axis Oy with reverse orientation. We assign the label n to the
connected component of this arc whose projection covers the interval [−n + 1,−n] in Oy
(see Figures 2 and 3). Similarly for the bottom segment B = [xA−∆x/2, xA+∆x/2]×{y}.

Lemma 5.6. Let A = [xA −∆x/2, xA +∆x/2]× [yA, yA +∆y] and N = N0 + k0 h, h ≥ 0,
be as above. Denote by T the top and B the bottom sides of the rectangle A. Then, for b
such that |b| = N there is a constant C > 0 such that

dist(Zb(T )n, Zb(B)n) ≤ C
∆y

2Nn2
,

where Zb(T )n, and Zb(B)n are the nth-connected component of Zb(T ) and Zb(B) respec-
tively.

Proof. For the bottom side B the expression of yb = yb1b2···bN in IR2 as a function of
xb = xb1b2···bN is given by (see the proof of Lemma 5.1)

yb(xb) = yA −
c · (2bN − 1)

(2N−1xb − (2N−2b1 + 2N−3b2 + · · ·+ 2bN−2 + bN−1)− 1/2)
−

c · (2bN−1 − 1)

(2N−2xb − (2N − 3b1 + 2N−4b2 + · · · + 2bN−3 + bN−2)− 1/2)
− · · · −

c · (2b1 − 1)

(xb − 1/2)
.

16



1

0

-1

-2

- n + 1

- n

Figure 2: The image of T in IR2.

This curve has N asymptotes x1, x2, . . . , xN , see equation (5). Close to one of each asymp-
totes, say xb = xj, yb(xb) can be written as

yb(xb) = yA +H(xb) +
c (2bj − 1)/2j−1

(xb − xj)
,

where H(xb) has a finite limit Hj when xb → xj. Similarly for the top side T we have

yb(xb) = yA +∆y +H(xb) +
c (2bj − 1)/2j−1

(xb − xj)
.

The only values that give asymptotes in the domain of xb correspond to the case j = N
that give

yb(xb) = yA +H(xb) +
c (2bN − 1)/2N−1

(xb − xN )
,

and

yb(xb) = yA +∆y +H(xb) +
c (2bN − 1)/2N−1

(xb − xN )
.
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0

1

Figure 3: The image of T in [0, 1] × [0, 1].

For a fixed yb, varying from −n+ 1 to −n, we have

(⋆1) yb = yA+H(x̃b)+
c (2bN − 1)/2N−1

(x̃b − xN )
and (⋆2) yb = yA+∆y+H(x̂b)+

c (2bN − 1)/2N−1

(x̂b − xN )
.

For a given ε > 0, there is n0 such that for n > n0 it holds that |H(xb)−HN | < ε. Thus,
from the first equation (⋆1) we have that, for n > n0, it holds

yb ≈ yA +HN +
c (2bN − 1)/2N−1

(x̃b − xN )
=⇒ x̃b ≈ xN +

c(2bN − 1)

(yb − yA −HN )2N−1
.

From the second one (⋆2) we obtain that

yb ≈ yA +HN +∆y +
c (2bN − 1)/2N−1

(x̂b − xN )
=⇒ x̂b ≈ xN +

c(2bN − 1)

(yb − yA −HN −∆y)2N−1
.

This implies that

|x̂b − x̃b| ≈

∣∣∣∣
c(2bN − 1)

(yb − yA −HN −∆y)2N−1
−

c(2bN − 1)

(yb − yA −HN )2N−1

∣∣∣∣ .

Taking into account that −n+ 1 > yb > −n and 2bN − 1 = ±1 we conclude that

|x̂b − x̃b| ≈
c

2N−1

(
1

(−n− yA −HN −∆y)
−

1

(−n− yA −HN )

)
=
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c

2N−1

∆y

(n+ yA +HN)(n + yA +HN +∆y)
<

c

2N−1

∆y

n2
< C

∆y

2Nn2
.

Here we have chosen the constant C > 0 such that the inequality holds for all n ≥ 1 and
not only for n > n0.

Theorem 5.7. There is 0 < θ < 1 such that after N = N0+k0 h iterates by any branch Zb

of f−1, the Lebesgue measure of the set of points that has returned to A is greater or equal
to m(A) · θ.

Proof. Let ℓ(Zb([xA − ∆x/2, xA + ∆x/2] × {y})) = 2h with |b| = N (Corollary 5.5), and
assume that Πx(Zb(xa, y) ∈ [xA −∆x/2 + 1

2N
, xA +∆x/2− 1

2N
]. Then Zb(A) cuts A in at

least 2h strips which are almost vertical except perhaps for one which becomes from that
strip where the derivative y′b(xb) can vanish. We don’t take into account this strip so that
we either have 2h almost vertical strips or (2h − 1) of them. Since 2h is a lower bound we
will consider that the number of strips is 2h anyway. By Lemma 5.6 the (almost) vertical
sides of the strips which are at a distance between them ≈ C∆y

2Nn2 intersected with A are

mapped by fN , N = |b|, in part of the horizontal sides of length proportional to C∆y/n2

with N0 ≤ n ≤ 2h. Thus the area covered by the fN -image of one of the strips is about a
constant D multiplied by the length ∆y/n2 of the horizontal sub-intervals, by the height
∆y which gives

Arean ≈ D ·
∆y

n2
·∆y .

It follows that the area of the fN -image of the 2hstrips is

2h∑

n=N0

Arean = D · (∆y)2
2h∑

n=N0

1

n2
.

Since any point in A has 2N preimages by the different Zb, |b| = N , we have to divide this
number by 2N in order not to multiple count. This gives us

D · (∆y)2
∑2h

n=N0

1
n2

2N
.

Since the number of preimages from N0 to N that cut A is given by the action of x 7→ 2x
mod (1) in [0, 1), which is Bernoulli, we have that this number is ≈ 2k0h∆x. Hence we have
that the area of the set of points that have returned after N preimages is

covered area ≈ D · (∆y)2
∑2h

n=N0

1
n2

2N
∆x · 2k0h = ∆x∆y


D ·∆y ·

2k0h

2N0+k0h
·

2h∑

n=N0

1

n2


 =
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= m(A)


D ·∆y · 2−N0 ·

2h∑

n=N0

1

n2


 = m(A) · θ,

where θ = D ·∆y · 2−N0 ·
2h∑

n=N0

1

n2
< 1 .

Therefore the measure of the set of points that have not returned yet is at mostm(A)(1−
θ). After taking 2N new preimages (i.e.: by backward iteration N times following all the
possible 2N branches Zb, |b| = N , from the new starting point) we cover m(A)(1 − θ)θ
which implies that it rests at most m(A)(1 − θ)2 points that have not returned to A yet.
We conclude by induction that for |b| = nN the measure of points not covered after taking
all 2nN pre-images is less than m(A)(1− θ)n → 0 when n→ ∞.

Corollary 5.8. We have that after nN iterates, the Lebesgue measure of points that have
not yet returned is less than m(A)(1 − θ)n.

The next corollary gives that the rate of recurrence of f is exponential.

Corollary 5.9. It holds that limn→∞ |m(f−n(A) ∩A)−m2(A)| = 0 exponentially fast.

Proof. Note that by Theorem 5.7 we have that the measure of points that have returned
to A after N iterations is

m(A)


D ·∆y · 2−N0 ·

2h∑

n=N0

1

n2


 .

We may write this expression as

m(A)


D ·∆x ·∆y ·

2−N0

∆x
·
2h∆x∑

n=N0

1

n2


 = (m(A))2


D ·

2−N0

∆x
·
2h∆x∑

n=N0

1

n2


 .

For N0 sufficiently large we have that λ =
(
D · 2−N0

∆x ·
∑n=2h

n=N0

1
n2

)
< 1 and therefore we

obtain that after n = hN iterations

|m(f−n(A) ∩A)−m2(A)| ≤ |(m(A))2
(
1− λ[

n;
N
])− (m(A))2| = (m(A))2λ[

n

N
]

Putting λ1/N = τ < 1 we have

|m(f−n(A) ∩A)−m2(A)| ≤ (m(A))2τn

proving the thesis.
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The following theorem is similar to Theorem 5.7.

Theorem 5.10. Given small rectangles A = [xA − ∆xA

2 , xA + ∆xA

2 ] × [yA, yA + ∆yA] and

B = [xB − ∆xB

2 , xB + ∆xB

2 ]× [yB , yB +∆yB] there is 0 < θ < 1 such that the set of points
of A that has visited B after N iterates is greater or equal than m(B) · θ.

Proof. By Corollary 5.5 we have that ℓ(Zb([xA− ∆xA

2 , xA+ ∆xA

2 ]×{y})) = 2h with |b| = N .

Assume that Πx(Zb(xa, y)) ∈ [xB − ∆xB

2 + 1
2N
, xB + ∆xB

2 − 1
2N

]. Then Zb(A) cuts B in 2h

strips which are almost vertical except perhaps for one of them corresponding to that strip
where the derivative y′b(xb) vanishes. We don’t take into account this strip so that we either
have 2h∆xA or (2h − 1)∆xA almost vertical strips. The area of Zb(A) is m(A)/2N .

By Lemma 5.6 and taking into account the sorting given at (⋆), the intersection of the
(almost) vertical sides of the strips with B are mapped by fN , N = |b|, in a subsegment of
the horizontal sides of A with length ≈ C∆yB/n

2, N0 ≤ n ≤ 2h, recall Corollary 5.5.
Thus, the area covered by the fN -image of the nth-strip is given by

(Area in A)n ≈ D ·
∆yB
n2

·∆yA ,

where D is a constant, ∆yB is the length of the vertical side of B, and ∆yA is the length
of the vertical side of A.

Therefore, the area of the fN -image of all the (2h −N0) strips is

2h∑

n=N0

Arean = D · (∆yA)(∆yB)
2h∑

n=N0

1

n2
.

Since any point in A has 2N pre-images by the different Zb, |b| = N , we have to divide this
number by 2N in order not to multiple count. This gives us

D · (∆yA)(∆yB)

∑2h

n=N0

1
n2

2N
.

Since the number of pre-images from N0 to N = N0+2k0h that cut B is given by the action
of x 7→ 2x mod (1) in [0, 1), which is Bernoulli, we have that this number is ≈ 2k0h∆xB.
Hence we have that the area of the set of points that have cut B after N pre-images is

≈ D · (∆yA)(∆yB)

∑2h∆xA

n=N0

1
n2

2N
∆xB · 2k0h = ∆xB∆yB


D ·∆yA ·

2k0h

2N0+k0h
·

2h∑

n=N0

1

n2


 =

= m(B)


D ·∆yA · 2−N0 ·

2h∑

n=N0

1

n2


 = m(B) · θ,
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where θ = D ·∆yA · 2−N0 ·
2h∆x∑

n=N0

1

n2
< 1 .

Therefore the measure of the set of points of A that have not visited yet the set B is at
most m(B)(1 − θ). After taking 2N new pre-images (i.e.: by backward iteration N times
following all the possible 2N branches Zb, |b| = N , from the new starting point) we cover
m(B)(1− θ)θ which implies that it rests at most m(B)(1− θ)2 points that have not visited
B yet.

By induction we conclude that for |b| = nN the measure of points not covered after
taking all 2nN pre-images is less than m(B)(1− θ)n → 0 when n→ ∞.

The following corollary, whose proof is similar to that of Corollary 5.9 gives that the
rate of mixing is exponential and concludes the proof of Theorem C.

Corollary 5.11. It holds that limn→∞ |m(f−n(A) ∩ B) − m(A)m(B)| = 0 exponentially
fast.
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