
Strong Convergence in Hilbert Spaces via
Γ-Duality ∗

M. Marques Alves† J. G. Melo‡

Abstract

We analyze a primal-dual pair of problems generated via a duality
theory introduced by Svaiter. We propose a general algorithm and study
its convergence properties. The focus is a general primal-dual principle
for strong convergence of some classes of algorithms. In particular, we
give a different viewpoint for the weak-to-strong principle of Bauschke
and Combettes and unify many results concerning weak and strong con-
vergence of subgradient type methods.
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1 Introduction

Infinite dimensional models arise in different fields of applied mathematics, in-
cluding optimization [1, 2], partial differential equations [3], optimal control [4]
and inverse problems [5]. One of the main difficulties when moving from finite
to infinite dimensions is the lack of compactness of closed bounded sets, in the
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topology generated by the norm of the underlying normed space, which in partic-
ular implies that one cannot extract convergent subsequences of norm-bounded
sequences. This fact imposes several limitations in the convergence analysis of
algorithms and approximations methods in such a general setting. A remedy
to overcome this drawback is to replace the topology generated by the norm by
a weak topology, generated by continuous linear functionals [3]. This leads to
a notion of weak convergence for sequences and for a special class of normed
spaces one are able to get compactness. Among such spaces, special attention
is given for models in Hilbert spaces where weak convergence of sequences is
completely characterized via the Riesz-Fréchet representation theorem by the
inherent inner product [3, Theorem 5.5].

As expected, weak and strong convergence are only distinguishable in infinite
dimensional spaces. A canonical example of a sequence which is weakly but not
strongly convergent is given by considering a sequence formed by the elements
of an orthonormal basis of a Hilbert space [3]. A more concrete example appears
in the study of proximal point methods for finding zeroes of maximal monotone
operators. Rockafellar [6] proved that the proximal point method is weakly con-
vergent, under suitable conditions, and posed the question whether it converges
strongly in infinite dimensional spaces. Although Rockafellar’s question has
been answered negatively by Güler [7], it has been posed the question whether
weakly convergent methods (in particular proximal point methods) can be ap-
propriately modified in order to guarantee strong convergence. The proximal
point method was modified by Solodov and Svaiter in [8], obtaining in this way a
strongly convergent method in infinite dimensional Hilbert spaces. It combines
inexact proximal steps with projections onto two half spaces generated by the
current information at each step. In [9], Bauschke and Combettes proposed a
weak-to-strong convergence principle for modifying (weakly convergent) Fejér-
monotone type methods in order to obtain strongly convergent ones. Their
abstract framework is based on a special class of operators and encompasses
exact proximal point methods, constraint disintegration methods, subgradient
methods, among others.

Duality theory is a powerful and very useful tool in constrained optimization,
raised with the duality theory for linear programming and game theory [10].
Here, we are interested in the Γ-duality theory, which was proposed and stud-
ied in [11] and further developed and used in [12], where the author (among
other results) formulated strongly convergent proximal point methods for find-
ing zeroes of maximal monotone operators in Hilbert spaces.

In this paper, we go a step further and inspect additional applications of Γ-
duality for obtaining strongly convergent methods in infinite dimensional Hilbert
spaces. Precisely, we consider a general convex feasibility problem and by means
of Γ-duality we propose and analyze a general algorithm for solving a variational
formulation of this feasibility problem. Motivated by [11, 12], we also analyze
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two variants of the general algorithm. The first one has weak convergence prop-
erties, while the second one is strongly convergent. The main focus is to propose
a weak-to-strong convergence principle for solving general feasibility problems.
As indicated in [12, 13], this will be done by enforcing asymptotic complemen-
tarity of the primal dual sequence generated by the algorithm. Since [9] also
concerns a weak-to-strong convergence principle, their results will be compared
to ours, and we present an example showing that general algorithm presented
here can not be obtained by the corresponding one presented in [9]. In particu-
lar, we discuss how subgradient type methods can be seen as a realization of one
of the algorithms presented in this paper. We also show that our general setting
encompasses a special case of a strongly convergent subgradient type method,
recently proposed by Bello Cruz and Iusem [14], for solving a wide class of con-
strained optimization problems. Additionally, we characterize Fejér-monotone
methods in the setting of Γ-duality. As we will see this property is related to
the increasing property of the dual function.

This paper is organized as follows. In Section 2, we present the results
concerning Γ-duality that will be used in this work. We also recall in this sec-
tion some basic results of the Bauschke-Combettes’ weak-to-strong convergence
principle. In Section 3, the first algorithm is proposed and analyzed. In Section
4, we propose the second algorithm of this paper, and relate it with a general
algorithm proposed in [9]. We also state and prove a weak-to-strong conver-
gence principle based on Γ-duality setting. Section 5 is devoted to show how
subgradient type methods fit in the general setting presente here.

2 Preliminaries and Notations

We denote by H a (nontrivial) real Hilbert space with inner product 〈·, ·〉 and
norm ‖ · ‖ =

√
〈·, ·〉. The orthogonal projection onto a closed convex set C is

denoted by PC . We denote by B(xk) the set of weak cluster points of a sequence
{xk}. The extended-real number system is R = R∪{−∞,∞}. The convex conic
hull of a subset D of a vector space is denoted by co(cone)D. The (Fréchet)
derivative of a function f : H→ R is denoted by ∇f .

2.1 Basic Facts on Γ-Duality

Let X be nonempty, D ⊂ X and f : X → R. Consider the following constrained
optimization problem {

min f(x)

s.t. x ∈ D.
(1)
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Let Γ be a set of extended-real valued functions on X. The dual of (1) in the
sence of Γ-duality [11, 12] is {

maxϕ(ξ)

s.t. ξ ∈ Γ(D).
(2)

where ϕ : Γ→ R,
ϕ(ξ) = inf

x∈X
f(x) + ξ(x), (3)

is the dual function of f and

Γ(D) = {ξ ∈ Γ : ξ(x) ≤ 0,∀x ∈ D}

is the dual feasible set. As pointed out by [11, 12], the function (x, ξ) 7→
f(x) + ξ(x) does not contain information of the primal feasible set D. Instead,
it is incorporated into the dual feasible set Γ(D).

A compreensive account of this duality theory is presented and studied in [11]
and further developed and exploited in [12]. In this section we will only present
the results of Γ-duality that will be need in this paper. For the interesed reader
we refer to [11] and [12].

Definition 2.1. (General KKT Conditions)
A pair (x̄, ξ̄) ∈ X × Γ is said to satisfy the KKT conditions if and only if

a) x̄ ∈ arg min
x∈X

f(x) + ξ̄(x) (Lagrangian condition);

b) x̄ ∈ D (primal feasibility);

c) ξ̄ ∈ Γ(D) (dual feasibility);

d) ξ̄(x̄) = 0 (complementarity).

The following proposition relates the KKT conditions with primal-dual so-
lutions; see [11] and [12, Proposition 4.3].

Proposition 2.2. Let (x̄, ξ̄) ∈ X × Γ be such that f(x̄) + ξ̄(x̄) is finite. Then
(x̄, ξ̄) satisfies the general KKT conditions if and only if

a) x̄ and ξ̄ are, respectively, solutions of the primal and dual problems;

b) There is no duality gap and the primal optimal value is finite.

As a consequence, ϕ(ξ̄) = f(x̄).

4



From now on, the primal space X is a real Hilbert space, and denoted by H.
The next proposition and its corollary are related to [11] and [12, Lema 6.4].

Let C ⊂ H be nonempty, Γ be the class of continuously differentiable convex
functions on H, and f, gi ∈ Γ, i = 1, 2, · · · ,m. Suppose that C ⊂ D, where
D := {x ∈ H : gi(x) ≤ 0, i = 1, 2, · · · ,m}, and let Σ = co(cone) {g1, · · · , gm} .
It follows directly from the definition of Σ and Γ(D) that Σ ⊂ Γ(D).

Proposition 2.3. If the primal problem (1), with f and D as above, has a
solution x̄ ∈ D such that (x̄, µ̄) satisfies KKT conditions (in the usual sense)
for some µ̄ ∈ Rm

+ , then the dual problem (2) has a solution ξ̄ ∈ Σ satisfying

−∞ < ϕ(ξ̄) = max
ξ∈Σ

ϕ(ξ) = max
ξ∈Γ(D)

ϕ(ξ) = f(x̄) <∞.

Additionally, ξ̄ ∈ Γ(C).

Proof. Consider x̄ ∈ D solution of (1) and µ̄ ∈ Rm
+ such that (x̄, µ̄) satisfies the

KKT conditions (see for instance, [2, Proposition 26.18]). Therefore

a) ∇f(x̄) +
∑m

i=1 µ̄i∇gi(x̄) = 0 ;

b) µ̄i ≥ 0, i = 1, 2, · · · ,m ;

c) µ̄i gi(x̄) = 0, i = 1, 2, · · · ,m .

Defining ξ̄ :=
∑m

i=1 µ̄i gi, we claim that the pair (x̄, ξ̄) satisfies the KKT condi-
tions in the sense of Γ-duality (see Definition 2.1). Indeed, from b) and convexity
of f, gi, i = 1, · · · ,m, it follows that f(·) + ξ̄(·) is convex, and from a) we obtain
that x̄ ∈ argminx∈H f(x) + ξ̄(x). Note that f(x̄) + ξ̄(x̄) is finite.

By definition of ξ̄ and c), we obtain ξ̄ ∈ Σ and ξ̄(x̄) = 0. Since Σ ⊂ Γ(D), it
follows that ξ̄ ∈ Γ(D) and so the claim holds. Therefore, from Proposition 2.2,
(x̄, ξ̄) is a solution of the primal dual problems (1)-(2) and there is no duality
gap. Since ξ̄ ∈ Σ ⊂ Γ(D), it follows that

ϕ(ξ̄) ≤ sup
ξ∈Σ

ϕ(ξ) ≤ sup
ξ∈Γ(D)

ϕ(ξ) = ϕ(ξ̄) = f(x̄).

Finally, the last assertion of the proposition follows from the fact that C ⊂ D
implies Γ(D) ⊂ Γ(C).

In the next corollary, Γ denotes the set of affine continuous functions on H,
i.e., any element ξ of Γ is of the form ξ(x) = 〈u, x〉+ b, where u ∈ H and b ∈ R.
Note that ξ(x) = 〈∇ξ, x〉+ ξ(0), where ∇ξ does not depend on the point x.

Corollary 2.4. Let x0 ∈ H and {gi}mi=1 ⊂ Γ. Let x̄ be the solution of (1) with
f(x) = (1/2)‖x− x0‖2 and D = {x ∈ H : gi(x) ≤ 0, i = 1, 2, · · · ,m}.

Let ξ̄ be given by Proposition 2.3. Then
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1. x̄ = x0 −∇ ξ̄ ;

2. ξ̄(x) = 〈x0 − x̄, x− x̄〉, ∀x ∈ H. In particular, ξ̄(x̄) = 0 ;

3. ξ̄ = arg max
ξ∈Σ

ϕ(ξ), where Σ = co(cone) {g1, · · · , gm}.

Proof. First, since gi, i = 1, · · · , n, is affine, canonical application of Farkas’s
Lemma [15] ensures the existence of µ̄ ∈ Rm

+ such that (x̄, µ̄) satisfies the KKT
conditions (in the usual sense). Therefore, by Propositions 2.3 and 2.2, we see
that ξ̄(x̄) = 0 and x̄ = arg min

x∈H
f(x) + ξ̄(x). In particular, item 1 holds. Now,

we obtain
ξ̄(x) = 〈∇ξ̄, x〉+ ξ̄(0) = 〈x0 − x̄, x〉+ ξ̄(0). (4)

Since ξ̄(x̄) = 0, it follows from (4) that ξ̄(x) = 〈x0 − x̄, x− x̄〉, proving item 2.
For proving item 3, we observe that, by Proposition 2.3, ξ̄ ∈ arg maxξ∈Σ ϕ(ξ).
Therefore, we just need to show that ξ̄ is the unique affine function maximizing ϕ
over Σ. Indeed, let η be an affine function with such a property. By Propositions
2.3 and 2.2, (x̄, η) satisfies the general KKT conditions, and similar to the proof
of item 1, we have x̄ = x0 − ∇η. Using that η is affine and satisfies η(x̄) = 0,
we obtain η = ξ̄. Thus, item 3 holds, concluding the proof of the corollary.

2.2 Basic Facts on the Weak-to-Strong Convergence
Principle of Bauschke and Combettes

In [9], a weak-to-strong convergence principle was introduced in order to force
strong convergence of weakly convergent Fejér-monotone methods in infinite
dimensional Hilbert spaces. Strongly convergent variants of subgradient and
proximal point methods were proposed and analyzed for solving optimization
problems, convex feasibility and monotone inclusion problems.

In what follows we summarize some of the main convergence results obtained
in [9], which will be useful in this paper. We adopt the same basic notation of [9].

We denote by Fix(T ) the set of fixed points of an operator T : H→ H and
by PC the orthogonal projector onto a nonempty closed convex set C. We recall
the following characterization of PC :

z = PC(x) ⇐⇒ 〈x− z, y − z〉 ≤ 0, ∀y ∈ C. (5)

For each x, y ∈ H define

H(x, y) = {z ∈ H : 〈z − y, x− y〉 ≤ 0}.

Note that H(x, x) = H and, if x 6= y, H(x, y) is a closed affine half space for
which y = PH(x,y)(x). We also denote by Q(x, y, z) the (orthogonal) projection
of x onto H(x, y) ∩H(y, z), i.e.,

Q(x, y, z) = PH(x,y)∩H(y,z)(x).
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Definition 2.5. Let T be the class of operators T : H→ H satisfying

dom(T ) = H, and Fix(T ) ⊂ H(x, Tx), ∀x ∈ H.

See [9, Proposition 2.3] for examples of operators in the family T. Next we
present two algorithms which were proposed and analyzed in [9]. The first
one generates weakly convergent sequences while the second one has strong
convergence properties.

Algorithm 2.6.

0) Let ε ∈ ]0, 1] and x0 ∈ H. Set k = 0 ;

1) Select Tk ∈ T ;

2) Set xk+1 = xk + (2− ε)(Tk xk − xk), k := k + 1 and go to 1 .

Algorithm 2.7.

0) Let x0 ∈ H. Set k = 0;

1) Select Tk ∈ T. If H(x0, xk) ∩H(xk, Tk x
k) = ∅ stops, otherwise,

2) Set xk+1 = Q(x0, xk, Tk x
k), k := k + 1 and go to 1 .

Remark 2.8. Let C :=
⋂
k≥0 Fix(Tk). It was proved in [9, Proposition 3.4]

that if C 6= ∅, then Algorithm 2.7 generates an infinite sequence {xk} such that

C ⊂ H(x0, xk) ∩H(xk, Tkx
k), ∀k ∈ N.

Next, we summarize the main properties of Algorithms 2.6 and 2.7, which
will be useful in this paper. For details see [9, Theorem 2.9] and [9, Theorem 3.5].

Proposition 2.9. Let {xk} be a sequence generated by Algorithm 2.6. Suppose
that C :=

⋂
k≥0 Fix(Tk) 6= ∅. Then {xk} is bounded and it holds

xk ⇀ x ∈ C ⇐⇒ B(xk) ⊂ C.

Proposition 2.10. Let {xk} be a sequence generated by Algorithm 2.7 and
suppose that C :=

⋂
k≥0 Fix(Tk) 6= ∅. Then {xk} is bounded and

xk → PC(x0) ⇐⇒ B(xk) ⊂ C.

The weak-to-strong convergence principle of [9] depends on the concept of
coherent sequence of operators in T.
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Definition 2.11. A sequence {Tk} ⊂ T is coherent if for every bounded se-
quence {yk} ⊂ H there holds{∑∞

k=0 ‖yk+1 − yk‖2 <∞∑∞
k=0 ‖yk − Tk yk‖2 <∞

⇒ B(yk) ⊂
⋂
k≥0

Fix(Tk).

Next we present the weak-to-strong convergence principle [9, Theorem 4.2].

Theorem 2.12. Let {Tk} ⊂ T be coherent and let C :=
⋂
k≥0 Fix(Tk). Then:

i) If C 6= ∅, then every sequence generated by Algorithm 2.6 converges weakly
to a point in C ;

ii) (Trichotomy) Let {xk} be a sequence generated by Algorithm 2.7. One
and only one of the following alternatives holds:

(a) C 6= ∅ and xk → PC(x0) ;

(b) C = ∅ and ‖xk‖ → ∞ ;

(c) C = ∅ and the algorithm terminates .

3 Fejér-Monotone Algorithms and Γ-Duality

Throughout this section Γ denotes the set of continuous affine functions on H.
Recall that any element ξ of Γ is of the form ξ(x) = 〈∇ξ, x〉 + ξ(0), where ∇ξ
does not depend on the point x.

Let C ⊂ H be nonempty, closed and convex. We consider the following
problem

Find x ∈ H such that x ∈ C. (6)

A variational formulation of (6) consists in finding in C the closest point of a
given point x0 ∈ H. This is equivalent to solve the following (primal) optimiza-
tion problem {

min 1
2
‖x− x0‖2

s.t. x ∈ C.
(7)

Problem (6) (or (7)) is fundamental in many areas of applied mathematics,
including convex optimization, fixed point theory, monotone operator theory,
among others, see for instance [2, 8, 9] and references therein.

A wide class of approximation methods for solving (7) are known as Fejér-
monotone algorithms [9]. Recall that a sequence {xk} in H is Fejér-monotone
with respect to (w.r.t.) S ⊂ H if and only if

‖xk+1 − x‖ ≤ ‖xk − x‖, ∀x ∈ S, ∀k ∈ N. (8)

A very useful result to prove (weak) convergence of sequences in Hilbert spaces
is given in the following lemma [9].
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Lemma 3.1 (Browder). Let C ⊂ H be nonempty closed and convex. Suppose
that {xk} is Fejér-monotone w.r.t. C. Then

xk ⇀ x ∈ C if and only if B(xk) ⊂ C.

In this section, we describe Fejér-monotone methods in terms of Γ-duality
theory. Firstly, we prove some technical results concerning the dual problem
of (7) (in the sense of Γ-duality). Recall that the dual problem of (7) is{

max ϕ(ξ)

s.t. ξ ∈ Γ(C),

where Γ(C) = {γ ∈ Γ : γ(x) ≤ 0, ∀x ∈ C} is the dual feasible set and

ϕ(ξ) = inf
x∈H

1

2
‖x− x0‖2 + ξ(x) (9)

is the dual function.
The proof of the following result follows by direct calculations.

Lemma 3.2. Let x0 ∈ H and ξ ∈ Γ. Then x0 −∇ξ is the unique solution of

min
x∈H

1

2
‖x− x0‖2 + ξ(x).

In the following proposition we analyze the increasing directions of the dual
function ϕ. It will be useful to characterize Fejér-monotone properties of the
algorithms presented here (see Proposition 3.9). In [12, Lema 6.3], a related
result concerning the problem of finding zeroes of maximal monotone operators
is presented.

Proposition 3.3. Let ξ, γ ∈ Γ, t > 0 and z := arg minx∈H (1/2)‖x−x0‖2+ξ(x).
It holds

ϕ(ξ + tγ) = ϕ(ξ) + t

(
γ(z)− t

2
‖∇γ‖2

)
.

Proof. Let ẑ := arg min
x∈H

(1/2)‖x− x0‖2 + (ξ + tγ)(x). Therefore

ϕ(ξ + tγ) =
1

2
‖ẑ − x0‖2 + ξ(ẑ) + tγ(ẑ).

Using Lemma 3.2 and the fact ∇(ξ + tγ) = ∇ξ + t∇γ, we obtain

ϕ(ξ + tγ) = 1
2
‖x0 − (∇ξ + t∇γ)− x0‖2 + (ξ + tγ)(x0 −∇ξ − t∇γ)

= 1
2
‖z − x0‖2 + 1

2
t2‖∇γ‖2 + t〈∇ξ,∇γ〉

+ ξ(z − t∇γ) + tγ(z − t∇γ).
(10)
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Since ξ and γ are affine functions, it follows that

ξ(z − t∇γ) + tγ(z − t∇γ) = ξ(z)− t〈∇ξ,∇γ〉+ tγ(z)− t2〈∇γ,∇γ〉.

Combining this with (10) we obtain

ϕ(ξ + tγ) = (1/2)‖z − x0‖2 + ξ(z) + tγ(z)− 1
2
t2‖∇γ‖2

= ϕ(ξ) + t(γ(z)− 1
2
t‖∇γ‖2),

concluding the proof of the proposition.

Remark 3.4. Proposition 3.3 shows that to increase the value of the dual func-
tion ϕ(ξ) in the direction of γ, it should hold γ(z) > t

2
‖∇γ‖2, where t > 0, and

z = x0 −∇ξ.

Now we analyze Fejér-monotone algorithms in terms of Γ-duality. The next
Proposition is related to [9, Proposition 2.7].

Proposition 3.5. Let {xk} ⊂ H be Fejér-monotone w.r.t. C. Consider

γk(x) =

〈
x−

(
xk + xk+1

2

)
,
xk − xk+1

2

〉
, k ∈ N, x ∈ H.

Set ξ0 = 0 and ξk+1 = ξk + 2 γk. Then γk is dual feasible w.r.t. C, i.e.,
γk ∈ Γ(C), ∀k ∈ N. Moreover,

xk = arg min
x∈H

1

2
‖x− x0‖2 + ξk(x). (11)

Proof. First, observe that for all k ∈ N, γk is an affine function, i.e., γk ∈ Γ.
Let x ∈ C. Since {xk} is Fejér-monotone w.r.t. C we have

‖xk+1 − x‖ ≤ ‖xk − x‖, ∀k ∈ N. (12)

Therefore, ∀k ∈ N,

γk(x) =
〈
x−

(
xk+xk+1

2

)
, x

k−xk+1

2

〉
= 1

4
‖xk+1 − xk‖2 + 1

2
〈xk+1 − xk, xk − x〉

= 1
4
‖xk+1 − x‖2 − 1

4
‖xk − x‖2

≤ 0.

Now, let us prove the last assertion of the proposition by induction on k ∈ N.
Since ξ0 = 0, it follows that (11) holds for k = 0. Suppose (11) holds for some
k ∈ N. Using Lemma 3.2 we have xk = x0 − ∇ξk. Direct calculations yields,
∇γk = (1/2)(xk − xk+1), implying xk+1 = xk − 2∇γk. Thus,

xk+1 = (x0 −∇ξk)− 2∇γk = x0 −∇(ξk + 2γk) = x0 −∇ξk+1,

where in the last equality we used ξk+1 = ξk+2γk. Therefore, xk+1 = x0−∇ξk+1

and Lemma 3.2 implies that (11) holds also for k+ 1, concluding the proof.

10



Corollary 3.6. Let {Tk} be a family of operators in T and C :=
⋂
k∈N Fix(Tk).

Let {xk} be a sequence generated by Algorithm 2.6 and γk, ξk be defined as in
Proposition 3.5. Then,

xk = arg min
x∈H

1

2
‖x− x0‖2 + ξk(x), ∀k ∈ N.

Proof. Since by [9, Theorem 2.9], {xk} is Fejér-monotone w.r.t. C, the result
follows as a direct consequence of Proposition 3.5.

Motivated by [11], by Algorithm 1 of [12] and by Proposition 3.5 we propose
the following algorithm for solving (7) (or 6).

Algorithm A:

0) Let ξ0 = 0, and x0 ∈ H. Set k = 0;

1) (Subproblem and Stopping Criterion)

a) Find xk = arg min
x∈H

1

2
‖x− x0‖2 + ξk(x),

b) if xk ∈ C and ξk(xk) = 0 then stops, otherwise,

2) Choose γk ∈ Γ(C), tk > 0 and define ξk+1 = ξk + tkγ
k;

Set k := k + 1 and go to 1.

Some important remarks are in order.

Remark 3.7. Since ξk+1 = ξk + tkγ
k and ξ0, γk ∈ Γ(C) (∀k ∈ N), it follows

that ξk ∈ Γ(C), ∀k ∈ N. In particular, using Proposition 2.2 one can conclude
that if the stopping criterion of Algorithm A is satisfied at some iteration k,
then xk is a primal solution of (7).

Remark 3.8. Combining Proposition 3.5 and Corollary 3.6, we obtain that
Algorithm 2.6 is a special case of Algorithm A.

In what follows we analyze Fejér-monotone properties of Algorithm A.

Proposition 3.9. Let {xk} and {ξk} be generated by Algorithm A. The follow-
ing conditions are equivalent.

1. ϕ(ξk+1) ≥ ϕ(ξk), ∀k ∈ N ;

2. γk(xk) ≥ tk
2
‖∇γk‖2, ∀k ∈ N .

Moreover, if these conditions are satisfied, then {xk} is Fejér-monotone w.r.t. C.
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Proof. The equivalence between items 1 and 2 follow from Proposition 3.3.
Assuming that item 2 holds, let us prove the Fejér-monotone property. By
Lemma 3.2, we have xk = x0 −∇ξk, ∀k ∈ N. Since ξk+1 = ξk + tkγ

k, it follows
that

xk+1 = x0 −∇ξk+1 = x0 −∇ξk − tk∇γk = xk − tk∇γk.
Therefore, for every x ∈ H we get

‖xk+1 − x‖2 = ‖xk − x‖2 − 2tk〈∇γk, xk − x〉+ t2k‖∇γk‖2.

Using the above identity and the fact that γk is an affine function, we obtain

‖xk+1 − x‖2 = ‖xk − x‖2 + 2tk

(
γk(x)− γk(xk) +

tk
2
‖∇γk‖2

)
. (13)

Now, note that identity (13) and the assumption in item 2 yield

‖xk+1 − x‖2 = ‖xk − x‖2 + 2tk γ
k(x) . (14)

To end the proof note that γk(x) ≤ 0 for every x ∈ C.

Corollary 3.10. Let {xk}, {ξk} and {γk} be generated by Algorithm A. Suppose
that one of the following conditions holds:

1. {xk} is Fejér-monotone w.r.t. C ;

2. ϕ(ξk+1) ≥ ϕ(ξk), ∀k ∈ N ;

3. γk(xk) ≥ tk
2
‖∇γk‖2, ∀k ∈ N .

Then, xk ⇀ x ∈ C if and only if B(xk) ⊂ C.

Proof. The proof follows directly by combining Proposition 3.9 and Lemma 3.1.

4 A Weak-to-Strong Convergence Principle in

the Setting of Γ-Duality

In this section we use the same notation as in the previous one. In the setting of
Γ-duality, a strongly convergent modification of a proximal point type method
for finding zeroes of maximal monotone operators, was proposed and studied
in [12, Algorithm 2]. In the following, we will generalize this algorithm for
solving problem (7).

Algorithm B:

12



0) Let x0 ∈ H and ξ0 = 0. Set k = 0;

1) Find xk = arg min
x∈H

1

2
‖x− x0‖2 + ξk(x);

if xk ∈ C stops, otherwise,

2) Choose γk ∈ Γ(C). Let Σk := co(cone){ξk, γk}, and define

ξk+1 = arg max
ξ∈Σk

ϕ(ξ);

set k := k + 1 and go to 1.

The following proposition is related to [11] and based on [12, Theorem 6.5].

Proposition 4.1. The Algorithm B is well-defined, and if xk ∈ C then xk is
a solution of (7). If {xk} and {ξk} are generated by Algorithm B, then the
following conditions hold.

a) ξk is dual feasible, i.e., ξk ∈ Γ(C), ∀k ∈ N ;

b) ξk(x) = 〈x0 − xk, x− xk〉, ∀k ∈ N ;

c) ξk(xk) = 0, ∀k ∈ N .

In particular, ξk(xk)→ 0, i.e., asymptotic complementarity for {ξk(xk)} holds.

Proof. Let us proceed by induction on k ∈ N. For k = 0, items a), b) and c)
are trivially verified. Now, assume that items a), b) and c) hold for k ∈ N and
let ξk, γk ∈ Γ(C) be generated by Algorithm B. Define g1 = ξk, g2 = γk and
D = {x ∈ H : gi(x) ≤ 0, i = 1, 2}. Since g1, g2 ∈ Γ(C), it follows that C ⊂ D,
which in turn implies D 6= ∅. Considering x̄ and ξ̄ given by Corollary 2.4, we
obtain from items 3 and 1 (of Corollary 2.4) that ξk+1 = ξ̄ and x̄ = x0−∇ξk+1.
On the other hand, since x0 = arg minx∈H (1/2)‖x−x0‖2+ξ0(x) and the function
x 7→ (1/2)‖x − x0‖2 + ξk+1(x) is strongly convex, xk+1 is well defined and has
an explicit expression, namely xk+1 = x0 −∇ξk+1. Therefore, xk+1 = x̄ and by
item 2 we conclude that items b) and c) hold for ξk+1. Finally, item a) follows
from the last assertion of Proposition 2.3. To see that if Algorithm B stops at
some iteration k then xk is a solution, observe that, in such a situation, xk ∈ C
and by items a) and c), ξk is dual feasible and ξk(xk) = 0, implying that (xk, ξk)
satisfies the general KKT conditions. In particular, by Proposition 2.2, xk is a
primal solution.

We next show that Algorithm 2.7 falls within the framework of Algorithm
B, when applied for solving problem (7) with C 6= ∅, and that the converse also
holds for a special choice of γk (see Proposition 4.4).
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Proposition 4.2. Let {xk} be generated by Algorithm 2.7 and assume that
C :=

⋂
k≥0 Fix(Tk) 6= ∅. Define γk, ξk ∈ Γ as γk(x) = 〈xk − Tk xk, x− Tk xk〉

and ξk(x) = 〈x0 − xk, x− xk〉. Then γk, ξk ∈ Γ(C),

xk = arg min
x∈H

1

2
‖x− x0‖2 + ξk(x) and ξk+1 = arg max

ξ∈Σk

ϕ(ξ),

where Σk := co(cone){ξk, γk}.
As a consequence, Algorithm 2.7 is a special case of Algorithm B, when

applied for solving problem (7) with C 6= ∅.

Proof. Let k ∈ N. From Remark 2.8 it follows that C ⊂ H(x0, xk)∩H(xk, Tkx
k),

which implies γk, ξk ∈ Γ(C). Using the definition of ξk and Lemma 3.2 we
obtain xk = arg min

x∈H
(1/2)‖x − x0‖2 + ξk(x). Define g1 = ξk, g2 = γk and

D = {x ∈ H : gi(x) ≤ 0, i = 1, 2}. Since g1, g2 ∈ Γ(C), it follows that C ⊂ D,
which in turn implies D 6= ∅.

Let x̄ and ξ̄ as in Corollary 2.4. Since xk+1 = Q(x0, xk, Tkx
k), which means

that xk+1 is the solution of (7), we obtain xk+1 = x̄. Now, by items 2 and 3 of
Corollary 2.4, ξk+1 = ξ̄ and ξk+1 = arg maxξ∈Σk

ϕ(ξ), respectively.

Recall that in this section Γ denotes the set of continuous affine functions
on H.

Lemma 4.3. Let γ ∈ Γ be such that S := {x ∈ H : γ(x) ≤ 0} is nonempty
and let x0 ∈ H. If x0 /∈ S, then

S = H(x0, PS(x0)).

Proof. Let y ∈ S. Using (5) we get 〈x0 − PS(x0), y − PS(x0)〉 ≤ 0, which means
that y ∈ H(x0, PS(x0)). Thus, S ⊂ H(x0, PS(x0)).

Take now y ∈ H(x0, PS(x0)) and suppose that γ(x) = 〈u, x〉− b, with u ∈ H

and b ∈ R. If u = 0, then S = H and so the desired result follows trivially.
Assume that u 6= 0. Note that in this case

PS(x0) = x0 − t u , 〈u, PS(x0)〉 = b, (15)

where t = (1/‖u‖2)(〈u, x0〉 − b). Using the first identity in (15) and the fact
that y ∈ H(x0, PS(x0)) we obtain

〈tu, y − PS(x0)〉 = 〈x0 − PS(x0), y − PS(x0)〉 ≤ 0. (16)

Since x0 /∈ S, it follows that t > 0. Direct use of (16) gives 〈u, y − PS(x0)〉 ≤ 0,
which combined with the second identity in (15) yields 〈y, u〉 ≤ b, i.e., y ∈ S.
Thus, H(x0, PS(x0)) ⊂ S, which conclude the proof of the lemma.
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Proposition 4.4. Let {xk}, {γk} be generated by Algorithm B and assume that
γk(xk) > 0, ∀k ∈ N. For any k ∈ N, let Ck := {x ∈ H : γk(x) ≤ 0} and define
Tk = PCk

. Then
xk+1 = Q(x0, xk, Tk x

k) (∀k ∈ N).

Therefore, if γk(xk) > 0 (∀k ∈ N), then Algorithm B is a special case of Algo-
rithm 2.7.

Proof. Let k ∈ N. Since γk ∈ Γ(C) we have C ⊂ Ck, which implies that
Ck 6= ∅ and, in particular, that {Tk} is well-defined. From the projection
characterization given in (5), we obtain PCk

∈ T. Thus, {Tk} ⊂ T. Since xk /∈ Ck
it follows from Lemma 4.3 that Ck = H(xk, Tkx

k). Using the same reasoning as
in Proposition 4.2 we may conclude that xk+1 = x̄ (see Corollary 2.4). Hence,

xk+1 = x̄ = arg min
x∈D

1

2
‖x− x0‖2, (17)

where D = {x ∈ H : ξk(x) ≤ 0 and γk(x) ≤ 0}. Therefore, observing that
D = H(x0, xk) ∩H(xk, Tkx

k), it follows from (17) that xk+1 = Q(x0, xk, Tk x
k).

Remark 4.5. In Section 5, we show that a subgradient type method can be seen
as a special case of Algorithm A. In such a situation, γk satisfies the property
γk(xk) > 0, ∀ k ∈ N. Therefore, by Proposition 4.4, in such a situation,
Algorithm B is a special case of Algorithm 2.7. See also Remark 5.4.

We have seen that attempting to solve (7), Algorithm A generates a sequence
with weak convergence properties (see Corollary 3.10), while Algorithm B is
motivated by forcing complementarity iteratively, i.e., ξk(xk) = 0, ∀k ∈ N. As
a consequence, Algorithm B has strong convergence properties, as we show in
Corollary 4.7. In the following, we propose a general algorithm, which contains
as special cases Algorithms A and B. We will discuss under what hypothesis
this algorithm generates a strongly convergent sequence for the solution of (7).

Γ-Algorithm:

0) Let x0 ∈ H and ξ0 = 0. Set k = 0 ;

1) Find xk = arg min
x∈H

1

2
‖x− x0‖2 + ξk(x) ;

2) Choose ξk+1 ∈ Γ(C), set k := k + 1 and go to 1.

Note that Algorithm A is a special case of Γ-Algorithm. Indeed, this fol-
lows from the fact that ξk, γk ∈ Γ(C) implies ξk+1 = ξk + tk γ

k ∈ Γ(C) (see
Remark 3.7).

We now state and prove one of our main results. It is based on [11] and [12,
Section 6.2].
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Theorem 4.6. (Dual strong convergence principle) Consider the sequences
{xk} and {ξk} generated by Γ-Algorithm. Suppose that asymptotic comple-
mentarity holds, i.e.,

ξk(xk)→ 0, k →∞.
Then,

i) {xk} is bounded ;

ii) xk → PC(x0) if and only if B(xk) ⊂ C .

Proof. It follows from the definition of xk, from the definition of the dual func-
tion ϕ, from the dual feasibility of ξk and from the weak duality property that
(∀k ∈ N)

‖xk − x0‖2 + 2 ξk(xk) = 2ϕ(ξk) ≤ ‖x− x0‖2, ∀x ∈ C.

By assumption we have ξk(xk)→ 0, k →∞. Thus, {xk} is bounded and

lim sup
k→∞

‖xk − x0‖2 + 2 ξk(xk) ≤ ‖PC(x0)− x0‖2. (18)

The forward implication in ii) is trivial. For the reverse implication, assume
that B(xk) ⊂ C.

Next, since {xk} is bounded, we obtain B(xk) 6= ∅. Let x̄ ∈ B(xk) and take
{xkj} such that xkj ⇀ x̄, j →∞.

Since ξkj(xkj)→ 0, j →∞, we have, in particular, that

lim sup
j→∞

‖xkj − x0‖2 ≤ lim sup
j→∞

(
‖xkj − x0‖2 + 2 ξkj(xkj)

)
. (19)

Using the weak lower semi-continuity of ‖ · ‖, (19) and (18) we obtain

‖x̄− x0‖2 ≤ lim inf
j→∞

‖xkj − x0‖2 ≤ lim sup
j→∞

‖xkj − x0‖2 ≤ ‖PC(x0)− x0‖2 . (20)

The inclusion B(xk) ⊂ C implies x̄ ∈ C. Thus, it follows from (20) that

x̄ = PC(x0) and ‖xkj − x0‖ → ‖PC(x0)− x0‖, j →∞ .

Therefore, since {xkj} is arbitrary, it follows that {xk} converges weakly to
PC(x0) and ‖xk − x0‖ → ‖PC(x0)− x0‖, k →∞. However,

‖xk − PC(x0)‖2 = ‖xk − x0‖2 − ‖PC(x0)− x0‖2 + 2〈xk − PC(x0), x0 − PC(x0)〉.

Thus, xk → PC(x0).

Corollary 4.7. Let {xk} and {ξk} be generated by Algorithm B. Then,

xk → PC(x0) if and only if B(xk) ⊂ C.
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Although Algorithm 2.7 is very general, including many well known algo-
rithms in its setting (see [9]), it is a special case of Γ-Algorithm. This is due to
the fact that Γ-Algorithm requires dual feasibility of ξk and asymptotic com-
plementarity, while Algorithm 2.7 uses projection onto the intersection of two
special half spaces, implying, in particular, complementarity iteratively, i.e.,
ξk(xk) = 0, ∀k ∈ N.

The following example is for illustrative purposes only.

Example 4.8. Let 0 6= x0 ∈ H and C = {x ∈ H : 〈x0, x〉 ≤ 0}. Consider the
following problem {

min 1
2
‖x− x0‖2

s.t. x ∈ C.
(21)

Let {αk} ⊂ ]0, 1[ be a sequence converging to 0, such that αk < αk+1 for
infinite indexes k (for example, define αk = 1/(k + 1) if k is odd, otherwise
αk = 2/(k+ 1)). Consider Γ-Algorithm with the following updating rule for ξk:

ξk(x) = 〈(1− αk)x0, x〉.

It follows from Lemma 3.2 and this updating rule that

xk = x0 −∇ξk = x0 − (1− αk)x0 = αkx
0, (22)

which implies that {xk} converges strongly to 0 = PC(x0), solution of the primal
problem (21). If x ∈ C, then

ξk(x) = 〈(1− αk)x0, x〉 = (1− αk)〈x0, x〉 ≤ 0,

which means that ξk is dual feasible. Using (22) we obtain

ξk(xk) = (1− αk)αk〈x0, x0〉 > 0, ∀k ∈ N.

Therefore the complementarity is achieved only asymptotically, lim ξk(xk) = 0.
We claim that is not possible to find a family of operators Tk ∈ T (see Definition
2.5), such that

xk+1 = Q(x0, xk, Tkx
k),

that is, {xk} can not be generated within the setting of [9]. Indeed, if this is
the case, then xk+1 ∈ H(x0, xk) for all k ∈ N. But this means that

〈xk+1 − xk, x0 − xk〉 ≤ 0 ∀k ∈ N,

which by (22) implies that

(αk+1 − αk)(1− αk)‖x0‖2 ≤ 0, ∀ k ∈ N.

Since x0 6= 0 and {αk} ⊂ ]0, 1[, the last inequality implies αk+1 ≤ αk, ∀k ∈ N,
contradicting the way that {αk} was chosen.
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5 Subgradient Type Methods in the Setting of

Γ-Duality

In this section we show how subgradient type methods fit in the setting of Γ-
duality. In particular, we discuss how as special case of the algorithm proposed
in [14] for solving a constrained optimization problem can be seen as a special
case of Γ-Algorithm.

5.1 Subgradient Method

Let f : H → R be a convex function, and C := {x ∈ H : f(x) ≤ 0}. Consider
the problem of finding a point x ∈ C. A well known approach for solving this
problem is to apply a subgradient algorithm stated as follows,

Subgradient Method

0) Let {αk} ⊂ [ε, 2− ε], where ε > 0 and let y0. Set k = 0;

1) If f(yk) ≤ 0 stops, otherwise obtain a subgradient vk ∈ ∂f(yk);

2) Let µk := αkf(yk)
‖vk‖2 and define yk+1 = yk − µkvk;

Set k = k + 1 and go to 1.

Next proposition shows how the subgradient method describe above fit in
the setting of Γ-duality.

Proposition 5.1. The subgradient method is a special case of Algorithm A.

Proof. Assume that {yj}j=kj=0 is generated by the subgradient method. Let

{xj}j=kj=0 and {ξj}j=kj=0 generated by Algorithm A, with ξ0 = 0, x0 = y0, λj := µj
for j = 0, · · · , k − 1, and the affine functions γj defined as

γj(x) = 〈vj, x− yj〉+ f(yj), ∀ j = 0, · · · , k − 1.

From the subgradient inequality 〈vj, x − yj〉 + f(yj) ≤ f(x), it follows that if
x ∈ C ( i.e., f(x) ≤ 0) then γj(x) ≤ 0, implying γj ∈ Γ(C) for j = 0, · · · , k− 1.

Let us show by induction that yj = xj for j = 0, · · · , k. By assumption,
y0 = x0. Now, using recursively the updating rules yj+1 = yj − µjv

j and
ξj+1 = ξj + λjγ

j, we obtain

yj+1 = y0 −
j∑
i=0

µiv
i, and ξj+1 = ξ0 +

j∑
i=0

λiγ
i.
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Since ∇γi = vi, it follows that

∇ξj+1 = ∇ξ0 +

j∑
i=0

λiv
i.

Therefore, using that ξ0 = 0, y0 = x0, and λi = µi for i = 0, · · · , k − 1, we
obtain

yj+1 = y0 −
j∑
i=0

µiv
i = x0 −∇ξj+1 = xj+1,

where the last equality follows by Lemma 3.2. Thus xi = yi, for i = 0, · · · , k,
concluding the proof.

The Fejér-monotonicity of the subgradient method w.r.t. C can be verified
in the Γ-duality setting as follows. Let γj as in the proof of Proposition 5.1. If

f(xj) > 0 then, using that ∇γj = vj, γj = f(xj) and λj =
αjf(xj)

‖vj‖2 , it follows
that

λj‖∇γj‖2 = αjγ
j(xj),

with αj ∈ ]0, 2[. Hence, condition (2) of Proposition 3.9 is satisfied, which
implies the Fejér-monotonicity of the subgradient method w.r.t. C.

Consider now the following optimization problem{
min f(x)

s.t. x ∈ H .
(23)

Assuming that the optimal solution set S∗ 6= ∅ and the optimal value f ∗ is known
a priori, the subgradient method discussed above can be easily generalized to
solve this problem by considering

µk :=
αk(f(yk)− f ∗)
‖vk‖2

, and C := S∗.

Therefore, using γk(x) = 〈vk, x − yk〉 + f(yk) − f ∗, we may, similarly to the
proof of Proposition 5.1, fit the subgradient method (with the steplenth above)
in the setting of Algorithm A to solve (23).

A variant of the subgradient method, which has strong convergence proper-
ties, was proposed in [14] to solve the following constrained optimization prob-
lem {

min f(x)

s.t. x ∈ C,
(24)

where C ⊂ H is a closed and convex set with a simple structure. Precisely,
it is assumed to be easy to project any point x ∈ H onto C. Next we recall
this algorithm and show that it is a special case of Γ-Algorithm when C is
polyhedron.
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Algorithm 5.2.

0) Let x0 ∈ C, set k := 0;

1) If f(xk) = f ∗ stops, otherwise let vk ∈ ∂f(xk);

2) Set
Hk := {x ∈ H : f(xk)− f ∗ + 〈vk, x− xk〉 ≤ 0}

and
Wk := {x ∈ H : 〈x− xk, x0 − xk〉 ≤ 0};

3) Let xk+1 := PZk
(x0), where Zk := C∩Hk∩Wk; set k := k+1 and go to 1.

Observe that (24) is equivalent to the convex feasibility problem:

find x ∈ S := C ∩ {x ∈ H : f(x) ≤ f ∗}.

We may consider the more stringent problem: given x0 ∈ H,{
min 1

2
‖x− x0‖2

s.t. x ∈ S.
(25)

Assume that C is a polyhedron set, that is, there exist affine functions gi for
i = 1, · · · , n, such that

C = {x ∈ H : gi(x) ≤ 0, i = 1, · · · , n}.

The proof of the following proposition is similar to the one of Proposition 4.2,
we show it for the sake of completeness.

Proposition 5.3. Let {xk} be generated by Algorithm 5.2 for solving (24) with
C a polyhedron, as above. Then {xk} is also generated by Γ-Algorithm with
ξ0 = 0, and updating ξk as

ξk+1 = arg max
ξ∈Σk

ϕ(ξ),

where Σk := co(cone){ξk, γk, g1, · · · , gn}, and γk(x) = 〈vk, x−xk〉+ f(xk)− f ∗.

Proof. Let {ξk} generated by Γ-Algorithm, and {xk} generated by Algorithm 5.2.
Let us show that ξk(x) = 〈x − xk, x0 − xk〉 for any k. By assumption, this re-
sult is true for k = 0. Assume that it holds for some k ∈ N, and consider the
following set D := {x ∈ H : ξk(x) ≤ 0, γk(x) ≤ 0, gi(x) ≤ 0, i = 1, · · · , n}.
Since by induction hypothesis ξk(x) = 〈x− xk, x0 − xk〉, it follows that D = Zk
and thus, D 6= ∅, because xk+1 = PZk

(x0) ∈ Zk. Let x̄ and ξ̄ as in Corol-
lary 2.4. By definition, x̄ = PD(x0), and thus xk+1 = x̄. From items 2 and

20



3 of Corollary 2.4, ξ̄ = arg maxξ∈Σk
ϕ(ξ) and ξ̄ = 〈x − x̄, x0 − x̄〉, implying

from the updating rule of ξk+1 that ξk+1 = ξ̄. Combining this results we have
ξk+1(x) = 〈x− xk+1, x0 − xk+1〉. Therefore ξk(x) = 〈x− xk, x0 − xk〉 for any k.
As a consequence, ∇ξk = x0 − xk for any k ∈ N, which implies, by Lemma 3.2,
that xk = arg minx∈H(1/2)‖x− x0‖2 + ξk(x) for any k ∈ N. Hence, {xk} is also
generated by Γ-Algorithm, as desired.

Remark 5.4. We mention that Algorithm 5.2 applied to solving problem (23),
(C = H), is a particular case of Algorithm B, taking γk as defined above. In par-
ticular γk(xk) > 0, and so by Proposition 4.4, in such a situation, Algorithm B
can be seen as a realization of Algorithm 2.7.

6 Concluding Remarks

In this article, based on a duality theory introduced and studied by B .F. Svaiter
in [11], and further developed and used in [12], we propose a general algorithm
for finding a point in a closed and convex subset of a Hilbert space. We analyze
two variants of the algorithm which has different properties. The first one
has weak convergence properties and the second one, under some assumptions,
generates a sequence strongly converging to a solution. One of our main focus
is to propose a weak-to-strong convergence principle based on the Svaiter’s Γ-
duality. We show that updating the dual sequence keeping dual feasibility, and
forcing asymptotic complementarity [12, 13] of the primal sequence guarantee
strong convergence, assuming that all weak accumulation points of the sequence
belong to the convex set. We relate the obtained results with the weak-to-strong
convergence principle of Bauschke and Combettes and discuss how subgradient
type methods can be fit in the setting presented here.
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