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Abstract: We analyze a multiple level-set method for solving elliptic Cauchy problems with piecewise
constant solutions. This method corresponds to an iterated Tikhonov method for a particular Tikhonov
functional based on TV-H1 penalization. Generalized minimizers for our Tikhonov functional are
defined and an existence result is established. Moreover, convergence and stability results of the
proposed Tikhonov method are derived. The proposed multiple level-set method is tested numerically,
and our experiments demonstrate that the method is able to accurately recover multiple objects as
well as multiple contrast levels.
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1 Introduction

The model and the inverse problem

Let Ω ⊂ IR3, be an open bounded set with piecewise Lipschitz boundary ∂Ω. Moreover, we
assume that ∂Ω = Γ1 ∪Γ2, where Γi are two open connected disjoint parts of ∂Ω. We denote
by P the elliptic operator defined in Ω by

P(u) := −
d
∑

i,j=1

Di(ai,jDju) , (1)

where the real functions ai,j ∈ L∞(Ω) are such that the matrix A(x) := (ai,j)
d
i,j=1 satisfies

ξtA(x) ξ > α||ξ||2, for all ξ ∈ IRd and for a.e. x ∈ Ω, where α > 0.
We denote by elliptic Cauchy problem the boundary value problem (BVP)

(CP )







Pu = f , in Ω
u = g1 , at Γ1

uν = g2 , at Γ1

,

where the functions (g1, g2) ∈ H1/2(Γ1)×H
1/2
00 (Γ1)

′ correspond to the problem data, Cauchy
data, and the real function f ∈ L2(Ω) is a given source term in the model.
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If there exists a distribution u ∈ H1(Ω), which solves the weak formulation of the elliptic
equation Pu = f in Ω, and also satisfies the boundary conditions above (at Γ1) in the sense
of the trace operator, we say that u is a (variational) solution of (CP).

Let u be a solution of (CP). It is worth noticing that, if the Neumann trace at Γ2 of u is
known, then u can be computed as a solution of the mixed boundary value problem

P = f , in Ω u = g1 , at Γ1 uν = g2 , at Γ1 ,

which is a well posed problem in the sense of Hadamard [25]. Therefore, it is enough to
consider the task of determining the Neumann trace of u at Γ2.

Brief overview on elliptic Cauchy problems

Elliptic Cauchy problems are not well posed in the sense of Hadamard. A tutorial example
given by Hadamard almost 90 years ago during his seminars shows that the solution of (CP)
does not depend continuously on the Cauchy data [25, 32]. For a recent analytical investigation
of the degree of ill-posedness of elliptic Cauchy problems in two-dimensional bounded Lipschitz
domains, we refer the reader to [5].

Existence of solutions for (CP) for arbitrary Cauchy data (g1, g2) do not hold. For details
we refer the reader to [32, 20]. Actually, one cannot prove existence even in the case of
analytical Cauchy data (g1, g2) [24].

A given pair of Cauchy data (g1, g2) is called consistent if the corresponding problem
(CP) admits an H1-solution. It was proved in [3] that the set M := {(g1, g2) ∈ H1/2(Γ1) ×

[H
1/2
00 (Γ1)]

′; (g1, g2) consistent Cauchy data} is a dense subset of H1/2(Γ1) × [H
1/2
00 (Γ1)]

′.
What concerns the issue of uniqueness of solutions for (CP), it has been proven that

elliptic Cauchy problems admit a unique weak solution in H1(Ω) (see, e.g., [20]). A classical
uniqueness result for solutions in C2(Ω) can be found in [10]. Moreover, a uniqueness result
for a class of nonlinear elliptic Cauchy problems can be found in [30].

What concerns numerical investigations of (CP), a large variety of methods can be found
in the literature:

M.1) Optimization approach [22, 3];
M.2) Iterative methods [29, 32, 26, 20, 30];
M.3) Backus-Gilbert method [31, 27];
M.4) Optimal control [12];
M.5) Quasi-reversibility [6, 7];
M.6) Level set method [33, 18].

The reason for this strong interest resides on the fact that elliptic Cauchy problems arise in
many industrial, engineering and biomedical applications including:

A.1) Expansion of measured surface fields inside a body from partial boundary measure-
ments [3];

A.2) A classical thermostatics problem, which consists in recovering the temperature in
a given domain when its distribution and the heat flux are known over the accessible region
of the boundary [20];

A.3) The analogous electrostatics case encountered in electric impedance tomography [3];
A.4) Inverse problems related to corrosion detection [2, 33].
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Multiple level-set methods for elliptic Cauchy problems

Our main goal in this work is to study multiple level-sets methods [13, 15] for obtaining
regularized solutions of (CP). Multiple level-set approaches for elliptic Cauchy problems are
manageable whenever the unknown solution is a simple function defined on Γ2 assuming at
mostN different values, i.e. there exists disjoint measurable subsetsDj ⊂ Γ2 and constants cj ,
j = 1 : N , such that |Γ2| =

∑

j |Dj | and u at Γ2 is known a-priori to satisfy uν |Γ2 =
∑

j cjχDj ,
almost everywhere.

The manuscript is outlined as follows: In Section 2 we write the elliptic Cauchy problem
in the functional analytical framework of an (ill-posed) operator equation. This is the starting
point for the level set approach derived in the sequel. In Section 3 we investigate a multiple
level-set approach for (CP) based on the ideas presented in [15]. First we define a Tikhonov
functional related to (CP). This functional is based in the introduction of TV-H1 penalization.
Moreover, we define the concept of generalized minimizers for this functional. Existence of
(generalized) minimizers for this Tikhonov functional is proven. Relevant properties of the
generalized minimizers as well as properties of the penalization term are investigated. In the
sequel we prove convergence and stability results for this Tikhonov regularization method. In
Section 4 we introduce a stabilized (smooth) Tikhonov functional. In the main result of this
section we prove that the minimizers of the stabilized functional asymptotically approximate
the minimizers of the original Tikhonov functional, as the stabilization parameter goes to zero.
The corresponding multiple level-set method is derived from an explicit Euler method for
solving the evolution equation related to the first order optimality condition of the stabilized
functional. Section 5 is devoted to numerics. An efficient implementation of the multiple
level-set method is investigated. We are able to improve the performance of the method in
[15] by using a specially suited pre-conditioning strategy. Several experiments are provided,
in order to illustrate the effectiveness of the multiple level-set method considered in Section 4.

2 Formulation of the inverse problem

We begin by defining the auxiliary problem:






Pv = f , in Ω
v = g1 , at Γ1

vν = ϕ , at Γ2

. (2)

This mixed BVP defines the operator T : ϕ 7→ vν |Γ1 . Notice that, if ϕ = uν |Γ2 , where u is the
solution of (CP), then it would follow T (ϕ) = g2. A first least square approach [22] consists
in solving the optimization problem

‖T (ϕ) − g2‖
2 → min .

Due to the superposition principle for linear elliptic BVPs [24], one can split the solution
of (2) in v = va + vb, where

Pva = 0 , in Ω va = 0 , at Γ1 (va)ν = ϕ , at Γ2 ; (3)

Pvb = f , in Ω vb = g1 , at Γ1 (vb)ν = 0 , at Γ2 . (4)

Now, we define from (3) the linear operator

L : ϕ 7→ (va)ν |Γ1 , (5)
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and from (4) we define the function z := (vb)ν |Γ1 . Since T (ϕ) = Lϕ+ z, the Cauchy problem
(CP) can be written in the form of the operator equation

Lϕ = g2 − z , (6)

where the constant term z depends only on the Dirichlet data g1, on the source term f and
on the operator P. Therefore, it can be computed a-priori.

In the sequel we shall assume Ω ⊂ IR3 and define a functional analytical framework to
analyze (6). The Cauchy data is assumed to satisfy

(g1, g2) ∈ H1/2(Γ1) ×H
1/2
00 (Γ1)

′ (7)

and the source term f to be a L2(Ω)-distribution.
From this choice of g1 and f , the elliptic theory allow us to conclude that the mixed BVP

in (4) has a unique solution vb ∈ H1(Ω) [14, 24]. Therefore, z := (vb)ν |Γ1 ∈ H
1/2
00 (Γ1)

′ and

the term g2 − z on the right hand side of (6) is now a distribution in H
1/2
00 (Γ1)

′.
The next result [18, Proposition 2.1] shows that the linear operator L in (5) is well defined

and continuous from L3/2(Γ2) to H
1/2
00 (Γ1)

′.

Proposition 2.1. Let Ω ⊂ IR3 be defined as in Section 1 and assume the Cauchy data (g1, g2)

to be given in H1/2(Γ1)×H
1/2
00 (Γ1)

′. Then, the operator defined in (5) is an injective bounded

linear map L : L3/2(Γ2) → H
1/2
00 (Γ1)

′.

To conclude this section we address an issue related to noisy Cauchy data. If only cor-
rupted noisy data (gδ

1, g
δ
2) are available for problem (CP ), we assume the existence of a

consistent Cauchy data (g1, g2) satisfying (7) such that

‖g1 − gδ
1‖L2(Γ1) + ‖g2 − gδ

2‖L2(Γ1) ≤ δ. (8)

Since z in (6) depends continuously on g1 in the H1/2(Γ1) topology, it is natural to ask
whether it is possible to obtain from measured data (gδ

1, g
δ
2) satisfying (8), a corresponding

zδ ∈ [H
1/2
00 (Γ1)]

′ such that ‖z − zδ‖
[H

1/2
00 (Γ1)]′

≤ δ. The next result [18, Lemma 2.3] gives a

positive answer to this question

Lemma 2.2. Let the noise Cauchy data be given as in (8), where g1 ∈ Hs(Γ1) for some
s > 1/2. Then (CP ) reduces to the operator equation Lϕ = gδ

2 − z
δ, where the right hand side

satisfies
‖(g2 − z) − (gδ

2 − zδ)‖
[H

1/2
00 (Γ1)]′

≤ h(δ). (9)

Here h : IR+ → IR+ is a function satisfying limδ→0 h(δ) = 0.

3 A Tikhonov regularization approach

3.1 Generalized minimizers

The starting point of our approach is the assumption that the solution ϕ of (6) is a simple
function taking only a finite number of possible values. Moreover, we assume the existence
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of disjoint subsets Dj ⊂ Γ2 and constants cj , j = 1 : N , such that |Γ2| =
∑

j |Dj | and

ϕ =

N
∑

j=1

cjχDj , a.e. (10)

Next we introduce the H1-functions {φj}p
j=1, where p is the smallest integer satisfying 2p ≥ N

(for simplicity of the presentation we shall assume in this paper N = 4 and p = 2), such that

D1 = {x |φ1(x) > 0, φ2(x) > 0}, D2 = {x |φ1(x) > 0, φ2(x) < 0},

D3 = {x |φ1(x) < 0, φ2(x) > 0}, D4 = {x |φ1(x) < 0, φ2(x) < 0}.

Define V = {u ∈ L∞(Γ2) |u = χD , D ⊂ Γ2 measurable, Hn−1(∂D) < ∞}, where Hn−1

denotes the (n− 1)-dimensional Hausdorff-measure, and q : V × V → L∞(Γ2) is given by

q(u1, u2) = c1u1u2 + c2(1 − u1)u2 + c3u1(1 − u2) + c4(1 − u1)(1 − u2). (11)

Set U = q(V,V), i.e., U = {u ∈ L∞(Γ2) |u = q(u1, u2), u1, u2 ∈ V}, and define the operator
P : H1(Γ2) × H1(Γ2) ∋ (φ1, φ2) 7→ q(H(φ1), H(φ2)) ∈ U, where H : H1(Γ2) → V, is the
Heavyside projector. Using (10) and the above definitions we can represent ϕ by

ϕ = P (φ1, φ2) ,

and the inverse problem (6) can be written in the form of the operator equation

L(P (φ1, φ2)) = gδ
2 − zδ, (12)

with noise data satisfying (9). Once an approximate solution (φ1, φ2) of (12) is obtained, a
corresponding solution of (6) is given by ϕ = P (φ1, φ2).

The multiple level-set method proposed in this paper corresponds to a continuous evolution
of the functions φ1 and φ2 for an artificial time t. This evolution aims to minimize of the
Tikhonov functional

Gα(φ1, φ2) = ‖L (P (φ1, φ2)) − (gδ
2 − zδ)‖2

Y + α
2
∑

j=1

{

β|H(φj)|BV + ‖φj − φj
0‖

2
H1

}

(13)

based on TV –H1 penalization. Here α > 0 plays the rule of a regularization parameter and
β > 0 is a scaling factor. The BV -seminorm terms penalize the length of the Hausdorff
measure of the boundary of the set {x | φ1(x) ≥ 0 and φ2(x) ≥ 0} and play an important role
in the analysis of convergence of our regularization procedure.

Since P is discontinuous, one cannot prove that the Tikhonov functional (13) attains a
minimizer. In order to guarantee existence of minimizers for Gα, it is necessary to use the
concept of generalized minimizers introduced in [15].

Definition 3.1. Let the boundary part Γ2 ⊂ ∂Ω be defined as in Section 1.

1. The set Ad of admissible parameters consists of tuples (z1, z2, φ1, φ2) ∈ (L∞(Γ2))
2 ×

(H1(Γ2))
2 such that there exist sequences {φ1

k}k∈IN, {φ2
k}k∈IN in H1(Γ2) and a sequence

{εk}k∈IN of positive numbers converging to zero, satisfying1

lim
k→∞

‖φj
k − φj‖L2(Γ2) = 0 and lim

k→∞
‖Hεk

(φj
k) − zj‖L3/2(Γ2) = 0, j = 1, 2.

1Hε(φ
j)(x) :=

8

>

<

>

:

0 for φj(x) < −ε,

1 + φj(x)
ε

for φj(x) ∈ [−ε, 0],

1 for φj(x) > 0.
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2. A generalized minimizer of Gα is an admissible paramter (z1, z2, φ1, φ2) minimizing

Gα(z1, z2, φ1, φ2) := ‖L (q(z1, z2)) − (gδ
2 − zδ)‖2

Y + αρ(z1, z2, φ1, φ2) (14)

over Ad. Here the functional ρ is defined by

ρ(z1, z2, φ1, φ2) := inf
{

lim inf
k→∞

2
∑

j=1

(

β|Hεk
(φj

k)|BV + ‖φj
k − φj

0‖
2
H1

)}

,

where the infimum is taken with respect to all sequences {εk} and {(φ1
k, φ

2
k)} as in 1.

The set Ad is non empty [15, Remark 2]. Moreover, since the solution of (6) is assumed to
satisfy ϕ = P (φ1, φ2), if the functions φj ∈ H1(Γ2) are such that |∇φj | 6= 0 in a neighborhood
of the level set {φj = 0}, we can define the constant sequences {φj

k = φj}k and zj = H(φj),
and estimate

‖Hεk
(φj

k) − zj‖L3/2(Γ2) ≤ C

∫ 0

−εk

1 dt→ 0, εk → 0,

where C is a positive number and {εk} is any positive sequence converging to zero. Conse-
quently (z1, z2, φ1, φ2) is in Ad and satisfies

L(q(z1, z2)) = g2 − z . (15)

3.2 Convergence analysis

In the next theorem we summarize results on coercivity and lower semicontinuity of the
functional ρ and well-posedness of Gα which are scaterred along [15].

Theorem 3.1. Let the functionals ρ,Gα be defined as in item 2 of Definition 3.1. The
following assertions hold true:

1. The functional ρ(z1, z2, φ1, φ2) is coercive and strong-weak lowersemicontinuous in the
BV (Γ2)

2 ×H1(Γ2)
2 and L3/2(Γ2)

2 ×H1(Γ2)
2 topology, respectively;

2. The functional Gα in (13) attains minimizers on the set Ad.

Proof. See Lemma 4, Lemma 5 and Theorem 6 in [15].
In the next theorem, we present the results of converge and stability of the approximations

for the solution of (6). These results were originally proved for a nonlinear inverse problem
in [15], where a notion of minimum-norm solution was introduced.

Theorem 3.2. The following assertions hold true:

1. Assume that we have exact data, i.e. δ = 0 and β > 0. For every α > 0 let
(z1

α, z
2
α, φ

1
α, φ

2
α) denote a minimizer of Gα on the set Ad. Then, for every sequence of pos-

itive numbers {αk}k∈IN converging to zero, there exists a subsequence (denoted again by
{αk}k∈IN) such that (z1

αk
, z2

αk
, φ1

αk
, φ2

αk
) is strongly convergent in (L3/2(Γ2))

2×(L2(Γ2))
2

to some limit point (z1, z2, φ1, φ2). Moreover, the limit (z1, z2) is a solution of (6), i.e.
L(q(z1, z2)) = g2 − z.

6



2. Let the Cauchy data (g1, g2) be consistent and α = α(δ) be a positive function satisfying
limδ→0 α(δ) = 0 and limδ→0 δ

2α(δ)−1 = 0. Moreover, let {δk}k∈IN be a sequence of
positive numbers converging to zero and {(gδk

1 , g
δk
2 )}k∈IN be a corresponding noisy data

satisfying (8). Then, there exist a subsequence (denoted again by {δk}) and a sequence
{αk := α(δk)}k∈IN such that (z1

αk
, z2

αk
, φ1

αk
, φ2

αk
) converges in (L3/2(Γ2))

2 × (L2(Γ2))
2 to

some limit point (z1, z2, φ1, φ2). Moreover, (z1, z2) satisfy L(q(z1, z2)) = g2 − z.

Proof. The proof follows from the results in [15, Theorems 8 and 9] applied to the operator
equation L(q(z1, z2)) = g2 − z.

4 Multiple level-set approximations

4.1 A Stabilized functional

From a numerical viewpoint it is important to define a functional which can be handled
numerically. Our aim in this direction is to try to find minimizers which “approximate” the
minimizers of Gα by means of the stabilized functional defined by

Gε,α(φ1, φ2) := ‖L(Pε(φ
1, φ2)) − (gδ

2 − zδ)‖2
Y + α

2
∑

j=1

{

β|Hε(φ
j)|BV + ‖φj − φj

0‖
2
H1

}

, (16)

where ε, α and β are positive real numbers and Pε(φ
1, φ2) = q(Hε(φ

1), Hε(φ
2)) is a smooth

approximation of the discontinuous operator P .
By Lemma 10 of [15] we have that Gε,α is well-posed, i.e., attains minimizers on (H1(Γ2))

2.
The next theorem shows that, for ε → 0, the minimizers of Gε,α approximate a (general-

ized) minimizer of Gα.

Theorem 4.1. Let α, β > 0 be given. For each ε > 0 denote by (φ1
ε,α, φ

2
ε,α) a mini-

mizer of Gε,α. There exists a sequence of positive numbers {εk} converging to zero such
that (Hεk

(φ1
εk,α), Hεk

(φ2
εk,α), φ1

εk,α, φ
2
εk,α) converges strongly in (L3/2(Γ2))

2 × (L2(Γ2))
2 and

the limit is a generalized minimizer of Gα.

Proof. Let (z1
α, z

2
α, φ

1
α, φ

2
α) be a minimizer of Gα on the set Ad. From Definition (3.1),

there exists a sequence {εk}k∈IN of positive numbers converging to zero and a corresponding
sequence {(φ1

k, φ
2
k)}k∈IN in H1(Γ2)

2 satisfying

φj
k → φj

α and Hεk
(φj

k) → zj
α in L3/2(Γ2), j = 1, 2.

From Lemma 3 of [15] we can assume that

ρ(z1
α, z

2
α, φ

1
α, φ

2
α) = lim

k→∞

2
∑

j=1

(

β|Hεk
(φj

k)|BV + ‖φj
k − φj

0‖
2
H1(Γ2)

)

.

Let (φ1
εk
, φ2

εk
) be a minimizer of Gεk,α. The sequences {φj

εk}, j = 1, 2 are uniformly bounded in
H1(Γ2). Thus, there are weakly convergent subsequences (denoted again by the same indices)
and the weak limits are denoted by φ̃j , j = 1, 2. Similarly, the sequences {Hεk

(φj
εk)}k∈IN, j =

1, 2 are uniformly bounded in BV (Γ2). By the compact Sobolev embedding theorem [1, 21]
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there exist convergent subsequences (denoted with the same indices) and limits are denoted
by z̃j , j = 1, 2. Summarizing, we have

φj
εk

→ φ̃j in L2(Γ2) and Hεk
(φj

εk
) → z̃j in L3/2(Γ2), j = 1, 2,

as k → ∞. Thus (z̃1, z̃2, φ̃1, φ̃2) ∈ L3/2(Γ2)
2 ×H1(Γ2)

2 is admissible.
Arguing with definition of ρ, as in Lemma 1 of [15] and with the continuity of L, we

conclude that

‖L(q(z̃1, z̃2)) − (gδ
2 − zδ)‖2

Y = lim
k→∞

‖L(Pεk
(φ1

εk
, φ2

εk
)) − (gδ

2 − zδ)‖2
Y ,

ρ(z̃1, z̃2, φ̃1, φ̃2) ≤ lim inf
k→∞

2
∑

j=1

(

β|Hεk
(φj

k)|BV + ‖φj
k − φj

0‖
2
H1(Γ2)

)

.

Therefore,

Gα(z̃1, z̃2, φ̃1, φ̃2) = ‖L(q(z̃1, z̃2)) − (gδ
2 − zδ)‖2

Y + αρ(z̃1, z̃2, φ̃1, φ̃2)

≤ lim inf
k→∞

Gεk,α(φ1
εk
, φ2

εk
)

≤ lim inf
k→∞

Gεk,α(φ1
k, φ

2
k) ≤ lim sup

k→∞

Gεk,α(φ1
k, φ

2
k)

≤ lim sup
k→∞

‖L(Pεk
(φ1

k, φ
2
k)) − (gδ

2 − zδ)‖2
Y

+ α lim sup
k→∞

2
∑

j=1

(

β|Hεk
(φj

k)|BV + ‖φj
k − φj

0‖
2
H1(Γ2)

)

= ‖L(q(z1
α, z

2
α)) − (gδ

2 − zδ)‖2
Y + αρ(z1

α, z
2
α, φ

1
α, φ

2
α)

= Gα(z1
α, z

2
α, φ

1
α, φ

2
α) = inf Gα,

characterizing (z̃1, z̃2, φ̃1, φ̃2) as a minimizer of Gα.

4.2 Optimility conditions for the stabilized functional

Numerical algorithms for minimizing the stabilized functional (16) are typically based on
attempts to satisfy the first order optimality conditions. To this end we consider Gε,α with
Y = L2(Γ2) and derive the directional derivatives with respect to φj for j = 1, 2, which read

Rj
ε,α,β = 0, j = 1, 2 (17)

with

Rj
ε,α,β(φ1, φ2) := Ψj

εH
′
ε(φ

j)L∗(L(Pε(φ
j , φj)) − (gδ

2 − zδ))

− α

[

β

2
∇ ·
(

H ′
ε(φ

j)∇Hε(φ
j)/|∇Hε(φ

j)|
)

− (I − ∆)(φj − φj
0)

]

and

Ψ1
ε(φ

1, φ2) = (c1 − c2 − c3 + c4)Hε(φ
2) + (c3 − c4), (18)

Ψ2
ε(φ

1, φ2) = (c1 − c2 − c3 + c4)Hε(φ
1) + (c3 − c4). (19)
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Below we consider certain fixed point iterations for soving the system of first order optimality
conditions. Let us first note that (17) is equivalent to

M

(

φ1 − φ1
0

φ2 − φ2
0

)

= M

(

φ1 − φ1
0

φ2 − φ2
0

)

−

(

R1
ε,α,β

R2
ε,α,β

)

. (20)

If we let M vary in each iteration, we obtain algorithms of the following form

Mk

(

φ1
k+1 − φ1

k

φ2
k+1 − φ1

k

)

= Mk

(

φ1
k − φ1

0

φ2
k − φ2

0

)

−

(

R1
ε,α,β(φ1

k, φ
2
k)

R2
ε,α,β(φ1

k, φ
2
k)

)

. (21)

These iteration can be considered as preconditioned fixed-point iterations for (17).

4.3 Multiple level-set algorithms

In the following, we will consider three different choices for Mk.

Algorithm 1 (Simple iteration). As a first method, we consider the fixed point iteration
discussed in [15], which has the form (21) with

Mk :=

(

α(I − ∆) 0
0 α(I − ∆)

)

.

In this case, the two equations in (21) decouple, and the iteration can be written as

α(I − ∆)(φj
k+1 − φj

k) = Ψj
εH

′
ε(φ

j)L∗(L(Pε(φ
j , φj)) − (gδ

2 − zδ))

− α
β

2
∇ ·
(

H ′
ε(φ

j)∇Hε(φ
j)/|∇Hε(φ

j)|
)

.

Identifying α = 1/∆t, tn = n∆t, and φj
n = φj(tn), n = 1, 2, . . ., we find that

(∆ − I)

(

φj(tn) − φj(tn−1)

∆t

)

= Rj,∗
ε,1/∆t,β(φ1(tn−1), φ

2(tn−1)). (22)

If we consider ∆t as step length in a time discretization, we find that in a formal sence the
iterative regularized solution φj

n, j = 1, 2, is an approximate solution of the dynamical system

(∆ − I)

(

∂φj(t)

∂t

)

= Rj
ε,1/∆t,β(φ1(t), φ2(t)), j = 1, 2. (23)

Algorithm 2 (A Gauss-Newton algorithm). Our second choice for Mk is motivated by Gauß-
Newton methods for solving (17), i.e., we set

Mk :=

(

ψ1
kH

′
ε(φ

1
k)L

∗LH ′
ε(φ

1
k)ψ

1
k + α(I − ∆) ψ1

kH
′
ε(φ

1
k)L

∗LH ′
ε(φ

2
k)ψ

2
k

ψ2
kH

′
ε(φ

2
k)L

∗LH ′
ε(φ

1
k)ψ

1
k ψ2

kH
′
ε(φ

2
k)L

∗LH ′
ε(φ

2
k)ψ

2
k + α(I − ∆)

)

.

Here, Mk is just the Gauß-Newton approximation for the second derivative of the functional
(16) with β = 0. While we expect faster convergence of the Newton-type method in com-
parison to the simple iteration, now a coupled linear system has to be solved in each step of
iteration (21). Since Mk is positive definite, these linear systems can be solved iteratively,
e.g., by a conjugate gradient method.

9



Algorithm 3 (Preconditined iterations). As a third alternative we consider the choice

Mk =

(

(I − ∆)−1 0
0 (I − ∆)−1

)

M∗
k ,

where M∗
k is either the matrix of the simple iteration or of the Gauß-Newton method above.

For a detailed analysis of similar preconditioned iterative methods, we refer to [16, 17].

5 Numerial exeriments

In this section we illustrate the advantages of the multiple levelset methods in reconstructing
piecewise constant parameters over standard methods based on the regularized solution of
the quadratice least-squares problem. Moreover, we compare the three different numerical
methods for minimizing the minimizing the stabilized functional (16) outlined in the previous
section.

5.1 The model problem and its discretization

For our numerical experiments we consider the following three dimensional Cauchy problem:
Let α > 0 be given, and consider the domain Ω := (0, 1) × (0, 1) × (0, a) with boundary
∂Ω = Γ0 ∪ Γa ∪ ΓL consisting of three parts

Γ0 := (0, 1)2 × {0}, Γa := (0, 1)2 × {a}, and ΓL := ∂Ω \ Γ0 ∪ Γa.

We consider the boundary value problem

−∆u = 0 in Ω, (24)

u = 0 on Γ0 ∪ ΓL (25)

uν = ϕ on Γa, (26)

and the corresponding Cauchy problem of determining the function φ from additional obser-
vations

uν = g on Γ0.

For the numerical solution of (24)–(26) we use a discretization method based on Fourier series.
Let ϕn,m denote the Fourier coefficients of φ, i.e.,

ϕ(x, y) =
∑

m,n

ϕm,n sin(mπx) sin(nπy),

then the solution of the boundary value problem (24)–(26) is given by

u(x, y, z) =
∑

m,n

um,n sin(mπx) sin(nπy) sinh(ωm,nπa), ωm,n :=
√

m2 + n2

with coefficient um,n defined by

um,n =
ϕm,n

ωm,nπ cosh(ωm,nπa)
.

The corresponding forward operator L in (6) is then given by

(Lϕ)(x, y) =
∑

m,n

um,n sin(mπx) sin(nπy) sinh(ωm,nπa).

10



5.2 Numerical tests

In our numerical experiments, we try to identify the piecewise constant function

φ(x, y) =







2, (x− 0.75)2 + (y − 0.75)2 < 0.15
1, (x− 0.75)2 + (y − 0.25)2 < 0.15 or (x, y) ∈ (0.15, 0.35)2

0, else

from additional measurements of the Neumann trace g := uν at Γ0. Throughout our numerical
experiments we use synthetic data which are perturbed by random noise. The true solution
and the corresponding data are displayed in Figure 1. In all numerical tests, we stop the
iterations according to a discrepancy principle, i.e., we terminate the iterations when the first
time the norm of the residual is less than τδ, and we use τ = 1.5 in our simulations. For the
Gauß-Newton methods, we further utilize an adaptive strategy for choosing the regularization
parameter α, i.e., we start with α = 1 and decrease α in every Newton iteration by a factor
0.3. For the simple iterations, we choose α = δ2. For the levelset methods, we utilize a
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Figure 1: Exact solution (left) and data (right) perturbed with δ = 10−3 noise.

smoothed Heaviside projector

Hε(z) :=
1

2
(erf(z) + 1),

and we report only numerical experiments with β = 0, i.e., without bounded variation regu-
larization term. Since the true solution only attains three different values, we choose c1 = 0,
c2 = 1, c2 = 2 and c4 = 0 in the definition of the “projection” operator P , see (11).

In Figure 2, we display the solutions obtained with a standard conjugate gradient method
applied to the linear Cauchy problem (6), and the one obtained with the preconditioned Gauß-
Newton levelset method outlined in Algorithm 2 and 3. The reconstructions obtained with
the different levelset algorithms are very similar, and we therefore only present the results for
one of the methods. Also the reconstruction errors of the the methods are comparable, and we
only list the error of conjugate gradient method applied to the solution of the linear Cauchy
problem and the preconditioned Gauß-Newton method in Table 1. The rereconstructions of
the levelset methods are clearly superior to the ones obtained with standard regularization
methods, e.g., the L2 reconstruction error of the levelset methods at noise level δ = 10−2 is
comparable to the one of the CGNE method with noise level δ = 10−4. This shows that the
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Figure 2: Comparison of reconstructions obtained with conjugate gradients method applied
to the linear Cauchy problem (left), and the preconditioned Gauß-Newton levelset method
(right) for noise level δ = 10−3.

δ 0.01 0.001 0.0001 0.00001

CGNE 0.3940 0.2615 0.2356 0.2185

P-GN 0.2256 0.1804 0.1227 0.0763

Table 1: Reconstruction errors ‖ϕ† − ϕk‖0 of CGNE applied to the linear Cauchy problem
(6), and the preconditioned Gauß-Newton levelset method (Algorithm 3) for varying noise
level; see also Figure 2.

utilization of a-priori knowledge, i.e. the assumption of a piecewise constant solution, in the
formulation of the algorithm can drastically improve the quality of reconstructions.

While the solutions obrtained with the different levelset algorithms are very similar, the
computational cost of Algorithms 1–3 varies significantly. In Table 2, we compare the iteration
numbers of the simple iteration and the Gauß-Newton algorithm, and their preconditioned
variants.

δ SIM GN P-SIM P-GN

0.01 30 7 (10) 9 3 (10)
0.001 575 13 (37) 70 6 (28)
0.0001 >10000 20 (113) 4272 9 (62)

Table 2: Iteration numbers for the simple iteration (SIM) and the Gauß-Newton method
(GN), as well as their preconditioned variants for various noise levels. For the Gauß-Newton
iterations, the total number of inner CG iterations are listed in parenthesis.
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