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Abstract

We investigate iterated Tikhonov methods coupled with a Kaczmarz strategy for ob-
taining stable solutions of nonlinear systems of ill-posed operator equations. We show that
the proposed method is a convergent regularization method. In the case of noisy data we
propose a modification, the so called loping iterated Tikhonov-Kaczmarz method, where
a sequence of relaxation parameters is introduced and a different stopping rule is used.
Convergence analysis for this method is also provided.
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1 Introduction

In this paper we propose a new method for obtaining regularized approximations of systems
of nonlinear ill-posed operator equations.

The inverse problem we are interested in consists of determining an unknown physical
quantity x ∈ X from the set of data (y0, . . . , yN−1) ∈ Y N , where X, Y are Hilbert spaces
and N ≥ 1. In practical situations, we do not know the data exactly. Instead, we have only
approximate measured data yδ

i ∈ Y satisfying

‖yδ
i − yi‖ ≤ δi , i = 0, . . . , N − 1 , (1)

with δi > 0 (noise level). We use the notation δ := (δ0, . . . , δN−1). The finite set of data above
is obtained by indirect measurements of the parameter, this process being described by the
model

Fi(x) = yi , i = 0, . . . , N − 1 , (2)

where Fi : Di ⊂ X → Y , and Di are the corresponding domains of definition.
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Standard methods for the solution of system (2) are based in the use of Iterative type
regularization methods [1, 9, 19]) or Tikhonov type regularization methods [9, 22, 26] after
rewriting (2) as a single equation F (x) = y, where

F := (F0, . . . , FN−1) :
⋂N−1

i=0
Di → Y N (3)

and y := (y0, . . . , yN−1). However these methods become inefficient if N is large or the evalua-
tions of Fi(x) and F ′

i (x)
∗ are expensive. In such a situation, Kaczmarz type methods [17, 21, 23]

which cyclically consider each equation in (2) separately are much faster [23] and are often the
method of choice in practice.

For recent analysis of Kaczmarz type methods for systems of ill-posed equations, we refer
the reader to [3, 12, 8, 11]. The starting point of our approach is the iterated Tikhonov method
[14, 10] for solving ill-posed problems. This regularization method is defined by

xδ
k+1 ∈ arg min

{

‖F (x) − yδ‖2 + α‖x− xδ
k‖2

}

,

what corresponds to the iteration

xδ
k+1 = xδ

k − α−1F ′(xδ
k+1)

∗(F (xδ
k+1) − yδ) .

Motivated by the ideas in [3, 11, 8, 12], we propose in this article an iterated Tikhonov-Kaczmarz
method (iTK method) for solving (2). This iterative method is defined by

xδ
k+1 = xδ

k − α−1F ′
[k](x

δ
k+1)

∗(F[k](x
δ
k+1) − yδ

[k]) . (4)

Here α > 0 is an appropriate chosen number (see (9) below), [k] := (k mod N) ∈ {0, . . . , N −
1}, and xδ

0 = x0 ∈ X is an initial guess, possibly incorporating some a priori knowledge about
the exact solution.

Remark 1.1. Notice that the iteration in (4) corresponds to

xδ
k+1 ∈ arg min

{

‖F[k](x) − yδ
[k]‖2 + α‖x− xδ

k‖2
}

. (5)

As usual for nonlinear Tikhonov type regularization, the global minimum for the Tikhonov func-
tionals in (5) need not be unique. For exact data we obtain the same convergence statements
for any possible sequence of iterates (see Section 3) and we will accept any global solution. For
noisy data, a (strong) semi-convergence result is obtained under a smooth assumption on the
functionals Fi (see (A4) in Section 4), which guarantees uniqueness of global minimizers in
(5).

The iTK method consists in incorporating the Kaczmarz strategy in the iterated Tikhonov
method. This strategy is analog to the one introduced in [11] regarding the Landweber-
Kaczmarz (LK) iteration, in [8] regarding the Steepest-Descent-Kaczmarz (SDK) iteration, in
[12] regarding the Expectation-Maximization-Kaczmarz (EMK) iteration. As usual in Kacz-
marz type algorithms, a group of N subsequent steps (starting at some multiple k of N) shall
be called a cycle. The iteration should be terminated when, for the first time, at least one of
the residuals ‖F[k](x

δ
k+1) − yδ

[k]‖ drops below a specified threshold within a cycle. That is, we
stop the iteration at

kδ
∗ := min{lN ∈ N : ‖Fi(x

δ
lN+i+1) − yδ

i ‖ ≤ τδi , for some 0 ≤ i ≤ N − 1} , (6)

2



where τ > 1 still has to be chosen (see (9) below). Notice that for k = kδ
∗ we do not necessarily

have ‖Fi(x
δ
kδ
∗+i

) − yδ
i ‖ ≤ τδi for all i = 0, . . . , N − 1. In the case of noise free data, δi = 0 in

(1), the stop criteria in (6) is never reached, i.e. kδ
∗ = ∞ for δi = 0.

In the case of noisy data, we also propose a loping version of iTK, namely, the l-iTK

iteration. In the l-iTK iteration we omit an update of the iTK iteration (within one cycle)
if the corresponding i-th residual is below some threshold. Consequently, the l-iTK method
is not stopped until all residuals are below the specified threshold. We provide a complete
convergence analysis for both iTK and l-iTK iterations, proving that they are a convergent
regularization methods in the sense of [9].

The article is outlined as follows. In Section 2 we formulate basic assumptions and derive
some auxiliary estimates required for the analysis. In Section 3 a convergence result for the
iTK method is proved. In Section 4 a semi-convergence result for the iTK method for noisy
data is proved. In Section 5 we introduce (for the case of noisy data) a loping version of the iTK

method and we prove a semi-convergence result for this new method. In Section 6 we discuss
some possible applications related to parameter identification in elliptic PDE’s. Section 7 is
devoted to final remarks an conclusions.

2 Assumptions and preliminary results

We begin this section by introducing some assumptions, that are necessary for the convergence
analysis presented in the next section. These assumptions derive from the classical assumptions
used in the analysis of iterative regularization methods [9, 19, 24].

(A1) The operators Fi are weakly sequentially continuously and Fréchet differentiable and the
corresponding domains of definition Di are weakly closed. Moreover, we assume the existence
of x0 ∈ X, M > 0, and ρ > 0 such that

‖F ′
i (x)‖ ≤ M , x ∈ Bρ(x0) ⊂

⋂N−1

i=0
Di . (7)

Notice that xδ
0 = x0 is used as starting value of the iTK iteration.

(A2) This is an uniform assumption on the nonlinearity of the operators Fi. We assume that
the local tangential cone condition [9, 19]

‖Fi(x) − Fi(x̄) − F ′
i (x̄)(x− x̄)‖Y ≤ η‖Fi(x) − Fi(x̄)‖Y , x, x̄ ∈ Bρ(x0) (8)

holds for some η < 1.

(A3) There exists and element x∗ ∈ Bρ/4(x0) such that F (x∗) = y, where y = (y0, . . . , yN−1)
are the exact data satisfying (1).

We are now in position to choose the positive constants α and τ in (4), (6). For the rest of
this article we shall assume

α >
( 4

ρ δmin

)2
, τ >

1 + η

1 − η
≥ 1 , (9)

where δmin := minj{δj}. In particular, for linear problems we can choose τ = 1. Moreover, for
exact data (i.e., δj = 0, for j = 0, . . . , N − 1) we require simply α > 0.
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In the sequel we verify some basic results that are necessary for the convergence analysis
derived in the next section. The first result concerns the well-definiteness of the Tikhonov
functionals

Jk(x) := ‖F[k](x) − yδ
[k]‖2 + α‖x− xδ

k‖2 , (10)

which obviously relate to iteration (4) due to the fact that xδ
k+1 ∈ arg min Jk(x).

Lemma 2.1. Let assumption (A1) be satisfied. Then each Tikhonov functional Jk in (10)
attains a minimizer on X.

Sketch of the proof. Let {ξj} ∈ Di ⊂ X be a minimizing sequence for Jk. Then ‖ξj‖ is bounded,
and we can find a subsequence {ξj} and ξ̄ ∈ Di such that ξj ⇀ ξ̄. Now, it follows from the
weak continuity of F[k] together with the weak lower-semicontinuity of ‖ · ‖X that

Jk(ξ̄) ≤ lim inf
j

‖F[k](ξj) − yδ
[k]‖2 + lim inf

j
α ‖ξj − xk‖2

≤ lim inf
j

{

‖F[k](ξj) − yδ
[k]‖2 + α ‖ξj − xk‖2

}

= lim inf
j

Jk(ξj) = inf
x
Jk(x) ,

concluding the proof. �

The assertion of Lemma 2.1 still holds true if, instead of (A1), we assume that the operator
F[k] is continuous and weakly closed, and that D(F[k]) is weakly closed [9].

In the next lemma we prove an estimate for the residual of the iTK iteration.

Lemma 2.2. Let xδ
k and α be defined by (4) and (9) respectively. Then

‖F[k](x
δ
k+1) − yδ

[k]‖2 ≤ ‖F[k](x
δ
k) − yδ

[k]‖2 , k < kδ
∗ . (11)

Proof. The inequality in (11) is a direct consequence of

‖F[k](x
δ
k+1) − yδ

[k]‖2 ≤ Jk(x
δ
k+1) ≤ Jk(x

δ
k) ≤ ‖F[k](x

δ
k) − yδ

[k]‖2 , k < kδ
∗ .

The following lemma is an important auxiliary result, which will be used to prove a
monotony property of the iTK iteration.

Lemma 2.3. Let xδ
k and α be defined by (4) and (9) respectively. Moreover, assume that (A1)

- (A3) hold true. If xδ
k+1 ∈ Bρ(x0) for some k ∈ N, then

‖xδ
k+1−x∗‖2−‖xδ

k −x∗‖2 ≤ 2

α
‖F[k](x

δ
k+1)−yδ

[k]‖
[

(η−1)‖F[k](x
δ
k+1)−yδ

[k]‖+(1+η)δ[k]

]

. (12)

Proof. From (4) it follows that

‖xδ
k+1 − x∗‖2 − ‖xδ

k − x∗‖2

= 2 〈xδ
k − x∗, xδ

k+1 − xδ
k〉 + ‖xδ

k+1 − xδ
k‖2

≤ 2 〈xδ
k+1 − x∗, xδ

k+1 − xδ
k〉

=
2

α
〈xδ

k+1 − x∗, F ′
[k](x

δ
k+1)

∗(yδ
[k] − F[k](x

δ
k+1))〉

=
2

α
〈yδ

[k] − F[k](x
δ
k+1), F

′
[k](x

δ
k+1)(x

δ
k+1 − x∗) ± F[k](x

δ
k+1) ± F[k](x

∗)〉

≤ 2

α

(

〈F[k](x
δ
k+1) − yδ

[k], F[k](x
δ
k+1) − F[k](x

∗) − F ′
[k](x

δ
k+1)(x

δ
k+1 − x∗)〉

+ 2〈F[k](x
δ
k+1) − yδ

[k], F[k](x
∗) − F[k](x

δ
k+1) ± yδ

[k]〉
)

.
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Now, applying the Cauchy-Schwarz inequality and (8) with x = x∗ ∈ Bρ/4(x0), x̄ = xδ
k+1 ∈

Bρ(x0), leads to

‖xδ
k+1 − x∗‖2 − ‖xδ

k − x∗‖2 ≤ 2

α
‖F[k](x

δ
k+1) − yδ

[k]‖
(

η‖F[k](x
δ
k+1) − y[k] ± yδ

[k]‖

− ‖F[k](x
δ
k+1) − yδ

[k]‖ + ‖y[k] − yδ
[k]‖

)

,

and (12) follows from this inequality together with (1).

It is worth noticing that the proof of Lemma 2.3 requires an assumption on xδ
k+1, namely

that xδ
k+1 ∈ Bρ(x0). In the next lemma we make sure that this assumption is satisfied.

Lemma 2.4. Let xδ
k and α be defined by (4) and (9) respectively. Moreover, assume that

(A1), (A3) hold true. If xδ
k ∈ Bρ/4(x

∗) for some k ∈ N, then xδ
k+1 ∈ Bρ(x0).

Proof. It follows from the definition of xδ
k+1 that

α‖xδ
k+1 − xδ

k‖2 ≤ Jk(x
δ
k+1) ≤ Jk(x

∗) ≤ ‖y[k] − yδ
[k]‖2 + α(ρ/4)2 .

From this inequality and (9) we obtain ‖xδ
k+1 − xδ

k‖ ≤ δ[k](
√
α)−1 + ρ/4 ≤ ρ/2. Therefore, it

follows that
‖xδ

k+1 − x0‖ ≤ ‖xδ
k+1 − xδ

k‖ + ‖xδ
k − x0‖ ≤ ρ/2 + ρ/2 ,

completing the proof.

Our next goal is to prove a monotony property, known to be satisfied by other iterative
regularization methods, e.g., by the Landweber [9], the steepest descent [25], the LK [20]
method, the l-LK method [11], and the l-SDK method [8].

Proposition 2.5 (Monotonicity). Under the assumptions of Lemma 2.3, for all k < kδ
∗ the

iterates xδ
k remain in Bρ/4(x

∗) ⊂ Bρ(x0) and satisfy (12). Moreover,

‖xδ
k+1 − x∗‖2 ≤ ‖xδ

k − x∗‖2 , k < kδ
∗ . (13)

Proof. From (A3) it follows that x0 ∈ Bρ/4(x
∗). Moreover, Lemma 2.4 guarantees that x1 ∈

Bρ(x
∗). Therefore, it follows from Lemma 2.3 that (12) holds for k = 0. Then we conclude

from (12) and (6) that

‖xδ
1 − x∗‖2 − ‖xδ

0 − x∗‖2 ≤ 2

α
‖F0(x

δ
1) − yδ

0‖δ0
[

τ(η − 1) + (1 + η)
]

.

Thus, it follows from (9) that (13) holds for k = 0. In particular we have x1 ∈ Bρ/4(x
∗). The

proof follows now using an inductive argument.

In the next two sections we provide a complete convergence analysis for the iTK iteration,
showing that it is a convergent regularization method in the sense of [9] (see Theorems 3.2
and 4.3 below).
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3 iTK Method: Convergence for exact data

Throughout this section, we assume that (A1) - (A3) hold true and that xδ
k, α and τ are defined

by (4) and (9). Our main goal in this section is to prove convergence of the iTK iteration for
δi = 0, i = 0, . . . , N − 1. For exact data y = (y0, . . . , yN−1), the iterates in (4) are denoted by
xk to contrast with xδ

k in the noisy data case.

Lemma 3.1. There exists an x0-minimal norm solution of (2) in Bρ/4(x0), i.e., a solution x†

of (2) such that ‖x† − x0‖ = inf{‖x− x0‖ : x ∈ Bρ/4(x0) and F (x) = y}. Moreover, x† is the

only solution of (2) in Bρ/4(x0) ∩
(

x0 + ker(F ′(x†))⊥
)

.

Proof. Lemma 3.1 is a consequence of [15, Proposition 2.1]. For a detailed proof we refer the
reader to [19].

Throughout the rest of this article, x† denotes the x0-minimal norm solution of (2). We
define ek := x† − xk. From Proposition 2.5 it follows that ‖ek‖ is monotone non increasing.

Notice that Proposition 2.5 guarantees that (12) holds for all k ∈ N. Since the data is
exact, (12) can be rewritten as ‖xk+1 − x∗‖2 − ‖xk − x∗‖2 ≤ 2α−1(η − 1)‖F[k](xk+1) − y[k]‖2.
By summing over all k, this leads to

∞
∑

k=0

‖F[k](xk+1) − y[k]‖2 ≤ α
2(1−η)‖x0 − x†‖2 < ∞ , (14)

Equation (14) and the monotony of ‖ek‖ are the main arguments in the following proof of the
convergence of the iTK iteration.

Theorem 3.2 (Convergence for exact data). For exact data, the iteration (xk) converges to a
solution of (2), as k → ∞. Moreover, if

N (F′(x†)) ⊆ N (F(x)) for all x ∈ Bρ(x0) , i = 0, . . . , N − 1 , (15)

then xk → x†.

Proof. We have already observed that ‖ek‖ decreases monotonically. Therefore, ‖ek‖ converges
to some ǫ ≥ 0. In the following we show that ek is in fact a Cauchy sequence.

For k = k0N+k1 and l = l0N+l1 with k ≤ l and k1, l1 ∈ {0, . . . , N−1}, let n0 ∈ {k0, . . . , l0}
be such that

N−1
∑

i1=0
‖Fi1(xn0N+i1+1) − yi1‖ ≤

N−1
∑

i1=0
‖Fi1(xi0N+i1) − yi1‖ , i0 ∈ {k0, . . . , l0} . (16)

Then, with n := n0N +N , we have

‖ek − el‖ ≤ ‖ek − en‖ + ‖el − en‖ (17)

and
‖en − ek‖2 = ‖ek‖2 − ‖en‖2 + 2〈en − ek, en〉 ,
‖en − el‖2 = ‖el‖2 − ‖en‖2 + 2〈en − el, en〉 .

(18)

For k, l → ∞, the first two terms on the right handside of (18) converge to ǫ−ǫ = 0. Therefore,
in order to show that ek is a Cauchy sequence, it is sufficient to prove that 〈en − ek, en〉 and
〈en − el, en〉 converge to zero as k, l → ∞.
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To that end, we write i = i0N + i1, i1 ∈ {0, . . . , N −1} and set i∗ := n0N + i1. Then, using
the definition of the iterated Tikhonov-Kaczmarz iteration it follows that

|〈en − ek, en〉| =

∣

∣

∣

∣

n−1
∑

i=k

α−1
〈

F′
i1

(xi+1)
∗
(

Fi1(xi+1) − yi1

)

, x† − xn

〉

∣

∣

∣

∣

≤
n−1
∑

i=k

α−1
∣

∣

〈

Fi1(xi+1) − yi1 ,F
′
i1

(xi+1)(x
† ± xi+1 ± xi∗+1 − xn)

〉∣

∣

≤
n−1
∑

i=k

α−1‖Fi1(xi+1) − yi1‖ ‖F′
i1

(xi+1)(x
† − xi+1)‖

+
l−1
∑

i=k

α−1|Fi1(xi+1) − yi1‖ ‖F′
i1

(xi+1)(xi+1 − xi∗+1)‖

+
l−1
∑

i=k

α−1‖Fi1(xi+1) − yi1‖ ‖F′
i1

(xi+1)(xi∗+1 − xn)‖ . (19)

From (8) it follows immediately that

‖F′
i1(xi+1)(x

† − xi+1)‖ ≤ (1 + η)‖Fi1(xi+1) − yi1‖ (20)

‖F′
i1(xi+1)(xi+1 − xi∗+1)‖ ≤ (1 + η)

(

‖Fi1(xi+1) − yi1‖ + ‖yi1 − Fi1(xi∗+1)‖
)

. (21)

Moreover, from the definition of the iterated Tikhonov method and and (7) it follows that

‖F′
i1(xi+1)(xi∗+1 − xn)‖ ≤ M ‖xi∗+1 − xn‖

≤ M
N−1
∑

j=i1+1
α−1‖F′

j(xn0N+j+1)
∗
(

Fj(xn0N+j+1) − yj

)

‖

≤ α−1M2
N−1
∑

j=0
‖Fj(xn0N+j+1) − yj‖ ≤ α−1M2γ , (22)

with γ = γ(n0) :=
∑N−1

j=0 ‖Fj(xn0N+j+1) − yj‖. Substituting (20), (21), (22) in (19) leads to

|〈en − ek, en〉|

≤
n0
∑

i0=k0

N−1
∑

i1=0
α−1‖Fi1(xi0N+i1+1) − yi1‖

(

2(1 + η)‖Fi1(xi0N+i1+1) − yi1‖ + [(1 + η) + M2

α ]γ
)

(we used the fact that ‖yi1 − Fi1(xi∗+1)‖ ≤ γ). So, we finally obtain the estimate

|〈en − ek, en〉| ≤
n0
∑

i0=k0

[1 + η + M2

α ]γ
N−1
∑

i1=0
α−1‖Fi1(xi0N+i1+1) − yi1‖

+
n0
∑

i0=k0

2(1 + η)
N−1
∑

i1=0
α−1‖Fi1(xi0N+i1+1) − yi1‖2

≤
n0
∑

i0=k0

α−1[1 + η + M2

α ]
( N−1

∑

i1=0
‖Fi1(xi0N+i1+1) − yi1‖

)2

+
n0
∑

i0=k0

2α−1(1 + η)
N−1
∑

i1=0
‖Fi1(xi0N+i1+1) − yi1‖2

≤ c
n0
∑

i0=k0

N−1
∑

i1=0
‖Fi1(xi0N+i1+1) − yi1‖2 = c

n−1
∑

i=k0

‖F[i](xi+1) − y[i]‖2

with c := (N + 2)α−1(1 + η) +NM2α−1.
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Because of (14), the last sum tends to zero for k = (k0N + k1) → ∞ and, therefore,
〈en − ek, en〉 → 0. Analogously one shows that 〈en − el, en〉 → 0 as l → ∞.

Thus, ek is a Cauchy sequence and xk = x† − ek converges to some element x∗ ∈ X. Since
the residuals ‖F[k](xk+1) − y[k]‖ converge to zero, x∗ is solution of (2).

Now assume N (F′(x†)) ⊆ N (F(x)), for x ∈ Bρ(x0). Then, from the definition of xk, it
follows that

xk+1 − xk ∈ R(F′
[k](xk+1)

∗) ⊂ N (F′
[k](xk+1))

⊥ ⊂ N (F′(xk+1))
⊥ ⊂ N (F′(x†))⊥ .

An inductive argument shows that all iterates xk are elements of x0 + N (F′(x†))⊥. Together
with the continuity of F′(x†) this implies that x∗ ∈ x0 +N (F′(x†))⊥. By Lemma 3.1, x† is the
only solution of (2) in Bρ/4(x0) ∩

(

x0 + N (F′(x†))⊥
)

, and so the second assertion follows.

4 iTK Method: Convergence for noisy data

Throughout this section, we assume that (A1) - (A3) hold true and that xδ
k, α and τ are defined

by (4), and (9). Our main goal in this section is to prove that xδ
kδ
∗

converges to a solution of

(2) as δ → 0, where kδ
∗ is defined in (6). For convenience of the reader, the particular case of

linear systems is treated in the Appendix.
Our first goal is to verify the finiteness of the stopping index kδ

∗.

Proposition 4.1. Assume δmin := min{δ0, . . . δN−1} > 0. Then kδ
∗ defined in (6) is finite.

Proof. Assume by contradiction that for every l ∈ N , there exists no i(l) ∈ {0, . . . , N − 1}
such that ‖Fi(l)(x

δ
lN+i(l)+1) − yδ

i(l)‖ ≤ τδi(l). From Proposition 2.5 it follows that (12) can be
applied recursively for k = 1, . . . , lN , and we obtain

−‖x0 − x∗‖2 ≤
lN−1
∑

k=1

2

α
‖F[k](x

δ
k+1) − yδ

[k]‖
[

(η − 1)‖F[k](x
δ
k+1) − yδ

[k]‖ + (1 + η)δ[k]

]

, l ∈ N .

Using the fact that ‖F[k](x
δ
k+1) − yδ

[k]‖ > τδ[k], we obtain the estimate

‖x0 − x∗‖2 ≥
lN−1
∑

k=1

2

α
‖F[k](x

δ
k+1) − yδ

[k]‖δ[k]

[

τ(1 − η) − (1 + η)
]

≥
[

τ(1 − η) − (1 + η)
]2τδ2min

α
(lN − 1) , l ∈ N . (23)

Due to (9), the right hand side of (23) tends to +∞ as l → ∞, which gives a contradiction.
Consequently, the minimum in (6) takes a finite value.

In the sequel we prove an auxiliary result similar to the one stated in Lemma A.1 for the
linear case. For the rest of this section we assume, additionally to (A1) – (A3), that

(A4) The operators Fi in (2) and it’s derivatives F ′
i are Lipschitz continuous, i.e., there exists

a constant L such that

‖Fi(x) − Fi(x̄)‖ + ‖F ′
i (x) − F ′

i (x̄)‖ ≤ L ‖x− x̄‖ , for all x, x̄ ∈ Bρ(x0) .

Moreover, the constants α in (9) and M in (7) are such that (M + M)L < α, where M =
M(ρ, x0, y,∆) := sup{‖Fi(x)− yδ

i ‖ : i = 0, . . . , N − 1 , x ∈ Bρ(x0) , ‖yδ
i − yi‖ ≤ δi , |δ| ≤ ∆}.
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Lemma 4.2. Let δj = (δj,0, . . . , δj,N−1) ∈ (0,∞)N be given with limj→∞ δj = 0. Moreover, let

yδj = (y
δj

0 , . . . , y
δj

N−1) ∈ Y N be a corresponding sequence of noisy data satisfying

‖yδj

i − yi‖ ≤ δj,i , i = 0, . . . , N − 1 , j ∈ N .

Then, for each k ∈ N we have limj→∞ x
δj

k+1 = xk+1.

Proof. Notice that the uniqueness of global minimizers of Jk in (10) hold true. Indeed, let
δ ∈ (0,∞)N and yδ ∈ Y N be given as in (1). If x1, x2 ∈ Bρ(x0) are minimizers of Jk, we have

‖x1 − x2‖2 = α−1〈F ′
[k](x2)

∗(F[k](x2) − yδ
[k]) − F ′

[k](x1)
∗(F[k](x1) − yδ

[k]), x1 − x2〉

= α−1
[

〈F[k](x2) − yδ
[k], (F ′

[k](x2) − F ′
[k](x1)) (x1 − x2)〉

+ 〈(F[k](x2) − F[k](x1)), F
′
[k](x1)(x1 − x2)〉

]

≤ (M +M)Lα−1‖x1 − x2‖2 ,

and from (A4) it follows that x1 = x2. An immediate consequence of this uniqueness is the
fact that the iterative steps xδ

k+1 in (4) are uniquely defined (see (10)).

The proof of Lemma 4.2 uses an inductive argument in k. First we consider the case k = 0.

Notice that x
δj

0 = x0 for j ∈ N and we can estimate

‖xδj

1 − x1‖2 = α−1〈F ′
0(x1)

∗(F0(x1) − y0) − F ′
0(x

δj

1 )∗(F0(x
δj

1 ) − y
δj

0 ), x
δj

1 − x1〉
= α−1

[

〈F0(x1) − y0, (F ′
0(x1) − F ′

0(x
δj

1 ))(x
δj

1 − x1)〉

+ 〈F0(x1) − F0(x
δj

1 ), F ′
0(x

δj

1 )(x
δj

1 − x1)〉 + 〈yδj

0 − y0, F
′
0(x

δj

1 )(x
δj

1 − x1)〉
]

≤ (M +M)Lα−1‖xδj

1 − x1‖2 +Mα−1δj,0‖xδj

1 − x1‖ . (24)

Therefore, it follows from (A4) that limj→∞ x
δj

1 = x1. Next, let k > 0 and assume that for all

k′ < k we have limj→∞ x
δj

k′+1 = xk′+1. Arguing as in (24) we obtain the estimate

‖xδj

k+1 − xk+1‖2 ≤ (M +M)Lα−1‖xδj

k+1 − xk+1‖2 +
(

Mα−1δj,0 + ‖xδj

k − xk‖
)

‖xδj

k+1 − xk+1‖ .

From (A4) it follows that

[α− (M +M)L]α−1‖xδj

k+1 − xk+1‖ ≤ Mα−1δj,0 + ‖xδj

k − xk‖ (25)

and from the induction hypothesis we conclude that limj→∞ x
δj

k+1 = xk+1.

Theorem 4.3 (Convergence for noisy data). Let δj = (δj,0, . . . , δj,N−1) be a given sequence in

(0,∞)N with limj→∞ δj = 0, and let yδj = (y
δj

0 , . . . , y
δj

N−1) ∈ Y N be a corresponding sequence

of noisy data satisfying ‖yδj

i −yi‖ ≤ δj,i, i = 0, . . . , N−1, j ∈ N. Denote by kj
∗ := k∗(δj , y

δj ) the

corresponding stopping index defined in (6) and assume that the sequence {kj
∗}j∈N is unbounded.

Then x
δj

kj
∗

converges to a solution of (2), as j → ∞. Moreover, if (15) holds, then xδj

kj
∗

→ x†.

Proof. The proof is analogous to the proof of Theorem A.2 and will be omitted. In the proof,
Lemma A.1 has to be replaced by Lemma 4.2.
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5 The loping iterated Tikhonov-Kaczmarz method

Motivated by the ideas in [11, 8, 12, 3], we investigate in this section a loping iterated Tikhonov-
Kaczmarz method (l-iTK method) for solving (2). This iterative method is defined by

xδ
k+1 = xδ

k − α−1ωkF
′
[k](x

δ
k+1)

∗(F[k](x
δ
k+1) − yδ

[k]) . (26)

where

ωk :=

{

1 ‖F[k](x
δ
k+1) − yδ

[k]‖ ≥ τδ[k]

0 otherwise
. (27)

The positive constants α and τ are defined as in (9). The meaning of (26), (27) is the following:
at each iterative step an element xk+1/2 ∈ D[k] satisfying

xk+1/2 = xδ
k − α−1F ′

[k](xk+1/2)
∗(F[k](xk+1/2) − yδ

[k])

is computed. If ‖F[k](xk+1/2) − yδ
[k]‖ ≥ τδ[k] we set xδ

k+1 = xk+1/2, otherwise xδ
k+1 = xδ

k.

For exact data (δ = 0) the l-iTK reduces to the iTK iteration investigated in the previous
sections. For noisy data however, the l-iTK method is fundamentally different from the
iTK method: The bang-bang relaxation parameter ωk effects that the iterates defined in (4)
become stationary if all components of the residual vector ‖Fi(x

δ
k) − yδ

i ‖ fall below a pre-
specified threshold. This characteristic renders (4) a regularization method, as we shall see in
Subsection 5.1.

Remark 5.1. As observed in Remark 1.1, the iteration in (26) corresponds to xδ
k+1 ∈

arg min
{

ωk‖F[k](x) − yδ
[k]‖2 + α‖x − xδ

k‖
}

and is not uniquely defined. For noisy data, a

semi-convergence result is obtained under the smooth assumption (A4) on the functionals Fi,
which guarantees that the l-iTK iteration is uniquely defined.

The l-iTK iteration should be terminated when, for the first time, all xδ
k are equal within

a cycle. That is, we stop the iteration at

kδ
∗ := min{lN ∈ N : xδ

lN = xδ
lN+1 = · · · = xδ

lN+N−1} , (28)

Notice that kδ
∗ is the smallest multiple of N such that

xδ
kδ
∗

= xδ
kδ
∗+1 = · · · = xδ

kδ
∗+N−1 . (29)

5.1 Convergence analysis

In what follows we assume that (A1) – (A3) and (A4) hold true and that xδ
k, ωk, α and τ are

defined by (26), (27) and (9). We start by listing some straightforward facts about the l-iTK

iteration:

• Lemma 2.2 holds true. Lemma 2.3 still holds true, but (12) has to be replaced by

‖xδ
k+1−x∗‖2−‖xδ

k−x∗‖2 ≤ 2ωk

α
‖F[k](x

δ
k+1)−yδ

[k]‖
[

(η−1)‖F[k](x
δ
k+1)−yδ

[k]‖+(1+η)δ[k]

]

. (30)

• Lemma 2.4 and Proposition 2.5 hold true.

• Theorem 3.2 holds true (for exact data, the l-iTK iteration reduces to iTK).
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Before proving the main semiconvergence theorem we need two auxiliary results: the first
result guarantees that, for noisy data, the stopping index kδ

∗ in (28) is finite (compare with
Proposition 4.1); the second result is the analogous of Lemma 4.2 for the l-iTK iteration.

Proposition 5.2. Assume δmin := min{δ0, . . . δN−1} > 0. Then kδ
∗ in (28) is finite, and

‖Fi(x
δ
kδ
∗
) − yδ

i ‖ < κτδi , i = 0, . . . , N − 1 . (31)

where κ := [(1 + η) +M2/α]/(1 − η).

Proof. Assume by contradiction that for every l ∈ N , there exists i(l) ∈ {0, . . . , N − 1} such
that xlN+i(l) 6= xlN . From Proposition 2.5 it follows that (30) can be applied recursively for
k = 1, . . . , lN , and we obtain

−‖x0 − x∗‖2 ≤
lN−1
∑

k=1

2ωk
α ‖F[k](x

δ
k+1) − yδ

[k]‖
[

(η − 1)‖F[k](x
δ
k+1) − yδ

[k]‖ + (1 + η)δ[k]

]

, l ∈ N ,

Using the fact that either ωk = 0 or ‖F[k](x
δ
k+1) − yδ

[k]‖ > τδ[k], we obtain the estimate

‖x0 − x∗‖2 ≥
lN−1
∑

k=1

2ωk
α ‖F[k](x

δ
k+1) − yδ

[k]‖δ[k]

[

τ(1 − η) − (1 + η)
]

. (32)

Equation (32) and the fact that xl′N+i(l′) 6= xl′N for all l′ ∈ N, imply

‖x0 − x∗‖2 ≥
[

τ(1 − η) − (1 + η)
]

2l
δmin

α
(τδmin) , l ∈ N . (33)

Due to (9), the right hand side of (33) tends to +∞ as l → ∞, which gives a contradiction.
Consequently, the set {l ∈ N : xlN+i = xlN , 0 ≤ i ≤ N − 1} is not empty and the minimum in
(6) takes a finite value.

It remains to prove (31). For each fixed i ∈ {0, . . . , N − 1} we have

‖Fi(x
δ
kδ
∗
) − yδ

i ‖ ≤ ‖Fi(x
δ
kδ
∗
) − Fi(x

δ
kδ
∗+1/2) + F ′

i (x
δ
kδ
∗+1/2)(x

δ
kδ
∗+1/2 − xδ

kδ
∗
)‖

+ ‖Fi(x
δ
kδ
∗+1/2) − yδ

i ‖ + ‖ − F ′
i (x

δ
kδ
∗+1/2)(x

δ
kδ
∗+1/2 − xδ

kδ
∗
)‖

≤ η‖Fi(x
δ
kδ
∗
) − Fi(x

δ
kδ
∗+1/2) ± yδ

i ‖ + τδi +M‖xδ
kδ
∗+1/2 − xδ

kδ
∗
‖

≤ η‖Fi(x
δ
kδ
∗
) − yδ

i ‖ + (1 + η)τδi +Mα−1‖F ′
i (x

δ
kδ
∗+1/2)(Fi(x

δ
kδ
∗+1/2) − yδ

i )‖

(in the last inequality we used the fact that ωkδ
∗+i = 0 and ‖Fi(x

δ
kδ
∗+1/2

)−yδ
i ‖ ≤ τδi).

1 Therefore,

we obtain the estimate

(1 − η)‖Fi(x
δ
kδ
∗
) − yδ

i ‖ ≤ (1 + η)τδi +M2α−1‖Fi(x
δ
kδ
∗+1/2) − yδ

i ‖ (34)

and (31) follows.

Lemma 5.3. Let δj = (δj,0, . . . , δj,N−1) ∈ (0,∞)N be given with limj→∞ δj = 0. Moreover, let

yδj = (y
δj

0 , . . . , y
δj

N−1) ∈ Y N be a corresponding sequence of noisy data satisfying

‖yδj

i − yi‖ ≤ δj,i , i = 0, . . . , N − 1 , j ∈ N .

Then, for each fixed k ∈ N we have limj→∞ x
δj

k+1 = xk+1.

1Notice that for distinct i ∈ {0, . . . , N − 1} the points xδ
kδ
∗
+1/2

may be different, since they are minimizers of

the Tikhonov functionals Jkδ
∗
+i(x) := ‖Fi(x) − yδ

i ‖
2 + α‖x − xδ

kδ
∗

‖2.
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Proof. Arguing as in the first part of the proof of Lemma 4.2, we conclude that the iterative
steps xδ

k+1 in (26) – (27) are uniquely defined.

The proof of Lemma 5.3 uses an inductive argument in k. First we take k = 0 (notice that

x
δj

0 = x0 for j ∈ N). We have to consider two cases: If ω0 = 1, we argue as in (24) and obtain
the estimate

‖xδj

1 − x1‖ ≤ M [α− (M +M)L]−1 δj,0 . (35)

Otherwise, if ω0 = 0, we have x
δj

1 = x0 and ‖F0(x
δj

0+1/2) − y
δj

0 ‖ ≤ τδj,0. Therefore,

‖xδj

1 − x1‖2 = α−1〈F ′
0(x1)

∗(F0(x1) − y0 ± F0(x0) ± y
δj

0 ), x
δj

1 − x1〉
≤ Mα−1‖xδj

1 − x1‖
{

‖F0(x1) − F0(x0)‖ + ‖F0(x0) − y
δj

0 ‖ + ‖yδj

0 − y0‖
}

≤ (M +M)α−1‖xδj

1 − x1‖
{

L‖x1 − xδ
1‖ + ‖F0(x0) − y

δj

0 ‖ + δj,0

}

.

Arguing as in (34) we estimate ‖F0(x0) − y
δj

0 ‖ ≤ κτδj,0. Therefore, it follows that

‖xδj

1 − x1‖ ≤ α[α− (M +M)L]−1 (κτ + 1)δj,0 . (36)

Thus, it follows from (35), (36) and (A4) that limj→∞ x
δj

1 = x1.

Now, take k > 0 and assume that for all k′ < k we have limj→∞ x
δj

k′+1 = xk′+1. Once again
two cases must be considered: ω0 = 1 and ω0 = 0. Arguing as in the case k = 0, we obtain

estimates similar to (35) and (36). Thus, limj→∞ x
δj

k+1 = xk+1 follows using the induction
hypothesis (compare with (25) and the corresponding step in the proof of Lemma 4.2).

We are now ready to state and prove a semiconvergence result for the l-iTK iteration.

Theorem 5.4. Let δj = (δj,0, . . . , δj,N−1) be a given sequence in (0,∞)N with limj→∞ δj =

0, and let yδj = (y
δj

0 , . . . , y
δj

N−1) ∈ Y N be a corresponding sequence of noisy data satisfying

‖yδj

i −yi‖ ≤ δj,i, i = 0, . . . , N−1, j ∈ N. Denote by kj
∗ := k∗(δj , y

δj ) the corresponding stopping

index defined in (28). Then x
δj

kj
∗

converges to a solution x∗ of (2) as j → ∞. Moreover, if

(15) holds, then x
δj

kj
∗

converges to x†.

Proof. Let x∗ denote the limit of the iterates xk. Then x∗ is a solution of (2), cf. Theorem

3.2. The proof that x
δj

kj
∗

→ x∗ is divided in two cases:

(1) Assume that the sequence kj
∗ is bounded. Then, it has a finite accumulation point and,

without loss of generality, we can assume that kj
∗ = k∗ ∈ N for all j ∈ N. From Lemma 5.3

it follows that ‖xδj

k∗
− xk∗

‖ → 0 as j → ∞, and the continuity of Fi implies that ‖Fi(x
δj

k∗
) −

Fi(xk∗
)‖ → 0 as j → ∞, for i = 0, . . . , N − 1. Moreover, from Proposition 5.2 we know that

‖Fi(x
δj

k∗
) − y

δj

i ‖ < κτδj,i , i = 0, . . . , N − 1 , j ∈ N . (37)

Then, taking the limit j → ∞ in (37), it follows that Fi(xk∗
) = yi, for i = 0, . . . , N − 1.

Consequently, xk∗
= x∗, and x

δj

k∗
→ x∗ follows.

(2) Assume that the sequence kj
∗ is not bounded. The proof of this case is analogous to the

proof of Theorem A.2 and will be omitted. In the proof, Lemma A.1 has to be replaced by
Lemma 5.3.
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6 Applications

In this section we address parameter identification problems in elliptic equations. In the focus
is the question whether the local tangential cone condition (8) is satisfied.

Part of the following analysis is based on the verification of a stronger condition, which
implies the local tangential cone condition, namely the range invariance condition:2

There exists a family of bounded linear operators Rx : Y −→ Y and a positive
constant such that

F ′(x) = RxF
′(x†) and ‖Rx − id‖ ≥ c‖x− x†‖X , x ∈ Bρ(x

0) . (38)

It is a well known fact that the range invariance condition implies that range(F ′(x)) =
range(F ′(x†)), x ∈ Bρ(x

0).
The model problem under investigation is an elliptic boundary value problem

− (aus)s + (bu)s + cu = f , in (0, 1) (39)

−α0us(0) + β0u(0) = g0,−α1us(1) + β1u(0) = g1 . (40)

Here f is a given function in L2(0, 1) and αi, βi, gi are real numbers specified below. To simplify
the discussion we consider here the one-dimensional case only, but we shall give some hints for
two- and three-dimensional cases.

The equation in (39) may be considered as a simplified model for a steady state convection-
diffusion equation. The term cu is a production term where the function c depends on proper-
ties of the material. The term −(aus)s+(bu)s results from an ansatz for the flux j := −aus+bu .
Here a, b are functions describing the diffusion and convective part, respectively. For a concrete
application see for instance [2], Chapter I.2.

We want to identify the parameters a, b, c from a measurement uδ ∈ L2(0, 1) of the solution
u ∈ L2(0, 1) of the boundary value problem (39), (40). We distinguish between three different
inverse problems, namely the so called a/b/c–problems:

The a-problem: Find a under the assumptions b ≡ 0, c ≡ 0.

The b-problem: Find b under the assumptions a ≡ 1, c ≡ 1.

The c-problem: Find c under the assumptions a ≡ 1, b ≡ 0.

Each problem may be presented by a nonlinear equation of the type F (x) = y for an appro-
priately chosen parameter-to-output mapping F : D(F ) ⊂ X → Y .

The a- and c-problem are considered in a huge amount of references whereas the b-problem
received less attention. It seems that the tangential cone condition for this problem has not
been investigated up to now; we do that below. A detailed analysis of regularization methods
for the identification in elliptic and parabolic equations can be found in [4].

6.1 The c-problem

Let us start the discussion with the c-problem, the most simple one. Here the mapping F is
defined as follows:

F : D(F ) ∋ c 7→ u(c) ∈ L2(0, 1) , D(F ) ⊂ X := Y := L2(0, 1) ,

2For a proof that the local tangential cone condition follows from the range invariance condition, see [15].
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where u(c) solves the boundary value problem

−uss + cu = f , in (0, 1)

u(0) = g0 , u(1) = g1

in the weak sense. The domain of definition is chosen as a ball in X := L2(0, 1) (see [7]):

D(F ) := BX
ρ (c0) where c0 ∈ L2(0, 1) , c0 ≥ 0 a.e. in (0, 1) .

Then the mapping F is Fréchet-differentiable in D(F ) and we have

F ′(c)h = Γ(c)−1(−hu(c)) , F ′(c)∗w = −u(c)Γ(c)−1w , h,w ∈ L2(0, 1) ,

where Γ(c) : H2(0, 1) ∩H1
0 (0, 1) → L2(0, 1) is defined by Γ(c)u := −uss + cu. We assume that

c0 is chosen such that u(c) ≥ κ a.e. for each c ∈ D(F ), where κ is a positive constant. Then
we have

F ′(c̃) = R(c̃, c)F ′(c) , c, c̃ ∈ D(F ) , (41)

with

R(c̃, c)∗w = Γ(c̃)[u(c̃)u(c)−1A(c̃)−1w] , w ∈ L2(0, 1) , ‖R(c̃, c)− id‖ ≤ κ1‖c̃− c‖ , c, c̃ ∈ D(F ) .

Here κ1 is a positive constant. As a result, we see that the range invariance condition is
satisfied and the tangential cone condition follows.

Remark 6.1. The results above hold also in the two- and three-dimensional cases; no further
assumptions are necessary (see, e.g., [13, 18]). Clearly, the boundary conditions have now to
be considered in the sense of trace operators.

6.2 The b-problem

Here the parameter-to-output mapping F is defined as follows:

F : D(F ) ∋ b 7→ u(b) ∈ L2(0, 1) , D(F ) ⊂ X := H1(0, 1) , Y := L2(0, 1) ,

where u(b) solves the boundary value problem

−uss + (bu)s + u = f , in (0, 1)

−us(0) + bu(0) = g0 , −us(1) + bu(1) = g1

in the weak sense. The boundary value problem above is uniquely solvable inH1(0, 1) whenever
‖b‖X is small enough, which can be seen from an application of the Lax-Milgram-Lemma.
Therefore we choose D(F ) as a ball BX

ρ := {x ∈ X | ‖x‖X ≤ ρ} in X with ρ small enough

such that u(b) is uniquely determined for each b ∈ BX
ρ . Additionally, the assumption that each

parameter b belongs to H1(0, 1) ensures that the solution u(b) is in H2(0, 1).
Let b ∈ BX

ρ . Then F is Fréchet-differentiable in b and F ′(b)h = v, where v solves

− vss+ (bv)s + v = −(hu)s in (0, 1) , (42)

−vs + bv
∣

∣

1

0
= −hu

∣

∣

1

0
(43)
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We want to verify an inequality which leads to the tangential cone condition. Let u = u(b),
ũ = u(b̃) with b̃, b ∈ BX

ρ (b0). Moreover let v := F ′(b)(b̃ − b). We define the mapping
Q(b) : Y −→ H1(0, 1) where ψ := Q(b)w solves the boundary value problem

−ψss − bψs + ψ = w in (0, 1) , ψs(0) = ψs(1) = 0 ,

in a weak sense. Since b ∈ H1(0, 1) we see that ψ is more regular, namely ψ ∈ H2(0, 1).
Let w ∈ Y, ‖w‖Y ≤ 1, and let ψ := Q(b)w. Then

〈ũ− u− F ′(b)(b̃− b), w〉Y = 〈ũ− u− v, w〉Y
= 〈ũ− u− v,−ψss − bψs + ψ〉Y
= 〈−(ũ− u)ss + [b(ũ− u)]s + (ũ− u), ψ〉Y

+〈vss − [bv]s − v, ψ〉Y + (b̃− b)(ũ− u)ψ
∣

∣

1

0

= 〈[(b− b̃)ũ]s, ψ〉Y + 〈[(b̃− b)u]s, ψ〉Y + (b̃− b)(ũ− u)ψ
∣

∣

1

0

= 〈(b̃− b)(ũ− u), ψs〉Y .

This implies

‖F (b̃) − F (b) − F ′(b)(b̃− b)‖Y = sup
‖w‖Y ≤1

|〈ũ− u− F ′(b)(ũ− u), w〉Y |

≤ sup
‖w‖Y ≤1

|〈(b̃− b)(ũ− u), (Q(b)w)s〉Y |

≤ ‖(b̃− b)(ũ− u)‖L2(0,1) sup
‖w‖Y ≤1

‖Q(b)w‖L2(0,1)

≤ ‖b̃− b‖L∞(0,1)‖ũ− u‖L2(0,1) sup
‖w‖Y ≤1

‖Q(b)w‖H1(0,1) ,

and we derive the estimate

‖F (b̃) − F (b) − F ′(b)(b̃− b)‖Y ≤ κ2‖b̃− b‖H1(0,1)‖ũ− u‖H1(0,1) , (44)

where the constant κ2 depends on the norm of the mapping Q(b) .

Remark 6.2. The formulation of the b-problem above can be easily generalized to the two-
dimensional case. The convection term in this case is ∂1(bu) + ∂2(bu) and again a scalar
function b has to be identified. The situation is different when one models the first order term
in the equation by b1∂1u+b2∂2u [16]. Then one has to identify two parameters and the analysis
is much more delicate. It seems that the identification problems has not been considered in the
framework chosen above; see [6] for the investigation of identifiably for this inverse problem.

6.3 The a-problem

Here the parameter-to-solution mapping F is defined by

F : D(F ) ∋ a 7→ u(a) ∈ L2(0, 1) , D(F ) ⊂ X := Y := L2(0, 1) ,

where u(a) solves the boundary value problem

−(aus)s = f , in (0, 1)

u(0) = g0 , u(1) = g1
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in the weak sense. The domain of definition is chosen as

D(F ) := {a ∈ H1(0, 1) | a(s) ≥ a a.e.} ,

where a is a positive constant. One can prove that F is Fréchet differentiable in D(F ) with

F ′(a)h = A(a)−1((−hu(c)s)s) , F ′(c)∗w = −J−1[u(a)s(A(a)−1w)s] , h, w ∈ L2(0, 1) , (45)

where A(a) : H2(0, 1)∩H1
0 (0, 1) → L2(0, 1) is defined as A(a)u := −(aus)s and J : H2(0, 1) →

L2(0, 1) is defined by Jψ := −ψss + ψ (J is the adjoint of the embedding of H1(0, 1) into
L2(0, 1)). In [19] it is shown that the tangential cone condition is satisfied.

Remark 6.3. The results in this section strongly benefit from the fact that the model is one-
dimensional. One can see this for instance that, due to the choice of the parameter space, each
admissible parameter is a continuous function. In the two- or three-dimensional case additional
assumptions are necessary in order to obtain the same results (see, e.g., [13]).

Remark 6.4. It seems that the range invariance condition cannot be proved (even under
stronger regularity assumptions) for the a- and the b-problem, respectively; for the a-problem
see [15]. Notice that the presentation of the Fréchet-derivative in (45), (42) cannot be handled
in the same way as in the case of the c-problem.

7 Conclusions

In this paper we propose a new iterative method for inverse problems of the form (2), namely
the iTK iteration. In the case of noisy data, we also propose a loping version of iTK, namely,
the l-iTK iteration.

In standard iterative regularization methods the number of performed iterations plays the
role of the regularization parameter [9, 19]. A parameter choice rule corresponds to the choice of
an appropriate stopping index kδ

∗ = kδ
∗(δ, y

δ). For loping Kaczmarz type iterations [11, 8, 12, 3],
the situation is quite different. If k is fixed, then the iterates xδ

k+1, do not depend continuously

on data yδ.

Three good reasons for using the loping iteration

The first reason is a numerical one:
Notice that, (11) allow us to conclude ωk = 0 without having to compute xk+1/2 at all.
Therefore, after a large number of iterations, ωk will vanish for some k within each iteration
cycle and the computational expensive evaluation of xk+1/2 (solution of a nonlinear equation)
might be loped, making the l-iTK method in (26) a fast alternative to the iTK method as
well as to classical Kaczmarz type methods [20, 5].

The second reason is of analytical nature:
An alternative to relax the assumption on the boundedness of the sequence {kj

∗}j∈N in The-
orems A.2 and 4.3, and still prove a semiconvergence result, is the introduction of the loping
strategy above. This is done in Theorem 5.4.

The third reason is of heuristic nature:
The rules for choosing the stooping index kδ

∗ in (6) and in (28) are quite different. According to
(6) the iTK iteration should be stopped when for the first time one of the equations of system 2

16



is satisfied within a specified threshold. Therefore, at the iteration step xδ
kδ
∗
, we cannot control

all the residuals ‖Fi(x
δ
k) − yδ

i ‖ within the cycle.
According to (28) however, the l-iTK iteration only stops when all the residuals ‖Fi(x

δ
k)−yδ

i ‖,
i = 0, . . . , N − 1 drop below a specified threshold. Consequently, although the l-iTK iteration
needs more steps to reach discrepancy, it produces an approximate solution xδ

kδ
∗

which better

fits all the system data.

Appendix: iTK method, convergence in the linear case

In this appendix we consider the issue of convergence of the iTK method for noisy data and
linear systems. The first result concerns the continuity of xδ

k at δ = 0 for fixed k ∈ N.
Throughout this appendix we assume, additionally to (A1) – (A3), that

(A4’) The operators Fi in (2) are (compact) linear operators.

Notice that, since α satisfies (9), assumption (A4’) guarantees that the minimizers xδ
k+1

(or xk+1 if δ = 0) of Jk in (10) are uniquely defined.

Lemma A.1. Let δj = (δj,0, . . . , δj,N−1) ∈ (0,∞)N be given with limj→∞ δj = 0. Moreover,

let yδj = (y
δj

0 , . . . , y
δj

N−1) ∈ Y N be a corresponding sequence of noisy data satisfying

‖yδj

i − yi‖ ≤ δj,i , i = 0, . . . , N − 1 , j ∈ N .

Then, for each fixed k ∈ N we have limj→∞ x
δj

k+1 = xk+1.

Proof. Lemma A.1 is proved by induction. Assume k = 0 and notice that x
δj

0 = x0 for j ∈ N.
In this case we have

‖xδj

1 − x1‖ = ‖(F ∗
0F0 + αI)−1F ∗

0 (y
δj

0 − y0)‖ ≤ M(M2 + α)−1δj,0 , (46)

proving that limj→∞ x
δj

1 = x1.

Now, take k > 0 and assume that for all k′ < k we have limj→∞ x
δj

k′+1 = xk′+1. Arguing as
in (46) we obtain

‖xδj

k+1 − xk+1‖ ≤ ‖(F ∗
[k]F[k] + αI)−1

[

F ∗
[k](y

δj

[k] − y[k]) + (x
δj

k − xk)
]

‖

≤ (M2 + α)−1(Mδj,[k] + ‖xδj

k − xk‖) ,

and from the induction hypothesis it follows that limj→∞ x
δj

k+1 = xk+1. This concludes the
induction proof.

Theorem A.2 (Convergence for noisy data). Let δj = (δj,0, . . . , δj,N−1) be a given sequence in

(0,∞)N with limj→∞ δj = 0, and let yδj = (y
δj

0 , . . . , y
δj

N−1) ∈ Y N be a corresponding sequence
of noisy data satisfying

‖yδj

i − yi‖ ≤ δj,i , i = 0, . . . , N − 1 , j ∈ N .

Denote by kj
∗ := k∗(δj , y

δj ) the corresponding stopping index defined in (6) and assume that the

sequence {kj
∗}j∈N is unbounded. Then x

δj

kj
∗

converges to a solution of (2), as j → ∞. Moreover,

if (15) holds, then xδj

kj
∗

→ x†.
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Proof. Let x∗ denote the limit of the iterates xk. Then x∗ is a solution of (2), cf. Theorem
3.2. From Lemma A.1 and the continuity of Fi, it follows for each fixed k ∈ N that

lim
j→∞

x
δj

k → xk , lim
j→∞

Fi(x
δj

k ) → Fi(xk) . (47)

We can assume (without loss of generality) that the sequence kj
∗ is monotonically increasing.

Let ε > 0 be given. According to Theorem 3.2 we can choose n ∈ N such that ‖xkn
∗
−x∗‖ < ε/2.

Now, from (47) with k = kn
∗ , it follows that there exists a j0 > n such that ‖xδj

kn
∗
− xkn

∗
‖ < ε/2

for all j ≥ j0. This fact and Proposition 2.5 imply that

‖xδj

kj
∗

− x∗‖ ≤ ‖xδj

kn
∗
− x∗‖ ≤ ‖xδj

kn
∗
− xkn

∗
‖ + ‖xkn

∗
− x∗‖ <

ε

2
+
ε

2
, (48)

for j ≥ j0. Consequently, x
δj

kj
∗

→ x∗.

Next, assume that (15) hold true and let x† be the x0-minimal norm solution of (2). Then
by Theorem 3.2 we have x

kj
∗
→ x† at j → ∞. Therefore, replacing x∗ by x† in (48), it follows

that x
δj

kj
∗

converges to x†, at j → ∞.

Remark A.3. The assumption on the boundedness of the sequence {kj
∗}j∈N in Theorem A.2

is crucial for the proof. This assumption is natural when dealing with ill-posed problems and
noisy data, since in practical applications one generally has kδ

∗ → ∞ as δ → 0. A similar
assumption is also needed in [20] to prove convergence of the Landweber-Kaczmarz iteration
for noisy data.

In Section 5 we investigate the coupling of the iTK iteration with a loping strategy, which
allow us to drop the above assumption on the boundedness of {kj

∗}j∈N and still prove a semi-
convergence result analog to Theorem A.2.
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Birkhäuser, 1989.

[3] J. Baumeister, B. Kaltenbacher, and A. Leitão, On Levenberg-Marquardt Kaczmarz meth-
ods for regularizing systems of nonlinear ill-posed equations, Inverse Problems and Imaging
(2009), submitted.

[4] B. Blaschke(-Kaltenbacher), Some newton type methods for the solution of nonlinear ill-
posed problems, Ph.D. thesis, Johannes Kepler University, Linz, 2005.

18



[5] C. Byrne, Block-iterative algorithms, Int. Trans. in Operational Research 16 (2009), 01–37.

[6] J. Cheng and M. Yamamoto, Identification of convection term in a parabolic equation with
a single measurement, Nonlinear Analysis 50 (2002), no. 1, 163–171.

[7] F. Collonius and K. Kunisch, Stability of parameter estimation in two point boundary
value problems, J. Reine Angew. Math. 370 (1986), 1–29.

[8] A. De Cezaro, M. Haltmeier, A. Leitão, and O. Scherzer, On steepest-descent-Kaczmarz
methods for regularizing systems of nonlinear ill-posed equations, Appl. Math. Comput.
202 (2008), no. 2, 596–607.

[9] H.W. Engl, M. Hanke, and A. Neubauer, Regularization of inverse problems, Kluwer
Academic Publishers, Dordrecht, 1996.

[10] C. W. Groetsch and O. Scherzer, Non-stationary iterated Tikhonov-Morozov method and
third-order differential equations for the evaluation of unbounded operators, Math. Meth-
ods Appl. Sci. 23 (2000), no. 15, 1287–1300.

[11] M. Haltmeier, A. Leitão, and O. Scherzer, Kaczmarz methods for regularizing nonlinear
ill-posed equations. I. convergence analysis, Inverse Probl. Imaging 1 (2007), no. 2, 289–
298.

[12] M. Haltmeier, A. Leitão, and E. Resmerita, On regularization methods of EM-Kaczmarz
type, Inverse Problems 25 (2009), 075008.

[13] M. Hanke, Regularizing properties of a truncated Newton-CG algorithm for nonlinear in-
verse problems, Numer. Funct. Anal. Optim. 18 (1997), no. 9–10, 971–993.

[14] M. Hanke and C. W. Groetsch, Nonstationary iterated Tikhonov regularization, J. Optim.
Theory Appl. 98 (1998), no. 1, 37–53.

[15] M. Hanke, A. Neubauer, and O. Scherzer, A convergence analysis of Landweber iteration
for nonlinear ill-posed problems, Numer. Math. 72 (1995), 21–37.

[16] Victor Isakov, Inverse problems for partial differential equations, second ed., Applied
Mathematical Sciences, vol. 127, Springer, New York, 2006.

[17] S. Kaczmarz, Approximate solution of systems of linear equations, Internat. J. Control 57

(1993), no. 6, 1269–1271.

[18] B. Kaltenbacher, Some newton-type methods for the regularization of nonlinear ill-posed
problems, Inverse Problems 13 (1997), 729–753.

[19] B. Kaltenbacher, A. Neubauer, and O. Scherzer, Iterative regularization methods for
nonlinear ill-posed problems, Radon Series on Computational and Applied Mathematics,
vol. 6, Walter de Gruyter GmbH & Co. KG, Berlin, 2008.

[20] R. Kowar and O. Scherzer, Convergence analysis of a landweber-kaczmarz method for
solving nonlinear ill-posed problems, Ill posed and inverse problems (book series) 23 (2002),
69–90.

19



[21] S. McCormick, The methods of kaczmarz and row orthogonalization for solving linear
equations and least squares problems in hilbert space, Indiana Univ. Math. J. 26 (1977),
1137–1150.

[22] V.A. Morozov, Regularization methods for ill–posed problems, CRC Press, Boca Raton,
1993.

[23] F. Natterer, Algorithms in tomography, State of the Art in Numerical Analysis, vol. 63,
1997, pp. 503–524.

[24] O. Scherzer, Convergence rates of iterated Tikhonov regularized solutions of nonlinear
ill-posed problems, Numer. Math. 66 (1993), no. 2, 259–279.

[25] , A convergence analysis of a method of steepest descent and a two-step algorithm
for nonlinear ill-posed problems, Numer. Funct. Anal. Optim. 17 (1996), no. 1–2, 197–214.

[26] A.N. Tikhonov and V.Y. Arsenin, Solutions of ill-posed problems, John Wiley & Sons,
Washington, D.C., 1977, Translation editor: Fritz John.

20


	Introduction
	Assumptions and preliminary results
	iTK Method: Convergence for exact data
	iTK Method: Convergence for noisy data
	The loping iterated Tikhonov-Kaczmarz method
	Convergence analysis

	Applications
	The c-problem
	The b-problem
	The a-problem

	Conclusions

