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Abstract

We investigate level-set type methods for solving ill-posed problems with discontinuous
(piecewise constant) coefficients. The goal is to identify the level sets as well as the level
values of an unknown parameter function on a model described by a nonlinear ill-posed
operator equation. The PCLS approach is used here to parametrize the solution of a given
operator equation in terms of a L2 level-set function (according to this approach, the level-
set function itself is a piecewise constant function).
Two distinct methods are proposed for computing stable solutions of the resulting ill-posed
problem: The first one is based on Tikhonov regularization, while the second method is
based on the augmented Lagrangian method with total variation penalization.
Classical regularization results [16] are derived for the Tikhonov method. On the other
hand, for the augmented Lagrangian method, we succeed in proving existence of (general-
ized) Lagrangian multipliers in the sense of [35].
Numerical experiments are performed for the inverse potential problem on a 2D-domain,
testing the performance of both methods. Our tests demonstrate that the proposed re-
construction methods are capable of solving the ill-posed problem in a stable way, being
able to recover complicated inclusions without any a priori geometrical information on the
unknown parameter.

1 Introduction

Modeling the ill-posed problem

Several ill-posed inverse problems of interest consist of identifying an unknown physical quan-
tity u ∈ X, that can be represented by a piecewise constant real function over a bounded given
domain Ω, from the set of data y ∈ Y , where X, Y are Hilbert spaces. The relation between
the unknown parameter function and the problem data is typically described by the (possibly
nonlinear) model

F (u) = y , (1)

where F : D(F ) ⊂ X → Y ; meaning that the set of data is obtained by indirect measurements
of the parameter. In practical applications the exact data y ∈ Y is, in general, not known. One
is given only approximate measured data yδ ∈ Y , corrupted by noise of level δ > 0, satisfying

‖yδ − y‖Y ≤ δ . (2)
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In the case where the unknown function u is piecewise constant distinguishing between two
given values, level-set approaches were considered in [36, 27, 20, 9, 7, 8, 14, 28, 6]. In this
case, since the level values of u are known, one needs only to identify the level sets of u, and
the problem in (1) reduces to a shape identification problem. In the case where the unknown
function u is a piecewise constant function distinguishing between several given values, multiple
level-set approaches were considered in [8, 10, 13].

If the level values of u are also unknown, the inverse problem becomes harder, since one has
to identify both the level sets as well as the level values of the unknown parameter u. In this
case, the dimension of the parameter space increases by the number of unknown level values
[39, 40].

The methods discussed in this article are designed to solve the operator equation (1) under
the assumption that the parameter function u is a piecewise constant function taking only two
possible (unknown) values, i.e. u(x) ∈ {c1, c2} a.e. in Ω ⊂ Rd. In other words, one can assume
the existence of an open mensurable set D ⊂⊂ Ω s.t.

u(x) = c1 , x ∈ D =: D1 and u(x) = c2 , x ∈ Ω/D =: D2 . (3)

The list of relevant applications matching this framework is large (see, e.g., [39, 41, 14,
38, 9, 7] and the references therein). It is worth mentioning that the methods presented here
can be extended in a straightforward way to the case where the unknown parameter takes any
finite number of values [32, 13, 37].

PCLS framework: Reparametrizing the parameter space

In this article a piecewise constant level-set (PCLS) approach [32, 44] is used to represent
the unknown parameter in (1) of the form (3), i.e. the L∞–function u is represented using
a smooth operator Ppc : L2(Ω) → L2(Ω) and a discontinuous (piecewise constant) level-set
function φ ∈ L2(Ω). Here we assume that φ(x) = i, x ∈ Di, with Di defined as in (3). Notice
that, using the auxiliary functions ψ1(t) := 2− t and ψ2(t) := t−1, the characteristic functions
of the subdomains Di can be written in the form χDi(x) = ψi(φ(x)), i = 1, 2. Therefore, a
solution u of (1) can be parametrized by the operator

u = c1ψ1(φ) + c2ψ2(φ) =: Ppc(φ, c
j) . (4)

The piecewise constant assumption on φ corresponds to the constraint K(φ) = 0, where
K(φ) := (φ− 1)(φ− 2) is a smooth nonlinear operator. The constraint described by K(φ) = 0,
can alternatively be expressed in the form K(φ) = 0, where K(φ) =

√
|φ− 1| |φ− 2|. Note

that, differently from K(·), the operator K(·) is not differentiable.
An alternative way (commonly found in the literature) to represent the piecewise constant

assumption on φ is given by the double well potentials (φ − 1)2n(φ − 2)2n = 0, n ∈ N [44].
Here we use a low order polynomial to represent this constraint. The advantage of this choice
resides in the fact that the corresponding operator K is continuous from L2(Ω) to L1(Ω). On
the other hand, the operator K is continuous from L2(Ω) to L2(Ω). Such regularity properties
(which are necessary for the analysis derived here; see Section 2) are not shared by the double
well potentials above.

Within this framework, the inverse problem in (1), with data given as in (2), and solution
of the form (3), can be written in the form of the abstract operator equation

F (Ppc(φ, c
j)) = yδ , where φ ∈ {L2(Ω); K(φ) = 0} and cj ∈ R . (5)
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Main contribution: New reconstruction methods

The main contribution of this article is to address two reconstruction methods for solving equa-
tion (5) in a stable way. The first one consists essentially in applying Tikhonov regularization
with total variation penalization [20] to the system:

[
F (Ppc(φ, c

j)) , K(φ)
]

=
[
yδ , 0

]
.

The second method is based on the augmented Lagrangian approach [3, 25] for a (regular-
ized) constrained optimization problem corresponding to the operator equation (5). From the
numerical point of view, augmented Lagrangian methods have been intensively investigated in
the imaging community in connection to binary reconstruction problems [32, 26, 44]. From
the analytical point of view, these methods were considered in [18, 19, 42]

A word about PCLS representation: i) Iterative methods based on the PCLS approach
produce a sequence of level-set functions which are typically continuous. Only at the end of
the iterative process a piecewise constant level-set function, satisfying the constraint K(φ) = 0,
is obtained [38] (see also Section 5);
ii) PCLS methods belong to the family of the so called binary level-set methods [32, 44]. The
motivation behind the binary level-set methods is very similar to the phase field methods
[2, 1, 4] used for phase transition type problems.

Remark 1. The standard level-set approach [36, 27] for problem (1) consists in introducing a
smooth level-set function φ (e.g., φ ∈ H1(Ω)) which acts as a regularization of the parameter
space. The discontinuities of the parameter u are represented implicitly by the zero level-set
of φ. In this approach the Heaviside projector H is used to represent a solution of (1) in the
form u = c2H(φ) + c1(1−H(φ)) =: Pls(φ, c

j).
Here u(x) = ci, x ∈ Di, where the sets Di correspond to D1 = {x ∈ Ω ; φ(x) ≥ 0} and

D2 = {x ∈ Ω ; φ(x) < 0}. Thus, the operator Pls establishes a straightforward relation between
the level sets of φ and the sets Di, representing the a priori knowledge about the solution u.

Within this framework, the inverse problem in (1), with data given as in (2), can be written
in the form of the operator equation F (Ps(φ, c

j)) = yδ. In order to obtain approximate solutions
to this equation, different regularization schemes have been proposed in the literature so far,
e.g., Tikhonov regularization using TV [7, 8, 37], or Tikhonov regularization using TV -H1

[20, 13].

First Reconstruction method: Tikhonov regularization

Approximate solutions to (5) can be obtained by minimizing the Tikhonov functional

Gα(φ, cj) := ‖F (Ppc(φ, c
j))− yδ‖2Y + µ‖K(φ)‖L1 + α

{
|Ppc(φ, cj)|BV + ‖cj‖2R2

}
. (6)

Notice that the minimization of the functional Gα furnishes a regularized solution to the system
of operator equations: [

F (Ppc(φ, c
j))

K(φ)

]
=

[
yδ

0

]
. (7)

The penalization term in (6) corresponds essentially to TV regularization, while µ > 0 plays
the role of a scaling factor balancing the misfits of the two operator equations (the correct
choice of the constant µ is very important in practical applications, since the first misfit term
depends crucially on the scale of the data, while the second does not).

It is worth noticing that, in the limit case α→ 0,1 the minimizers (φα, c
j
α) of Gα converge to

1Recall that in the presence of noise, δ > 0, the regularization parameter α is a function of the noisy level,
i.e. α = α(δ); see Theorem 4.
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some limit (ψ, cj) satisfying F (Ppc(ψ, c)) = y and K(ψ) = 0 (see Theorem 4 below). Thus, the
limit level-set function ψ is indeed piecewise constant (as suggested by the acronym PCLS).

Here we extend the Tikhonov regularization approach in [13] to the functional Gα in (6),
and prove convergence and stability results for the proposed variational approach. The main
challenge in the analysis is to choose an adequate functional analytical framework, as well as
to prove some regularity results for K and Ppc, which are required for the proofs of Theorems 3
and 4.

In [12] a similar Tikhonov functional was investigated (numerically) in connection with
the PCLS framework, and a corresponding iterative method was derived. Here we are able
to improve the efficiency of that iterative method by appropriately choosing the parameter µ.
Namely, instead of choosing µ constant along the iterations, we propose starting the iteration
with a small value µ0 and slowly increase it with the iteration. This allowed us to reduce the
numerical effort to the half (see numerical experiments in Section 5.2).

Second Reconstruction method: Augmented Lagrangian

Approximate solutions to (5) can be obtained by applying the augmented Lagrangian method
to the regularized constrained optimization problem{

minFα(φ, cj) := ‖F (Ppc(φ, c
j))− yδ‖2 + α

{
|Ppc(φ, cj)|BV + ‖cj‖2R2

}
,

s.t. φ ∈ {L2(Ω); K(φ) = 0} .
(8)

Due to lack of convexity of the constraint K(φ) = 0, classical Lagrange methods [34, 3]
cannot be applied in a straightforward way to solve the constrained optimization problem (8).
Alternatively, we introduce the (augmented) Lagrangian functional GL,α, which is formally
defined by

GL,α(φ, cj ;λ, µ) := ‖F (Ppc(φ, c
j))− yδ‖2Y + µ‖K(φ)‖L2 +

∫
Ω λK(φ)

+ α
{
|Ppc(φ, cj)|BV + ‖cj‖2R2

}
, (9)

and search for ”generalized” multipliers (λ, µ) in the sense of [35, Chapter 11.K∗] (see also [30,
Chapter 5]). The scalar µ > 0 in (9) is a penalty factor that allows one to establish a duality
relation for problems of nonconvex type, while the L2(Ω)–vector λ can be interpreted as a
”generalized” Lagrange multiplier.

According to the abstract augmented Lagrangian framework followed here, one aims to
find a vector λ̄ supporting an exact penalty representation for the primal problem, as well as
a corresponding penalty factor µ̄ (see Definition 3 in Section 3). Once such a pair (λ̄, µ̄) is
known, an approximate solution to (7) can be found by solving an unconstrained optimization
problem (just as in the classical Lagrange theory).

The augmented Lagrangian approach followed here can be seen as a combination of the
penalty function method and the Lagrangian multiplier method and is able to eliminate many
disadvantages associated with either method alone [3]. In comparison with the quadratic
penalty method for constrained optimization problems, the convergence of the augmented
Lagrangian method usually does not require the penalty parameter to tend to infinity [3].
This result eliminates (or at least moderates) the ill-conditioning in the penalty method.

Another advantage of the augmented Lagrangian method is that its convergence rate is
considerably better than that of the penalty method (see [35, 3] and Section 4). It is worth
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noticing that the existence of an exact penalty function for the particular primal problem (8)
is essential for the successful analysis of this approach.

The penalization term in (9) has the same meaning as the one in (6), and α > 0 plays the
role of a regularization parameter.

Outline of the article

In Section 2 we present a convergence analysis for the Tikhonov method (6) based on the
PCLS approach. A corresponding algorithm is derived (see Subsection 2.1). In Section 3 we
present a convergence analysis for the augmented Lagrange method (9) based on the PCLS
approach. A corresponding algorithm is presented in Subsection 3.1. Section 4 is devoted
to the investigation of numerical methods. The benchmark two-dimensional inverse potential
problem is introduced [20, 13]. A numerical algorithm (of PCLS type) based on the Tikhonov
method is derived and discussed for solving this inverse problem. A second algorithm (of
PCLS type) based on the augmented Lagrangian method is derived an implemented for the
same inverse problem. In Section 5 numerical tests with the proposed algorithms are presented.
Experiments with exact and noisy data are both considered, and the performances of the two
reconstruction methods proposed in this manuscript are compared.

2 PCLS approach and the Tikhonov method

We start this section briefly recalling some results related to the convergence analysis of the
regularization method based on the PCLS approach.

We shall consider the model problem described as in the introduction under the following
general assumptions:

(A1) Ω ⊆ Rd, d = 2, is bounded with piecewise C1 boundary ∂Ω.
(A2) The operator F : D ⊂ Lp(Ω) → Y is continuous and Fréchet-differentiable on D
with respect to the Lp-topology, where 1 ≤ p < d/(d− 1) = 2.
(A3) α and µ denote positive parameters.
(A4) There exists û ∈ L∞(Ω) satisfying F (û) = y. Moreover, there exists a function
φ̂ ∈ BV(Ω) ⊂ L2(Ω) and constants ĉ1 6= ĉ2 ∈ R such that Ppc(φ̂, ĉ

j) = û and K(φ̂) = 0.

A straightforward consequence of the definition of Ppc(·, ·) is that, for fixed constants cj , this op-
erator is 1-1, continuous and continuously differentiable from L2(Ω) onto L2(Ω). Consequently,
the set of admissible vectors for the Tikhonov functional in (6) is defined in the following way:

Definition 1. Let the operator Ppc be defined as in (4) and τ > 0. A vector (φ, cj) ∈
L2(Ω)× R2 is called admissible when φ ∈ BV(Ω) and |c2 − c1| ≥ τ .

From (4), it follows that Ppc maps admissible vectors to BV(Ω). Next we briefly recall some
basic facts about the space BV(Ω). For a proof we refer the reader to [17, Chapter 5].

Lemma 1. The following assertions hold true:

i) The semi-norm | · |BV is weakly lower semi-continuous with respect to Lp-convergence, i.e. if
{xk} ∈ BV(Ω) converges to x in the Lp-norm, then x ∈ BV(Ω) and |x|BV ≤ lim infk→∞ |xk|BV.

ii) BV(Ω) is compactly embedded in Lp(Ω) for 1 ≤ p < d/(d − 1). Consequently, any bounded
sequence {xk} ∈ BV(Ω) has a subsequence converging in Lp(Ω) to some x ∈ BV(Ω).

The next lemma is devoted to the investigation of relevant properties of operators K and
Ppc respectively.

5



Lemma 2. Let K, K be the operators defined in Section 1 and Ppc the operator defined in (4).
The following assertions hold true:

i) K and K are continuous maps from L2(Ω) to L1(Ω) and from L2(Ω) to L2(Ω) respectively;
additionally the functional ‖K(·)‖L1, defined in L2(Ω), is weakly lower semi-continuous.
ii) If ‖K(φ)‖L1 = 0 or ‖K(φ)‖L2 = 0 for some φ ∈ L2(Ω), then φ(x) ∈ {1, 2} a.e. in Ω.
iii) For every admissible vector (φ, cj) it holds |Ppc(φ, cj)|BV ≥ τ |φ|BV ≥ τ‖φ‖L2.

Moreover, if (φk, c
j
k) is a sequence of admissible vectors converging in Lp(Ω) × R2 to some

admissible vector (φ, cj), then
iv) Ppc(φk, c

j
k) converges to Ppc(φ, c

j) in Lp(Ω).

v) |Ppc(φ, cj)|BV ≤ lim infk→∞ |Ppc(φk, cjk)|BV.

Proof. We prove only item i). For the other proofs, we refer the reader to [12]. The continuity
of K follows from

∫
Ω |K(φ)−K(ψ)| ≤

∫
Ω |(φ− 1)(φ−ψ)|+

∫
Ω |(ψ− 2)(ψ− φ)|, together with

the Cauchy-Schwarz inequality. The continuity of K follows from a similar argumentation
(additionally, one has to apply the inequality 2ab ≤ a2 + b2).
To verify the last assertion of item i), notice that equation K(φ) = 0 in (7) is equivalent to
K̃(φ) = 1/4, where K̃(φ) := K(φ) + 1/4. Thus, it is enough to prove that the functional
‖K̃(·)‖L1 is weakly l.s.c. Since the real function t 7→ |K̃(t)| is convex, this property follows
from Dacorogna [11, Theor.1.1, pg. 7; and subsequent remark, pg. 8].

Notice that Lemma 2 iii) guarantees the coercivity of the functional |Ppc(·, ·)|BV (w.r.t. the
L2-norm) on the set of admissible parameters. This lemma contains the essential tools needed
to derive the main convergence analysis results for the PCLS approach. Let Rpc(φ, c

j) :=
|Ppc(φ, cj)|BV + ‖cj‖2R2 be the penalization term of Gα in (6). Given α, µ > 0, the next result
guarantees the well posedness of functional Gα.

Theorem 3. The functional Gα in (6) attains minimizers on the set of admissible vectors.

Proof. Let {(φk, cjk)} be a minimizing sequence for Gα, i.e. a sequence of admissible vectors

satisfying Gα(φk, c
j
k) → inf Gα, k → ∞. Then, {Rpc(φk, cjk)} is a bounded sequence of real

numbers and it follows from Lemma 2 iii) the existence of a subsequence {φk} and φ ∈ L2(Ω)
such that φk ⇀ φ in L2(Ω). Moreover, from Lemma 2 i) and Lemma 1 ii) we conclude that
φ ∈ BV(Ω) and that this subsequence also satisfies φk → φ in Lp(Ω).

On the other hand, the boundedness of {Rpc(φk, cjk)} also guarantees the existence of subse-

quences {cjk} converging to cj in R2.
Clearly (φ, cj) is an admissible vector. Moreover, from (A2), Lemma 2 i) and v) it follows that

inf Gα = lim
k→∞

Gα(φk, c
j
k)

= lim inf
k→∞

{
‖F (Ppc(φk, c

j
k))− y

δ‖2Y + µ‖K(φk)‖L1 + αRpc(φk, c
j
k)
}

≥ ‖F (Ppc(φ, c
j))− yδ‖2Y + µ‖K(φ)‖L1 + αRpc(φ, c

j) = Gα(φ, cj) ,

proving that (φ, cj) minimizes Gα.

Standard convergence and stability results (cf. [12, Theor.7] or [13, Theor.8 and 9]) hold
true for the Tikhonov method based on the PCLS approach. The proof uses classical techniques
from the analysis of Tikhonov type regularization methods [16] and thus is omitted.
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Theorem 4. Assume that we have exact data, i.e. δ = 0 in (2), and µ > 0. For every α > 0
denote by (φα, c

j
α) a minimizer of Gα on the set of admissible vectors. Then, for every sequence

of positive numbers {αk} converging to zero there exists a subsequence such that (φαk
, cjαk) is

strongly convergent in Lp(Ω)× R2. Moreover, the limit is a solution of (7) with yδ = y.

In the case of noisy data, let α = α(δ) be a positive function with limδ→0 α(δ) = 0 and
limδ→0 δ

2/α(δ) = 0. Given a sequence {δk} of positive numbers converging to zero and {yδk} ∈
Y be corresponding noisy data satisfying (2), there exist a subsequence, denoted again by {δk},
and a sequence {αk := α(δk)} such that (φαk

, cjαk) converges in Lp(Ω) × R2 to a solution of
(7) with yδ = y.

Notice that the limit elements (φ, cj) obtained from the convergence-stability Theorem 4
satisfy not only F (Ppc(φ, c

j)) = y, but also ‖K(φ)‖L1 = 0. Therefore, due to Lemma 2 ii), we
conclude that the limit level-set function φ is piecewise constant.

2.1 An iterative algorithm based on Tikhonov method

The iterative algorithm based on the regularization method for PCLS approach proposed in
this article is an explicit iterative method based on the operator splitting technique [21, 29]
and derived from the optimality conditions for the Tikhonov functional Gα in (6). First the
operator Gα is splited in the sum Gα(φ, cj) = G1

α(φ, cj) + G2
α(φ), where

G1
α(φ, cj) := ‖F (Ppc(φ, c

j))− yδ‖2Y + α
{
|Ppc(φ, cj)|BV + ‖cj‖2R2

}
G2
α(φ) := µ‖K(φ)‖L1(Ω) .

Each step of the iterative method consists of two parts:
i) The iterate (φk, c

j
k) is updated using an explicit gradient step w.r.t. the operator G1

α, i.e.

φk+1/2 := φk −
∂

∂φ
G1
α(φk, c

j
k) , cjk+1/2 := cjk −

∂

∂cj
G1
α(φk, c

j
k) , (10)

where

∂

∂φ
G1
α(φ, cj) = (c2 − c1)F ′(Ppc(φ, c

j))∗[F (Ppc(φ, c
j))− yδ]

−α
2 (c2 − c1)∇·

[
∇Ppc(φ)/|∇Ppc(φ)|

]
, (11a)

∂

∂c1
G1
α(φ, cj) =

[
F ′(Ppc(φ, c

j))(2− φ)
]∗

(F (Ppc(φ, c
j))− yδ),

−α
2 (2− φ)∇·

[
∇Ppc(φ)/|∇Ppc(φ)|

]
+ c1, (11b)

∂

∂c2
G1
α(φ, cj) =

[
F ′(Ppc(φ, c

j))(φ− 1)
]∗

(F (Ppc(φ, c
j))− yδ)

−α
2 (φ− 1)∇·

[
∇Ppc(φ)/|∇Ppc(φ)|

]
+ c2. (11c)

ii) The obtained approximation (φk+1/2, c
j
k+1/2) is improved by giving a gradient step w.r.t.

the operator G2
α, i.e.

φk+1 := φk+1/2 −
d

dφ
G2
α(φk+1/2) , cjk+1 := cjk+1/2 , (12)

where
∂

∂φ
G2
α(φ) = µ (2φ− 3)K(φ)/|K(φ)| , (13)
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In [38] a similar operator splitting strategy was used to minimize a Tikhonov functional
related to an elliptic inverse problem in EIT. For a comprehensive study of operator splitting
methods we refer the reader to Glowinski’s book [21]

In the numerical implementation of the algorithm described above, the issue of the choice
of µ is critical.
If a large value of µ is chosen, the iterates φk satisfy the constraint K(φk) = 0 (i.e. become
piecewise constant) after a few steps and the iteration stagnates. However, the corresponding
approximate solution Ppc(φk, c

j
k) is far from the true parameter.

Typically, a very small constant value µ > 0 has to be chosen. This allows the computation
of a much preciser approximation for the true parameter. However, this choice of µ leads to a
very slow convergence of the operator splitting scheme, since a large large number of iterative
steps is required in order to enforce the constraint K(φk) = 0.
This facts suggested the use of a slight variation of the iteration described above. Instead
of choosing a constant value for µ, we start the algorithm above using a small value µ = µ0

(i.e. the operator splitting scheme consists basically of it’s first part). During the iteration,
the value of µ increases gradually according to a pre-defined strategy [38]. This alternative
implementation of the operator splitting scheme leads to much faster and stable algorithm, as
discussed in Section 5.

Remark 2. The PCLS approach described above is characterized by a constraint enforcing
either φ = 1 or φ = 2 in Ω. It is worth noticing that the resulting (two steps) level-set
algorithm relates to the phase field method used by the dynamic interface community to analyze
front propagation problems [2, 5].

3 PCLS approach and augmented Lagrangian

This section is devoted to the analysis of the augmented Lagrangian approach introduced in
Section 1. In what follows, we prove two main results: i) existence of zero duality gap;2 ii)
exact penalty representation for the duality scheme induced by the augmented Lagrangian
function (9). The main tool in our analysis is abstract convexity, which recently became a
natural language to investigate duality-schemes via augmented Lagrangian type functions [35].

For the rest of this section we adopt the notation:
— Γ is the set valued function satisfying Γ(z) := {φ ∈ L2(Ω);K(φ) = z}, z ∈ L2(Ω).
— The set distance function in L2(Ω) is denoted here by δ (recalling, this is the function
defined by δA(z) := 0, if z ∈ A and δA(z) := +∞, otherwise).

In the sequel we introduce some functions that are necessary for the forthcoming analysis:
— F̃α(φ, cj) = Fα(φ, cj), if φ ∈ Γ(0) and F̃α(φ, cj) = +∞, otherwise.

— A dualizing parametrization function [35] for F̃α is chosen in the following way: f : L2(Ω)×
R2 × L2(Ω) → R, f(φ, cj , z) := Fα(φ, cj) + δΓ(z)(φ). The function f satisfies the property

f(φ, cj , 0) = F̃α(φ, cj), (φ, cj) ∈ L2(Ω)× R2.
— The perturbation function (of the primal problem) related to this duality parametrization,
is given by θ : L2(Ω) → R, θ(z) := inf(φ,cj)∈L2(Ω)×R2 f(φ, cj , z). Notice that assumption (A4)
guarantees θ(0) < +∞.
— A coupling function ρ : L2(Ω)×L2(Ω)×R+ → R is defined by ρ(z, λ, µ) := −〈λ, z〉−µ ‖z‖L2

,
where 〈·, ·〉 denotes the usual L2–inner product.

2For nonconvex constrained optimization problems, a nonzero duality gap may occur when an ordinary
Lagrangian functional is used [43, 35].
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— The augmented Lagrangian functional induced by the coupling function ρ reads

GL,α(φ, cj ;λ, µ) = infz∈L2(Ω){f(φ, cj , z)− ρ(z, λ, µ)} .

It is straightforward to verify that, with the above definitions, GL,α(φ, cj ;λ, µ) coincides with
the functional introduced in (9). Moreover, GL,α(φ, cj ;λ, µ) also coincides with Fα(φ, cj) in (8)
whenever K(φ) = 0.
— Next we introduce the dual function, which is the mapping Q : L2(Ω) × R+ → R defined
by Q(λ, µ) := inf(φ,cj)∈L2(Ω)×R2 GL,α(φ, cj ;λ, µ).

Remark 3. Using the definitions above it is immediate to see that the constrained optimization
problem (8) is equivalent to the (primal) problem min(φ,cj) F̃α(φ, cj). The corresponding dual
problem reads: max(λ,µ)Q(λ, µ). Moreover, the dual function satisfies the identity Q(λ, µ) =
infz{θ(z)− ρ(z, λ, µ)}.
In this framework, weak duality means that Vd := sup(λ,µ)Q(λ, µ) ≤ inf(φ,cj) F̃α(φ, cj) =: Vp,
while strong duality corresponds to Vd = Vp, where Vp and Vd denote the optimal values for the
primal and dual problem respectively.

In the following definition, the Fenchel–Moreau conjugated and biconjugated functions are
introduced. These functions furnish a natural way to verify weak and strong duality, as we
shall see below. The second part of the definition concerns abstract subgradients, which are
needed in the proof of our strong duality result.

Definition 2 ([35, Chapter 11]). The Fenchel–Moreau conjugated and biconjugated functions
of θ with respect to the coupling function ρ are defined respectively by

θρ(λ, µ) = sup
z∈L2(Ω)

{ρ(z, λ, µ)− θ(z)} and θρρ(z) = sup
(λ,µ)∈L2(Ω)×R+

{ρ(z, λ, µ)− θρ(λ, µ)} .

Moreover, given ε ≥ 0, an element (λ, µ) ∈ L2(Ω) × R+ is called ε-abstract subgradient of θ
at z̄ with respect to ρ when θ(z) − ρ(z, λ, µ) ≥ θ(z̄) − ρ(z̄, λ, µ) − ε, for all z ∈ L2(Ω). The
set of all ε-abstract subgradients of θ at z̄ is called ε-subdifferential of g at z̄ and is denoted by
∂ρ,εθ(z̄).

Remark 4. Notice that the perturbation function θ is lsc at z = 0. Moreover, from the
definitions of θρ and θρρ it follows that dom(θρ) 6= ∅, θρ(λ, µ) = −Q(λ, µ) and θρρ(z) ≤ θ(z).

In the next lemma we prove some regularity properties of ρ.

Lemma 5. The following assertions hold true:

i) For any (λ, µ) ∈ L2(Ω) × R+ the function ρ(·, λ, µ) is upper semi-continuous at 0 and
satisfies ρ(0, λ, µ) = 0.

ii) For every neighborhood V ⊂ L2(Ω) of z = 0 and for every (λ, µ̄) ∈ L2(Ω)× R+, it holds

a) AVλ,µ̄(µ) := infz∈V C{ρ(z, λ, µ̄)− ρ(z, λ, µ)} > 0, ∀µ > µ̄;

b) limµ→∞A
V
λ,µ̄(µ) =∞.

Proof. The continuity of ρ as well as the property ρ(0, λ, µ) = 0 follow from the definition
of the coupling function, proving assertion i). Assertion ii) is a consequence of the identity
ρ(z, λ, µ̄)− ρ(z, λ, µ) = (µ− µ̄)‖z‖L2

.
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Lemma 6. The weak duality property holds true, i.e., Vd ≤ Vp.

Proof. From Lemma 5 we know that ρ(0, λ, µ) = 0. Using this fact in Definition 2, we conclude
that θρρ(0) = Vd. On the other hand, θ(0) = Vp. The proof follows now from Remark 4.

From the above proof we conclude that weak duality is equivalent to θρρ(0) ≤ θ(0). Anal-
ogously, strong duality (or zero duality gap) can be shown to be equivalent to the identity
θρρ(0) = θ(0). This fact is used to prove the first main result of this section, which is stated
in Theorem 9 after verifying two auxiliary results:

Lemma 7. If (λ, µ0) ∈ ∂ρ,εθ(0), then (λ, µ) ∈ ∂ρ,εθ(0), for every µ ≥ µ0.

Proof. The assertion follows from the definition of the ε-abstract subgradient ∂ρ,εθ(·), together
with Lemma 5 i) and the fact that ρ(z, λ, ·) is a monotone decreasing function.

Lemma 8. The following assertions hold true:
a) For all ε > 0 it holds ∂ρ,εθ(0) 6= ∅.
b) Let (λ̄, µ̄) ∈ dom(θρ) be given. For every ε > 0 there exists a µ0 = µ0(ε) such that
(λ̄, µ) ∈ ∂ρ,εθ(0), for all µ ≥ µ0.

Proof. We already observed that θ is lsc at z = 0, as well as dom(θρ) 6= ∅ (see Remark 4).
These facts together with Lemma 5 guarantee the assumptions of [30, Theorem 5.2.1], from
which the desired results follow.

Theorem 9. The Lagrangian functional GL,α has no duality gaps.

Proof. The weak duality property was already established in Lemma 6. Therefore, in order to
prove strong duality, it remains to verify that θρρ(0) ≥ θ(0).
Let ε > 0 be given. Lemma 8 guarantees the existence of an element (λ̄, µε) ∈ ∂ρ,εθ(0). Thus,
from the definition of ε-abstract subgradients, it follows that

θ(z)− ρ(z, λ̄, µε) ≥ θ(0)− ρ(0, λ̄, µε)− ε = θ(0)− ε , ∀z ∈ L2(Ω) . (14)

Hence, it follows from Lemma 5 that

θρρ(0) = sup(λ,µ){ρ(0, λ, µ)− θρ(λ, µ)} = sup(λ,µ){−θρ(λ, µ)}
≥ −θρ(λ̄, µε) = infz{θ(z)− ρ(z, λ̄, µε)} ≥ θ(0)− ε .

Since ε > 0 is arbitrary, the desired inequality follows.

In what follows we concentrate on the second main result of this section, namely the
existence of multipliers. The precise definition of ”generalized Lagrangian multipliers” follows:

Definition 3. [Exact penalty representation] A vector λ̄ ∈ L2(Ω) is said to support an exact

penalty representation for the problem of minimizing F̃α if there exists a µ0 > 0 such that

θ(0) = Q(λ̄, µ) and argmin(φ,cj)F̃α(φ, cj) = argmin(φ,cj)GL,α(φ, cj ; λ̄, µ) , (15)

for all µ > µ0. (alternatively, such a vector λ̄ is said to support an exact penalty representation
for the problem of minimizing Fα under the constraint K(φ) = 0)

A proof of existence of generalized multipliers in the sense of Definition 3 is given in
Theorem 11, which is stated after the verification of an important auxiliary result:
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Lemma 10. Let (λ̄, µ̄) ∈ dom(θρ) be given. There exists µ̂ > 0 satisfying

θ(z) ≥ θ(0)− 〈λ̄, z〉 − µ̂‖z‖L2
, ∀z ∈ L2(Ω) .

Proof. The existence of an element (λ̄, µ̄) ∈ dom(θρ) follows as in the proof of Lemma 8. Define
µ̂ := max{1,

∥∥λ̄∥∥
L2
}. Thus, the estimate −〈λ̄, z〉− µ̂‖z‖L2

≤ (
∥∥λ̄∥∥

L2
− µ̂) ‖z‖L2

≤ 0 holds true

for all z ∈ L2(Ω). Now, we conclude from (14) that θ(z) ≥ θ(0) ≥ θ(0) − 〈λ̄, z〉 − µ̂‖z‖L2
, for

all z ∈ L2(Ω).

Theorem 11. There exists a λ̄ ∈ L2(Ω) supporting an exact penalty representation for the
problem of minimizing Fα under the constraint K(φ) = 0.

Proof. Notice that: i) The set of optimal solutions of the primal problem is nonempty (con-
sequence of assumption (A4)); ii) The dualizing parametrization function f(φ, cj ; ·) is lsc at
z = 0 for every (φ, cj) (follows from the definition of f); iii) The perturbation function ρ is
lsc at z = 0 (see Remark 4); iv) There exists an element (λ̄, µ̄) ∈ dom(θρ) (see Remark 4).

These facts together with Lemma 5 guarantee the assumptions of [30, Theorem 5.2.5].
According to this theorem, the existence of λ̄ ∈ L2(Ω) supporting an exact penalty representa-

tion for the problem of minimizing F̃α is equivalent to the existence of an open neighborhood
W ⊂ L2(Ω) of 0 and some µ0 > 0 such that θ(z) ≥ θ(0) + ρ(z, λ̄, µ0), for all z ∈W . However,
due to Lemma 10, this last inequality is satisfied at any neighborhood W ⊂ L2(Ω) of 0.

Remark 5. The first identity in (15) is equivalent to inf(φ,cj) F̃α(φ, cj) = inf(φ,cj) GL,α(φ, cj ; λ̄, µ).
Thus, the existence of a vector λ̄ ∈ L2(Ω) satisfying Definition 3 is sufficient to guarantee that

the problems of minimizing the functionals F̃α(·, ·) and GL,α(·, ·; λ̄, µ) over (φ, cj) ∈ L2(Ω)×R2

are equivalent (i.e., both functionals have the same minimizers are the same as well as the same
minimal values). Consequently, optimal solutions of the constrained optimization problem (8)
can be obtained by solving the unconstrained optimization problem min(φ,cj) GL,α(φ, cj ; λ̄, µ).
However, a pair (λ̄, µ0) satisfying Definition 3 has to be found first.

Another consequence of the first identity in (15) is the following fact:

Vp = θ(0) = Q(λ̄, µ) ≤ sup(λ,µ)Q(λ, µ) = Vd .

From this inequality and the weak duality property established in Lemma 6, the strong duality
property follows. Therefore, Theorem 9 can be interpreted as a corollary of Theorem 11.

Notice that the existence of (generalized) multipliers justifies the implementation of dual
algorithms in order to approximate the solutions of the constrained optimization problem in
(8). These algorithms allow the simultaneous determination of the optimal solution as well as
the generalized multipliers.

3.1 An iterative algorithm based on augmented Lagrangian method

In the sequel we propose a numerical method based on the PCLS approach and augmented
Lagrangian for solving the inverse problem in (5). This is an iterative method which exploits
the definition of abstract multipliers in Definition 3, generating a sequence of approximate
solutions to the constrained optimization problem in (8).

More precisely, our method can be interpreted as an Usawa type iteration [21, 25, 35, 26],
which aims to find an L2–vector λ̄ satisfying Definition 3 and (simultaneously) find a pair
(φ̄, c̄j) ∈ argmin(φ,cj)GL,α(φ, cj ; λ̄, µ).
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Notice that in Definition 3 any µ large enough (namely µ > µ0) can be used to characterize
λ̄ ∈ L2(Ω) as a vector supporting an exact penalty representation for the problem of minimizing
Fα under the constraint K(φ) = 0. Therefore, in our algorithm we do not update the value
of the µ along the iteration. The outcome of our numerical experiments are not strongly
influenced by the choice the (constant) penalty factor µ.

Starting with initial guesses (φ0, c
j
0;λ0) and µ > 0 sufficiently large, the proposed iterative

method consists essentially of two parts: i) Given the current iterate (φk, c
j
k;λk), the update of

the components (φk, c
j
k) is computed through the minimization of GL,α(·, ·, λk, µ) with respect

to (φ, cj), i.e.
(φk+1, c

j
k+1) := arg min

(φ,cj)
GL,α(φ, cj ;λk, µ) . (16)

ii) The Lagrange multiplier λk is updated giving a gradient step of GL,α(φk+1, c
j
k+1, ·, µ) with

respect to λ, i.e.
λk+1 := λk + µK(φk+1) . (17)

In our numerical implementations, we follow the approach in [32]. A solution of the mini-
mization problem i) is approximated by solving the set of optimality conditions

∂

∂φ
GL,α(φ, cj ;λk, µ) = 0 ,

∂

∂cj
GL,α(φ, cj ;λk, µ) = 0 . (18)

What concerns the implementation of step ii), this is a simple gradient step with respect
to λ of the functional GL,α which can be computed in an explicit way.

Remark 6. In order to solve the set of optimality conditions in (18), an artificial time variable
t is introduced and the PDE

∂φ

∂t
=

∂

∂φ
GL,α(φ, cj ;λk, µ) ,

∂cj

∂t
=

∂

∂cj
GL,α(φ, cj ;λk, µ) = 0 ,

is solved until it reaches a steady solution. This steady solution is also a solution of the
optimality conditions (18) [32, 33].

In the numerical realizations presented in Section 5, we use a forward Euler method for
calculating a steady solution of the PDE above. This computational scheme corresponds to an
inner iteration for updating the pair (φ, cj):

4 Numerical experiments: Setup and algorithms

In this section we discuss the numerical implementations of iterative methods based on the
approaches discussed in Sections 2 and 3. As a benchmark problem we use the inverse potential
problem (IPP), which is similar to the one considered in [20, 39, 13, 22, 40].

4.1 The inverse potential problem (IPP)

The forward problem consists of solving on a given Lipschitz domain Ω ⊂ Rn, for a given
source function u ∈ L2(Ω), the Poisson boundary value problem

−∆w = u , in Ω , w = 0 on ∂Ω . (19)

This problem can be modeled by the operator F : L2(Ω) → L2(∂Ω), F (u) := wν |∂Ω [24].
The corresponding inverse problem is the so called inverse potential problem, which consists

12



1. Take (φ̃0, c̃0) = (φk, ck); and ε > 0 a specified precision.

2. Compute the inner iteration

φ̃n+1 = φ̃n −∆φ
∂

∂φ
GL,α(φ̃n, c̃

j
n;λk, µ) , c̃jn+1 = c̃jn −∆cj

∂

∂cj
GL,α(φ̃n, c

j
n;λk, µ) ,

for n = 0, . . . , n?, where n? ∈ N is such that the pair (φ̃n? , c̃jn?) satisfies

the stop criteria | ∂∂φGL,α(φ̃n? , c̃jn? ;λk, µ)| < ε, and | ∂
∂cj
GL,α(φ̃n? , cjn? ;λk, µ)| <

ε.

3. Take (φk+1, c
j
k+1) := (φ̃n? , c̃jn?).

Table 1: Forward Euler method for updating the pair (φ, cj). This inner iteration corresponds
to step part i) of the iterative algorithm based on the augmented Lagrangian method.

of recovering an L2–function u, from measurements of the Cauchy data of its corresponding
potential on the boundary of Ω.

Using this notation, the inverse potential problem can be written in the abbreviated form
F (u) = yδ, where the available noisy data yδ ∈ L2(∂Ω) have the same meaning as in (2).

It is worth noticing that this inverse problem has, in general, non unique solution [22].
Sufficient conditions for identifiability are given in [23]. For issues related to redundancy of
data as well as for an example of non identifiability we refer the reader to [22]. A generalization
of this inverse problem, with the Laplacian replaced by a general elliptic operator, appears in
many relevant applications including: inverse gravimetry [31, 24], EEG [15], and EMG [41].

In our experiments we follow [13] in the experimental setup, selecting Ω = (0, 1)×(0, 1) and
assuming that the unknown parameter is a piecewise constant function of the form u = 1+χD,
where D ⊂⊂ Ω. In particular, we allow piecewise constant functions u supported at domains
consisting of several connected components. It is worth mentioning that, for this class of
parameters, no unique identifiability result is known in the literature [24].

4.2 An algorithm based on PCLS and Tikhonov method for the IPP

In the sequel we present a numerical algorithm for solving the IPP based on the PCLS approach
and the Tikhonov method, cf. discussed in Section 2.1.

First, a constant N ∈ N is chosen in order to control the operator the operator splitting
scheme. Each step of this iterative method consists of four parts (see Table 2). The first half of
the operator splitting scheme consists of parts (1), (2) and (3). The second half of the operator
splitting scheme consists of part (4), as described below:
1) The residual rk ∈ L2(∂Ω) of the iterate (φk, c

j
k) is evaluated (this requires solving one elliptic

BVP of Dirichlet type);
2) The L2–solution hk of the adjoint problem for the residual is evaluated (this corresponds to
solving one elliptic BVP of Dirichlet type);
3) The level-set function φk and the level values cjk are updated according to the first part
of the operator splitting scheme (i.e. with respect to the Functional G1

α), this results in the
computation of φk+1/2, cjk+1/2.

4) If the iteration counter k is not a multiple of N , skip the second part of the operator splitting
scheme and set φk+1 := φk+1/2, cjk+1 := cjk+1/2.
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1. Evaluate the residual rk := F (Ppc(φk, c
j
k)) − yδ = (wk)ν |∂Ω − yδ, where wk

solves

∆wk = Ppc(φk, c
j
k) , in Ω ; wk = 0 , at ∂Ω .

2. Evaluate hk := F ′(Ppc(φk, c
j
k))
∗(rk) ∈ L2(Ω), solving

∆hk = 0 , in Ω ; hk = rk , at ∂Ω .

3. Update φk, cjk according to (10), (11) and calculate φk+1/2, cjk+1/2 from

φk+1/2 := φk − (c2
k − c1

k)hk − α
2 (c2

k − c1
k)sk,

c1
k+1/2 := cjk −

∫
Ω(2− φk)hk − α

2

∫
Ω(2− φk)sk ,

c2
k+1/2 := cjk −

∫
Ω(φk − 1)hk − α

2

∫
Ω(φk − 1)sk ,

where sk := ∇·
[
∇Ppc(φk, cjk)/|∇Ppc(φk, c

j
k)|
]
.

4. If (k mod N) = 0 then

Update φk+1/2, cjk+1/2 according to (12), (13) and calculate φk+1, cjk+1

Else

Take φk+1 = φk+1/2, cjk+1 = cjk+1/2.

Table 2: Iterative algorithm based on the PCLS approach and Tikhonov method for the IPP.

Otherwise, the level-set function φk+1/2 and the level values cjk+1/2 are updated according to

the second part of the operator splitting scheme (i.e. with respect to the functional G2
α), this

allows the computation of φk+1, cjk+1.

4.3 An algorithm based on PCLS and augmented Lagrangian for the IPP

In what follows we present a numerical algorithm for solving the IPP based on the PCLS
approach and the augmented Lagrangian method, cf. discussed in Subsection 3.1.

First, an initial guess (φ0, c
j
0;λ0) is chosen for the level-set function, the level values, and

Lagrange multiplier. Each step of this iterative method consists of two parts (see Table 3):

1) The first part, consists of the inner iteration 1.1) – 1.5) and corresponds to the forward Euler
method described in Table 1 for approximating a minimizer of the functional GL,α(·, ·, λk) in

(16). This inner iteration starts at (φ̃0, c̃
j
0) := (φk, c

j
k) and produces a sequence {(φ̃n, c̃jn)}. The

calculation of this sequence is stopped at step n = n?, when (φ̃n? , c̃jn?) solves the optimality
conditions (18) up to an a-priori chosen precision ε > 0.
Notice that λk remains fixed during this inner iteration. When n = n? is reached we update
(φk+1, c

j
k+1) = (φ̃n? , c̃jn?).

2) The second part of the iterative step, corresponds to the explicit gradient step in (17).
Notice that, for each λk, this inner iteration corresponds to a full run of the algorithm in

Table 2. At a first glance, this may be seen as a draw back of this algorithm based on the
augmented Lagrangian method. However, some relevant facts should be observed at this point:
— Our numerical experiments show that the overall performance of the method is not influ-
enced by the fact that the functional GL,α(·, ·, λk) in (16) is not precisely minimized in each
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1. Update of the pair (φk, c
j
k):

1.1 Take n = 0 and (φ̃0, c̃
j
0) := (φk, c

j
k);

1.2 Evaluate the residual rn := F (Ppc(φ̃n, c̃
j
n)) − yδ = (wn)ν |∂Ω − yδ, where wn

solves

∆wn = Ppc(φ̃n, c̃
j
n) , in Ω ; wn = 0 , at ∂Ω .

1.3 Evaluate hn := F ′(Ppc(φ̃n, c̃
j
n))∗(rn) ∈ L2(Ω), solving

∆hn = 0 , in Ω ; hn = rn , at ∂Ω .

1.4 Update φ̃n, c̃jn from

φ̃n+1 := φ̃n − (c̃2
n − c̃1

n)hn − α
2 (c̃2

n − c̃1
n)sn − λkK(φ̃n) ,

c̃1
n+1 := c̃jn −

∫
Ω(2− φ̃n)hn − α

2

∫
Ω(2− φ̃n)sn ,

c̃2
n+1 := c̃jn −

∫
Ω(φ̃n − 1)hn − α

2

∫
Ω(φ̃n − 1)sn ,

where sn := ∇·
[
∇Ppc(φ̃n, c̃jn)/|∇Ppc(φ̃n, c̃jn)|

]
.

1.5 If | ∂∂φGL,α(φ̃n, c̃
j
n;λk)| < ε and | ∂

∂cj
GL,α(φ̃n, c̃

j
n;λk)| < ε

Then n? := n; update (φk+1, c
j
k+1) = (φ̃n? , c̃jn?)

Else n := n+ 1; go to 1.2

2. Update the Lagrange multiplier λk+1 = λk + µK(φk+1).

Table 3: Iterative algorithm based on the PCLS approach and augmented Lagrangian method
for the IPP.

realization of step part 1). Therefore, accurate results can be computed using relatively large
values of ε in 1.5 (see Table 3).
— Moreover, differently from the algorithm in Table 2, there is no need to use the operator
splitting scheme in the implementation of the inner iteration. Therefore, it takes the inner
iteration in step part 1) only a small number of steps to enforce the constraint K(φ̃n) = 0.
Consequently, the number n? of steps effectively computed in 1.1) – 1.5) remains small along
the outer iteration3, and computational effort needed to perform each step of the algorithm in
Table 3 is comparable to the effort needed to execute one step of the algorithm in Table 2.

5 Numerical experiments: IPP with exact and noisy data

5.1 First numerical example: exact data

In this first numerical experiment we aim to identify the right hand side u of (19) from the
knowledge of the exact data y = wν |∂Ω. We assume that the level values c1 = 1, c2 = 0 are
given and only the support of u has to be identified.

The numerical investigation of this slightly simpler setup of the IPP (with known level
values cj) proved to be rich enough to establish a comparison between the performance of the

3In the computations presented in Section 5, n? was never larger than 5
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algorithms discussed in Sections 2 and 3, as we shall see below.
The exact data y = F (u) is obtained by solving numerically the elliptic boundary value

problem in (19) at a very fine grid (the word ’exact’ here means: up to the precision of the
numerical method used for solving the direct problem). In order to avoid inverse crimes, the
direct problem (19) is solved on an adaptively refined finite element grid with 8.804 nodes. On
the other hand, in the numerical implementation of our iterative methods, all boundary value
problems are solved at an uniform grid with 545 nodes (33 nodes at each boundary side).

In Figure 1 the solution uexact of the inverse problem is plotted. Moreover, the initial guess
for the level-set function φ0(x) is also plotted (all numerical methods implemented below use
this function φ0 as initial guess). Notice that the support of uexact is a non-connected proper
subset of Ω, what represents a challenge for most classical level-set methods.

In order to test the performance of the Tikhonov method with operator splitting scheme
(see Subsection 2.1), two distinct strategies of choice for the parameter µ are implemented:

i) A constant small value (µ = 0.001) is used (see Figure 2).
ii) The iterative method is started with µ = µ0 = 0.001; the value of µ is increased by 1%
every time the 2nd part of the operator splitting scheme is called (see Figure 3).

In both implementations the constant N = 8 is chosen to control the frequency of the operator
splitting scheme, i.e. the second step of the splitting scheme is called once, after every 8 steps
of the algorithm using only the first part of the splitting scheme.

In Figure 2 the evolution of the Tikhonov method using the first operator splitting scheme,
with constant µ, is presented. The algorithm is stopped when the residual in (7) drops below
a specified trashhold, namely

‖F (Ppc(φk, c
j))− yδ‖L2 ≤ 10−2 and ‖K(φk)‖L1 ≤ 10−3 . (20)

According to our numerical experiments, after reaching this stop criteria (with k = 2000) the
iteration stagnates. At this point, two facts should be observed:

— The level-set function φ2000 as well as the corresponding approximate solution
Ppc(φ2000, c

j) are ”almost” piecewise-constant (see pictures on the right hand side of Fig-
ure 2).
— The shapes of the inclusions are not well reconstructed. As a matter of fact, the
approximate solutions Ppc(φk, c

j) produced by this method do not distinguish the existence
of two inclusions in the support of the solution uexact.
In Figure 3 the second operator splitting, with non-constant µ, is implemented. Here the

value of µ is slowly increased along the iteration (see Section 2.1). Using this strategy, after
only k = 600 steps this iteration already generates a level-set function φk satisfying the stop
criteria (20).

Remark 7. The constraint ‖K(φk)‖L1 = 0 is enforced after a smaller number of iterations if
we use the implementation with non-constant µ. However, none of the implementations (with
constant/non-constant µ) can distinguish between the existence of two inclusions. As a matter
of fact, after the stop criteria (20) has been reached, the iteration error |Ppc(φk, cj)− uexact| is
essentially the same for both strategies of choice for the parameter µ.

Remark 8. What concerns the choice of the constant value µ, some facts should be observed:
i) If µ > 0 is large (close to one), the condition ‖K(φk)‖L1 ≤ 10−3 is satisfied after a small

number of iterations. However, the iteration ”stagnates” after this point and first part of the
stop criteria in (20) is never reached.

ii) If µ > 0 is too small (close to zero), the quality of the final approximate solution obtained
with the splitting method is essentially the same as in i). However, the number of iterations
needed to reach (the second part of the) stop criteria (20) increases dramatically.
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iii) The constant N ∈ N determines how frequently the operator splitting scheme should be
activated. In our experiments the best results were produced with N ≈ 10. If N is too small
(e.g., N = 1 or N = 2), the effects in i) are again observed, no matter the choice of µ. On the
other hand, if N is too large (for this particular problem this means N >> 10), the effects in
ii) are observed.

Summing-up: These two experiments indicate that the choice of increasing values of µ along
the iteration indeed produces a faster numerical convergence. Moreover, the approximate
solution computed using increasing values of µ has the same quality as the approximate solution
computed using constant values of µ.
This fact motivated us to investigate the method in Section 3 as an alternative to obtain more
accurate numerical approximations for exponentially ill-posed inverse problems as the IPP.

In what follows, we present a third numerical method for the IPP with exact data: namely,
the algorithm based on the augmented Lagrangian method for the PCLS approach (see Sub-
section 4.3). In Figure 4 the obtained sequence of level-set functions φk is plotted, as well as
the corresponding iteration errors |Ppc(φk, cj)− uexact| and the sequence of Lagrangian multi-
pliers λk. The initial condition for the level-set function is the one in Figure 1, and the initial
condition for the Lagrange multiplier reads λ0(x) = 0, x ∈ Ω.

The iteration is stopped according to the criteria in (20) (notice that the second inequality
has to be replaced by ‖K(φk)‖L2 ≤ 10−3). Nevertheless, the quality of the approximate
solution is clearly better (compare Figure 4 with Figures 2, 3). Not only it is possible to
distinguish the two inclusions in support of uexact, but the number of iterations needed to
reach the stop criteria (20) is comparable with the fastest operator splitting schemes (the one
with non-constant µ).

We performed inumerous numerical simulations with distinct choices for the initial guess
φ0. We observed that the number of iterative steps required in order to obtain an acceptable
approximation (up to the same predefined precision) does not depend strongly on the choice
of the initial guess φ0.

5.2 Second numerical example: noisy data

In the sequel we consider the same inverse problem as in Subsection 5.1, with the solution
shown in Figure 1. This time however, the data yδ ∈ L2(∂Ω), with δ > 0, for the inverse
problem is obtained by adding to the exact data y = F (u) randomly generated noise of 10%.

As in the previous experiment, the direct problem is solved at a grid that is finer than the
one used in the numerical implementation of the level-set method. The initial guess φ0 is the
same as in the previous experiment with exact data (see Subsection 5.1). As stop criteria, we
used the generalized discrepancy with γ = 2, i.e. the iteration was stopped when for the first
time

‖F (Ppc(φk, c
j))− yδ‖L2 ≤ γ δ . (21)

In Figure 5 we show the results obtained using the PCLS approach and Tikhonov method
for non-constant µ. The strategy to increase the values of µ is the same one used in the
previous experiment with exact data (see Subsection 5.1). In this Figure we show pictures of
the level-set function as well as the corresponding iteration error along the iteration.

In Figure 6 we show the results obtained using the PCLS approach with augmented La-
grange for the same set of contaminated data and same initial guess φ0. Pictures of the level-set
function and the corresponding iteration error are shown in the first and second lines of this
figure.
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5.3 Third numerical example: nonconvex parameter

In this last numerical experiment we consider once again the inverse potential problem in
(19). Differently from the previous two examples, the solution (unknown parameter) is the
nonconvex inclusion shown in the center picture of Figure 1. The data yδ ∈ L2(∂Ω) is assumed
to be exact (i.e., δ = 0) and the level values c1 = 1 and c2 = 0 are given.

The identification of a similar inclusion using level-set methods was considered by Scherzer
et al in [20], who described the slow behavior of the method for identifying the shape of the
boundary at points close to the nonconvex part of the inclusion.

As in the previous examples, the direct problem (19) is again solved on an adaptively
refined finite element grid with 8.804 nodes. However, in the numerical implementation of the
iterative methods, all boundary value problems are solved at an uniform grid with 2.280 nodes
(64 nodes at each boundary side). This is done in order to better capture the nonconvex part
of the inclusion.

In Figure 7 we show the evolution obtained using the PCLS approach and the Tikhonov
method for non-constant µ. The strategy to increase the values of µ is the same one used in
the previous experiments. In this figure, plots of the level-set function as well as plots of the
corresponding iteration error along the iteration are shown. In Figure 8 the evolution of the
PCLS approach with augmented Lagrange is shown. The number of iterative steps required
to obtain an acceptable approximation is similar for both approaches. However, the PCLS
method based on the augmented Lagrange approach produced a more accurate approximate
solution, specially what concerns the shape of the inclusion at the critical part of the boundary.

6 Conclusions

In this article a PCLS framework is proposed for representing the parameter space of ill-posed
problems with piecewise constant solutions. Two distinct approaches for solving the resulting
operator equation (5) are proposed.
— The first approach (Tikhonov regularization) corresponds to an extension of the results
obtained in [13] for H1 level-set functions.
— In the second approach (augmented Lagrange) a concept of generalized multipliers (support-
ing an exact representation) is applied, in order to characterize the solution of a constrained
optimization problem related to the original inverse problem.
Convergence analysis of the proposed approaches is investigated. Both solution approaches
lead to iterative methods of level-set type, which are implemented and tested for a two dimen-
sional inverse potential problem.
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Figure 1: First experiment: The picture on the left hand side shows the coefficient uexact to be recon-
structed in Subsections 5.1 and 5.2. The center picture shows the coefficient uexact to be reconstructed
in Subsection 5.3. On the right hand side, the initial configuration for the level-set function used in the
implementation of all numerical discussed in this article.
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Figure 2: First experiment: PCLS with Tikhonov method and constant µ = 0.001. On the first line,
plots of φk, for k = 200, 800, 2000, for the operator splitting method. The pictures on the second line
show the corresponding iteration error.

Figure 3: First experiment: PCLS with Tikhonov method and non constant µ. On the first line, plots
of φk, for k = 200, 400, 600, for the operator splitting method. The pictures on the second line show
the corresponding iteration error.
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Figure 4: First experiment: PCLS with augmented Lagrange. On the first line, plots of φk, for
k = 100, 200, 500. The pictures on the second line show the corresponding iteration error. The pictures
on the third line show the corresponding Lagrangian multipliers.

Figure 5: Second experiment: PCLS with Tikhonov method and non constant µ. Data contaminated
with 10% random noise. On the first line, plots of φk, for k = 200, 400, 600, for the operator splitting
method. The pictures on the second line show the corresponding iteration error |Ppc(φk, c

j)− uexact|.
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Figure 6: Second experiment: PCLS with augmented Lagrange. Data contaminated with 10% random
noise. On the first line, plots of φk, for k = 100, 200, 500. The pictures on the second line show the
corresponding iteration error.

Figure 7: Third experiment: Non-convex inclusion. PCLS with the Tikhonov method and non constant
µ. Exact data. On the first line, plots of φk, for k = 50, 100, 500, for the operator splitting method.
The pictures on the second line show the corresponding iteration error |Ppc(φk, c

j)− uexact|.
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Figure 8: Third experiment: Non-convex inclusion. PCLS with augmented Lagrange. Exact data. On
the first line, plots of φk, for k = 50, 100, 500. The pictures on the second line show the corresponding
iteration error.
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