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Abstract. We study the dynamics of strongly dissipative Hénon-like maps, around the first
bifurcation parameter a∗ at which the uniform hyperbolicity is destroyed by the formation
of tangencies inside the limit set. We prove that a∗ is a full Lebesgue density point of the
set of parameters for which Lebesgue almost every initial point diverges to infinity under
positive iteration. A key ingredient is that a∗ corresponds to “non-recurrence of every critical
point”, reminiscent of Misiurewicz parameters in one-dimensional dynamics. Adapting on the
one hand Benedicks & Carleson’s parameter exclusion argument, we construct a set of “good
parameters” having a∗ as a full density point. Adapting Benedicks & Viana’s volume control
argument on the other, we analyze Lebesgue typical dynamics corresponding to these good
parameters.

1. Introduction

One important problem in dynamics is to describe transitions from structurally stable to
unstable regimes. Equally important is to describe how strange attractors are created. A
prototypical example intimately connected to these problems is given by the Hénon family

Ha : (x, y) 7→ (1− ax2 +
√
by,±

√
bx), 0 < b � 1.

For all large a, one gets a uniformly hyperbolic horseshoe [12], a paradigmatic example of
structurally stable chaotic systems. As one decreases a, the horseshoe loses its stability at a
bifurcation parameter, and then a nonuniformly hyperbolic strange attractor is created, with
positive probability in parameter space [5]. The aim of this paper is to shed some light on the
process of this sort of transition from horseshoes to strange attractors.

We work within a framework set up by Palis for studying bifurcations of diffeomorphisms:
consider arcs of diffeomorphisms losing their stability through generic bifurcations, and analyze
which dynamical phenomena are more frequently displayed (in the sense of Lebesgue measure
in parameter space) in the sequel of the bifurcation. More precisely, let (ϕa) be a parametrized
family of diffeomorphisms which undergoes a first bifurcation at a = a∗, i.e., ϕa is structurally
stable for a > a∗ and ϕa∗ has a cycle. We assume (ϕa) unfolds the bifurcation generically. A
dynamical phenomenon P is prevalent at a∗ if

lim inf
ε→+0

ε−1Leb({a ∈ [a∗ − ε, a∗] : ϕa displays P}) > 0.

This framework originates in the work of Newhouse and Palis [19], on the frequency of
bifurcation sets in the unfoldings of homoclinic tangencies. In that paper, diffeomorphisms
before the first bifurcation are Morse-Smale. Palis and Takens [20, 21, 22], inspired by works
of Newhouse, studied the prevalence of uniform hyperbolicity in arcs of diffeomorphisms for
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Figure 1. The case a = a∗. There exist two hyperbolic fixed saddles P , Q
near (1/2, 0), (−1, 0) correspondingly. In the orientation preserving case (left),
W u(Q) meets W s(Q) tangencially. In the orientation reversing case (right),
W u(P ) meets W s(Q) tangencially.

which the non-wandering set of the diffeomorphism at the bifurcation is a union of a non-
trivial basic set of saddle type and an orbit of tangency. In opposite direction, the frequency
of non-hyperbolicity was studied by Palis and Yoccoz [23, 24, 25].

For the Hénon family, the first bifurcation where the horseshoe ceases to be stable cor-
responds to the formation of homoclinic or heteroclinic tangencies [2]. This tangency is
quadratic, and (Ha)a unfolds the tangency generically [3]. The orbit of the tangency is ac-
cumulated by transverse homoclinic points, and hence contained in the limit set. In [10], all
these statements are extended to Hénon-like families, a perturbation of the Hénon family (see
Section 2 for a precise definition).

This sort of bifurcation is completely different from the one treated in [20, 21, 22, 23, 24, 25].
A key aspect of models treated in these papers is that the orbit of tangency at the first
bifurcation is not contained in the limit set. This implies a global control on new orbits
added to the underlying basic set, and moreover allows one to use its invariant foliations to
translate dynamical problems to the problem on how two Cantor sets intersect each other.
This argument is not viable, if the orbit of tangency, responsible for the loss of the stability
of the system, is contained in the limit set, as in the case of Hénon-like families. Let us call
such a bifurcation an internal tangency bifurcation.

For an Hénon-like family (fa), we aim to describe changes in the set

Ka =
{
z ∈ R2 : {fn

a (z)}n∈Z is bounded
}
.

By a result of [10], there is a parameter a∗ such that Ka is a hyperbolic set for a > a∗, and
(fa)a unfolds a quadratic tangency at a = a∗ generically. This suggests that the structure of
Ka depends in a very discontinuous way upon a. For instance, a∗ is accumulated from left
by: a-intervals for which fa has sinks [1, 15]; sets with positive Lebesgue measure for which
fa has nonuniformly hyperbolic attractors [18], etc. A consequence of our theorem is that the
frequency of such parameters tends to zero as a → a∗. Let

K+
a =

{
z ∈ R2 : {fn

a (z)}n≥0 is bounded
}
.

Theorem. For an Hénon-like family (fa) there exists a set ∆ of a-values such that:

(a) limε→+0 ε
−1Leb(∆ ∩ [a∗ − ε, a∗]) = 1;

(b) if a ∈ ∆, then K+
a has zero Lebesgue measure.

(c) if a ∈ ∆, then fa is transitive on Ka.

To grasp the meanings of the theorem, it is worthwhile to recall Jakobson’s theorem for the
quadratic family x → 1− ax2, which states that a = 2 is a (one-sided) full Lebesgue density
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point of the set of parameters corresponding to absolutely continuous invariant probability
measures. These measures allow one to statistically predict the asymptotic “fate” of Lebesgue
almost every initial conditions. For a > 2, the orbit of the critical point x = 0 is escaping,
and thus the invariant set is uniformly hyperbolic. In other words, a = 2 is a first bifurcation
parameter of the quadratic family. Immediately right after the bifurcation one mainly gets
“observable chaos”. Our theorem asserts a sharp contrast to this sort of transition. For a ∈ ∆,
Ka behaves like a basic set of saddle type, in that Lebesgue typical points escape from any
neighborhood of it. This means that, physically observable complicated behaviors are chaotic
transient around Ka, not sustained in time.

This striking difference at the first bifurcation stems from a simple fact intrinsic to two-
dimension: at the parameter a∗, the unstable manifold of the saddle fixed point(s) is not
confined in any bounded region. Indeed, one key step in the proof of the theorem is to show
that, for carefully chosen parameters, the unstable manifold intersects K+

a in a set with zero
Lebesgue measure on the manifold.

Figure 2 indicates a landscape in the (a, b)-plane (as usual, b controls the closeness to the
quadratic family, see (1)). The a∗-line consists of the parameters of the first bifurcation.
The a∗∗-line consists of parameters corresponding to the manifold organization indicated in
Figure 3. The parameter set ∆ is in the red region bounded by these two lines. For b > 0
small, Benedicks and Carleson [5], Mora and Viana [18] constructed a set of a-values near
2, corresponding to maps which exhibit nonuniformly hyperbolic strange attractors. These
parameter sets are in the blue region at the left of the a∗∗-line.

In view of the theorem, one might speculate that maps in {fa : a ∈ ∆} would retain some
weak form of hyperbolicity, as a memory of the uniform hyperbolicity before the bifurcation.
For the moment, we do not know if the uniform hyperbolicity is prevalent at a∗. See Remark
5.1 for a further discussion. To our knowledge, the only presently known result on the preva-
lence of hyperbolicity in internal tangency bifurcations is due to Rios [26], on arcs of surface
diffeomorphisms destroying type 3 horseshoes (horseshoes with three symbols [21]).

To prove the theorem, we build on and develop the machinery for the analysis of strongly
dissipative Hénon maps [5, 6, 8, 18, 30]. Excluding undesirable parameters inductively, we
construct the parameter set ∆ having a∗ as a full density point. We then investigate the
dynamics of f ∈ {fa : a ∈ ∆}.

A parameter exclusion argument in the spirit of Jakobson [16], Benedicks and Carleson
[4, 5] was first brought into the study of homoclinic bifurcations by Palis and Yoccoz [24, 25].
As we mentioned in the beginning, the underlying basic set at the bifurcation is used in a
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Figure 3. The case a = a∗∗ : orientation preserving (left); orientation reversing (right).

crucial way there, and the same approach does not work in our context of internal tangency
bifurcation. In order to prove that K+

a has zero Lebesgue measure, we develop the volume
control argument of Benedicks and Viana [6].

The rest of this paper consists of six sections and one appendix. In Section 2 we analyze
one fixed map, collecting results from [5, 6, 18, 30] and [27] as far as we need them. In Section
3 we recall the procedure in [27] for finding suitable critical approximations, used as guides
for orbits falling in critical regions.

The parameter set ∆ is constructed in Section 4. This part closely follows the previous
construction of the parameter set in [27], modulo the assertion that a∗ is a full density point
of ∆. It is at this point where the characteristic of the first bifurcation is crucial. We show that
the map fa∗ behaves as if it is a “two-dimensional Misiurewicz map”, in the sense that every
critical approximation of it is non-recurrent. Then it is possible, as in the one-dimensional
case [4, 16], to arrange the induction construction in such a way that less and less proportions
of parameters in [a∗ − ε, a∗] are excluded as ε → +0, and the total fractions of ∆ in the
intervals get closer to one. Consequently, ∆ must have a∗ as a full density point.

For the remaining three sections we consider the dynamics of one fixed map f ∈ {fa : a ∈ ∆}.
In Section 5 we identify an well-organized geometric structure of the unstable manifold, close
to the one identified by Wang and Young [30]. Using this structure, in Section 6 we analyze the
dynamics on the unstable manifold. Combining a classical large deviation argument [5, 8, 9]
with a continuity argument from the first bifurcation, we prove thatK+ intersects the unstable
manifold in a set with zero Lebesgue measure. In Section 7 we study the dynamics on K+. A
careful adaptation of the volume control argument [6] together with the conclusion of Section
6 shows that K+ cannot have positive two-dimensional Lebesgue measure.

2. Preliminaries

In this section we analyze one fixed map f , collecting results from [5, 6, 18, 30] and [27] as
far as we need them.

2.1. Hénon-like families. We deal with a parameterized family (fa) of diffeomorphisms on
R2 such that f = fa has the form

(1) fa : (x, y) 7→ (1− ax2, 0) + b · Φ(a, b, x, y),
where (a, b) is close to (2, 0) and Φ is bounded, continuous, C4 in (a, x, y).

Although f is globally defined on R2, it is possible to localize our consideration to a compact
domain defined as follows. If f preserves orientation, let W u = W u(Q). Otherwise, let
W u = W u(P ). Let R0 denote the compact domain bounded by W u and W s(Q), as indicated
in Figure 4. By a result of [10], points outside of R0 escape to infinity either by positive or
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Figure 4. The region R0

negative iterations. Hence K ⊂ R0 holds. Let D0 = {(x, y) /∈ R0 : x ≥
√
2}. It can be read

out from [10] that K+ ⊂ D0∪R0 holds. By the obvious uniform hyperbolicity on D0, K
+∩D0

has zero Lebesgue measure. Therefore, for the proof of the theorem, it suffices to show that
K+ ∩ R0 has zero Lebesgue measure. To this end, the next lemma allows us to focus on the
dynamics inside R0.

Claim 2.1. K+ ∩R0 =
∩

n≥0 f
−n(R0).

Proof. Let z ∈ K+ ∩ R0. Suppose that z /∈ f−n(R0) holds for some n > 0. Let n0 denote
the smallest integer with this property. Then fn0+1(z) ∈ D1, where D1 is the set of points

(x, y) which is at the left of W s
loc(Q) and |y| ≤

√
b. As D1 ∩K+ = ∅, z /∈ K+ holds, which

is a contradiction. Consequently, K+ ∩ R0 ⊂
∩

n≥0 f
−n(R0) holds. The reverse inclusion is

obvious. �
To structure the dynamics inside R0, we construct critical points and use them as guides.

Unlike the attractor context [5, 18, 30], the construction of critical points has to take into
consideration possible leaks out of R0 under iteration, and unbounded derivatives at infinity is
a bit problematic. To bypass this problem, we work with a new family (f̃a,b) which is obtained
by modifying the quadratic map x → 1− ax2, and Φ in (1) so that the following holds:

(M1) f = f̃ on R0 and f̃(D1) ⊂ D1;

(M2) if z ∈ R0 and f̃(z) /∈ R0, then for any n ≥ 1 and a nonzero tangent vector v at f̃n(z)

with slope(v) ≤
√
b, slope(Df̃(f̃n(z))v) ≤

√
b and ‖Df̃(f̃n(z))v‖ ≥ 2‖v‖;

(M3) there exists a constant C0 > 0 such that ‖∂if‖ ≤ C0 and | detDf̃ | ≤ C0b on D1 ∪ R0 ∪
f(R0) (i = 1, 2, 3, 4), where ∂i denotes any partial derivative in a, x, y of order i.

2.2. Hyperbolic behavior. Constructive constants are α,M, δ, chosen in this order. The
α, δ are small, and M is a large integer. Having chosen all of them, we choose sufficiently
small b.

From this point on, let us denote f̃ by f . We start with basic properties of f . For δ > 0,
define I(δ) = {(x, y) ∈ R0 : |x| < δ}. The next lemma establishes a uniform hyperbolicity
outside of I(δ). Not only for orbits staying inside R0, the hyperbolicity estimates hold for
orbits which leak out of R0.

Lemma 2.1. For any λ0 ∈ (0, log 2) and δ > 0, the following holds for (a, b) close to (2, 0).
Let z ∈ R0 be such that z, f(z), · · · , fn−1(z) /∈ I(δ), and let v be a tangent vector at z with

slope(v) ≤
√
b. Then:

(a) slope(Dfn(z)v) ≤
√
b and ‖Dfn(z)v‖ ≥ δeλ0n‖v‖;

(b) if, in addition, fn(z) ∈ I(δ), then ‖Dfn(z)v‖ ≥ eλ0n‖v‖.
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Proof. If z, f(z), · · · , fn−1(z) ∈ R0, then (a) (b) follow from the closeness of f to the top
quadratic map. Otherwise, the orbit splits into the part z, f(z), · · · , fk−1(z) (k < n) in R0,
and the rest out of R0. (b) is vacuous because of fn(z) /∈ I(δ). We have slope(Dfk(z)v) ≤√
b and ‖Dfk(z)v‖ ≥ δeλ0k‖v‖. Combining these with (M2) we obtain (a). �

2.3. Quadratic behavior. The letter C denotes any generic constants which depend only
on (fa) restricted to [−2, 2]2. Let us agree that a ≈ b indicates that C−1 ≤ a/b ≤ C holds for
some C ≥ 1.

In the next lemma we assume γ is a horizontal curve, that is, a C2-curve such that the
slopes of its tangent directions are ≤ 1/10 and the curvature is everywhere ≤ 1/10. For z ∈ γ,
let t(z) denote any unit vector tangent to γ at z. In addition, we assume there exists ζ ∈ γ

such that slope(Df(ζ)t(ζ)) ≥ C
√
b. Let e denote any unit vector tangent to f(γ) at f(ζ).

Split Df(z)t(z) = A(z) ( 1
0 ) +B(z)e.

Lemma 2.2. ([27] Lemma 2.2.) There exists C such that for all z ∈ γ ∩ I(δ), |z− ζ| ≈ |A(z)|
and |B(z)| ≤ C

√
b.

Remark 2.1. Let Γ be a C1 curve located near f(ζ) of the form Γ = {(x(y), y) : |x′| ≤
C
√
b, |y| ≤

√
b}. By Lemma 2.2, either: Γ is tangent to f(γ) and the tangency is quadratic;

or Γ intersects f(γ) exactly at two points.

2.4. Most contracting directions. Some versions of results in this section were obtained
in [5, 18]. Our presentation follows [30]. Let M be a 2×2 matrix. Denote by e the unit vector
(up to sign) such that ‖Me‖ ≤ ‖Mu‖ holds for any unit vector u. We call e, when it exists,
the most contracting direction of M .

For a sequence of matricesM1,M2 · · · , we useM (i) to denote the matrix productMi · · ·M2M1,
and ei to denote the mostly contracting direction of M (i).

Hypothesis for Sect.2.2. The matrices Mi satisfy | detMi| ≤ Cb and ‖Mi‖ ≤ C0.

Lemma 2.3. ([30] Lemma 2.1.) Let i ≥ 2, and suppose that ‖M (i)‖ ≥ κi and ‖M (i−1)‖ ≥ κi−1

for some κ ≥ b1/10. Then ei and ei−1 are well-defined, and satisfy

‖ei × ei−1‖ ≤
(
Cb

κ2

)i−1

.

Corollary 2.1. ([30] Corollary 2.1.) If ‖M (i)‖ ≥ κi for 1 ≤ i ≤ n, then:

(a) ‖en − e1‖ ≤ Cb
κ2 ;

(b) ‖M (i)en‖ ≤
(
Cb
κ2

)i
holds for 1 ≤ i ≤ n.

Next we consider for each i a parametrized family of matrices Mi(s1, s2, s3) such that
‖∂j detMi(s1, s2, s3)‖ ≤ Ci

0b, and |∂jMi(s1, s2, s3)| ≤ Ci
0 for each 0 ≤ j ≤ 3. Here, ∂j

represents any one of the partial derivatives of order j with respect to s1, s2, or s3.

Corollary 2.2. ([30] Corollary 2.2.) Suppose that ‖M (i)(s1, s2, s3)‖ ≥ κi for 1 ≤ i ≤ n. Then
for j = 1, 2, 3 and 2 ≤ i ≤ n,

(2) |∂j(ei × ei−1)| ≤
(

Cb

κ2+j

)i−1

,
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(3) ‖∂j(M (i)ei)‖ ≤
(

Cb

κ2+j

)i

.

Let e1(z) denote the most contracting direction of Df(z) when it makes sense. From the

form of our map (1), e1(z) is defined for all z /∈ I(
√
b). In view of [[18] pp. 21], we have

(4) slope(e1) ≥ C/
√
b and ‖∂e1‖ ≤ C

√
b.

Definition 2.1. We say z is κ-expanding up to time n, or simply expanding, if there exists a
tangent vector v at z and κ ≥ b1/10 such that for every 1 ≤ i ≤ n,

‖Df i(v)‖ ≥ κi‖v‖.
For n ≥ 1, let en(z) denote the most contracting direction of Df(z) when it makes sense.

From Corollaries 2.1, 2.2 and (4) we get

Corollary 2.3. If z is κ-expanding up to time n, then slope(en) ≥ C/
√
b and ‖∂en‖ ≤ Cb

κ3 .

2.5. Long stable leaves. A C2-curve Γ of the form

Γ = {(x(y), y) : |y| ≤
√
b, |x′(y)| ≤ C

√
b, |x′′(y)| ≤ C

√
b}.

is called a vertical curve. A C2-distance between two vertical curves is measured by regarding
them as C2-functions on [−

√
b,
√
b].

Lemma 2.4. (cf.[18] Section 6.) Let κ ≥ δ15. If z is κ-expanding up to time n, then for
every 1 ≤ i ≤ n, the maximal integral curve Γi of ei through z contains a vertical curve. In

addition, for every 1 < i ≤ n, dC2(Γi,Γi−1) ≤
(
Cb
κ4

)i−1
.

By a long stable leaf of order i through z we mean the curve Γi as in the statement.

Remark 2.2. In the construction of long stable leaves, the relation between the lengths of
leaves and the value of κ is crucial [18]. In [6], long stable leaves of length ≈ 1/5 are used. To

this end, they require κ ≥ e−20. For our purpose, long stable leaves of length ≈ 2
√
b suffices.

Hence, κ ≥ δ15 suffices.

Lemma 2.5. (cf.[6] Proposition 2.4.) Let κ ≥ δ15. If z is κ-expanding, the stable set W s(z)
contains a vertical curve Γ∞(z) through z, and |fn(ξ) − fn(η)| ≤

(
Cb
κ

)n
holds for all ξ, η ∈

Γ∞(z) and n ≥ 1. Moreover, if z1, z2 are expanding, then

angle(tΓ(ξ1), tΓ(ξ2)) ≤ C
√
b|ξ1 − ξ2|,

where tΓ(ξi) denotes any unit vector tangent to Γ∞(zi) at ξi, i = 1, 2.

We call a long stable leaf through z the curve Γ∞(z) as in the statement, and a stable leaf
any compact curve having some iterate contained in a long stable leaf.

Let Γ∞(z1), Γ∞(z2) be as in Corollary 2.5 and ξ1, η1 ∈ Γ(z1). Let ξ2, η2 denote the points
in Γ∞(z2) whose y-coordinate coincides with that of ξ1 and η1 correspondingly. Lemma 2.5
and the Gronwall inequality give

(5) |ξ1 − ξ2| ≤ eC
√
b|η1 − η2|.

In particular, two distinct long stable leaves do not intersect each other.

Notation. Let z ∈ I(δ) and suppose that f(z) is δ15-expanding up to time n. The long stable
leaf of order n through f(z) is denoted by Γn(z). If f(z) is δ

15-expanding, then the long stable
leaf through f(z) is denoted by Γ(z).
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2.6. Recovering expansion. Let γ be a horizontal curve and n ≥ M. We say ζ ∈ γ is a
critical approximation of order n on γ if:
(i) ‖Df i(f(ζ))‖ ≥ 1/10 for 1 ≤ i ≤ n;
(ii) en(f(ζ)) is tangent to Df(ζ)t(ζ), where t(ζ) is any unit vector tangent to γ at ζ.

Notation. For z ∈ I(δ) and i ≥ 1, let wi(z) = Df i−1(f(z)) ( 1
0 ).

We now introduce three conditions, which are taken as inductive assumptions in the con-
struction of the parameter set ∆. Let λ := λ0/2, where λ0 is the one in Lemma 2.1. A critical
approximation ζ of order n on γ has a good critical behavior up to time k ≥ M if:

(G1) ‖wi(ζ)‖ ≥ eλ(i−1) for 1 ≤ i ≤ k;
(G2) ‖wj(ζ)‖ ≥ e−2αi‖wi(ζ)‖ for 1 ≤ i < j ≤ k;
(G3) there exists a monotone increasing function χ : [M,k]∩N 	 such that for each j ∈ [M,k]
there exists χ(j) ∈ [(1−

√
α)j, j] such that ‖wχ(j)(ζ)‖ ≥ δ‖wi(ζ)‖ holds for 0 ≤ i < χ(j).

Hypothesis for the rest of Sect.2.6: ζ is a critical approximation of order n on γ, and
has a good critical behavior up to time 20n.

For M ≤ k ≤ 20n− 1, let

Dk(ζ) = e−3αk · min
1≤i≤k

min
i≤j≤k+1

‖wj(ζ)‖2

‖wi(ζ)‖3
.

Represent the long stable leaf of order n through f(ζ) as a graph of a function Γn(f(ζ)) =

{(xn(y), y) : |y|
√
b}. Let

Vk = {(x, y) : |x− xn(y)| ≤ Dk(ζ)/2, |y| ≤
√
b}.

Take a monotone increasing function χ satisfying condition (G3). Let v denote any nonzero
vector tangent to γ at z. If f(z) ∈ Vk \ Vk+1, then we say v is in admissible position relative
to ζ. Define a bound period p = p(ζ, z) by

p = χ(k),

and a fold period q = q(ζ, z) by

q = min
{
i ∈ [1, p) : |ζ − z|α̃ · ‖wj+1(ζ)‖ ≥ 1 for every i ≤ j < p

}
,

where

(6) α̃ =
2 logC0

log 1/b
.

It is easy to check that (G1-3) and the assumption on z give |ζ − z|α̃ · ‖wp(ζ)‖ ≥ 1. Hence q
is well-defined. If f(z) ∈ V20n−1, then we say v is in critical position relative to ζ.

Proposition 2.1. ([27] Proposition 2.2.) Let γ, ζ, z, v be as above.
(i) If v is in admissible position relative to ζ and f(z) ∈ Vk \ Vk+1, then:

(a) log |ζ − z|−
3

logC0 ≤ p ≤ log |ζ − z|− 3
λ ;

(b) q ≤ Cα̃p;
(c) |f i(ζ)− f i(z)| ≤ e−2αp for 1 ≤ i ≤ p;
(d) |ζ − z|‖v‖ ≤ ‖Df q(z)v‖ ≤ |ζ − z|1−α̃‖v‖;
(e) ‖Df p(z)v‖ ≥ ‖v‖ · |ζ − z|−1+ α

logC0 ≥ e
λp
3 ‖v‖;

(f) ‖Dfp(z)v‖ ≥ (δ/10)‖Df i(z)v‖ for 0 ≤ i < p;
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(ii) If v is in critical position relative to ζ, then ‖Dfn(z)v‖ ≤ e−8λn‖v‖.

A proof of this proposition follows the line that is now well understood [5, 18, 30]. We split
Df(z)v into the direction of ( 1

0 ) and that of en(f(z)), iterate them separately, and put them
together at the expiration of the fold period.

Proposition 2.1 indicates the usefulness of the following terminology. Let ζ be a critical
approximation on a horizontal curve γ. Let t(ζ) denote any unit vector tangent to γ at ζ. A
nonzero vector v is in tangential position relative to ζ if there exists a horizontal curve which
is tangent to both v and t(ζ).

3. Existence of binding points

To deal with returns to the region I(δ), we look for suitable critical approximations and use
them as guides to keep further evolution in track. Such critical approximations, if exists, are
called binding points. In this section we recall the procedure in [27] for finding binding points.

3.1. Creation of new critical approximations. By a C2(b)-curve we mean a C2-curve

such that the slopes of all its tangent vectors are ≤
√
b and the curvature is everywhere ≤

√
b.

The next two lemmas are used to create new critical approximations around the existing ones.
For corresponding versions, see: [5] p.113, Lemma 6.1; [18] Sect.7A, 7B; [30] Lemma 2.10,
2.11.

Lemma 3.1. Let γ be a C2(b)-curve in I(δ) parameterized by arc length and such that γ(0)
is a critical approximation of order n. Suppose that:
(i) γ(s) is defined for s ∈ [−b

n
4 , b

n
4 ];

(ii) there exists m ∈ [n/3, 20n] such that ‖Df i(fγ(0))‖ ≥ 1 for 1 ≤ i ≤ m.
There exists s0 ∈ [−b

n
4 , b

n
4 ] such that γ(s0) is a critical approximation of order m on γ.

Next we consider two C2(b)-curves γ1, γ2 in I(δ) parametrized by arc length, in a way that
the x-coordinate of γ1(0) coincides with that of γ2(0). Let tσ(s) denote any unit vector tangent
to γσ at γσ(s), σ = 1, 2.

Lemma 3.2. Let γ1, γ2 be as above and suppose that:
(i) γ1(s), γ2(s) are defined for s ∈ [−ε

n
2 , ε

n
2 ], ε ≤ C−5

0 ;
(ii) γ1(0) is a critical approximation of order n on γ1 and ‖Df i(fγ1(0))‖ ≥ 1 for 1 ≤ i ≤ n;
(iii) |γ1(0)− γ2(0)| ≤ εn and angle(t1(0), t2(0)) ≤ εn.
There exists s0 ∈ [−ε

n
2 , ε

n
2 ] such that γ2(s0) is a critical approximation of order n on γ2.

3.2. Hyperbolic times. Let

(7) θ = α3, κ0 = C−10
0 .

Let v be a tangent vector at z and let m ≥ 1. We say v is r-regular up to time m if for
0 ≤ i < m,

‖Dfm(z)v‖ ≥ rδ‖Df i(z)v‖.

We say µ ∈ [0,m] is an m-hyperbolic time of v if Dfµ(z)v is κ
1
2
0 -expanding up tp time m− µ.

Results related to the next lemma can be found in [[5] Lemma 6.6], [[18] Lemma 9.1], [[30]
Claim 5.1].
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Lemma 3.3. ([27] Lemma 2.12; Abundance of well-distributed hyperbolic times) Let m ≥
log(1/δ) and suppose that a tangent vector v at z is 1/10-regular up to time m. There exist
s ≥ 2 and a sequence µ1 < µ2 < · · · < µs of m-hyperbolic times of v such that:

(a) ‖Dfµj(z)v‖ is κ
1
4
0 -expanding up to time m− µj;

(b) 1/16 ≤ (m− µj+1)/(m− µj) ≤ 1/4 for 1 ≤ j ≤ s− 1;
(c) 0 ≤ µ1 < m/2 and m− log(1/δ) ≤ µs ≤ m− log(1/δ)/2.

3.3. Nice critical approximations. Let ζ be a critical approximation of order n on a hor-
izontal curve γ. We say ζ is nice if:

(C1) ‖Df i(fζ)‖ ≥ 1 for 1 ≤ i ≤ n;

(C2) f−i(ζ) ∈ [−2, 2]× [−
√
b,
√
b] for 1 ≤ i ≤ [θn];

(C3) let t(ζ) denote any unit vector tangent to γ at ζ. Then Df−[θn](ζ)t(ζ) is κ
1
3
0 -expanding

and δ/10-regular, both up to time [θn].

Here, the square bracket denotes the integer part.

Hypothesis for the rest of Sect.3: m, n are integers with m ≥ log(1/δ), n ≥ log(1/δ),
and:

• each nice critical approximation ζ has a good critical behavior up to time 20min(n, ξ), where
ξ is the order of ζ;
• a tangent vector v at z is r0-regular up to time m, and fm(z) ∈ I(δ).

3.4. Binding procedure. We describe how to choose a binding point relative to which
Dfm(z)v is in horizontal position. Fix once and for all a sequence µ1 < µ2 < · · · < µs

of m-hyperbolic times of v satisfying

(8) m− µ1 ≤ θn,
1

2
log(1/δ) ≤ m− µs ≤ log(1/δ),

1

16
≤ m− µi+1

m− µi

for 1 ≤ i < s.

The existence of such a sequence is guaranteed by Lemma 3.3. Any sequence does the job.
Correspondingly, fix once and for all a sequence n ≥ n1 > · · · > ns > ns+1 > · · · > ns0 := M
of integers such that

(9) m− µi = [θni] for 1 ≤ i ≤ s, ni = ni+1 + 1 for s ≤ i < s0.

Lemma 3.4. ([27] Proposition 3.1.) There exist i ∈ [1, s] and a critical approximation ζi of
order ni such that Dfm(z)v is in tangential position relative to ζi.

Sketch of the proof. One way to find such ni and ζi are described as follows. Let li denote the
straight segment of length κ3θni

0 centered at fµi(z) and tangent to Dfµi(z)v. Then γi := fµi(li)
is a C2(b)-curve extending to both sides around fm(z) to length ≥ κ4θni

0 . Lemma 3.1, Lemma
3.2 and the hypothesis of f allow us to show the following: if Dfm(z)v is in critical position
relative to a critical approximation of order ni on γi, then there exists a critical approximation
of order ni−1 on γi−1 relative to which Dfm(z)v is in horizontal position. A recursive use of
this argument yields the conclusion. �
Definition 3.1. Let i0 ∈ [1, s] denote the largest integer such that there exists a critical
approximation of order ni0 relative to which Dfm(z)v is in tangential position. We call any
such critical approximation a binding point for Dfm(z)v.
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ζi+1

ζi fm(z)
γi

γi+1

Figure 5. critical approximations on C2(b)-curves

Remark 3.1. Obviously, critical approximations eligible as binding points of Dfm(z)v are
not unique. This does not matter.

Let ζ denote any binding point for Dfm(z)v. By the definitions in Sect.2.6, there are two
mutually exclusive cases:

(a) i0 = 1, and fm(z) is in critical position relative to ζ;

(b) Dfm(z)(v) is in admissible position relative to ζ.

Remark 3.2. Let ζ, ζ ′ denote two different binding points for Dfm(z)v. If (a) occurs for ζ,
then (a) has to occur for ζ ′ as well, for otherwise one can find a horizontal curve on which ζ
and ζ ′ lie, a contradiction.

In case (a), the contraction estimate (ii) in Proposition 2.1 is in place. In case (b), all the
estimates in (i) in Proposition 2.1 are in place: the loss of expansion and regularity suffered
from the return are recovered at the end of the bound period.

In addition, in case (b), one can repeat the binding procedure in the following manner.
Write m = m1. Let p1 denote the bound period. (e,f) Proposition 2.1 implies that v is 1/10-
regular up to time m1 + p1. Let m2 ≥ m1 + p1 denote the smallest such that fm2(z) ∈ I(δ).
By Lemma 2.1, v is 1/10-regular up to time m2. Subsequently one may repeat the binding
procedure once again, replacing m → m2, f

m(z) → fm2(z), Dfm(z)v → Dfm2(z)v.
In this way, one can (if (a) does not occur) define integers

m1 < m1 + p1 ≤ m2 < m2 + p2 ≤ m3 < · · ·

inductively as follows: for k ≥ 1, let pk be the bound period of fmk(z), and let mk+1 be the
smallest j ≥ mk + pk such that f j(z) ∈ I(δ). (Note that an orbit may return to I(δ) during
its bound periods, i.e. (mk) are not the only return times to I(δ).) This decomposes the orbit
of z into segments corresponding to time intervals (mk,mk + pk) and [mk + pk,mk+1], during
which we describe the orbit of z as being“bound” and “free” states respectively; mk are called
times of free returns.

Remark 3.3. Let us consider the case where the above hypothesis is satisfied for every
n ≥ log(1/δ). Then, the binding procedure allows us to keep in track the evolution of any
individual complete orbit in W u, decomposing it into bound and free segments. However, this
procedure is not well-adapted to our phase-space construction in later sections, because:

• the choice of binding points relies only on the individual orbit under consideration and
neglects a global information on W u;

• there are ambiguities in the choice of binding points.

These issues will be resolved in Section 5, for parameters in ∆.
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4. Parameter exclusion

In this section we construct the parameter set ∆ in the theorem, having a∗ as a full density
point. The construction is done by induction: ∆ =

∩
n≥0 ∆n, where ∆n is constructed at step

n, excluding from ∆n−1 all those undesirable parameters for which some critical approximation
may not have good critical behavior up to time 20n.

4.1. Critical approximations of fa∗ are non-recurrent. The construction of ∆ and a
measure estimate of it closely follow [27], in which a positive measure set of parameters was
constructed corresponding to Hénon-like maps with nonuniformly hyperbolic behavior. One
key difference from [27] is the assertion that a∗ is a full density point of ∆. A key ingredient
for this is the next proposition, which states that the orbit of every critical approximation of
fa∗ is non-recurrent.

Proposition 4.1. For every critical approximation ζ of fa∗ of order n, f i
a∗(ζ) ∈ {(x, y) ∈

R2 : |x| ≥ 9/10} holds for every 1 ≤ i < 20n.

We postpone a proof of this proposition to Sect.4.10.

4.2. Definition of parameter sets. Let

N =
[
θ−1 log(1/δ)

]
.

Choose sufficiently small ε0 and b so that for any f ∈ {fa : a ∈ [a∗ − ε0, a
∗]}, any critical

approximation has a good critical behavior up to time 20N . This requirement is feasible by the
elementary fact that all critical approximations are contained in I(

√
b). Set ∆n = [a∗− ε0, a

∗]
for 1 ≤ n ≤ N.

Definition 4.1. Let n > N , a ∈ ∆n−1 and suppose that fa has a good critical behavior up
to time 20(n− 1). Let 20(n− 1) ≤ m < 20n. We say a nice critical approximation ζ of fa of
order ≥ n satisfies (G)m if:

(i) there is an well-defined decomposition of the orbit f(ζ), f 2(ζ), · · · , fm(ζ) into bound and
free segments in the sense of Sect.3.4;
(ii) let n1 < n2 < · · · < ns ≤ m denote all the free return times of ζ, with z1, · · · , zs the
corresponding binding points. They are of order < n and

(10)
s∑

i=1

log |fni(ζ)− zi| ≥ −αm.

For n > N , define ∆n to be the set of all a ∈ ∆n−1 for which every nice critical approximation
of order ≥ n satisfies (G)20n−1. In other words,

∆n−1 \∆n =

{
a ∈ ∆n−1 : (G)m fails for some 20(n− 1) ≤ m < 20n

and some nice critical approximation of order ≥ n of fa

}
.

The next proposition allows us to proceed to the definition of ∆n+1 with no vicious cycle.

Proposition 4.2. ([27] Proposition 5.1.) Let a ∈ ∆n and let ζ be a nice critical approximation
of order ≥ n of fa. Then ζ has a good critical behavior up to time 20n.

Sketch of the proof. We just sketch the proofs of (G1), (G2). By the definition of ∆n, ζ satisfies
(G)20n−1. The length of the total bound states in the first 20n iterates of ζ is bounded by
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(a) Proposition 2.1 and Condition (10). It follows that the total length of free states is
proportional to 20n. Lemma 2.1 gives (G1).

The function χ in (G3) is defined as follows. Let j ∈ [M, 20n] and h0 := j. Define a finite

sequence h1 > · · · > ht(j) of free return times of ζ inductively as follows. Let ĥk+1 denote the
largest free return time before hk, when it makes sense. Let pk+1 denote the corresponding
bound period. If

(11) hk − ĥk+1 − pk+1 ≤ (1/λ0) log(10δ),

then let hk+1 = ĥk+1. In all other cases, hk+1 is undefined, namely k = t(j). Define χ(j) =
ht(j). Obviously, χ(j) ≤ j holds. If (1 −

√
α)j ≤ χ(j) did not hold, (11) would imply that

the total number of bound iterates in the interval [(1−
√
α)j, j] were bigger than a constant

multiple of
√
αj. While by condition (G), the total number of bound states in the interval

is smaller than a constant multiple of αj. If α is small, then these two estimates are not
compatible. �

4.3. Combinatorics. To estimate the measure of ∆n−1\∆n, we first decompose it into a finite
number of subsets, based on certain combinatorics on itineraries of critical approximations.
We then estimate the measure of each subset separately, and unify them at the end. In this
subsection we introduce two integral components of the combinatorics.

Definition 4.2. Let f ∈ {fa : a ∈ ∆n−1 \∆n}. Let ζ be a critical approximation of f of order
≥ n. Let ν < 20n be a free return time of ζ, with the binding point z. If ν is not the first
return time to I(δ), then let n1 < · · · < nt denote all the free return times of ζ before ν, with
z1, · · · , zt the corresponding binding points. Write nt+1 = ν and zt+1 = z. We say ν is a deep
return time, if it is the first return time to I(δ), or else for 1 ≤ s ≤ t,

(12)
t+1∑

j=s+1

2 log |fnj(ζ)− zj| ≤ log |fns(ζ)− zs|.

Remark 4.1. If ν is not a deep return time, by definition, the reverse inequality holds for
some i ∈ [1, t]. This means that the effect of the free return at time ν is negligible, compared
to that of the free return at time ni

Let f, ζ be as above and ν a deep return time. Let ps, qs (1 ≤ s ≤ t) denote the corre-
sponding bound and fold periods. For each ns, let

σns(ζ) =
‖wns+qs(ζ)‖β

‖wns(ζ)‖1+β
,

where β = 10
9
. For each i ∈ [1, ν) \

∪
1≤s≤t[ns, ns + ps − 1], let

σi(ζ) =
‖wi+1(ζ)‖
‖wi(ζ)‖2

.

Define

Θν(ζ) = κ0 ·

[
ν−1∑
i=1

σi(ζ)
−1

]−1

.

It is understood that the sum runs over all i such that f i(ζ) is free.
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Lemma 4.1. ([27] Lemma 5.2.) For the above f, ζ, ν, z, if ν is a deep return time of ζ, then

‖wν(ζ)‖|Θν(ζ)| ≥ |f ν(ζ)− z|
1
2 .

Definition 4.3. (Addresses on the horizontal H) For each µ ≥ θM , we fix a subdivision of

R×{
√
b} into right-open horizontals of equal length κ3µ

0 . We label all of them intersecting the

horizontal H := [−2, 2]× {
√
b} with l = 1, 2, 3, · · · , from the left to the right. By a µ-address

of a point x on H we mean the integer l which is a label of the horizontal containing x.

4.4. Decomposition of the exclude parameter set at step n. Fix positive integers
m ∈ [20(n− 1), 20n), s, t, R. Fix the following combinatorics:

• sequences (µ1, · · · , µs), (x1, · · · , xs) of s positive integers;
• sequences (ν1, · · · , νt), (n1, · · · , nt), (r1, · · · , rt), (y1, · · · , yt) of t positive integers.

Let En(∗) = Em,s,t,R(· · · ) denote the set of all a ∈ ∆n−1 \∆n for which there exists a nice
critical approximation ζ of fa = f of order n′ ≥ n such that the following holds:

(Z1) (G)m−1 holds, and (G)m fails;
(Z2) µ1 < · · · < µs is a maximal sequence of [θn′]-hyperbolic times of the tangent vector
Df−[θn′]−1(f(ζ))en′(f(ζ)) satisfying

(13)
1

2
log(1/δ) ≤ n′ − µs ≤ log(1/δ), n′ − µ1 ≤ θn,

1

16
≤ n′ − µi+1

n′ − µi

≤ 1

4
for 1 ≤ i < s.

Since [θn′] ≥ log(1/δ), Lemma 3.3 ensures the existence of such a maximal sequence;
(Z3) the point of intersection between H and the long stable leaf of order [θn′] − µi through
f−[θn′]+µi(ζ) has xi as its [θn

′]− µi-address;
(Z4) ν1 < · · · < νt = m are all the free return times in the first m iterates of ζ, with ζ1, · · · ζt
the corresponding binding points;
(Z5) for each k ∈ [1, t], the order of ζk is nk < n. If νk < m, then rk is such that |ζk−f νk(ζ)| ∈
[e−rk , e−rk+1) holds. If νk = m, which means k = t and νt = m, then rt is defined as follows.
If |fm(ζ) − zt| > e−αm, then rt is such that |fm(ζ) − zt| ∈ [e−rt , e−rt+1) holds. Otherwise,
rt = αm;
(Z6) the point of intersection between H and the long stable leaf of order [θnk] through
f−[θnk](ζk) has yk as its [θnk]-address.

Definition 4.4. If a ∈ En(∗), then any nice critical approximation of fa of order ≥ n for
which (Z1-6) hold is called responsible for a. The parameter set En(∗) an n-class.

By definition, any parameter excluded from ∆n−1 belongs to some n-class. We estimate the
measure of ∆n−1 \∆n by estimating a contribution from each n-class first, and then counting
the total number of n-classes.

4.5. Digestive remarks on the combinatorics. Let us give some remarks on the meanings
of the hypotheses in the definition of En(∗). (Z1) is a completely reasonable hypothesis. (Z4),
(Z5) are also reasonable. The remaining three hypotheses will be used to deal with two
problems intrinsic to two-dimension.

• Infinitely many responsible critical approximations. The first problem is that critical approx-
imations responsible for a single parameter are far from unique, and even infinite. Of course,
all of them have to be taken into consideration in the measure estimate of En(∗). Conditions
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ak−1,j

2e−rk−1/10 · Jk−1,j

Jk,i

Jk−1,j

Figure 6. Organization of Jk,i-intervals

(Z2), (Z3) are used to deal with this problem. They allow us to reduce our consideration to
a finite number of parameter-dependent orbits, called deformations, introduced in Sect.4.7.

• Infinitely many binding points. Binding points are far from unique, because of the way of
our definition of binding points in Sect.3.4. (Z6) allows us to deal with this problem, with the
help of deformations.

4.6. Full Lebesgue density at the first bifurcation parameter. We conclude that ∆
has a∗ as a full Lebesgue density point. Let | · | denote the one-dimensional Lebesgue measure.
For a compact interval I centered at x and r > 0, let r · I denote the interval of length r|I|
centered at x. One main step is a proof of the next

Proposition 4.3. (Covering by intervals) Let m ∈ [20(n−1), 20n), s, t, R be positive integers.
For any n-class En(m, s, t, R, · · · , ) = En(∗), for any ε ∈ (0, ε0), k ∈ [1, t], there exist a finite
number of pairwise disjoint intervals {Jk,i}i with the following properties:

(a) En(∗) ∩ [a∗ − ε, a∗] ⊂
∪

i e
−rk/3 · Jk,i;

(b) if t > 1, then for each k ∈ [2, t] and Jk,i there exists Jk−1,j such that Jk,i ⊂ 2e−rk−1/3 ·Jk−1,j;
(c)

∑
i |J1,i| ≤ 3ε.

This sort of covering originates in the works Tsujii [28, 29], and has been used in [27] for the
construction of positive measure set of parameters corresponding to maps with nonuniformly
hyperbolic behavior. For our purpose we need to develop it further.

Proposition 4.3 gives |En(∗)∩ [a∗−ε, a∗]| ≤ 3εe−
1
3
R, where R = r1+r2 · · ·+rt. To conclude,

we need to count the number of all feasible n-classes. The counting argument in [27] shows

]((µ1, x1), · · · , (µs, xs)) ≤ κ−7θn
0

and
](ν1, · · · , νt)](r1, · · · , rt)](n1, · · · , nt)](y1, · · · , yt) ≤ eτ(δ)n+

θR
5λ ,

where τ(δ) → 0 as δ → 0. [[27] Lemma 5.3] gives r1 + · · ·+ rt ≥ αm/2. Taking contributions
from all n-classes into consideration,

|(∆n−1 \∆n) ∩ [a∗ − ε, a∗]| ≤ ε
∑
m,s,t

∑
R≥αm/2

∑
r1+···+rt=R

|En(m, s, t, R, ∗) ∩ [a∗ − ε, a∗]|

≤ εeτ(δ)n
∑
R≥αn

exp

(
−R

6

)
≤ εe−αn/8.
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Let

(14) n0(ε) =
1

2 logC0

log

(
2ε

κ0δ

)
.

The next lemma indicates that no parameter is deleted from [a∗− ε, a∗] up to step [n0(ε)/20],
namely [a∗ − ε, a∗] ⊂ ∆n holds for every 0 ≤ n ≤ [n0(ε)/20].

Lemma 4.2. Let a0 ∈ [a∗−ε, a∗], and let ζ0 be a critical approximation of fa0. Then fn
a0
(ζ0) /∈

I(δ) holds for every 1 ≤ n < min (n0(ε), 20ξ), where ξ is the order of ζ0.

Therefore

|∆ ∩ [a∗ − ε, a∗]| = |∆0 ∩ [a∗ − ε, a∗]| −
∞∑
n=1

| (∆n−1 \∆n) ∩ [a∗ − ε, a∗]|

= ε−
∑

n>[n0(ε)/20]

| (∆n−1 \∆n) ∩ [a∗ − ε, a∗]| ≥ ε

1−
∑

n>[n0(ε)/20]

e−αn

 .

Since n0(ε) → ∞ as ε → 0, we obtain limε→0 ε
−1|∆ ∩ [a∗ − ε, a∗]| = 1 as desired. �

4.7. Parameter dependence of nice critical approximations. The rest of this section
is entirely devoted to the proof of Proposition 4.3 and Lemma 4.2. A key ingredient is a
deformation of a quasi critical approximation, developed in [[27] Section 4,5] for dealing with
the parameter dependence of critical approximations.

Definition 4.5. Let ζ be a critical approximation of order n on a C2(b)-curve γ. We say ζ

is a quasi critical approximation of order n on γ if Df−[θn](ζ)t(ζ) is κ
1
2
0 -expanding up to time

[θn], where t(ζ) denotes any unit vector tangent to γ at ζ.

For the purpose of introducing deformations, we make the following assumption. Let â ∈
[a∗ − ε0, a

∗]. Write f for fâ. Let γ be a C2(b)-curve in I(δ). Let ζ be a quasi critical
approximation of order n on γ. Assume:

• ‖Df i(f(ζ))‖ ≥ 1 for 1 ≤ i ≤ n;

• Df−[θn](ζ)t(ζ) is κ
1
3
0 -expanding and δ/160-regular, both up to time [θn].

Let r denote the point of intersection between H and the long stable leaf of order [θn]
through ξ. Let l ⊂ H denote the horizontal of length 2κ3θn

0 centered at r. By [[27] Lemma

4.1], f
[θn]
â (l) is a C2(b)-curve, and there exists a quasi critical approximation of order n on it,

denoted by ζ(â) for which |ζ − ζ(â)| ≤ (Cb)
θn
4 holds.

It turns out that this picture persists, for a small variation of parameters. Let

(15) In(â) = [â− κn
0 , â+ κn

0 ].

By [[27] Lemma 4.2], for all a ∈ In(â), f
[θn]
a (l) is a C2(b)-curve. By [[27] Proposition 4.1],

there exists a quasi critical approximation of order n of fa on it, which we denote by ζ(a).

Definition 4.6. The map a ∈ In(â) → ζ(a) is called a deformation of ζ.

The next lemma states that the “speeds” of deformations are uniformly bounded. Let “ ·
” denote the differentiation with respect to a.
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Lemma 4.3. ([27] Proposition 4.2.) The a ∈ In(â) → ζ(a) is C3 and for all a ∈ In(â),

max
(
‖ζ̇(a)‖, ‖ζ̈(a)‖

)
≤ κ3 log δ

0 .

To introduce a main proposition we need some notation. Let ζ be a nice critical approxima-
tion of fâ of order n. For the deformation a ∈ In(â) → ζ(a) of ζ and i > 0, let f i

a(ζ(a)) = ζi(a).
If ν < 20n, f ν(ζ) is free and ζ has good critical behavior up to time ν, then define

Jν(a, ζ) = [a−Θν(ζ), a+Θν(ζ)].

Proposition 4.4. [[27] Section 5] Let a0 ∈ ∆n−1 and let ζ0 be a nice critical approximation
of fa0, with a good critical behavior time ν and f ν(ζ0) is free. There exist an integer m and a
quasi critical approximation ζ of order m such that:
(i) |f ν

a0
(ζ0)− f ν

a0
(ζ)| ≤ (Cb)

1
2
θν;

(ii) the deformation a ∈ Im(a0) → ζ(a) satisfies:

(a) Jν(ζ0, a0) ⊂ Im(a0):

(b) the set {ζν(a) : a ∈ Jν(a0, ζ0)} is a horizontal curve;
(c) ‖ζν(a)− ζν(b)‖ ≈ ‖wν(ζ0)‖|a− b| � 1 for all a, b ∈ Jν(ζ0, a0).

4.8. Proof of Proposition 4.3. We choose each Jk,i so that it has the form Jk,i = Jνk(ak,i, ζk,i),
where ak,i ∈ En(∗)∩ [a∗ − ε, a∗] and ζk,i is some responsible critical approximation of fak,i . In
what follows we describe how to choose (ak,i, ζk,i)i.

Start with k = 1. We describe how to choose (a1,i, ζ1,i)i such that (a) holds with k = 1.
First, choose arbitrary a1,1 ∈ En(∗) ∩ [a∗ − ε, a∗]. Let ζ1,1 denote any responsible critical
approximation of fa1,1 . We show

(16) En(∗) ∩ (J1,1 \ e−r1/3J1,1) = ∅.

If J1,1 covers En(∗), then the desired inclusion follows. Otherwise, choose a1,2 ∈ En(∗)− J1,1.
We claim that

(17) J1,1 ∩ J1,2 = ∅.

If J1,1∩J1,2 covers En(∗), then the desired inclusion follows. Otherwise, choose a1,3 ∈ En(∗)−
J1,1 ∪ J1,2. Repeat this. As the length of these intervals are uniformly bounded from below,
there must come a point when the inclusion is fulfilled.

Below we sketch the proofs of (16) and (17). To ease notation, write ai := a1,i, ζi := ζ1,i
and Ji = J1,i, i = 1, 2.

Sketch of the proof of (16). Choose an inter m, a quasi critical approximation ζ of fa1 of order
m, and its deformation a ∈ Im(a1) → ζ(a) for which the conclusions of Proposition 4.4 hold
up to time ν1. In fact, (Z2), (Z3) allow us to choose such a deformation so that the following
holds:

• |f ν1
a1
(ζ1)− f ν1

a1
(ζ(a1))| ≤ e−r1 ;

• if a ∈ J1 ∩ En(∗) and x is any responsible critical approximation of fa, then |f ν1
a (x) −

f ν1
a (ζ(a))| � e−r1 .

The second item states that, although responsible critical approximations for a single pa-
rameter a are not unique, all of their positions at time νk are well-approximated by that of
f ν1
a (ζ(a)).
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Now, let z1 denote the binding point of order n1 for f ν1
a1
(ζ1) and let a ∈ In1(a1) → z1(a)

denote its deformation. (Z6) allows us to show that this deformation satisfies:

• |z1 − z1(a1)| ≤ e−r1 ;
• if a ∈ J1 ∩ En(∗) and x is any responsible critical approximation of fa, with y a binding
point for f ν1

a (x), then |y − z1(a)| � e−r1 .

The second item states that, although binding points are not unique, they are well approxi-
mated by z1(a).

These four conditions altogether prohibit any parameter in a ∈ J1,1 \ e−r1/3 · J1,1 from
belonging to En(∗), and consequently (16) holds. To see this, suppose that this is not the case
and a ∈ J1,1 \ e−r1/3 · J1,1, a ∈ En(∗). Let x denote any critical approximation responsible for
a. Let y denote any binding point for f ν1

a (x). The triangle inequality gives

|f ν1
a (x)− y| ≥ |f ν1

a (ζ(a))− f ν1
a1
(ζ(a1))| − |f ν1

a (ζ(a))− f ν1
a (x)| − |f ν1

a1
(ζ(a1))− f ν1

a1
(ζ1)|

− |f ν1
a1
(ζ1)− z1| − |z1 − z1(a)| − |z1(a)− y|,

where, for the last term, z1(a) makes sense, because of J1 ⊂ In1(a1). On the first term,
Proposition 4.4 and Lemma 4.1 give

|f ν1
a1
(ζ(a1))− f ν1

a (ζ(a))| ≈ ‖wν1(ζ1)‖ · |a1 − a| � e−r1 .

The remaining four terms are ≤ e−r1 . It follows that |f ν1
a (x) − y| � e−r1 . This yields a

contradiction to the assumption that x is responsible for a. Hence a /∈ En(∗) holds.
Sketch of the proof of (17). For the discussions to follow, we need to introduce critical param-
eters [27]. For the purpose of this we make the following assumption and observation. Let

â ∈ En(∗) and let ζ̂ denote any critical approximation responsible for a. Let z denote any

binding point for f νk
â (ζ̂), and let a ∈ Ink

(â) → z(a) denote its deformation. Take an integer
m, a quasi critical approximation ζ of fâ of order m, and its deformation a ∈ Im(â) → ζ(a)
for which the conclusions of Proposition 4.4 hold up to time νk. The “speed” of z(a) as a
sweeps in the interval Ink

(â) is bounded from above by in Lemma 4.3. On the other hand, the

“speed” of ζνk(a) as a sweeps in the interval Jνk(â, ζ̂) is much faster, by Proposition 4.4. From

the proposition, Jνk(â, ζ̂) ⊂ Ink
(â) holds. Hence, the comparison of the speeds and Lemma

4.1 together imply that there exists a unique parameter c0 ∈ e−rk/3 · Jνk(â, ζ̂) such that the
x-coordinate of ζνk(c0) coincides with that of z(c0).

Definition 4.7. The c0 is called a critical parameter in Jν1(â, ζ̂).

A proof of (17) is outlined as follows. Let c0, c
′
0 denote the critical parameters in J1,1, J1,2

respectively. Suppose that (17) does not hold. Then, from a distortion argument, |J1,1| ≈ |J1,2|
follows. As a1,2 /∈ J1,1, this implies c0 6= c′0. In addition, it is possible to extend the domain
of definition of the deformation of ζ1,1 to the larger interval J1,1 ∪ J1,2, so that all the above
properties of the deformation continue to hold. As a1,2 /∈ J1,1, the argument used in the proof
of (16) gives a1,2 /∈ En(∗). This is a contradiction. Hence (17) holds.

Having chosen (ak−1,i, ζk−1,i)i and the corresponding intervals (Jk−1,i)i, we choose (ak,j, ζk,j)j
as follows. For each Jk−1,i, in the same way as the proof of (16) it is possible to choose a
finite number of parameters ak,1, ak,2, · · · in En(∗) ∩ [a∗ − ε, a∗] ∩ e−rk−1/3 · Jk−1,i such that
the corresponding intervals Jk,1, Jk,2, · · · are pairwise disjoint and altogether cover En(∗) ∩
e−rk−1/3 · Jk−1,i. Now the issue is to show the inclusion

∪
j Jk,j ⊂ 2e−rk−1/3 · Jk−1,i. This is a
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consequence of the fact that the center ak,j of each Jk,j belongs to e−rk−1/3 · Jk−1,i, and any
Jk,j does not contain the critical parameter in Jk−1,i. �

Lemma 4.4. For every i, Θν1(ζ1,i) ≤ 2ε.

As the intervals (J1,i)i are pairwise disjoint and intersect [a∗ − ε, a∗], Lemma 4.4 gives∑
i |J1,i| ≤ 3ε. This proves (c).

It is left to prove Lemma 4.4. We use the following which can be proved by slightly extending
the arguments in Sect.4.1 and using the definition of quasi critical approximations.

Claim 4.1. Let ζ be a quasi critical approximation of order n of fa∗. There exists a critical
point z of fa∗ such that |ζ − z| ≤ (Cb)

1
2
θn.

Proof of Lemma 4.4. Take an integer m, a quasi critical approximation ζ of fa1,i of order m,
and its deformation a ∈ Im(a1,i) → ζ(a) for which the conclusions of Proposition 4.4 hold up
to time ν1. If |J1,i| > 2ε, then a∗ ∈ J1,i holds, because of a1,i ∈ [a∗ − ε, a∗]. Then ζ(a∗) makes
sense and we have |f ν1

a1,i
(ζ1,i)− ζν1(a

∗)| ≤ |f ν1
a1,i

(ζ1,i)− ζν1(a1,i)|+ |ζν1(a1,i)− ζν1(a
∗)| � 1. As ν1

is a return time, f ν1
a1,i

(ζ1,i) ∈ I(δ) holds. It follows that ζν1(a
∗) is near I(δ). On the other hand,

Proposition 4.1 and Claim 4.1 together imply ζν1(a
∗) ∈ {(x, y) : |x| ≥ 4/5}. A contradiction

arises. �
4.9. Proof of Lemma 4.2. A proof of this lemma also relies on deformations. We argue
by induction. Let ζ0 be an arbitrary critical approximation of fa0 of order ξ. Let 20N ≤
k ≤ min (n0(ε), 20ξ) and suppose that f i

a0
(ζ0) /∈ I(δ) holds for 1 ≤ i ≤ k − 1. Note that this

assumption for k = 20N is satisfied. We show fk
a0
(ζ) /∈ I(δ). As ζ0 is arbitrary, the claim

follows.
By the assumption of induction, fk

a0
(ζ0) is free. Take an integer m, a quasi critical approx-

imation ζ of fa0 of order m, and its deformation a ∈ Im(â) → ζ(a) for which the conclusions
of Proposition 4.4 hold up to time k. The definition of the interval Jk(a0, ζ0) and (14) give

|Jk(a0, ζ0)| ≥ κ0δC
−2k
0 ≥ 2ε.

As a0 ∈ [a∗ − ε, a∗], a∗ ∈ Jk(a0, ζ0) holds. Proposition 4.4, ζ(a∗) makes sense and we have
|fk

a0
(ζ0) − ζk(a

∗)| ≤ |fk
a0
(ζ0) − ζk(a0)| + |ζk(a0) − ζk(a

∗)| � 1. Proposition 4.1 and Claim 4.1
give ζk(a

∗) /∈ {(x, y) : |x| ≤ 4/5}. Hence fk
a0
(ζ0) /∈ I(δ) follows. �

4.10. Proof of Proposition 4.1. In this subsection, all dynamical objects pertain to fa∗ ,
and f indicates fa∗ . Let r denote the point of the quadratic tangency near (0, 0). Let S denote
the lenticular compact domain in I(δ) bounded by the segment in W u and the parabola in
W s(Q) containing r (cf. Figure 1). By (M1), all points in f(S) do not return to R0 under
positive iteration, and thus they are expanding. By Proposition 2.3, f(S) is foliated by long
stable leaves. Note that the leaf through f(r) contains the boundary of R0.

Definition 4.8. Let γ be a C2(b)-curve in W u(Q) stretching across I(δ). We say ζ ∈ γ is
a critical point on γ if z ∈ S, and the long stable leaf through f(z) is tangent to W u(Q) at
f(z).

A proof of Proposition 4.1 is briefly outlined as follows. We approximate any critical
approximation by a critical point. By definition, the orbit of every critical point do not return
to R0. Hence the claim follows.
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Lemma 4.5. Let γ be a C2(b)-curve in W u(Q) stretching across I(δ). There exists a unique
critical point on γ. In addition, For every n ≥ M there exists a critical approximation of order
n on γ within the distance (Cb)

n
4 from the critical point.

Proof. Let Γ denote any long stable leaf which is at the right of Γ(r). By Remark 2.1,
Γ intersects f(γ) at two points, or else Γ is tangent to f(γ) and the point of tangency is
quadratic. There exists only one leaf for which the latter holds, for otherwise two distinct
leaves intersect each other, a contradiction to the remark below Lemma 2.5. The pull-back of
the point of tangency is a critical point on γ, denoted by ζ. Hence, the first statement holds.

Take z ∈ γ with |ζ−z| = b
n
4 , and write f(z) = (x0, y0). Represent the two long stable leaves

as graphs of functions on [−
√
b,
√
b]: Γn(z) = {(x(y), y)} and Γn(ζ) = {(x̃(y), y)}. Since the

Hausdorff distance between Γn(ζ) and Γ(ζ) is ≤ (Cb)n, Lemma 2.2 gives |x(y0) − x̃(y0)| =
|x0−x̃(y0)| ≈ b

n
2 . Since en is Lipschitz, it follows that |x(y)−x̃(y)| ≈ Cb

n
2 for all y ∈ [−

√
b,
√
b].

Hence f−1(Γn(z)) intersects γ at two points within (Cb)n from ζ. This and Remark 2.1
together imply the second statement. �

Let ζ0 denote the critical point which is closest to Q in the Riemannian distance in W u(Q).
Let G denote the segment in W u(Q) with endpoints Q, f(ζ0). A proof of the next lemma is
given in Appendix.

Lemma 4.6. For every n ≥ 0, any component of fn(G) ∩ I(δ) is a C2(b)-curve.

Proof Proposition 4.1. If |f−[θn](ζ) − f(r)| ≤ 1/10, then let m = [θn] − 1. Otherwise, let
m = [θn]. Then f−m(ζ) is expanding. Let z denote the point of intersection between the long
stable leaf of order m through f−m(ζ) and G. It is possible to take a curve γ in G extending
both sides around z to length b

m
3 . For otherwise the contraction along the long stable leaf gives

fm(Q) ∈ I(δ), a contradiction because Q is a fixed point and Q /∈ I(δ). By the definition of
m, γ avoids the turn near f(ζ0), and hence is C2(b). Then fm(γ) is a C2(b)-curve extending
both sides around fm(z) to length ≥ b

m
2 . By Lemma 3.2, there exists a critical approximation

z̄ of order n on fm(γ) such that |ζ − z̄| ≤ (Cb)
θn
4 holds. By Lemma 4.5and Lemma 4.6, there

exist a C2(b)-curve γ′ in W u containing fm(γ) and stretching across I(δ), and a critical point

ζ ′′ on γ′ such that |z̄− ζ ′′| ≤ (Cb)
θn
4 . It follows that |f i(ζ)− f i(ζ ′′)| ≤ (Cb)

θn
5 for 1 ≤ i < 20n.

As the orbit of ζ ′′ is out of R0, the claim holds. �
Standing hypothesis for the rest of the paper: f ∈ {fa : a ∈ ∆ ∩ (a∗∗, a∗]}. Recall that
a∗∗ is the parameter corresponding to the manifold organization as in Figure 3. The positive
measure sets of parameters constructed in [5, 18, 30] corresponding to Hénon-like strange
attractors are not concerned, because they are at the left of a∗∗.

5. Dynamics on the unstable manifold

In this section we develop a one-dimensional analysis on the unstable manifold W u. In
Sect.5.1, we define a critical set C in W u, as a set of accumulation points of critical approx-
imations. Each element of C is called a critical point. In Sect.5.2, 5.3 we prove some key
estimates on critical points. In Sect.5.4 we identify a geometric structure of W u near the
critical set.

Notation. For z ∈ W u, let t(z) denote any unit vector tangent to the unstable manifold at z.
The boundaries of R0 inW u is called unstable sides, and denoted by ∂R0. Let ∂Rn := fn(∂R0).
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5.1. The critical set. In the case W u = W u(Q), fix a fundamental domain F in W u
loc(Q).

For z ∈ F , define a sequence n1 < n1+p1 ≤ n2 < n2+p2 ≤ n3 < · · · inductively as follows: n1

is the smallest such that fn1(z) ∈ I(δ) and p1 is the bound period of fn1(z); nk ≥ nk−1+ pk−1

is the smallest such that fnk(z) ∈ I(δ), and pk is the bound period of fnk(z). From the fact
that Q is a fixed saddle, it follows that this sequence is defined indefinitely, or else there exists
an integer m such that Dfm(z)t(z) is in critical position relative to critical approximations
of arbitrarily high order. If the latter case occurs, we let fm(z) ∈ C. Since each such point is
isolated in W u, C is a countable set. In the case W u = W u(P ), C is constructed in the same
way, with Q replaced by P .

Proposition 5.1. The following holds for each ζ ∈ C:
(a) ‖wn(ζ)‖ ≥ eλ(n−1) for n ≥ 1;
(b) ‖wj(ζ)‖ ≥ e−2αi‖wi(ζ)‖ for 1 ≤ i < j;
(c) there exists a monotone increasing function χ : N 	 such that for each n, χ(n) ∈ [(1 −√
α)n, n] and ‖wχ(n)(ζ)‖ ≥ δ‖wk(ζ)‖ for 1 ≤ k < χ(n);

(d) the long stable leaf Γ(fζ) is tangent to W u at f(ζ) and the tangency is quadratic.

Proof. By definition, for each ζ ∈ C there exists a strictly increasing sequence m1 < m2 < · · ·
of integers and a sequence ζm1 , ζm2 , · · · of critical approximations with good critical behavior,
such that ζm`

is of order m`, and ζm`
→ ζ as ` → ∞. (a) (b) (c) are direct consequences

of this convergence. By the definition of C and (ii) in Proposition 2.1, t(ζ) is contracted
exponentially by positive iterations. Thus t(f(ζ)) is tangent to Γ(fζ). By Remark 2.1, this
tangency is quadratic, and (d) holds. �

Remark 5.1. In the creation of the theory of nonuniformly hyperbolic strange attractors
[5, 8, 9, 18, 30], a key point of the arguments is to consider critical sets, which play the role
of critical points in one-dimensional dynamics. Our set C is designed to play the same role in
our context.

In the attractor context, critical sets have dynamically intrinsic characterizations [30], as
unique sources of non-hyperbolicity. On the other hand, our C may not have an intrinsic
meaning, because of possible escapes from R0. If this happens for orbits of C, that means that
C depends on the initial modification of the maps on D1, as in Section 2.2.

Nevertheless, the set C has to do with the hyperbolicity of the system in the following
sense. For each ζ ∈ C, let n(ζ) > 0 denote the smallest such that fn(ζ)(ζ) is out of R0.
If no such integer exists, let n(ζ) = ∞. The system is uniformly hyperbolic if and only
if supζ∈C{n(ζ)} < ∞. This criterion is reminiscent of the classical fact in one-dimensional
dynamics [17], which states that an invariant set is uniformly hyperbolic if and only if it does
not contain critical points.

5.2. Recovering expansion. In this and the next subsection we assume that ζ is a critical
point on a horizontal curve γ in I(δ). By this we mean Γ(fζ) is tangent to f(γ) at f(ζ). We
state a version of Proposition 2.1. The difference is that ζ is no longer an approximation and
a “genuine” critical point, and thus the estimates are available entirely on γ.

Write Γ(fζ) = {(x(y), y) : |y| ≤
√
b}. For each k ≥ M , let Vk = {(x, y) : |x − x(y)| ≤

Dk(ζ)/2, |y| ≤
√
b}. If f(z) ∈ Vk \ Vk+1, define a bound period p = p(ζ, z) by

p = χ(k),
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Q(k−1)

Figure 7. The relation between C(k−1) and C(k). The shaded regions are com-
ponents of C(k).

and a fold period q = q(ζ, z) by

q = min
{
i ∈ [1, p) : |ζ − z|α̃ · ‖wj+1(ζ)‖ ≥ 1 for i ≤ j < p

}
.

The next proposition is proved similarly to the proof of Proposition 2.1.

Proposition 5.2. Let z ∈ γ \{ζ} and let t(z) denote any unit vector tangent to γ at z. Then:

(a) p ≤ log |ζ − z|− 3
λ ;

(b) q ≤ Cα̃p;
(c) |f i(ζ)− f i(z)| ≤ e−2αp for 1 ≤ i ≤ p;
(d) |ζ − z| ≤ ‖Df q(z)t(z)‖ ≤ |ζ − z|1−α̃;

(e) ‖Df p(z)t(z)‖ ≥ |ζ − z|−1+ α
logC0 ≥ e

λp
3 ;

(f) ‖Dfp(z)t(z)‖ ≥ (δ/10)‖Df i(z)t(z)‖ for 0 ≤ i < p;
(g) ‖Df i(z)t(z)‖ ≈ |ζ − z|‖wi(ζ)‖ for q ≤ i ≤ p;
(h) ‖Df i(z)t(z)‖ < 1 for 1 ≤ i ≤ q.

5.3. Critical partitions. Using the family (Vk) of vertical strips, we construct a critical
partition of γ as follows. By Remark 2.1, γ ∩ f−1(Vk \ Vk+1) consists of two components, one
at the right ζ and the other at the left. For simplicity, let us denote both by γk. If f(γk)
does not intersect the vertical boundary of Vk, then we take γk together with the adjacent
γk+1. We cut each γk into [e3αk]-number of curves of equal length, and denote them by γk,s
(s = 1, 2, · · · ).

Let dist(γk,s, ζ) denote the distance between γk,s and ζ. Let

(18) α0 :=
1

6 logC0

α
+ 2

.

A proof of the next lemma is given in Appendix.

Lemma 5.1. For each γk,s we have:

(a) length(γk,s) ≤ dist(γk,s, ζ)
1+ α

3 logC0 ;
(b) fχ(k)(γk,s) is a C2(b)-curve of length ≥ e−4αk;
(c) For all ξ, η ∈ γk,s, ∣∣∣∣‖Dfχ(k)(ξ)t(ξ)‖

‖Dfχ(k)(η)t(η)‖
− 1

∣∣∣∣ ≤ |fχ(k)(ξ)− fχ(k)(η)|α0 .
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5.4. Geometry of critical regions. We identify a geometric structure of critical regions,
close the one depicted in ([30] Sect.1.2). Let C(0) = {(x, y) ∈ R0 : |x| ≤ δ}.

Proposition 5.3. There exists a nested sequence C(0) ⊃ C(1) ⊃ C(2) ⊃ · · · such that the
following holds for k = 0, 1, 2, · · · :
(S1) C(k) has a finite number of components called Q(k) each one of which is diffeomorphic
to a rectangle. The boundary of Q(k) is made up of two C2(b)-curves of ∂Rk connected by
two vertical lines: the horizontal boundaries are ≈ min(2δ, κk

0) in length, and the Hausdorff

distance between them is O(b
k
2 );

(S2) On each horizontal boundary γ of each component Q(k) of C(k), there is a critical point

located within O(b
k
4 ) of the midpoint of γ.

(S3) C(k) is related to C(k−1) as follows: Q(k−1) ∩ Rk has at most finitely many components,
each of which lies between two C2(b) subsegments of ∂Rk that stretch across Q(k−1) as shown
in FIGURE 7. Each component of Q(k−1) ∩Rk contains exactly one component of C(k).

(S4) Let Ξ(k) denote the set of critical points on the horizontal boundaries of
∪k

j=0 C(j). Then

C =
∪

k≥0 Ξ
(k).

The rest of this section is entirely devoted to an inductive proof of (S1), (S2), (S3). (S4) is
a direct consequence of this. In Section 5.5, we first describe a structure of the induction, to
make clear how to proceed from one to the next step. In Section 5.6 we treat an initial step
of the induction. In Section 5.7 we treat a generic step.

This induction includes a selection of binding points for orbits in W u. In view of our
construction in later sections, and to resolve the problems mentioned in Remark 3.3, these
binding points are selected from C according to a definite rule, and fixed once and for all.

5.5. Structure of induction. (S1), (S2) for k = 0 are trivial. (S3) for k = 0 is an empty
condition. Let us say that ∂R0 is controlled up to time 0 by Ξ(0). Using the critical partition
in Sect.5.3, we assign to all points in ∂R0∩I(δ) their binding points in Ξ(0) and bound periods.
This makes sense to refer to points in ∂R1 as being free or bound.

Definition 5.1. Let j ≥ 1 and assume:

(I)j−1: (S1-3) hold for 0 ≤ k ≤ j − 1, and ∂R0 is controlled up to time j − 1 by Ξ(j−1).

Under this assumption, we say:

• a segment in ∂Rj is a free segment if all points on it are free;
• a maximal free segment in ∂Rj is a free segment in ∂Rj which is not contained in any other
free segment in ∂Rj;
• a bound segment in ∂Rj is any connected component of ∂Rj\{maximal free segment in ∂Rj}.

In the sequel we need two curvature-related estimates.

Lemma 5.2. Any free segment in ∂Rj is a C2(b)-curve.

Proof. Let γ be a free segment in ∂Rj. Then 1 ≥ Cδ‖Df−n(z)t(z)‖ holds for all z ∈ γ and

n > 0. Hence, the curvature of γ is ≤
√
b, by the curvature estimate in [[27] Lemma 2.4] and

the boundedness of the curvature of W u
loc. The inequality for n = −1 implies that the slopes

of the tangent directions of γ are ≤
√
b. �

Lemma 5.3. For any free segment γ and n ≥ 0, the curvature of f−n(γ) is everywhere ≤ 43n.
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Proof. For z ∈ γ, let κ−n(z) denote the curvature of f−n(γ) at f−n(z). If f−n(z) is free, then

κ−n(z) ≤
√
b, by Lemma 5.2. Otherwise, let m < −n denote the largest integer such that

fm(z) is a free return. [[27] Lemma 2.4] and κm(z) ≤
√
b give

κ−n(z) ≤
√
b(Cb)−n−m ‖Dfm(z)t(z)‖3

‖Df−n(z)t(z)‖3
+

−n−m∑
i=1

(Cb)i
‖Df−n−i(z)t(z)‖3

‖Df−n(z)t(z)‖3
.

Since z is free, ‖Df−n−i(z)t(z)‖ ≤ 1/(r0δ), and thus for 1 ≤ i ≤ −n−m,

‖Df−n−i(z)t(z)‖
‖Df−n(z)t(z)‖

≤ (r0δ)
−14n.

Replacing all these in the above inequality, we obtain κ−n(z) ≤ Cbδ−343n ≤ 43n. �
Definition 5.2. Suppose that (S1-3) hold for every 0 ≤ k ≤ j. We say ∂R0 is controlled up
to time j by Ξ(j), if for any maximal free segment γ in ∂Rj there exist a horizontal curve γ̃
which contains γ and a critical point ζ ∈ Ξ(j) on γ̃.

At step j− 1 of the induction, we show the implication (I)j−1 =⇒ (I)j. Then, for all points
in ∂Rj ∩ I(δ) which are free, we assign their binding points as follows. For a maximal free
segment γ in ∂Rj, take (γ̃, ζ) as in Definition 5.2. We use ζ as a common binding point for
points in γ ∩ I(δ). Their bound periods are given by considering the critical partition of γ̃.
This makes sense to refer to points in ∂Rj+1 as being free or bound.

5.6. From step 0 to step N . Let 1 ≤ j ≤ N and suppose (I)j−1. The bound parts of ∂Rj

do not come back to C(0), and ∂Rj ∩ I(δ) consists of C2(b) curves, each of which admits a
critical point. Define C(j) = Rj ∩ C(0). (I)j obviously holds.

5.7. From step 2mN to 2m+1N . The same argument cannot be continued indefinitely, be-
cause bound segments return to I(δ). To deal with these returns, we need the help of critical
points.

Lemma 5.4. For each ζ ∈ C there exist positive integers n1 < n1 + p1 ≤ n2 < n2 + p2 ≤ n3 <
· · · such that, for each nl, f

nl(ζ) ∈ I(δ), and there exists a critical approximation ẑl relative
to which wnl

(ζ) is in admissible position, with |fnl(ζ)− ẑl| ≥ e−αnl .

The integers n1, n2, · · · are called free return times of ζ.

Proof. We argue by induction. First, let n1 = min{n > 0: fn(ζ) ∈ I(δ)}. As I(δ) is open,
n1 = min{n > 0: fn(ζm`

) ∈ I(δ)} holds for all sufficiently large `. Let zm`
denote the binding

point for fn1(ζm`
), with a bound period pm`

. Passing to subsequences, we may assume that
both converge as ` → ∞. Define ẑ1, p1 to be the corresponding limits.

Given (nk, ẑk, pk), define nk+1 = min{n ≥ nk + pk : f
n(ζ) ∈ I(δ)}. Passing to subsequences

again, we may assume that fnk+1(ζm`′
) is a free return to I(δ), with a binding point zm`′

and
a bound period pm`′ , both converging as ` → ∞. Define ẑk+1, pk+1 to be the corresponding
limits. �
Definition 5.3. Let ζ ∈ C, with n1, n2, · · · and ẑ1, ẑ2, · · · as in Lemma 5.4. We say ζ is
controlled up to time n by Ξ(k) if, for each nl ≤ n there exists zl ∈ Ξ(k) such that |zl − ẑl| =
O(b

θξ
5 ), where ξ is the order of ẑl. Such zl is called a binding point for ζ.
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Clearly, every ζ ∈ C is controlled up to time 2N by Ξ([θN ]). To proceed from step 2mN to
step 2m+1N , it suffices to show

Lemma 5.5. Let m ≥ 0. Suppose that (I)2mN holds, and that every ζ ∈ C is controlled up to
time 2m+1N by Ξ([2mθN ]). Then:

(a) (I)k holds for 2mN < k ≤ 2m+1N ;

(b) every ζ ∈ C is controlled up to time 2m+2N by Γ([2m+1θN ]).

Proof of (a). Assume (I)j−1 for some 2mN < j ≤ 2m+1N . Then Ξ(j−1) makes sense. We prove
(I)j in three steps.

Step 1: Treatment of bound segments in ∂Rj.

Lemma 5.6. Let B be a bound segment in ∂Rj. There exist N < l < j and ζ ∈ Ξ(j−1) such
that f l(ζ) is free and d(f l(ζ), B) ≤ e−2αl.

Proof. We define a sequence z0, · · · , zs in Ξ(j−1) and a sequence n0, · · · , ns of positive integers
inductively as follows. By the definition of bound segments, there exists 0 < n0 ≤ k such that
f−n0(B) contains a critical point in Ξ(j−n0), denoted by z0. If fn0(z0) is bound, let n1 < n0

denote the free return time of z0 with bound period p1, such that n1 < n0 < n1 + p1. Let
z1 denote the corresponding binding point, which is in Ξ([θn1]) ⊂ Ξ(j−1) by the assumption of
induction. If fn0−n1(z1) is bound, then let n2 < n0−n1 denote the free return time of z1 with
bound period p2, such that 0 < n2 < n0 − n1 < n2 + p2. Let z2 denote the binding point,
which is in Ξ([θn2]) ⊂ Ξ(j−1), and so on.

We must reach some ns and zs such that fn0−n1−···−ns(zs) is free. By the inductive assump-
tion, each zi is controlled up to time k − 1. Hence, for each i = 1, · · · , s we have pi <

4α
λ
pi−1.

Let d denote the Hausdorff distance. We have

d(B, fn0−n1−···−ns(zs)) ≤d(B, fn0(z0)) + |fn0(z0)− fn0−n1(z1)|+ |fn0−n1(z1)− fn0−n1−n2(z2)|
+ · · ·+ |fn0−n1−···−ns−1(zs−1)− fn0−n1−···−ns(zs)|

≤
s∑

k=0

2e−2αpk ≤ 3e−2αps ≤ 3e−2α(n0−n1−···−ns),

where we have used Proposition 2.1 for the second inequality. As zs−1 is bound at time
n0 − n1 − · · · − ns−1, n0 − n1 − · · · − ns−1 < ps holds. Hence n0 − n1 − · · · − ns < ps and the
last inequality holds. Take l = n0−n1−· · ·−ns and ζ = zs. The argument shows N < l. �
Corollary 5.1. For any bound segment B in ∂Rj and αj ≤ i < j, B ∩ C(i) = ∅.

Proof. Take l < j and ζ ∈ Ξ(j−1) such that the conclusion of Lemma 5.6 holds. If f l(ζ) ∈ I(δ),
then let z ∈ Ξ([θl]) denote the binding point. We have d(B, z) ≥ |f l(ζ) − z| − diam(B) ≥
e−αl − 6e−2αl ≥ e−2αl. This implies B ∩ C([αl]) = ∅, and the claim holds. If f l(ζ) /∈ I(δ), then
let O = (0, 0). If l is large so that d(B,O) ≥ |f l(ζ)−O| − diam(B) ≥ δ− 2e−2αl ≥ δ/2 holds,
then the claim follows, because j > 0. If l is so small that the last inequality does not hold,
then f l(ζ) is near f(I(δ)), which is away from I(δ). �

Step 2: Construction of C(j). Let Q(j−1) denote any component of C(j−1) which intersects ∂Rj.
By Corollary 5.1, bound segments in ∂Rj do not intersect C(j−1). Hence, each component of
Q(j−1) ∩Rj is bounded by two free segments stretching across Q(j−1).
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Lemma 5.7. For any free segment γ in ∂Rj stretching across Q(j−1), there exists a critical

point on γ within O(b
j
4 ) of the midpoint of γ.

This lemma allows us to construct C(j) so that (S2) (S3) hold.

Proof. By the closeness and the disjointness of the boundaries of Q(j−1), their tangent direc-
tions are close enough, for Lemma 3.2 to yield a critical approximation ζ0 of order m0 := j on

γ, within O(b
j
3 ) of the midpoint of γ.

We inductively construct a sequence ζ0, ζ1, · · · , of nice critical approximations on γ, of order
m0 < m1 < · · · , such that: (a) mi+1 ∈ [5mi/4, 20mi); (b) |ζi − ζi+1| ≤ (Cb)

mi
2 . The limit of

the sequence (ζi)i is a critical point with the desired property.
Given ζi of order mi for some i ≥ 0, ζi+1 is constructed as follows. Let µ1 < µ2 < · · ·

denote any infinite sequence of integers such that 1
16

≤ µj

µj+1
≤ 1

4
for j = 1, 2, · · · , and

‖Dfk−µj(ζi)(t(ζi))‖ ≥ κ
µj−k

4
0 for 0 ≤ k ≤ µj. Lemma 3.3 ensures the existence of such a

sequence. Let µj(i) be such that µj(i) ≤ 20θmi < µj(i)+1. Define mi+1 to be the smallest
integer such that [θmi+1] = µj(i) holds. We have θmi+1 ≥ µj(i)+1/16 ≥ 5θmi/4. (a) allows us
to use Lemma 3.1, to create a critical approximation of order mi+1, denoted by ζi+1. (b) is a
consequence of Lemma 3.1.

We show that ζi+1 is a nice critical approximation of order mi+1 on γ. To this end, it suffices
to show the two conditions in (C3) in Sect.8. The second one is straightforward, because γ is
a free segment. The first one is checked as follows. Since γ is a free segment,

|f−[θmi+1](ζi)− f−[θmi+1](ζi+1)| ≤ (r0δ)
−1(Cb)

mi
2 .

Let γ′ denote the curve in f−n(γ) connecting these two points. Lemma 5.3 implies, for
1 ≤ j ≤ [θmi+1],

‖Df j(z)t(z)‖ ≥ 1

2
κ

j
4 ≥ κ

j
3 .

This completes the construction of (ζi)i and also the proof of Lemma 5.7. �

Step 3: Verification of (I)j. To show the assertion on the Hausdorff distance in (S1), we
regard the horizontal boundaries of the component of C(j−1) ∩ Rj containing Q(j) as graphs

of functions γ1, γ2 defined on an interval I of length 2κj−1
0 . Let L(x) = |γ1(x) − γ2(x)|. (S1)

gives L
1
2 (x) ≤ (Cb)

j−1
4 < length(I). Moreover |γ′

1(x)− γ′
2(x)| ≤ L

1
2 (x) holds, for otherwise γ1

intersects γ2. By this and the C2(b)-property, L(y) ≥ L(x) − (L
1
2 (x) − C

√
b|x − y|)|x − y|

holds for x, y ∈ I, which is ≥ L(x)/2 provided |x− y| ≤ L
2
3 (x). Hence, area(Q(j)) ≥ L

5
3 (x)/2

holds. If L(x) ≥ b
j
2 , then area(Q(j)) ≥ b

5j
6 /2, which yields a contradiction to area(Q(j)) <

area(Rj) ≤ (Cb)j.

We show that ∂R0 is controlled up to time j. Let γ denote any maximal free segment in
∂Rj intersecting I(δ). We indicate how to choose the horizontal curve γ̃.

If γ ∩ Q(j−1) 6= ∅, then γ stretches across a component Q(j−1), and there exists a critical
point on γ, by Lemma 5.7. In this case, we take γ̃ = γ. If γ ∩ Q(k−1) = ∅, let k0 < k − 1
denote the largest such that C(k0) ∩ γ 6= ∅. Let Q(k0) denote the component intersecting γ. Let
Q(k0+1) denote any component of C(k0+1) in Q(k0). Since the bound segments are small, there
exists a horizontal curve γ̃ which contains γ and a critical point on γ̃.
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(Proof of (b)). Let ζ ∈ C, 2m+1N < nl ≤ 2m+2N and suppose that nl is a free return time of ζ.
Let ẑl denote the binding point of order ξ, as in Lemma 5.4. If f−[θξ](ẑl) /∈ f(I(δ)), then the
long stable leaf of order [θξ] through f−[θξ](ẑl) intersects ∂R0 at one point, which we denote
by x. Otherwise, the long stable leaf of order [θξ] − 1 through f−[θξ]+1(ẑl) intersects ∂R0 at
one point, which we denote by x. In either of the two cases, |f [θξ](x)− ẑl| ≤ (Cb)θξ, and

ξ ≤ Cαnl < 2m+1N.

Claim 5.1. f [θξ](x) is free.

Proof. Suppose the contrary. Let B denote the bound segment containing f [θξ](x), which is
in ∂R[θξ]. By Lemma 5.6, B ⊂ I(δ) and there exists l < [θξ], z ∈ Ξ([θξ]−1) such that f l(z) is
free and d(f l(z), B) ≤ e−2αl. Let z′ denote the binding point for f l(z). It follows that ζ and
z′ lie on the same horizontal curve, a contradiction. �

Let γ denote the maximal free segment containing f [θξ](x). Lemma 5.6 implies that γ

stretches acrossQ([θξ]−1). By the assumption of induction, there exists zl ∈ Ξ([θξ]) ⊂ Ξ([2m+1θN ]),

located within O(b
[θξ]
4 ) of the midpoint of γ ∩ Q([θξ]−1). By Lemma 3.2, there exists a critical

approximation z of order ξ on γ such that |f [θξ](x)−z| = O(b
θξ
2 ). Lemma 3.1 implies |zl−z| ≤

(Cb)
θξ
5 . Hence

|ẑl − zl| ≤ |ẑl − f [θξ](x)|+ |f [θξ](x)− z|+ |z − zl| = O(b
θξ
5 ),

which means that ζ is controlled up to time nl by Ξ([2m+1θN ]). This completes the proof of
Proposition 5.3.

6. The measure of W u ∩K+

Let | · | denote the arc length measure onW u (we will also denote by | · | the two-dimensional
Lebesgue measure, but never for both things simultaneously). The aim of this section is to
prove

Proposition 6.1. |W u ∩K+| = 0.

The main step in the proof of this proposition is the next

Lemma 6.1. (Abundance of stopping times) Suppose that ω is an element of some critical
partition constructed in Section 5.2. If ω ∩ K+ has positive Lebesgue measure, there exist a
sequence Q(1),Q(2), · · · of collections of pairwise interior-disjoint curves in W u, and a sequence
of stopping time functions S1, S2 · · · , Sk : Q(k) → N such that:

(a) for a.e. z ∈ ω∩K+ there exists a sequence ω(1) ⊃ ω(2) ⊃ · · · of curves such that ω(k) ∈ Q(k)

for each k ≥ 1 and {z} =
∩

k≥1 ω
(k)(z);

(b) 0 < S1(ω
(1)) < S2(ω

(2)) < · · · , and ‖DfSk(ω(k))(ξ)t(ξ)‖
‖DfSk(ω(k))(η)t(η)‖

≤ e
C

δ1+α0 for all ξ, η ∈ ω(k);

(c) fSk(ω(k)) is a C2(b)-curve, stretching across one of the components of I(11δ/10) \ I(δ).
This is a direct consequence of the next large deviation estimate.

Lemma 6.2. (Growth to a fixed size) Let ω0 be an element of a critical partition, or a free
segment not intersecting I(δ) and stretching across one of the components of I(11δ/10)\ I(δ).
If ω0∩K+ has positive Lebesgue measure, there exist a collection Q of pairwise interior-disjoint
curves in W u and a stopping time function S : Q → N such that:
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(a) for a.e. z ∈ ω0 ∩K+, there exists ω ∈ Q containing z;
(b) for each ω ∈ Q, fS(ω)(ω) is a free segment not intersecting I(δ) and stretching across one
of the components of I(11δ/10) \ I(δ). The distortion of fS(ω)|ω is uniformly bounded;
(c) there exists a constant C depending only on the length of ω0 such that for every n ≥ 0,

(19) |{S > n}| ≤ Ce−
λn
2 .

Here, {S > n} denotes the union of all ω ∈ Q such that S(ω) > n.

A large part of this section is devoted to the proof of Lemma 6.2. In Section 6.1 we define
and describe the combinatorics of the partition Q and the stopping time S. In Section 6.2
we estimate the size of a curve with a given combinatorics, and combine it with a counting
argument, and prove Lemma 6.2. Lemma 6.1 follows from this. In Section 6.3 we show that
stable manifolds with ”good shapes” are more or less dense. Combining this topological result
with Lemma 6.1 we complete the proof of Proposition 6.1.

6.1. Combinatorial structure. Let ω0 be a free segment in W u as in Lemma 6.2. For each
n ≥ 0, considering n-iterates we construct a partition Pn of ω0, and its subset Qn. Each
element of Pn is a countable union of elements of Pn+1. Each element of Q is an element of
some Qn. If ω ∈ Q ∩Qn, then S(ω) = n holds.

If ω0 is an element of a critical partition, let p0 denote the bound period. Otherwise, that
is, if ω0∩I(δ) = ∅, let p0 = 0. Let n1 = min{n ≥ p0 : f

n(ω)∩I(δ) 6= ∅}. For every 0 ≤ n < n1,
set Pn = {ω0}, the trivial partition of ω0.

Let n ≥ n1. Given ω ∈ Pn−1, Pn|ω is defined as follows. The n is either cutting time or
non-cutting time of ω. If n is a cutting time of ω, fn(ω) is cut into pieces. A pull-back of this
partition defines Pn|ω. If n is a non-cutting time of ω, let Pn|ω = {ω}.

We describe when n is a cutting or non-cutting time of ω. If fn(ω) ∩ I(δ) = ∅, or fn(ω) is
bound, then n is a non-cutting time of ω. If fn(ω) ∩ I(δ) 6= ∅ and fn(ω) is free, Proposition
5.5 ensures the existence of a C2(b)-curve γ containing fn(ω), and a critical point on γ (any
C2(b)-curve with this property does the job). There are two mutually exclusive cases:

• ω0 contains at least one element of the critical partition {γk,s} of γ. In this case, n is a
cutting time of ω0. We cut ω ∩ I(δ) into pieces, by intersecting it with the elements of
{γk,s}. The partition elements containing the boundary of ω ∩ I(δ) are taken together
with the adjacent ones, so that all the resultant elements contains exactly one element
of {γk,s}. If the component of ω \ I(δ) is ≥ δ/10 in length, then we treat it as an
element of our partition of ω. Otherwise, we take it together with the adjacent γk,s.

• ω0 contains no element of {γk,s}. In this case, n is a non-cutting time of ω.

Lemma 6.3. For each ω ∈ Pn−1 and all ξ, η ∈ ω and every k ∈ [0, n] such that fn(ω) is free,

log
‖Dfn(ξ)t(ξ)‖
‖Dfn(η)t(η)‖

≤ C

δ1+α0
|fn(ξ)− fn(η)|α0 .

If fn(ξ), fn(η) ∈ I(11δ/10), then the factor δ1+α0 can be dropped.

Proof. Let k < n and suppose that fk(ω) is free. The time interval [k, n] is decomposed into
bound and free segments. Applying Proposition 5.2 to each bound segment and Lemma 2.1

to each free segment, we have ‖Dfn−k(z)t(z)‖ ≥ cδe
λ
3
(n−k) for all z ∈ fk(ω). Since fk(ω) and

fn(ω) are C2(b), it then follows that

(20) |fk(ξ)− fk(η)| ≤ (cδ)−1e−
λ
3
(n−k)|fn(ξ)− fn(η)|.
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If fn(ξ), fn(η) ∈ I(11δ/10), then the factor δ can be dropped, by Lemma 2.1.
Let n1 < · · · < ns < ns+1 := n denote all the free returns in the first n-iterates of ω, with

pj the corresponding bound period. Let

Sj = log
‖Dfpj(fnj(ξ))t(fnj(ξ))‖
‖Dfpj(fnj(η))t(fnj(η))‖

and S ′
j = log

‖Dfnj+1−nj−pj(fnj+pj(ξ))t(fnj+pj(ξ))‖
‖Dfnj+1−nj−pj(fnj+pj(η))t(fnj+pj(η))‖

.

By Lemma 5.1 and (20),
s∑

j=0

Sj ≤
s∑

j=0

|fnj+pj(ξ)− fnj+pj(η)|α0 ≤ C

δα0
|fn(ξ)− fn(η)|.

By Lemma 2.1, f i(ω) is a C2(b)-curve outside of I(δ), for nj + pj ≤ i < nj+1. Hence

s∑
j=0

S ′
j =

s∑
j=0

nj+1−1∑
i=nj+pj

log
‖Df(f i(ξ))t(f i(ξ))‖
‖Df(f i(η))t(f i(η))‖

≤ C

δ

s−1∑
j=0

nj+1−1∑
i=nj+pj

|f i(ξ)−f i(η)| ≤ C

δ
|fn(ξ)−fn(η)|.

In addition, if fn(ξ), fn(η) ∈ I(11δ/10), then the factor δ can be dropped. �
Definition 6.1. We say ω ∈ Pn is an escaping element if (i) ω ∩K+ 6= ∅; (ii) n is a cutting
time of the element of Pn−1 containing ω, and fn(ω) ∩ I(δ) = ∅ holds.

Remark 6.1. By construction, if ω ∈ Qn is an escaping element, then fn(ω) is a free segment,
not intersecting I(δ) and stretching across one of the components of I(11

10
δ) \ I(δ).

LetQn denote the collection of all escaping elements ofQ′
n which is not contained in escaping

elements in
∪

0≤k<n Q′
k. Define Q =

∪
nQn. Define a stopping time function S : Q → N by

S(ω) = n for each ω ∈ Q′′
n.

6.2. Large deviations. We show (19). By construction, this would imply that the elements
of P altogether cover ω0 ∩K+.

Let Q′
n denote the collection of all ω ∈ Qn such that there exists no element of

∪
0≤k<n Qk

containing ω, and let |Q′
n| =

∑
ω∈Q′

n
|ω|. Clearly, |Q′

n \ Q′′
n| = |{ω ∈ Q : S(ω) > n}| holds.

Let n1 > 0 denote the cutting time of ω0. It is finite, and depends only on the length of ω0.
This implies that, for n ≥ n1, any element of Q′

n has an well-defined itinerary that is described
as follows. For each ωn ∈ Q′

n \ Q′′
n there exist a sequence of integers 0 < n1 < · · · < ns ≤ n

called essential free returns, and an associated sequence ω1 ⊃ · · · ⊃ ωs ⊃ ω such that ωi is
the element of Qni

containing ω, and ni is a cutting time of ωi−1, with fni(ωi) ⊂ I(2δ). Let
ζi ∈ C denote the binding point for fni(ωi−1). Let pi denote the bound period. By an itinerary
of ω we mean the sequence (n1,±p1, ζ1), (n2,±p2, ζ2), · · · , (ns,±ps, ζs), where +,− indicates
whether fni(ωi) is at the right or left of ζi.

From this point on we assume

(21) n ≥ 2n1.

By construction, fni(ωi) and fni+pi(ωni
) are free segments. The following estimates are used

in the proof:
|fni(ωi)| ≤ e−λpi and |fni+pi(ωni

)| ≥ e−4αpi .

The first one follows from the definition of the critical partition. The second one is from
Lemma 5.1.

Let ns+1 denote the cutting time of ωs, which is well-defined because ωs intersects K
+.
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Claim 6.1. ni+1 − ni − pi ≤ 20pi
λ

for every 1 ≤ i ≤ s.

Proof. Since fni+1(ωi) is also a free segment, in view of Proposition 5.2 and Lemma 2.1 we have

3 ≥ |fni+1(ωi)| ≥ cδe
λ
3
(ni+1−ni−pi)e−4αpi . Rearranging gives ni+1−ni−pi ≤ 3

λ
(log(1/δ) + 5αpi) ≤

20
λ
pi, where the last inequality follows from pi ≥ log 1/δ

2 log 2
. �

By definition, ns+1 > n holds. Summing the above inequality over all 1 ≤ k ≤ s and then
using (21), we have

(22) n ≤ 40

λ

s∑
i=1

pi.

Write ω = ωs+1. By fni+1(ωi+1) ⊂ I(11δ/10), the better version of the bounded distortion
estimate in Lemma 6.3 is available and we have

|ω| ≤ |ωs| = |ω1|
|ω2|
|ω1|

· · · |ωs|
|ωs−1|

≤ 2s−1

s−1∏
i=1

|fni+1(ωi+1)|
|fni+1(ωi)|

≤ e−(λ−3α)(p1+···+ps−1)e−λps ≤ e−(λ−3α)R,

where R =
∑s

i=1 pi, which is ≥ λn
40

by (22). Hence

|Q′
n \ Q′′

n| =
∑
R

∑
ω

p1+···+ps=R

|ω| ≤
∑
R

∑
s

2s
(
R
s

)
e−(λ−3α)R ≤

∑
R≥λn/40

e−(λ−4α)R ≤ e−(λ−5α)λn/40.

For the last inequality we have used s/R ≤ 2 log 2/ log(1/δ) and ( R
s ) ≤ eβ(δ)R, where β(δ) → 0

as δ → 0, which follows from Stirling’s formula for factorials.

Proof of Lemma 6.1. It is now straightforward to define the sequence Q1, Q2, · · · of collections
of pairwise interior-disjoint curves in ω0 and an associated sequence of stopping time functions
S1, S2, · · · in Lemma 6.1. Let Q1 = Q and S1 = S. Given Qk and Sk, for each ω ∈ Qk

define a partition Q′ of fSk(ω)(ω) and a stopping time function S ′ : Q′ → N, replacing ω0 in
Lemma 6.2 by fSk(ω)(ω). This defines Qk+1 in the obvious way. For ω′ ∈ Qk+1 we define
Sk+1(ω

′) = Sk(ω) + S ′(fSk(ω)(ω′)), and so on. The bounded distortion follows from Lemma
6.3.

6.3. Proof of Proposition 6.1. The next lemma relies on a continuity argument within a
small parameter range containing the first bifurcation parameter a∗, and is not valid for the
parameter ranges treated in [5, 18, 30]. Recall that a∗∗ denotes the parameter corresponding
to the manifold organization indicated in Figure 3.

Lemma 6.4. There exist ε1 ∈ (0, a∗−a∗∗) and σ ∈ (0, 1) such that for any a ∈ [a∗−ε1, a
∗] and

any C2(b)-curve γ in W u stretching across one component of I(11
10
δ) \ I(δ), |γ ∩K+| ≤ σ · |γ|.

We finish the proof of Proposition 6.1 assuming the conclusion of the lemma. Assume
|W u ∩ K+| > 0. Then one can choose an element ω of some critical partition for which
|ω ∩ K+| > 0 holds. By Lemma 6.1 and Lemma 6.4, for a.e. z ∈ ω ∩ K+ there exists an
arbitrarily small neighborhood of z in W u in which the set of points which eventually escape
from R0 has a definite proportion. It follows that z is not a Lebesgue density point of ω∩K+.
This yields a contradiction to the Lebesgue density theorem.
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It is left to prove Lemma 6.4. The following elementary observation is used, on the top
quadratic map g2 : [−1, 1] 	, g2(x) = 1 − 2x2: 1/2 is a repelling fixed point, and the set of
preimages

∪
n≥0 g

−n
2 (1/2) is dense in [−1, 1], not containing 0.

By a vertical curve we mean a curve such that the slopes of its tangent directions are � 1.
Let l0 ⊂ W s(Q) denote the segment in W u(P ) which contains P and stretches across R0.
Clearly, l0 is a vertical curve. Iterating l0 backward, it is possible to choose an integer N0

independent of b, and to define a sequence l0, l1, · · · , lN0 of vertical curves in W s(P ) which
stretch across R0, and with the property that any C2(b)-curve as in the statement of the
lemma intersects one of them in its middle third. This picture persists for all a ∈ (a∗∗, a∗)
sufficiently close to a∗. By the definition of a∗∗, W u(P ) is not contained in [−2, 2]2. By
Inclination lemma, the conclusion holds. �

7. Dynamics of Lebesgue typical points

In this last section we show
∩

n≥0 f
−n(R0) has zero Lebesgue measure, and completes the

proof of the theorem. The main step is a statistical argument, which enables us to show that
the occurrence of infinitely many close returns is improbable. This sort of argument has been
successfully undertaken by Benedicks and Viana [6] in the attractor context. We adapt it
to our non-attracting context, with the help of the geometric structure of critical regions in
Proposition 5.3. In addition, we dispense with any assumption on the Jacobian, which was
assumed in [6, 30].

As a preliminary step, in Sect.7.1 we construct a family long stable leaves near each critical
point. In Sect.7.2, using these leaves we define critical rectangles. In Sect.7.3 we introduce
close return times as particular return times to critical rectangles, and show that the theorem
follows from Proposition 7.2, which states that the occurrence of infinitely many close return
times is improbable.

For the proof of Proposition 7.2, based on preliminary geometric constructions in Sect.7.4,
7.5, we construct in Sect.7.6 an infinite nested sequence Ω0 ⊃ Ω1 ⊃ · · · . Each Ωk is decom-
posed into rectangles, bordered by stable leaves and pieces of W u and denoted by Ri0···ik .
The sequence (i0, · · · , ik) records the recurrent behavior of the iterates of the rectangle to the
critical set. Combining these geometric ingredients with key analytic estimates in Sect.7.7,7.8,
we complete the proof of Proposition 7.2 in Sect.7.9.

7.1. Construction of long stable leaves. For the purpose of stating the next proposition,
we introduce a distance dC(·) to C as follows. Let z ∈ W u \

∪
n>0 f

n(C) and suppose that z
is free. If z /∈ I(δ), then let dC(z) = |x|, where z = (x, y). Otherwise, let ζ ∈ C denote the
binding point for z and let dC(z) = |z − ζ|. If z is bound, then dC(z) is undefined. For a free
segment ω, let dC(ω) = minz∈ω dC(z).

The next proposition indicates the existence of a family of long stable leaves near each
critical value. In addition, these leaves have a slow recurrence property to C.

Proposition 7.1. (Long stable leaves through slowly recurrent points) Let ζ be a critical
point on a free segment γ. For each element ω0 of the critical partition of γ there exists z ∈ ω0

such that dC(f
n(z)) ≥ δe−5αn holds for every n > 0 such that fn(z) is free. In addition, the

long stable leaf through f(z) exists.
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Proof. We divide the proof into three steps. First, we prove the existence of z ∈ ω0 with the
property as in the first half of the statements. Next, we give an angle estimate. Finally, we
show the existence of long stable leaves through f(z).

Step1. Construction of slowly recurrent points. Let n0 = 0. Let p0 denote the bound period
of ω0. Let P0,P1,P2, · · · denote the sequence of partitions of ω0 constructed in the same
way as in Sect.6.1. We construct a (possibly finite) sequence p0 ≤ n1 < n2 < · · · and a
nested sequence ω0 ⊃ ω1 ⊃ ω2 ⊃ · · · of curves for which the following holds for every k ≥ 0.
Obviously, any point in the intersection

∩
k≥0 ωk satisfies the desired property:

• ωk ∈ Pnk
, and for every 0 ≤ n ≤ nk such that fn(ωk) is free, dC(f

nωk) ≥ δe−5αn;
• nk+1 is a cutting time of ωk. If there exists no cutting time of ωk, then nk+1 is undefined.

The construction of the sequence is by induction that is described as follows. Given nk,
ωk ∈ Pnk

such that fnk(ωk) ⊂ I(11
10
δ), with a bound period pk, define nk+1 ≥ nk+pk to be the

cutting time of ωk. We claim that fnk+1(ωk) is a free segment of length ≥ δe−5αnk+1 . Indeed,
by Lemma 5.1, fnk+pk(ωk) is a free segment of length ≥ e−4αpk . Using Lemma 2.1 from time
nk+pk to nk+1, |fnk+1(ωk)| ≥ δ|fnk+pk(ωk)| ≥ δe−4αnk+1 . Hence, it is possible to take an element
ωk+1 ∈ Pnk+1

such that ωk+1 ⊂ ωk, f
nk+1(ωk+1) ⊂ I(11

10
δ) and dC(f

nk+1ωk+1) ≥ δe−5αnk+1 . To
recover the assumption of the induction, it suffices to show dC(f

nωk) ≥ δe−5αn for every
nk+pk ≤ n < nk+1 such that fn(ωk) is free. If f

n(ωk)∩ I(δ) = ∅, then dC(f
nωk) ≥ δ ≥ δe−5αn

holds. To treat the case where n is a free return time, we need

Sublemma 7.1. Let ñ1 < · · · < ñs denote all the free return times of ωk in [nk + pk, nk+1),
with p̃1, · · · , p̃s the corresponding bound periods. Then

p̃1 + · · ·+ p̃s ≤
13αpk
λ

.

Proof. Splitting the time interval [nk + pk, nk+1) into bound and free segments, for all z ∈
fnk+pk(ωk) we have ‖Dfnk+1−nk−pk(z)t(z)‖ ≥ e

λ
3
(p̃1+···+p̃s). Combining this with |fnk+pk(ωk)| ≥

e−4αpk from Lemma 5.1, 3 > |fnk+1(ωk)| ≥ e
λ
3
(p̃1+···+p̃s)−4αpk . The first inequality is due to the

elementary fact that the forward iterates of ωk cannot grow to a free segment of length > 3
without intersecting I(δ). Taking logs we obtain the desired inequality. �

For each ñi we have dC(f
ñi(ω)) ≥ e−

logC0
3

p̃i ≥ e−
5α logC0

λ
pk ≥ δe−5αn. The last inequality

follows from pk ≤ − 3
λ
log(δe−5αnk).

Step2. Angle estimates. We introduce a useful language along the way.

Definition 7.1. Let z ∈ I(δ) \ C. A tangent vector v at z is in tangential position relative to
ζ ∈ C if there exists a horizontal curve γ which is tangent to both v and t(ζ).

Let z ∈ ω0 have the property in Lemma 7.1. Let θn = angle(Dfn(z)t(z), wn(z)). Let 0 =:
n0 < n1 < n2 < · · · denote all the free return times of z, with ζ0, ζ1, ζ2, · · · the corresponding
binding points. The next lemma allows us to use ζk as a binding point for wnk

(ζ).

Lemma 7.1. For every free return time nk > 0 of z, θnk
≤ (Cb)

nk
3 holds. In addition, wnk

(z)
is in tangential position relative to ζk.
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Proof. Let pk denote the binding period for nk. The next three angle estimates follow from
[[27] Sublemma 3.2.]:

(23) θp0 ≤ θ1(Cb)(p0−1)/2 ‖Df(z)t(z)‖
‖Df p0(z)t(z)‖

‖w1(z)‖
‖wp0(z)‖

≤ (Cb)p0/3;

(24) θnk+1
≤ θnk+pk(Cb)(nk+1−nk−pk)/2

‖Dfnk+pk(z)t(z)‖
‖Dfnk+1(z)t(z)‖

‖wnk+pk(z)‖
‖wnk+1

(z)‖
for k ≥ 0;

(25) θnk+pk ≤ θnk
(Cb)pk/2

‖Dfnk(z)t(z)‖
‖Dfnk+pk(z)t(z)‖

‖wnk
(z)‖

‖wnk+pk(z)‖
for k ≥ 1.

Using these, we prove the statement by induction on k. Take k = 0 in (24). By (23) and
Lemma 2.1, the two fractions of the right-hand side are ≤ 1/δ and θn1 ≤ (Cb)n1/3 holds. This
estimate and the distance bound in Lemma 7.1 implies that wn1(z) is in tangential position
relative to ζ1. Then, taking k = 1 in (25) we get θn1+p1 ≤ (Cb)(n1+p1)/3. Taking k = 2 in (24)
we get θn2 ≤ (Cb)n2/3, and that wn2(z) is in tangential position relative to ζ2, and so on. �

Step 3. The existence of long stable leaves. In view of Lemma 2.5, it suffices to show that
f(z) is expanding.

Lemma 7.2. For n ≥ 1, ‖wn(z)‖ ≥ min(δe
λn
3 , 4−

3αn
λ ).

Proof. The inequality clearly holds for every 1 ≤ n ≤ p0. Suppose that fn(z) is free.
Applying Lemma 2.1 to each free segment and Proposition 2.1 to each bound segment, we

have ‖wn(z)‖ ≥ δe
λn−1

3 . Suppose that fn(z) is bound, that is, nk < n < nk + pk holds

for some nk. A better estimate ‖wnk+pk(z)‖ ≥ e
λ
3
(nk+pk−1) ≥ 1 dropping the factor δ and

‖Df‖ ≤ 4 give ‖wn(z)‖ ≥ 4−(nk+pk−n)‖wnk+pk(z)‖ ≥ 4−pk . Substituting pk ≤ 3αnk

λ
≤ 3αn

λ
into

the exponent yields the desired estimate. This completes the proof of Lemma 7.2 and hence
that of Proposition 7.1. �

7.2. Critical rectangles. Let Q(k) denote any component of C(k). Let ζ0, ζ1 denote the

critical points on the horizontal boundaries of Q(k). Take curves γ0, γ1 of length δ
k
10 in the

horizontal boundaries of Q(k) so that: (i) γ0 (resp. γ1) contains ζ0 (resp. ζ1) within O(b
k
4 ) of

the midpoint of it; (ii) γ0, γ1 are connected by two vertical lines. Let B(k) ⊂ Q(k) denote the
region bordered by γ0 is connected to γ1 by the two vertical lines through their endpoints.

We construct a region B(k)
0 ⊂ B(k) as follows. Assume Γ(ζ0) is at the right of Γ(ζ1). Choose

a point z ∈ γ1 for which δk ≤ |z − ζ1| ≤ δ
k
2 , and dC(f

nz) ≥ δe−5αn holds for every n ≥ 1.
Proposition 7.1 ensures the existence of such a point. For the reason explained in Sect.7.4,
Γ(z) intersects f(γ1) exactly at two points.

By (5), the Hausdorff distance between Γ(z) and Γ(ζ0) is ≤ C|f(z) − f(ζ1)| + C|f(ζ1) −
f(ζ0)| ≤ Cδ

k
2 . Hence, Γ(z) intersects f(γ0) at one point. For the reason explained in Sect.7.4,

Γ(z) intersects f(γ0) exactly at two points. Define B(k)
0 to be the region bordered by γ0, γ1

and the parabola f−1(Γ(z)). By construction, the horizontal boundaries of B(k)
0 extend both

sides around ζ0, ζ1 to length from ≈ δk to ≈ δ
k
2 . We call B(k)

0 a critical rectangle of order k.

Let A(k) denote the collection of all B(k)
0 .
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Definition 7.2. We say z ∈ I(δ) is controlled up to time ν > 0 if fn(z) /∈ A(n) holds for every
1 ≤ n < ν. We say z is controlled if it is controlled up to any time.

The next lemma indicates that, if z is controlled, then there exists a long stable leaf through
f(z).

Lemma 7.3. If z ∈ I(δ) is controlled up to time ν, then ‖wn(z)‖ ≥ δ
12n log 2

λ holds for 1 ≤ n <
ν.

Proof. We inductively define a sequence 0 < n1 < n1+p1 ≤ n2 < n2+p2 ≤ · · · ≤ ns < ns+ps ≤
ν of integers and critical points ζ1, ζ2, · · · , ζs such that: (i) fnl(z) ∈ I(δ) for each nl, and wnl

(z)
is in tangential position relative to ζl, with pl the bound period and |fnl(z)− ζnl

| ≥ δ2nl ; (ii)
nl+1 is the next time of returns to I(δ) after nl + pl.

Given nl, ζl and pl, let nl+1 ≥ nl + pl denote the smallest such that fnl+1(z) ∈ I(δ). By the
assumption, fnl+1(z) /∈ A(nl+1) holds. Let k denote the largest integer such that fnl+1(z) ∈ C(k),
and letQ(k) denote the component of C(k) containing fnl+1(z). By (S3), fnl+1(z) is in tangential
position relative to critical points on the horizontal boundaries of the component of C(k−1)

containing Q(k). Choose one of them as ζl+1.
Suppose that nl < n < nl+pl holds. In the same way as in the proof of Lemma 7.2, we have

‖wn(z)‖ ≥ 4−pl . Substituting pl ≤ 6nl

λ
log(1/δ) into the exponent yields the desired inequality.

For all other n it is immediate to show the desired inequality, in the same way as in the proof
of Lemma 7.2. �
7.3. Infinitely many close returns are improbable.

Definition 7.3. We say z ∈ I(δ) makes a close return at time ν if z is controlled up to time
ν and f ν(z) ∈ A(ν). We say ν is a close return time of z.

Let z ∈ I(δ). Let ν1, ν2, · · · be defined inductively as follows: ν1 is a close return time of z;
given ν1, · · · , νk, let νk+1 be the close return time of f ν1+ν2+···+νk(z) ∈ I(δ). If ν1, · · · , νk are
defined in this way, we say z has k close return times. If the sequence is defined is indefinitely,
we say z has infinitely close return times. Otherwise, we say z only finitely many close return
times.

Let k0 be a large integer. In what follows, we request that k0 is sufficiently large, only
finitely many times. Let Ω∞ denote the set of all z ∈ A(k0) which has infinitely many close
return times. We have Ω∞ =

∩
k≥1 Ωk, where Ωk denotes the set of all z ∈ A(k0) which has k

close return times. The inclusion Ωk ⊂ Ωk−1 is obvious from the definition.

Proposition 7.2. |Ωk|/|Ωk−1| → 0 exponentially fast, as k → ∞. In particular, Ω∞ has zero
Lebesgue measure.

Let Λ =
∩

n≥0 f
−n(R0). We show how |Λ| = 0 follows from this proposition. To see this,

suppose |Λ| > 0. Lemma 2.1 indicates that Λ intersects
∪

n≥0 f
−n(I(δ)) in a set with positive

Lebesgue measure. For almost every z ∈ Λ ∩
∪

n≥0 f
−n(I(δ)), define m(z) > 0 to be the

smallest such that fm(z)(z) is controlled. Let us see m(z) is well-defined. This is clear in
the case z /∈

∪
n≥0 f

−n(A(k0)). Otherwise, take i0(z) ≥ 0 such that f i0(z)(z) ∈ A(k0). By

Proposition 7.2, one of the following holds almost surely: either (i) f i0(z)(z) is controlled,
or else (ii) f i0(z)(z) has only finitely many close return times, denoted by ν1, · · · , νk. By
definition, f i0+ν1+···+νk(z) is controlled.
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Let Vj = {z ∈ Λ ∩
∪

n≥0 f
−n(I(δ)) : m(z) = j}. Take j such that |Vj| > 0. By definition,

any point in f j(Vj) is controlled, and thus f j+1(Vj) is foliated by long stable leaves. Consider
the projection π : f j+1(Vj) → ∂R0 along the long stable leaves. (5) says that π is Lipschitz
continuous. In particular, π(f j+1(Vj)) has positive one-dimensional Lebesgue measure in W u.
By the contraction along the leaves, π(f j+1(Vj)) ⊂ K+ holds. This yields a contradiction to
Proposition 6.1.

The rest of this paper is devoted to the proof of Proposition 7.2. Before proceeding, let us
give some estimates on close return times which will be used in the sequel. Let z ∈ Ωk, and
let ν1, · · · , νk denote the corresponding sequence of k close return times of z. By definition,
for every 1 ≤ l ≤ k− 1, f νl(z) ∈ A(νl) holds. Let ζ denote any critical point on the horizontal

boundary of the component of A(νl) containing f νl(z). By definition, |f νl(z)−ζ| ≤ Cδ
νl
2 holds.

Then

|f νl+i(z)− f i(ζ)| ≤ Cδ
νl
2 4i � e−αi for 1 ≤ i ≤ 4νl.

This implies

(26) νl+1 ≥ 4νl for 1 ≤ l < k.

The same reasoning gives ν1 ≥ 4k0, and thus

(27) νl ≥ 4lk0 for 1 ≤ l ≤ k.

7.4. Partitions of critical rectangles. By a rectangle R we mean a compact region bounded
by two disjoint curves in W u and two disjoint stable leaves. The boundaries of R in W u are
called unstable sides. The boundaries in the stable leaves are called stable sides.

We define partitions of rectangles, using the families of long stable leaves constructed in
Section 7.1. To this end, let us fix once and for all an enumeration C = {ζm}∞m=1 of all the
critical points and let γm denote the maximal free segment containing ζm. We deal with a
rectangle R in I(δ) such that:

(R1) the unstable sides of R are made up of two free segments, each contained in γm0 and

γm1 . In addition, |ζm0 − ζm1 | ≤ (Cb)
k
2 holds for some k ≥ 1;

(R2) the unstable sides of R extend to both sides around ζm0 , ζm1 to length ≈ δk;
(R3) Γ(ζm0) is at the right of Γ(ζm1);
(R4) there exists a long stable leaf Γ∞ such that f−1(Γ∞) contains the stable sides of R.

One situation we have in mind is that two maximal free segments in ∂Rν stretch across B(k)
0 ,

where k < ν. If this happens, then the region bounded by the two maximal free segments and

the stable sides of B(k)
0 is a rectangle satisfying all the requirements.

By Lemma 7.1, in each element of the critical partition of γm1 there exists a point z such
that the long stable leaf through f(z) exists. Take just one such point from each element
of the partition and denote the associated countable number of long stable leaves by Γ∆,
∆ = −1,−2,−3, · · · from the left to the right. We repeat essentially the same construction
for γm0 . The difference is that, only those of the elements of the critical partition of γm0 come
into play whose f -image is at the right of Γ(ζm1). We denote by Γ∆ the associated countable
number of long stable leaves at the right of Γ(ζm1), where ∆ = 1, 2, 3, · · · from the left to the
right.

We claim that, if ∆ > 0, then f−1(Γ∆) intersects the unstable side of R containing ζm0

exactly at two points, one on the right of ζm0 and the other on the left. To see this, Let
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ε = − ε = +

ε = 0

f−1(Γ(ζmσ )), σ = 0, 1

f−1(Γ∞)

Figure 8. critical rectangle and its partition with long stable leaves

z ∈ f−1(Γ∆) be on the unstable side and split Df(z)t(z) = A(z) ( 1
0 ) +B(z)tΓ∆

(z), where the
first component of t(z) is positive and tΓ∆

(z) denotes any unit vector tangent at f(z) to Γ∆.
The proof of Lemma 2.2 and (5) show |A(z)| > 0 and A(z1)A(z2) > 0 if and only if z1, z2 are
on the same side of ζm0 . Hence the claim follows.

If ∆ < 0, then f−1(Γ∆) intersects the stable side of R containing ζm0 . By the above claim,
f−1(Γ∆) intersects each of the unstable sides of R exactly at two points. These observations
and the Lipschitz continuity of the tangent directions of long stable leaves as in (5) altogether
indicate that the family of long stable leaves induces a partition of R. Each element of the
partition is a rectangle, bounded by the unstable sides of R and two neighboring parabolas
f−1(Γ∆), f

−1(Γ∆+1).

7.5. Symbolic coding. Each rectangle in the partition of R constructed in Section 7.4 is
denoted by R(ρ, ε,∆, p). Here, the meanings of (ρ, ε,∆, p) are as follows:

• if the unstable sides of R(ρ, ε,∆, p) intersect both γm0 and γm1 , then ρ = m1. Otherwise,
ρ = m0;
• if ρ = m0, then ε = 0. If ρ = m1, then ε = + or ε = −, depending on whether the unstable
sides of R(ρ, ε,∆, p) is at the “right” or the “left” of ζm0 and ζm1 ;
• the stable sides of f(R(ρ, ε,∆, p)) are contained in Γ∆ ∪ Γ∆+1.
• p = max{p(ζρ, z) : z ∈ γρ ∩R(ρ, ε,∆, p)}.

The integer p is called a bound period of R(ρ, ε,∆, p). By the monotonicity of the function
p(ζρ, z), the maximum is attained at one of the edges of R(ρ, ε,∆, p). It is immediate to see
the following:

(i) all points in f(R(ρ, ε,∆, p)) are expanding up to time pi0 − 1;

(ii) for all ξ, η ∈ R(ρ, ε,∆, p) and every 1 ≤ i ≤ p, ‖wi(ξ)‖/‖wi(η)‖ ≤ 2.
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Lemma 7.4. (Geometry of rectangles at the end of bound periods) For all z in the unstable
sides of R(ρ, ε,∆, p), ‖Df p(z)t(z)‖ ≥ Cδ‖Df i(z)t(z)‖ holds for every 0 ≤ i < p. In particular,
the unstable sides of fp(R(ρ, ε,∆, p)) are made up of two C2(b)-curves.

Let us say that z, z′ ∈ ∂Ri0 belong to different unstable sides of Ri0 if they belong to
different components of ∂Ri0 . Otherwise we say they belong to the same unstable side.

Proof. Let ζ denote the critical point on the unstable side ofR which contains z. Let p(ζ, z), q(ζ, z)
denote the bound and fold periods of z with respect to ζ, as defined in Sect.5.2. In view of
(ii) as above and (g) Proposition 5.2,

(28) ‖Df i(z)t(z)‖ ≈ |ζ − z| · ‖wi(ζ)‖ for q(ζ, z) ≤ i ≤ max(p(ζ, z), p).

Let ξ1, ξ2, ξ3, ξ4 denote the edges, namely, the points which belong to both the stable and
the unstable sides of R(ρ, ε,∆, p). In the discussion to follow, we assume that ξ1, ξ2 are on the
same unstable side of R, and f(ξi), f(ξi+2) (i = 1, 2) are connected by the long stable leaf
which contains the stable side of f(R(ρ, ε,∆, p)).

Case 1: ε = 0. In this case, ξ1, ξ2, ξ3, ξ4 are on the same unstable side of R. We suppose that ξ1
is closest to ζ. Then p = max(p(ζ, ξ1), p(ζ, ξ3)) holds. (5) and Lemma 2.2 give |ζ−ξ1| ≈ |ζ−ξ3|.
Hence, (a,b) Proposition 5.2 gives

q(ζ, z) ≤ Cα̃max(log |ζ − ξ1|−1, log |ζ − ξ3|−1) < p.

This means that (28) holds for q(ζ, z) ≤ i ≤ p and therefore

‖Df p(z)t(z)‖
‖Df i(z)t(z)‖

≥ C
‖wp(ζ)‖
‖wi(ζ)‖

≥ Cδ.

For 1 ≤ i ≤ q(ζ, z),

‖Dfp(z)t(z)‖
‖Df i(z)t(z)‖

≥ ‖Dfp(z)t(z)‖ ≥ Cδ|ζ − z|‖wp(ζ,z)(ζ)‖ ≥ Cδ
α

logC0 > δ.

The first inequality follows from (h) Proposition 5.2. The second inequality follows from
‖wp(ζ)‖ ≥ Cδ‖wp(ζ,z)(ζ)‖. For the third inequality we have used |ζ − z|‖wp(ζ,z)(ζ)‖ ≥ |ζ −
z|−1+ α

logC0 ≥ δ
−1+ α

logC0 which follows from (e) Proposition 5.2.
Since the unstable sides of R(ρ, ε,∆, p) are C2(b), these two inequalities and the curvature

estimate in [[27] Lemma 2.3] together imply that the unstable sides of fp(R(ρ, ε,∆, p)) are
C2(b).

Case 2: ε = + or −. ξ1 and ξ3 (resp. ξ2 and ξ4) belong to different unstable sides of R.
We suppose that Γ(f(ξ1)) is at the right of Γ(f(ξ2)), and that ξ1 and ζ belong to the same
unstable side of R. Let ζ ′ denote the other critical point of R on the unstable side of R. Then
p = max{p(ζ, ξ1), p(ζ ′, ξ3)} holds. By (5) and Lemma 2.2 again, |ζ − z| ≥ C|ζ − ξ1| and
|ζ − z| ≥ C|ζ ′ − ξ3|. Hence, q(ζ, z) ≤ Cα̃ log |ζ − z|−1 < p. This means that (28) holds for
q(ζ, z) ≤ i ≤ p. The rest of the argument is analogous to that in Case 1. �
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B(νk) B(νk)
0

fν0+···+νk(Ri0···ik−1
)

Figure 9. Situation in Proposition 7.3

7.6. Construction of partitions. Let Ω0 = A(k0). Putting the results in Sections 7.4, 7.5
together, for each k ≥ 0 we inductively construct a partition of Ωk into a countable number of
rectangles. Each element of the partition of Ωk will be denoted by Ri0···ik , where (i0, · · · , ik) are
itineraries which record the behavior of the rectangle under iteration, up to time ν1+ · · ·+νk.

Construction of the partition of Ω0. Take a component of A(k0) and denote it by R. Following
the steps in Sect.7.4, define a partition of R with the family of long stable leaves. To each
element of the partition, assign the set of symbols according to the rule described in Sect.7.5.
Each element is denoted by Ri0 , where i0 = (ρ0, ε0,∆0, p0) and Ri0 = R(ρ0, ε0,∆0, p0). We do
the same construction for any component of A(k0).

Construction of the partition of Ωk. Given the partition {Ri0···ik−1
}i0,··· ,ik−1

of Ωk−1 for some
k ≥ 1, define Ri0···ik−1

(νk) = {z ∈ Ri0···ik−1
: νk is a close return time of f ν0+···+νk−1(z)}. Here

and for the rest of this section we adopt the next

Convention. ν0 = 0.

By definition, Ωk =
∪

(i0,··· ,ik−1)

∪
νk
Ri0···ik−1

(νk) holds.

Proposition 7.3. (Geometry of rectangles at close return times) Let z ∈ f ν0+···+νk−1(Ri0···ik−1
)

and suppose f νk(z) ∈ B(νk)
0 ⊂ B(νk). Then the unstable sides of f ν1+···+νk(Ri0···ik−1

) ∩ B(νk) are

C2(b)-curves stretching across B(νk).

We finish the construction of the partition of Ωk assuming the conclusion of the proposition.
Take a component of f ν1+···+νk(Ri0···ik−1

(νk)) and denote it by R. By the proposition and
the geometric structure of critical regions in Proposition 5.3, on each unstable side of R
there exists a critical point, within O(b

νk
8 ) of its midpoint. In particular, R meets all the

requirements (R1-4) in Sect.7.4. Following the steps in Sect.7.4, 7.5, define a partition of
R with the family of long stable leaves and assign to each element the set of symbols. Let
Ri0···ik−1ik = f−(ν1+···+νk)(R(ρk, εk,∆k, pk)), where ik = (ρk, εk,∆k, pk, νk). We do the same
construction for any component of f ν1+···+νk(Ri0···ik−1

(νk)). This finishes the construction of
the partition of Ωk.

Proof of Proposition 7.3. Let Γνk−1(z) = {(x(y), y) : |y| ≤
√
b}. Consider the vertical strip

V = {(x, y) : |x− x(y)| ≤ δ
νk
20 , |y| ≤

√
b}.

Lemma 7.5. V does not intersect the stable sides of f ν0+···+νk−1+1(Ri0···ik−1
).
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Proof. Let σ denote any stable side of f ν0+···+νk−1(Ri0···ik−1
). By construction, there exists y ∈

W u∩σ such that dC(f
n(y)) ≥ δe−5αn holds whenever fn(y) is free, and f(σ) ⊂ Γ(y). Suppose

V ∩ f(σ) 6= ∅, and let ξ ∈ V ∩ f(σ). Let η denote the point of intersection between Γ and the

horizontal through ξ. The definition of V gives |ξ−η| ≤ δ
νk
20 , and thus |f νk−1(η)−f νk−1(ξ)| ≤

δ
νk
21 . Since η ∈ Γ, |f νk(z) − f νk−1(η)| ≤ (Cb)νk−1 holds. Hence |f νk(z) − f νk−1(ξ)| ≤ (Cb)

νk
10

follows. Meanwhile |f νk−1(ξ) − f νk−1(y)| ≤ (Cb)νk−1 holds, and the assumption on z gives

|ζ − f νk(z)| ≤ Cδ
νk
2 , where ζ is any critical point on the unstable sides of B(νk)

0 . Therefore

|ζ − f νk−1(y)| ≤ |ζ − f νk(z)|+ |f νk(z)− f νk−1(ξ)|+ |f νk−1(ξ)− f νk−1(y)| ≤ δ
νk
21 .

This estimate and the proof of Corollary 5.1 together indicate that f νk−1(y) is free. Hence,
Proposition 7.1 gives a critical point ζ ′ relative to which |ζ ′ − f νk−1(y)| ≥ δe−5ανk . Then
it is possible to choose a horizontal curve γ such that both ζ and ζ ′ are on γ. This is a
contradiction. �

By Lemma 7.5, V cuts a segment in each unstable side of f ν0+···+νk−1+1(Ri0···ik−1
), denoted

by γ. Let ζ ′ denote the critical point on the same unstable side of f ν0+···+νk−1(Ri0···ik−1
)

as that of f−1(γ). Let z′ be an arbitrary point in γ. Let pk−1 denote the bound period of
f ν0+···+νk−1(Ri0···ik−1

). As z is controlled up to time νk, the distortion control gives ‖Df j(f(z))‖ ≈
‖Df j(z′)‖ ≈ ‖wj(z)‖ for 1 ≤ j < νk, and thus for pk−1 − 1 ≤ j < νk,

(29) ‖Df jt(z′)‖ ≈ |f−1(z′)− ζ ′| · ‖Df j(z′)‖ ≈ |f−1(z′)− ζ ′| · ‖wj(z)‖.

By Lemma 7.4, fpk−1−1(γ) is C2(b). Then, by [[27] Lemma 2.3.] and (29), the curvature of
f νk−1(γ) is everywhere bounded from above by

(Cb)νk−pk−1
‖wpk−1

(z)‖3

‖wνk(z)‖3
√
b+

νk−1∑
j=pk−1

(Cb)νk−j−1‖wj+1(z)‖3

‖wνk(z)‖3
.

Since ‖wν1(z)‖ ≥ Cδ‖wj+1(z)‖ for pk−1 ≤ j < νk, it follows that the curvature of f νk−1(γ) is

everywhere ≤
√
b. (29) also implies that the slopes of the tangent directions of f νk−1(γ) are

≤
√
b. Hence, f νk−1(γ) is a C2(b)-curve.

Parametrize γ by arc length s. Using ‖wνk(z)‖ ≥ 1, |ζ − f−1(γ(s))| ≥ e−
1
3
pk−1 logC0 for all s

and the fact that the width of the strip V is δ
νk
20 ,∫

‖Df νk−1(γ(s))t(γ(s))‖ds ≥ C‖wνk(z)‖
∫

|ζ − f−1(γ(s))|ds ≥ Ce−
1
3
νk logC0δ

νk
20 � δ

νk
10 .

This implies that f νk−1(γ) stretches across B(νk). This completes the proof of (a). �

7.7. Unstable sides are roughly parallel. Central to the proof of Proposition 7.2 is an
estimate of the measure of the set

Ri0···ik−1
(νk) = {z ∈ Ri0···ik−1

: νk is a close return time of f ν0+···+νk−1(z)}.

This subsection and the next are devoted to obtaining this estimate. For the purpose of
stating the next proposition we need some definitions.

• Choose C1, C2 as follows: | detDf | ≥ C1 on R0; for all ξ, η in the unstable sides of any

component of A(k0), angle(u(ξ), u(η)) ≤ C2|ξ − η|. Let C3 = C0e
6

logC0 .
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• We attach a collar to each rectangle in the following way. For each Ri0 ⊂ Ω0, let Q(Ri0)
denote the component of A(k0) containing Ri0 . Let k ≥ 1. For each Ri0···ik ⊂ Ωk, By Propo-
sition 7.3, there exists exactly one component B(νk) of A(νk) containing f ν1+···+νk(Ri0···ik). Let
Q(Ri0···ik) denote the component of f−(ν1+···+νk)(B(νk))

∩
Ri0···ik−1

containing Ri0···ik .

• For any z in a free segment of W u, let u(z) denote the unit vector tangent to W u at z such
that the sign of the first component is positive.

Proposition 7.4. For every j ≥ 0 and any ξ, η in the unstable side of f ν0+···+νjQ(Ri0···ij),

(30) angle(u(ξ), u(η)) ≤ C2C
3νj
3 |ξ − η|.

Proof of Proposition 7.4. We argue by induction on j. The choice of C2 and the convention
ν0 = 0 give (30) for j = 0. Let k ≥ 1 and assume (30) for j = k − 1.

Lemma 7.6. For any ξ, η in the unstable sides of f ν0+···+νk−1+1Q(Ri0···ik−1
),

angle(Df(ξ)u(ξ), Df(η)u(η)) ≤ C2C
νk
3 |f(ξ)− f(η)|.

Proof. Let θi = angle(Df i(ξ)u(ξ), Df i(η)u(η)), i = 0, 1. We have

θ1 ≤
Cbθ0 + C|ξ − η|

‖Df(ξ)u(ξ)‖‖Df(η)u(η)‖
.

Hence θ1 � 1, provided k0 is sufficiently large. Hence

θ1 ≤ CC−1
1 (|ξ − η|+ angle(u(ξ), u(η))) .

The inequality follows from the following elementary fact: for any nonzero vectors u, v such
that angle(u, v) � 1, angle(u, v) ≤ 2|u− v|/min{‖u‖, ‖v‖}. (30) with j = k− 1 and |ξ− η| ≤
C−1

1 |f(ξ)− f(η)| give

|ξ − η|+ angle(u(ξ), u(η)) ≤ 2C−1
1 C2C

3νk−1

0 |f(ξ)− f(η)|.

Replacing this in the previous inequality,

θ1 ≤ CC−2
1 C2C

3νk−1

3 |f(ξ)− f(η)| ≤ C2C
νk
3 |f(ξ)− f(η)|.

The last inequality holds for sufficiently large k0, because of C
4νk−1

3 ≤ Cνk
3 from (26). �

For any ξ on the unstable sides of f ν0+···+νk−1+1Q(Ri0···ik), let

(31) v(ξ) = ρ ·Df(f−1(ξ))u(f−1(ξ)),

where ρ > 0 is the normalizing constant. If k0 is sufficiently large, then v(ξ) has a large slope.
By the definition of u(·), the sign of the second component of v(ξ) is constant for all ξ.

By Proposition 7.3 and the distortion control, the contractive field eνk−1 is well-defined
on f ν0+···+νk−1+1Q(Ri0···ik). Fix once and for all the orientation of eνk−1 so that the second
component of eνk−1 and that of v(ξ) have the same sign. Let fνk−1 denote the unit vector field
orthogonal to eνk−1. Split v(ξ) = A(ξ)eνk−1(ξ) +B(ξ)fνk−1(ξ).

Lemma 7.7. For any ξ1, ξ2 on the unstable sides of f ν0+···+νk−1+1Q(Ri0···ik),

max{|A(ξ1)− A(ξ2)|, |B(ξ1)−B(ξ2)|} ≤ 2C2C
νk
3 |ξ1 − ξ2|.
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Proof. The following elementary fact is used. For ui =
(
cos θi
sin θi

)
, 0 ≤ θi ≤ π, i = 1, 2, 3, 4,

|angle(u1, u2)− angle(u3, u4)| ≤ angle(u1, u3) + angle(u2, u4).

This can be checked using angle(ui, uj) = |θi − θj| and the triangle inequality.
We have A(ξi) = 〈eνk−1(ξi), v(ξi)〉 = cos (angle(eνk−1(ξi), v(ξi))) , where the bracket denotes

the scholar product. By the above definition of eνk−1, angle(eνk−1(ξi), v(ξi)) ∈ [0, π] (in fact,
it is ≈ 0). Considering arccos : [−1, 1] → [0, π] and | arccos′ | ≥ 1 we have |A(ξ1) − A(ξ2)| ≤
| arccos(A(ξ1))− arccos(A(ξ2))|, and

| arccos(A(ξ1))− arccos(A(ξ2))| = |angle(eνk−1(ξ1), v(ξ1))− angle(eνk−1(ξ2), v(ξ2))

≤ angle(v(ξ1), v(ξ2)) + angle(eνk−1(ξ1), eνk−1(ξ2))

≤ 2C2C
νk
3 |ξ1 − ξ2|.

The first factor in the second line is bounded by Lemma 7.6. The second factor is bounded
by Lemma 2.3. In the same way, we have Bi = 〈fνk−1(ξi), v(ξi)〉 = cos (angle(fνk−1(ξi), v(ξi)))
and angle(fνk−1(ξi), v(ξi)) ∈ [0, π] (in fact, it is ≈ π/2). Then

| arccos(B(ξ1))− arccos(B(ξ2))| = |angle(fνk−1(ξ1), v(ξ1))− angle(fνk−1(ξ2), v(ξ2))|
≤ angle(v(ξ1), v(ξ2)) + angle(fνk−1(ξ1), fνk−1(ξ2))

≤ 2C2C
νk
3 |ξ1 − ξ2|.

For the last inequality we have used the orthogonality of fνk−1 to eνk−1. �
Lemma 7.8. There is a C1 vector field φ0 on f ν0+···+νk−1+1Q(Ri0···ik) such that ‖φ0‖ ≤ 2 and
‖Dφ0‖ ≤ 4C2C

2νk
3 .

Proof. Recall the symbolic coding ik−1 = (ρk−1, εk−1, ∗, pk−1, ∗). We deal with two cases sepa-
rately.

Case1: εk−1 6= 0. We introduce a C1 coordinate (x̂, ŷ) on f ν0+···+νk−1+1Q(Ri0···ik−1
) such

that 9/10 ≤ ‖∂x̂‖ ≤ 10/9, ‖∂ŷ‖ = 1, 〈∂x̂, ∂ŷ〉 = 0, 〈∂ŷ, t(fζ1)〉 = 1, Γ(ζ1) = {x̂ = 0},
Γ(ζ2) = {x̂ = c}, where ζ1 = ζρk−1

and ζ2 is the critical point other than ζ1 on the unstable
side of f ν0+···+νk−1Q(Ri0···ik−1

), and c is a constant. It is possible to choose such a coordinate, by
the Lipschitz continuity of the tangent directions of Γ(ζ1) and Γ(ζ2) as in (5). Let T : (x, y) →
(x̂, ŷ) denote the coordinate transformation.

With respect to (x̂, ŷ)-coordinate, we represent the unstable sides of f ν0+···+νk−1+1Q(Ri0···ik)
by graphs of functions γ1, γ2, γ1(x̂) < γ2(x̂). For all ξ in the unstable sides the rectangle, let

(32) (γ2(x̂)− γ1(x̂)) · v(ξ) = Ã(ξ)eνk−1(ξ) + B̃(ξ)fνk−1(ξ),

where v(ξ) is the one in (31) and T (ξ) = (x̂, ŷ). We extend Ã, B̃ to C1 functions on the entire
f ν0+···+νk−1+1Q(Ri0···ik) so that max(‖Ã‖, ‖B̃‖) ≤ 1 and max(‖DÃ‖, ‖DB̃‖) ≤ 3C2C

2νk
3 . For

all z in the rectangle, define

(33) φ0(z) = Ã(z)eνk−1(z) + B̃(z)fνk−1(z).

Of course, φ0 is tangent to the unstable sides of the rectangle. Since ‖Deνk−1
‖, ‖Dfνk−1

‖ are
bounded by Lemma 2.3, this yields the desired inequality.

To simplify notation, write A ◦ T−1 for A, and the same for B, Ã, B̃. On the assumption
that both γ1(x̂) and γ2(x̂) make sense, we extend Ã affinely along the ŷ-direction. In other
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words, for ŷ ∈ [γ1(x̂), γ2(x̂)], define

(34) Ã(x̂, ŷ) = Ã(x̂, γ1(x̂)) + (ŷ − γ1(x̂)) (A(x̂, γ2(x̂))− A(x̂, γ1(x̂))) .

In the same way, we extend B̃ affinely along the ŷ-direction. If, for instance, γ1(x̂) makes
sense and γ2(x̂) does not, we enlarge the domain of definition of γ2 so that γ2(x̂) makes sense.
It is possible to show, using the long stable leaf of order νk − 1 through γ1(x̂), that γ2(x̂) is
sufficiently close to the unstable sides of the rectangle, so that all the preceding arguments go
through.

The definition gives max(‖Ã‖, ‖B̃‖) ≤ γ2(x̂) − γ1(x̂) � 1. Lemma 7.7 and the choice of
(x̂, ŷ)-coordinate give max(‖∂ŷÃ‖, ‖∂ŷB̃‖) ≤ 3C2C

νk
3 . To evaluate the norms of x̂-derivatives,

we assume that ζσ and f−1(γσ(x̂)) belong to the same unstable side, σ = 1, 2. The choice of
the coordinate implies

(35)

∣∣∣∣dγσdx̂
(x̂)

∣∣∣∣ ≤ C

|f−1(x̂, γσ(x̂))− ζσ|
≤ e

3pk−1
logC0 ≤ e

3νk
logC0 .

Sublemma 7.7 gives

(36)

∣∣∣∣dAdx̂ (x̂, γσ(x̂))
∣∣∣∣ ≤ 3C2C

νk
3

∣∣∣∣dγσdx̂
(x̂)

∣∣∣∣ ≤ 3C2C
νk
3 e

3νk
logC0 .

As Ã(x̂, γσ(x̂)) = (γ2(x̂)− γ1(x̂))A(x̂, γσ(x̂)),

(37)

∣∣∣∣∣dÃdx̂ (x̂, γσ(x̂))
∣∣∣∣∣ ≤ C2C

νk
3 e

3νk
logC0 .

Differentiating (34) with x̂ and then using (35) (36) (37), we obtain ‖∂x̂Ã‖ ≤ C2C
2νk
3 . In the

same way we obtain the desired upper estimate of ‖∂x̂B̃‖. Transforming all these derivative
estimates back to the original (x, y)-coordinate, we obtain the desired estimates.

Case 2: εk−1 = 0. We introduce a C1 coordinate (x̂, ŷ) on f ν0+···+νk−1+1Q(Ri0···ik) such that
9/10 ≤ ‖∂x̂‖ ≤ 10/9, ‖∂ŷ‖ = 1, 〈∂x̂, ∂ŷ〉 = 0, 〈∂ŷ, t(fζρk−1

)〉 = 1, Γ(ζρk−1
) = {x̂ = 0}. With

respect to (x̂, ŷ)-coordinate, represent the unstable sides of f ν0+···+νk−1+1Q(Ri0···ik) by graphs

of functions γ1, γ2, γ1(x̂) < γ2(x̂). Define functions Ã, B̃ on the unstable sides on the rectangle
in the same say as (32), and extend it to the entire rectangle as in Case 1. Define φ0 in the
same way as (33). Derivative estimates of φ0 are completely analogous to Case 1. �

We now introduce the projectivization f∗ of Df , given by f∗(ξ, v) = Df(ξ)v/‖Df(ξ)v‖,
and define vector fields φj on f ν0+···+νk−1+j+1Q(Ri0···ik) for 1 ≤ j < νk, by push-forward under
f∗:

φj(z) = f∗(f
−1(z), φj−1(f

−1(z))).

Lemma 7.9. For all z ∈ f ν0+···+νkQ(Ri0···ik), ‖Dφνk−1(z)‖ ≤ C2C
3νk
3 .

(30) for j = k is a direct consequence of this lemma. If εk−1 6= 0, then for all ξ, η in
the unstable side of f ν0+···+νkQ(Ri0···ik), angle(u(ξ), u(η)) = angle(φνk−1(ξ), φνk−1(η)) holds. If
εk−1 = 0, then angle(u(ξ), u(η)) < angle(φνk−1(ξ), φνk−1(η)) holds.

It is left to prove Lemma 7.9. The following estimates, proved in Appendix, are used:

(38) |∂vf∗(ξ, v)| ≤ 2
| detDf(ξ)|
‖Df(ξ)v‖2

.
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(39) |∂ξf∗(ξ, v)| ≤
‖D2f(ξ)‖‖v‖
‖Df(ξ)v‖

.

Differentiating the formula of φj and using the result recursively we get

Dφνk−1(z) =

νk−1∑
i=1

∂vf
i−1
∗ (f−i+1(z), φνk−i)∂ξf∗(f

−i(z), φνk−1−i)Df−i(z)

+ ∂vf
νk−1
∗ (f−νk+1(z), φ0)Dφ0(f

−νk+1(z))Df−νk+1(z),

where φνk−1−i means φνk−1−i(f
−i(z)). In this computation we have usedDf−1(f−1z)Df−1(z) =

Df−2(z), ∂vf∗(f
−1(z), φj−1)∂vf∗(f

−2(z), φj−2) = ∂vf
2
∗ (f

−2(z), φj−2(f
−2(z))), and so on.

By (38), for every 1 ≤ i < νk,

(40) ‖∂vf i−1
∗ (f−i+1(z), φνk−i)‖ ≤

i−1∏
j=1

2
| detDf(f−jz)|

‖Df(f−jz)φνk−1−j‖
= 2i−1 | detDf i−1(f−i+1z)|

‖Df i−1(f−i+1z)φνk−i‖2
.

We evaluate the fraction on the right-hand-side as follows. First,

| detDf i−1(f−i+1z)| = ‖Df i−1(f−i+1z)‖
‖Df−i+1(z)‖

.

(39) gives

‖∂ξf∗(f−i(z), φνk−1−i)Df−i(z)‖ ≤ ‖∂ξf∗(f−i(z), φνk−1−i)Df−1(f−i+1z)‖‖Df−i+1(z)‖

≤ C‖Df−1(f−i+1z)‖‖Df−i+1(z)‖
‖Df(f−iz)‖

≤ CC−2
1 ‖Df−i+1(z)‖.

Plugging these into (40),

‖∂vf i−1
∗ (f−i+1(z), φνk−i)∂ξf∗(f

−i(z), φνk−1−i)Df−i(z)‖ ≤ 2i−1CC−2
1

‖Df i−1(f−i+1z)‖
‖Df i−1(f−i+1z)φνk+1−i‖2

.

Replacing all these in the above equality,

‖Dφνk−1(z)‖ ≤
νk−1∑
i=1

2i−1CC−2
1

‖Df i−1(f−i+1z)‖
‖Df i−1(f−i+1z)φνk+1−i‖2

+
‖Df νk−1(f−νk+1z)‖

‖Df νk−1(f−νk+1z)φ0‖2
‖Dφ0(f

−νk+1z)‖.

Lemma 7.10. For all ξ in the unstable sides of f ν0+···+νk−1+1Q(Ri0···ik) and 0 ≤ j < νk,
‖φνk−1(ξ)‖ ≥ Cδ‖φj(ξ)‖.
Proof. Let ζ denote the critical point on the same unstable side of f ν0+···+νk−1Q(Ri0···ik−1

) as
that of f−1(ξ). Let q(ζ, ξ) denote the fold period. In view of Proposition 5.2 and the bounded

distortion of f νk−1 on the rectangle, for q(ζ, ξ) ≤ j < νk we have
‖φνk−1(ξ)‖
‖φj(ξ)‖ ≥ C

‖wνk
(f−1ξ)‖

‖wj(f−1ξ)‖ ≥ Cδ,

and for 0 ≤ j < q(ζ, ξ), ‖φq(ζ,ξ)‖ > ‖φj(ξ)‖. These two inequalities yield the desired one. �
Lemma 7.8 and Lemma 7.10 give

‖Dφνk−1(z)‖ ≤
νk−1∑
i=1

Cδ−28i + Cδ−14νkC2C
2νk
3 ≤ C2C

3νk
3 .

The last inequality holds for sufficiently large k0. This completes the proof of Lemma 7.9 and
hence that of Proposition 7.4.
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7.8. Area distortion bounds. Proposition 7.4 and the next area distortion bounds together
allow us to estimate the Lebesgue measure of the set in question.

Proposition 7.5. For every k ≥ 1 and all ξ1, ξ2 ∈ f ν0+···+νk−1Q(Ri0···ik),

| detDf νk(ξ1)|
| detDf νk(ξ2)|

≤ eC
−1
1 .

Proof. Let γ denote one of the unstable sides of f ν0+···+νk−1+1Q(Ri0···ik−1
). Let ησ denote the

point of intersection between Γνk−1(ξσ) and γ (σ = 1, 2). If η1 and η2 are on the unstable side
of f ν0+···+νk−1+1Q(Ri0···ik), Lemma 7.10 implies for every 0 ≤ i < νk − 1,

|f i(η1)− f i(η2)| ≤ Cδ−1|f νk−1(η1)− f νk−1(η2)| ≤ Cδ−1δ
νk
10 .

By the contraction along the long stable leaves, |f i(f(ξσ)) − f i(ησ)| ≤ (Cb)
i
2 |f(ξσ) − ησ| ≤

(Cb)
i+1
2 holds for every 1 ≤ i < νk − 1. It follows that |f i(ξ1) − f i(ξ2)| ≤ Cδ−1δ

νk
10 for every

1 ≤ i < νk. This yields
νk−1∑
i=0

|f i(ξ1)− f i(ξ2)| ≤ C.

Combining this with ‖D log | detDf |‖ ≤ CbC−1
1 we obtain the desired inequality. Even if

η1 or η2 is not on the unstable side of f ν0+···+νk−1+1Q(Ri0···ik), the constants in Lemma 7.10
are not significantly affected because f(ξ1), f(ξ2) ∈ f ν0+···+νk−1+1Q(Ri0···ik) holds. Hence we
obtain the same conclusion. �
7.9. Proof of Proposition 7.2. In what follows, we assume k ≥ k0 is large so that C2C

3νk
3 ≤

C4νk
3 . Denote by γ1 and γ2 the two unstable sides of f ν0+···+νkQ(Ri0···ik), and consider their

graph representations γ1 = {(x, γ1(x))}, γ2 = {(x, γ2(x))}. Let L(x) = |γ1(x) − γ2(x)|.
Proposition 7.4 and the Gronwall inequality give L(x)/L(y) ≤ eC

4νk
3 |x−y| for all x, y. As

|x− y| ≤ Cδ
νk
10 , L(x)/L(y) ≤ 2 holds.

Let Sνk,1, Sνk,2, · · · denote the components of Ri0···ik−1
(νk), the total number of which is

clearly ≤ 2νk . For each Sνk,m, the above estimate and Proposition 7.3 give

|B(νk)
0 ∩ f ν0+···+νk(Sνk,m)|
|f ν0+···+νkQ(Ri0···ik)|

≤ 2δ
νk
5 .

Proposition 7.5 gives |detDfν0+···+νk (ξ1)|
|detDfν0+···+νk (ξ2)|

≤ eC
−1
1 k for all ξ1, ξ2 ∈ Q(Ri0···ik). Hence

|f−(ν0+···+νk)(B(νk)
0 ) ∩ Sνk,m|

|Ri0···ik−1
|

≤ |f−(ν0+···+νk)(B(νk)
0 ) ∩ Sνk,m|

|Q(Ri0···ik)|
≤ 2eC

−1
1 kδ

νk
5 .

The first inequality follows from the obvious inclusion Q(Ri0··· ,ik) ⊂ Ri0···ik−1
. Summing this

over all component, and then for all feasible νk,∑
νk

∑
m

|Sνk,m|
|Ri0···ik−1

|
≤ 2

∑
νk≥4kk0

2νkeC
−1
1 kδ

νk
5 ≤ eC

−1
1 kδ

4kk0
6 .

Therefore

|Ωk| =
∑

(i0,··· ,ik)

|Ri0···ik | =
∑

(i0,··· ,ik−1)

|Ri0···ik−1
|
∑
νk,m

|Sνk,m|
|Ri0···ik−1

|
≤ eC

−1
1 kδ

4kk0
6 |Ωk−1|.
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The multiplicative constant goes to 0 as k → ∞. This completes the proof of Proposition 7.2.

7.10. Transitivity on K. Finally we show f is transitive on K. Let H(Q) denote the closure
of transverse homoclinic points of Q. Then H(Q) ⊂ K holds. It suffices to show the reverse
inclusion. Let z ∈ K, and let U be an open set containing z. Since the Lebesgue measure of
U ∩K+ is zero, U intersects W s(Q). It follows that W s(Q) is dense in K. Inclination lemma
implies that z is accumulated by transverse homoclinic points of Q. Hence K ⊂ H(Q) holds.

Appendix

A.1. Proof of Lemma 4.6. For z ∈ W u(Q), let t(z) denote any unit vector tangent to
W u(Q) at z.

Sublemma 7.2. Let n ≥ 0 and z ∈ G. Either f i(z) /∈ I(δ) for every 0 ≤ i ≤ n, or else there
exists a sequence 0 ≤ n1 < n1 + p1 ≤ n2 < n2 + p2 ≤ n3 < · · · ≤ n of integers such that:

(a) fni(z) ∈ I(δ);
(b) f j(z) ∈ {(x, y) ∈ R2 : |x| ≥ 9/10} for ni + 1 ≤ j ≤ ni + pi;
(c) ‖Dfni(z)t(z)‖ ≥ (δ/10)‖Df j(z)t(z)‖ for 0 ≤ j < ni.

Then it follows that fn(G)∩ I(δ) is made up of C2(b)-curves, and the conclusion of Lemma
4.6 holds.

It is left to prove Sublemma 7.2. The correct order for the reader is to go over Sect.5.2, 5.3
first before getting into the details of this proof.

The argument is an induction on n. For n = 0, the assertions are direct consequences of the
definition of G. Suppose that they hold for n = k. From the fact that the orbits of all critical
points on W u(Q) are out of R0, all the estimates in Proposition 5.2 remain to hold for them.
This allows us to decompose the orbit of z into bound and free segments as follows: ni ≤ k
is a return time to I(δ). By the assumption of the induction, there exists a C2(b)-curve in
W u(Q) tangent to Dfni(z)t(z) stretching across I(δ). Let pi denote the bound period, given
by the critical point on the C2(b)-curve and an associated critical partition in Sect.5.3. Let
ni+1 denote the next return time to I(δ). By (c) in Proposition 5.2, bound parts of fk+1(G)
do not return to I(δ). This recovers all the assertions for n = k + 1. �
A.2. Proof of Lemma 5.1. For M ≤ k < 20n− 1, we show

(41) e−3αkDk(ζ) ≤ Dk+1(ζ) ≤ e−3αDk(ζ).

To this end, let dk(i) = minj∈[i,k+1]
‖wj(ζ)‖2
‖wi(ζ)‖3 and dk+1(i) = minj∈[i,k+2]

‖wj(ζ)‖2
‖wi(ζ)‖3 . Then

Dk+1(ζ)

Dk(ζ)
= e−3αmini∈[1,k+1] dk+1(i)

mini∈[1,k] dk(i)
≤ e−3αmini∈[1,k] dk+1(i)

mini∈[1,k] dk(i)
≤ e−3α,

and the second inequality holds.
(G2) gives ‖wk+2(ζ)‖ ≥ e−2α(k+1)‖wk+1(ζ)‖, and thus for 1 ≤ i ≤ k,

dk+1(i) = min

{
dk(i),

‖wk+2(ζ)‖2

‖wi(ζ)‖3

}
≥ e−4αkdk(i) ≥ e−4α(k+1)Dk(ζ).

Using ‖wk+1(ζ)‖ ≤ C0‖wk(ζ)‖ and ‖wj(ζ)‖ ≥ e−2αk‖wj−1(ζ)‖ from (G2),

dk+1(k+1) = min
j∈[k+1,k+2]

‖wj(ζ)‖2

‖wk+1(ζ)‖2
≥ C−3

0 e−4α(k+1) min
j∈[k+1,k+2]

‖wj−1(ζ)‖2

‖wk(ζ)‖3
= C−3

0 e−4α(k+1)dk(k).
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These two inequalities yield the first inequality in (41).

Using Dk+1(ζ) ≥ C−3k
0 and length(γk) ≤ Ce2αk

√
Dk+1(ζ) which follows from (41),

length(γk,s) ≤ e−3αk · length(γk) ≤ D
1
2
+ α

3 logC0
k+1 (ζ).

This completes the proof (a).

From (f) Proposition 5.2, [[27] Lemma 2.3] and the fact that γ is C2(b), fχ(k)(γk,s) is a
C2(b)-curve. Using (41),

length(fχ(k)γk,s) ≥ Ce−3αk‖wχ(k)(ζ)‖(Dk(ζ)−Dk+1(ζ)) ≥ Ce−3αk‖wχ(k)(ζ)‖Dk(ζ)(1− e−3α)

≥ Ce−3αk‖wk(ζ)‖Dk(ζ)C
−
√
αk

0 (1− e−3α) ≥ e−4αk.

The third inequality follows from ‖wχ(k)(ζ)‖ ≥ C
−(k−χ(k))
0 ‖wk(ζ)‖ and k − χ(k) ≤

√
αk in

(G2). This completes the proof of (b). For the proof of (c), see [[27] Lemma 5.11]. �

A.3. Derivative estimates of projectivization. We prove (38) (39). Let v⊥ denotes any
unit vector orthogonal to v. Then

|∂vf∗(ξ, v)| = lim
∆θ→0

∥∥∥∥ 1

∆θ

(
Df(ξ)(v +∆θv⊥)

‖Df(ξ)(v +∆θv⊥)‖
− Df(ξ)v

‖Df(ξ)v‖

)∥∥∥∥
≤ ‖Df(ξ)v⊥‖

‖Df(ξ)v‖
+ lim

∆θ→0

∥∥∥∥ 1

∆θ

‖Df(ξ)v‖ − ‖Df(ξ)(v +∆θv⊥)‖
‖Df(ξ)v‖

∥∥∥∥
≤ 2

‖Df(ξ)v⊥‖
‖Df(ξ)v‖

= 2
| detDf(ξ)|
‖Df(ξ)v‖2

.

Let ξ = (x, y). Writing ξx = ξ + (∆x, 0) we have

|∂xf∗(ξ, v)| = lim
∆x→0

∥∥∥∥ 1

∆x

(
Df(ξx)v

‖Df(ξx)v‖
− Df(ξ)v

‖Df(ξ)v‖

)∥∥∥∥
= lim

∆x→0

∥∥∥∥ 1

∆x

(
Df(ξx)v −Df(ξ)v

‖Df(ξ)v‖
− ‖Df(ξx)v‖ − ‖Df(ξ)v‖

‖Df(ξ)v‖‖Df(ξx)v‖
Df(ξx)v

)∥∥∥∥
≤ 2 lim

∆x→0

∥∥∥∥ 1

∆x

(Df(ξx)−Df(ξ))v

‖Df(ξ)v‖

∥∥∥∥ =
2

‖Df(ξ)v‖

∥∥∥∥( ∂

∂x
Df(ξ)

)
v

∥∥∥∥ .
In the same way we get

|∂yF (ξ, v)| ≤ 2

‖Df(ξ)v‖

∥∥∥∥( ∂

∂y
Df(ξ)

)
v

∥∥∥∥ .
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20. J. Palis and F. Takens, Cycles and measure of bifurcation sets for two-dimensional diffeomorphisms, Invent.

Math. 82 397–422
21. J. Palis and F. Takens, Hyperbolicity and the creation of homoclinic orbits, Ann. Math. 125 (1987) 337-374.
22. J. Palis and F. Takens, Hyperbolicity & sensitive chaotic dynamics at homoclinic bifurcations. Cambridge

Studies in Advanced Mathematics 35. Cambridge University Press, 1993.
23. J. Palis and J-C. Yoccoz, Homoclinic tangencies for hyperbolic sets of large Hausdorff dimension, Acta

Math. 172 (1994) 91–136.
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