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Abstract

We investigate level-set type approaches for solving ill-posed inverse problems, under
the assumption that the solution is a piecewise constant function. Our goal is to identify
the level sets as well as the level values of the unknown parameter function.

Two distinct level-set frameworks are proposed for solving the inverse problem. In both
of them the level-set function is assumed to be in L2. Corresponding Tikhonov regulariza-
tion approaches are derived and analyzed. Existence of minimizers for the Tikhonov func-
tionals is proven. Moreover, convergence and stability results of the variational approaches
are established, characterizing the Tikhonov approaches as regularization methods.

1 Introduction

Several inverse problems of interest consist of identifying an unknown physical quantity u ∈ X,
that can be represented by a piecewise constant real function over a bounded given domain Ω,
from the set of data y ∈ Y , where X, Y are Hilbert spaces. The relation between the unknown
parameter function and the problem data is described by the model

F (u) = y , (1)

where F : D(F ) ⊂ X → Y , what corresponds to the fact that the set of data is obtained by
indirect measurements of the parameter. Because of this, in practical applications the exact
data y ∈ Y is, in general, not known. Given is only approximate measured data yδ ∈ Y ,
corrupted by noise of level δ > 0 and satisfying

‖yδ − y‖Y ≤ δ . (2)

In the case where the unknown function u is a piecewise constant function distinguishing
between two given values, level-set approaches were considered in [20, 17, 13, 4, 2, 3]. In this
case, since the level values of u are known, one needs only to identify the level sets of u, i.e.
the inverse problem reduces to a shape identification problem. In the case where the unknown
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function u is a piecewise constant function distinguishing between several given values, multiple
level set approaches were considered in [3, 5, 8].

If the level values of u are also unknown the inverse problem becomes harder, since one has
to identify both the level sets as well as the level values of the unknown parameter u. In this
case, the dimension of the parameter space increases by the number of unknown level values.

Our starting point in this article is the assumption that the parameter function u in (1) is
a piecewise constant function assuming two distinct unknown values, i.e. u(x) ∈ {c1, c2} a.e.
in Ω ⊂ Rd. In this case one can assume the existence of an open mensurable set D ⊂⊂ Ω s.t.
u(x) = c1, x ∈ D =: D1 and u(x) = c2, x ∈ Ω/D =: D2.

In this article we propose two level set approaches to represent the unknown parameter u:

1) Standard level set approach (sLS): This approach consists in introducing the level
set function φ, in L2(Ω), which acts as a regularization on the parameter space. We use the
Heaviside projector H, to represent a solution of (1) in the form

u = c2H(φ) + c1(1−H(φ)) =: Ps(φ, cj) . (3)

Notice that u(x) = ci, x ∈ Di, where the sets Di are defined by D1 = {x ∈ Ω ; φ(x) > 0} and
D2 = {x ∈ Ω ; φ(x) < 0}. Thus, the operator Ps establishes a straightforward relation between
the level sets of φ and the sets Di representing our a priori knowledge about the solution u.

Within this sLS framewok, the inverse problem in (1), with data given as in (2), can be
written in the form of the operator equation

F (Ps(φ, cj)) = yδ . (4)

In order to obtain approximate solutions to (4), we propose the minimization of the Tikhonov
functional

Gα,s(φ, cj) := ‖F (Ps(φ, cj))− yδ‖2Y + α
{
β1|H(φ)|BV + β2‖φ‖2L2(Ω) + β3‖cj‖2R2

}
(5)

based on TV –L2 penalization. Concurrent approaches were proposed in [2, 3, 21] (using TV
penalization) and in [13, 8] (using TV -H1 penalization).

2) Piecewise constant level set approaches (pcLS): In the sequel we introduce the
piecewise constant level set function φ ∈ L2(Ω) such that φ(x) = i, x ∈ Di, i = 1, 2. Then,
defining the auxiliary functions ψ1(t) := 2−t and ψ2(t) := t−1, we represent the characteristic
functions of the subdomains Di in the form χDi(x) = ψi(φ(x)). Consequently, a solution of
(1) can be written in the form

u = c1ψ1(φ) + c2ψ2(φ) =: Ppc(φ, cj) . (6)

Notice that the piecewise constant assumption on φ corresponds to the constraint K(φ) = 0,
where K(φ) := (φ− 1)(φ− 2) is a smooth nonlinear functional.

2a) Penalized pcLS approach: Within the pcLS framework, the inverse problem in (1),
with data given as in (2), can be written in the form of the abstract operator equation{

F (Ppc(φ, cj)) = yδ ,

s.t. φ ∈ {L2(Ω); K(φ) = 0} .
(7)

Approximate solutions to (7) can be obtained by minimizing the Tikhonov functional

Gα,ppc(φ, cj) := ‖F (Ppc(φ, cj))− yδ‖2Y +α
{
β1|Ppc(φ, cj)|BV +β2‖K(φ)‖2L2 +β3‖cj‖2R2

}
, (8)
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where the constraint K(φ) = 0 in (7) is enforced by the penalty term ‖K(φ)‖2L2(Ω), with

K(t) := [K(t) + 2t2]1/2. The other penalization terms correspond to a TV − L2 regularization
strategy (for details see Section 3.1); here βj > 0 are scaling factors.

2b) Strict pcLS approach: In the sequel we introduce yet another Tikhonov functional,
based on the pcLS framework established above. We propose to obtain approximate solutions
to the operator equation (7) by minimizing

Gα,spc(φ, cj) := ‖F (Ppc(φ, cj)) − yδ‖2Y + ‖K(φ)‖L1 + α
{
β1|Ppc(φ, cj)|BV + β2‖cj‖2R2

}
. (9)

Notice that the minimization of the functional Gα,spc furnishes a regularized solution to the
system of operator equations: [

F (Ppc(φ, cj))
K(φ)

]
=
[
yδ

0

]
.

The penalization term in (9) corresponds simply to a TV regularization strategy. There is
actually no need to add an L2 penalization term to the Tikhonov functional Gα,spc (the reason
will become clear in Section 3).

The main difference between the penalized-pcLS and strict-pcLS approaches resides on the
fact that, in the limit case α → 0,1 the limit (φ, cj) of the minimizers (φα, c

j
α) of Gα,ppc does

not necessarily satisfy K(φ) = 0. Therefore, the limit levelset function φ does not have to be
piecewise constant. On the other hand, the minimizers (ψα, c

j
α) of Gα,spc converge (as α→ 0) to

some limit (ψ, cj) satisfying F (Ppc(ψ, c)) = y and K(ψ) = 0. Thus, the limit levelset function
ψ is indeed piecewise constant (as suggested by the name of the approach).

This article is outlined as follows: In Section 2 we introduce the concept of generalized
minimizers for the functional Gα,s in (5). Basic properties of the generalized minimizers are
verified, as well as regularity properties of the penalization term of Gα,s. Moreover, we derive
a convergence analysis for the Tikhonov method related to the sLS approach. We prove a
well-posedness result, and also convergence results for exact and noisy data. In Section 3 we
derive for the pcLS approaches a convergence analysis analog to the classical one presented
for the sLS approach. Section 4 is devoted to numerical experiments. Level set type methods
based on the sLS and pcLS approaches are implemented for solving a two-dimensional inverse
potential problem.

2 The sLS approach

We shall consider the model problem described as in the introduction under the following
general assumptions:

(A1) Ω ⊆ Rd, d = 2, is bounded with piecewise C1 boundary ∂Ω.
(A2) The operator F : D ⊂ Lp(Ω) → Y is continuous and Fréchet-differentiable on D
with respect to the Lp-topology, where 1 ≤ p < d/(d− 1) = 2.
(A3) ε, α and βj , j = 1, 2, 3 denote positive parameters.
(A4) Equation (1) has a solution, i.e. there exists u ∈ L∞(Ω) satisfying F (u) = y; there
exists a function φ ∈ L2(Ω) satisfying |∇φ| 6= 0, in a neighborhood of {φ = 0} such that
H(φ) = z, for some z ∈ L∞(Ω); there exist constants values cj ∈ R such that Ps(z, cj) = u.

1Recall that in the presence of noise, δ > 0, the regularization parameter α is a function of the noisy level,
i.e., α = α(δ); see Theorem 8.
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For each ε > 0, we define the operator

Ps,ε(φ, cj) := c1Hε(φ) + c2(1−Hε(φ)) , (10)

where Hε is the smooth approximation to H given by:

Hε(t) :=
{

1 + t/ε for t ∈ [−ε, 0]
H(t) for t ∈ R/ [−ε, 0]

.

2.1 The concept of generalized minimizers

In order to guarantee existence of a minimizer of Gα,s in (5), we adapt to the level-set framework
described above, the concept of generalized minimizers formulated in [13].

Definition 1. Let the operators H, Ps, Hε and Ps,ε be defined as above.

a) A vector (z, φ, cj) ∈ L∞(Ω)×L2(Ω)×R2 is called admissible when there exists a sequence
{φk} of L2(Ω)-functions satisfying lim

k→∞
‖φk−φ‖H−1(Ω) = 0, and there exists a sequence {εk} ∈

R+ converging to zero such that Hεk(φk) ∈ Lp(Ω) and lim
k→∞

‖Hεk(φk)− z‖Lp(Ω) = 0.

b) A generalized minimizer of Gα,s is considered to be any admissible vector (z, φ, cj) min-
imizing

Gα(z, φ, cj) := ‖F (q(z, cj))− yδ‖2Y + αR(z, φ, cj) (11)

over the set of admissible vectors, where q : L∞(Ω)× R2 3 (z, cj) 7→ c1z + c2(1− z) ∈ L∞(Ω),
and the functional R is defined by

R(z, φ, cj) := ρ(z, φ) + β3‖cj‖2R2 , (12)

with ρ(z, φ) := inf
{

lim infk→∞(β1|Hεk(φk)|BV + β2‖φk‖2L2)
}

. Here the infimum is taken over
all sequences {εk} and {φk} characterizing (z, φ, cj) as an admissible vector.

2.2 Preliminary results

In the sequel we investigate relevant properties of the admissible vectors as well as properties
of the penalization functional R in (12). We start by verifying some basic properties of the
operators Ps,ε, Hε and q that will be necessary in the subsequent analysis.

Lemma 1. Let Ω and p be given as in (A1), (A2). The following assertions hold true.

i) Let {zk} be a sequence in L∞(Ω) converging to some element z ∈ L∞(Ω) in the Lp-topology
and {cjk} be sequences of real numbers converging to cj, j = 1, 2. Then q(zk, c

j
k) converges to

q(z, cj) in the Lp-topology.

ii) Let (z, φ) ∈ L∞(Ω) × L2(Ω), be such that Hε(φ) → z in Lp(Ω) as ε → 0 and let cj ∈ R.
Then Ps,ε(φ, cj)→ q(z, cj) in Lp(Ω) as ε→ 0.

Proof. It is enough to prove assertion (i). Since Ω is bounded the constant functions are in
Lp(Ω). Therefore,

||q(zk, cjk)− q(z, c
j)||Lp(Ω) =

∥∥c1
kzk + c2

k(1− zk)− c1z − c2(1− z)
∥∥
Lp(Ω)

=
∥∥c1
k(zk − z) + (c1

k − c1)z + c2
k

[
(1− zk)− (1− z)

]
+ (c2

k − c2)(1− z)
∥∥
Lp(Ω)

≤ |c1
k|‖zk − z‖Lp(Ω) + |c1

k − c1|‖z‖Lp(Ω) + |c2
k|‖zk − z‖Lp(Ω) + |c2

k − c2|‖1− z‖Lp(Ω)

and the assertion follows.
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Lemma 2. Let (zk, φk, c
j
k) be a sequence of admissible vectors converging in Lp(Ω)×H−1(Ω)×

R2 to some (z, φ, cj) in L∞(Ω)× L2(Ω)× R2. Then (z, φ, cj) is also an admissible vector.

Sketch of the proof. For each k ∈ N, it follows from Definition 1 that there exists a sequence
{φlk} in L2(Ω) and a sequence {εlk} in R+ such that as l→∞ we have φlk → φk in H−1(Ω) and
Hεlk

(φlk)→ zk in Lp(Ω). Thus, we can select a monotone increasing index function γ : N→ N
such that

ε
γ(k)
k ≤ 1

2
ε
γ(k−1)
k−1 ,

∥∥φγ(k)
k − φk

∥∥
H−1(Ω)

≤ k−1 ,
∥∥H

ε
γ(k)
k

(
φ
γ(k)
k

)
− zk

∥∥
Lp(Ω)

≤ k−1 ,

for every k ∈ N. Now, the lemma follows arguing with the triangular inequality. �

In the sequel we prove coercivity and weak lower semi-continuity of the penalization func-
tional R. There properties are fundamental for the convergence analysis in Section 2.3. First
however, we briefly recall some facts about the space BV(Ω). For a proof we refer the reader
to [12, Chapter 5].

Lemma 3. The following assertions hold true:

i) The semi-norm | · |BV is weakly lower semi-continuous with respect to Lp-convergence, i.e., if
{xk} ∈ BV(Ω) converges to x in the Lp-norm, then x ∈ BV(Ω) and |x|BV ≤ lim infk→∞ |xk|BV.

ii) BV(Ω) is compactly embedded in Lp(Ω) for 1 ≤ p < d/(d − 1). Consequently, any bounded
sequence {xk} ∈ BV(Ω) has a subsequence converging in Lp(Ω) to some x ∈ BV(Ω).

Lemma 4. The functional R in (12) is coercive on the set of admissible vectors.

Sketch of the proof. Let (z, φ, cj) be an admissible vector. From definition of ρ(z, φ) and the
definition of admissible vectors, we can guarantee the existence of sequences {φk} ∈ L2(Ω) and
{εk} ∈ R+ such that εk → 0, φk → φ in H−1(Ω), Hεk(φk)→ z in Lp(Ω), and

ρ(z, φ) = lim inf
k→∞

{
β1|Hεk(φk)|BV + β2‖φk‖2L2(Ω)

}
(13)

(see [8, Lemma 3]). From (13), the weak lower semi-continuity of the L2-norm, and Lemma 3 i),
it follows that

ρ(z, φ) ≥ β1 lim inf
k→∞

|Hεk(φk)|BV + β2 lim inf
k→∞

‖φk‖2
L2(Ω) ≥ β1|z|BV + β2‖φ‖2L2(Ω) . (14)

Thus, it follows from (12), (14) that β1|z|BV + β2‖φ‖2L2(Ω) + β3‖cj‖2R2 ≤ R(z, φ, cj), concluding
the proof. �

Lemma 5. The functional R in (12) is weak lower semi-continuous on the set of admissible
vectors, i.e. given a sequence {(zk, φk, cjk)} of admissible vectors such that zk → z in Lp(Ω),
φk ⇀ φ in L2(Ω), cjk → cj in R, for some admissible vector (z, φ, cj), then

R(z, φ, cj) ≤ lim inf
k→∞

R(zk, φk, c
j
k) .

Sketch of the proof. Since the norm in R2 is lower semi-continuous, it is enough to prove the
weak lower semi-continuity of ρ. We argue by contradiction. Let {(zk, φk, cjk)} and (z, φ, cj)
be given as above and assume that ρ(z, φ) > lim infk→∞ ρ(zk, φk). Consequently, there exists
a constant c > 0 such that ρ(z, φ) ≥ c > lim infk∈N ρ(zk, φk). Arguing as in [8, Lemma 5] we
prove the following
Claim: For every sequence {(zl, φl, cjl )} of admissible vectors satisfying zl → z in Lp(Ω) and
φl → φ in H−1(Ω) such that ρ(zl, φl) ≤ c we have ρ(z, φ) ≤ c.
Notice that this claim is a sufficient condition for the weak lower semi-continuity of ρ. Indeed,
if the claim holds true, the constant c above can not exist. �
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2.3 Convergence Analysis

Our first goal is to prove that for any positive parameters α, β1, β2, β3, the functional Gα,s in
(5) is well posed.

Theorem 6. The functional Gα,s in (5) attains minimizers on the set of admissible vectors.

Proof. Notice that the set of admissible vectors is not empty, since (0, 0, 0, 0) is admissible. Let
{(zk, φk, cjk)} be a minimizing sequence for Gα, i.e. a sequence of admissible vectors satisfying
Gα(zk, φk, c

j
k) → inf Gα ≤ Gα(0, 0, 0, 0) < ∞. Then, {Gα(zk, φk, c

j
k)} is a bounded sequence of

real numbers. Therefore, {(zk, φk, cjk)} is uniformly bounded in BV×L2×R2. Thus, Lemma 3,
the Sobolev compact embedding theorem [1] and the Bolzano-Weierstraß theorem guarantee
the existence of a subsequence (denoted again by {(zk, φk, cjk)}) and the existence of (z, φ, cj) ∈
Lp(Ω) × L2(Ω) × R2 such that φk ⇀ φ in L2(Ω), φk → φ in H−1(Ω), zk → z in Lp(Ω) and
cjk → cj in R.

From Lemma 2 we conclude that (z, φ, cj) is an admissible vector. Moreover, from Lemma 5
together with the continuity of F and q we obtain

inf Gα = lim
k→∞

Gα(zk, φk, c
j
k) = lim inf

k→∞

{
‖F (q(zk, c

j
k))− y

δ‖2Y + αR(zk, φk, c
j
k)
}

≥ ‖F (q(z, cj))− yδ‖2Y + αR(z, φ, cj) = Gα(z, φ, cj) ,

proving that (z, φ, cj) minimizes Gα.

In the next theorems we present the main convergence and stability results. The proofs
use classical techniques from the analysis of Tikhonov type regularization methods (see, e.g.,
[11, 10]) and will be omitted.

Theorem 7 (Convergence for exact data). Assume that we have exact data, i.e. yδ = y
and βj > 0, j = 1, 2, 3. For every α > 0 denote by (zα, φα, c

j
α) a minimizer of Gα on the set of

admissible vectors. Then, for every sequence of positive numbers {αk} converging to zero there
exists a subsequence, denoted again by {αk}, such that (zαk , φαk , c

j
αk) is strongly convergent in

Lp(Ω)×H−1(Ω)× R2. Moreover, the limit is a solution of (4).

Theorem 8 (Convergence for noisy data). Let α = α(δ) be a function satisfying limδ→0

α(δ) = 0 and limδ→0 δ
2α(δ)−1 = 0. Moreover, let {δk} be a sequence of positive numbers

converging to zero and {yδk} ∈ Y be corresponding noisy data satisfying (2). Then, there exist
a subsequence, denoted again by {δk}, and a sequence {αk := α(δk)} such that (zαk , φαk , c

j
αk)

converges in Lp(Ω)×H−1(Ω)× R2 to solution of (4).

3 The pcLS approaches

In these level-set approaches we consider the model problem described in the introduction
under assumptions (A1) – (A3). In the case of the penalized-pcLS approach, we also require
that

(A4’) Equation (1) has a solution, i.e. there exists u ∈ L∞(Ω) satisfying F (u) = y; there
exists a function φ ∈ BV(Ω) ⊂ L2(Ω) and constants c1 6= c2 ∈ R such that Ppc(φ, cj) = u.

In the case of the strict-pcLS approach however, we require that

(A4”) There exists u ∈ L∞(Ω) satisfying F (u) = y. Moreover, there exists a function
φ ∈ BV(Ω) ⊂ L2(Ω) and constants c1 6= c2 ∈ R such that Ppc(φ, cj) = u and K(φ) = 0.
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Differently from the Ps, for fixed constants cj the operator Ppc(·, cj) is 1-1, continuous and
continuously differentiable from L2(Ω) onto L2(Ω). Consequently, the set of admissible vectors
for the Tikhonov functionals in (8) and (9) is defined in a different manner.

Definition 2. Let the operator Ppc be defined as in (6) and τ > 0. A vector (φ, cj) ∈
L2(Ω)× R2 is called admissible when φ ∈ BV(Ω) and |c2 − c1| ≥ τ .

From (6), it follows that Ppc maps admissible vectors to BV(Ω). The next lemmas are
devoted to the investigation of relevant properties of Ppc, K and K.

Lemma 9. Let K be the operator defined in Section 1. The following assertions hold true:
i) K maps L2(Ω) to L2(Ω).
ii) ‖K(·)‖2L2(Ω) is coercive.
iii) ‖K(·)‖2L2(Ω) is weak lower semi-continuous w.r.t the weak convergence in L2(Ω).

Proof. Let φ ∈ L2(Ω) be given. Assertion (i) is a consequence of

‖K(φ)‖2L2 = ‖(
2
Π
j=1

(φ− j) + 2φ2)1/2‖2L2 =
∫

Ω
(3φ2 − 3φ+ 2) ≤ 3‖φ‖2L2 + ‖3φ− 2‖2L2 .

Ad ii): Notice that (3t2−3t+ 2)− t2 > 0, t ∈ R. Therefore, the desired coercivity follows from

‖K(φ)‖2L2 =
∫

Ω
(3φ2 − 3φ+ 2) ≥ ‖φ‖2L2 .

Ad iii): One can easily check that F (t) = 3t2 − 3t + 2 is a convex real function. Therefore,
the functional φ 7→

∫
Ω F (φ(x))dx is weak l.s.c. with respect to the weak convergence in L1

[6]. The assertion follows now from the fact that weak convergence in L1 is implied by weak
convergence in L2.

Lemma 10. Let K be the operator defined in Section 1. The following assertions hold true:
i) K is a continuous map from L2(Ω) to L1(Ω).
ii) If ‖K(φ)‖L1(Ω) = 0 for some φ ∈ L2(Ω), then φ(x) ∈ {1, 2} a.e. in Ω.

Proof. Assertion i) follows from∫
Ω
|K(φ)−K(ψ)| ≤

∫
Ω
|(φ− 1)(φ− ψ)|+

∫
Ω
|(ψ − 2)(ψ − φ)| ,

together with the Cauchy-Schwarz inequality. Assertion ii) follows directly from the definitions
of K and the L1-norm.

Lemma 11. Let Ppc be the operator defined in (6). The following assertions hold true:
i) For every admissible vector (φ, cj) it holds |Ppc(φ, cj)|BV ≥ τ |φ|BV.
Moreover, if (φk, c

j
k) is a sequence of admissible vectors converging in Lp(Ω) × R2 to some

admissible vector (φ, cj), then
ii) Ppc(φk, c

j
k) converges to Ppc(φ, cj) in Lp(Ω).

iii) |Ppc(φ, cj)|BV ≤ lim infk→∞ |Ppc(φk, cjk)|BV.
iv) |Ppc(φ, cj)|BV ≥ τ‖φ‖L2.

Proof. Assertion i) follows from the identity |Ppc(φ, cj)|BV = |c2 − c1| |φ|BV.
Ad ii): Since Ω is bounded, we have cjk → cj in Lp(Ω). Therefore, cjkφk → cjφ in Lp(Ω) and
we conclude that Ppc(φk, c

j
k) = c1

k(2− φk) + c2
k(φk − 1)→ Ppc(φ, cj) in Lp(Ω).

Assertion iii) follows from part ii) together with Lemma 3 (i), while assertion iv) is a corollary
of part i).
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3.1 Convergence Analysis: penalized-pcLS

Let Rppc(φ, cj) := β1|Ppc(φ, cj)|BV + β2‖K(φ)‖2L2 + β3‖cj‖2R2 be the penalization term of Gα,ppc.
In the sequel we prove that for any positive parameters α, β1, β2, β3, the functional Gα,ppc in
(8) is well posed.

Theorem 12. The functional Gα,ppc in (8) attains minimizers on the set of admissible vectors.

Proof. Let {(φk, cjk)} be a minimizing sequence for Gα,ppc, i.e. a sequence of admissible vectors
satisfying Gα,ppc(φk, cjk) → inf Gα,ppc, k → ∞. Then, {Rppc(φk, cjk)} is a bounded sequence of
real numbers. Therefore, it follows from Lemma 9 ii) the existence of a subsequence {φk} and
φ ∈ L2(Ω) such that φk ⇀ φ in L2(Ω). Moreover, from Lemma 11 i) and Lemma 3 ii) we
conclude that φ ∈ BV(Ω) and that this subsequence also satisfies φk → φ in Lp(Ω).
On the other hand, the boundedness of {Rppc(φk, cjk)} also guarantees the existence of subse-
quences {cjk} converging to cj in R2.
Clearly (φ, cj) is an admissible vector. Moreover, from (A2), Lemma 11 iii), Lemma 9 iii) it
follows that

inf Gα,ppc = lim
k→∞

Gα,ppc(φk, cjk) = lim inf
k→∞

{
‖F (Ppc(φk, c

j
k))− y

δ‖2Y + αR(φk, c
j
k)
}

≥ ‖F (Ppc(φ, cj))− yδ‖2Y + αR(φ, cj) = Gα,ppc(φ, cj) ,

proving that (φ, cj) minimizes Gα,ppc.

The convergence and stability results in Theorems 7 and 8 hold true for the pcLS ap-
proach. As before, the proofs are based on classical techniques from the analysis of Tikhonov
regularization.

Theorem 13 (Convergence analysis: pcLS). Assume that we have exact data and βj > 0,
j = 1, 2, 3. For every α > 0 denote by (φα, c

j
α) a minimizer of Gα,ppc on the set of admissible

vectors. Then, for every sequence of positive numbers {αk} converging to zero there exists a
subsequence such that (φαk , c

j
αk) is strongly convergent in Lp(Ω) × H−1(Ω) × R2. Moreover,

the limit is a solution of (7).
In the case of noisy data, let α = α(δ) be a function chosen as in Theorem 8. Given a
sequence {δk} of positive numbers converging to zero and {yδk} ∈ Y be corresponding noisy data
satisfying (2), there exist a subsequence, denoted again by {δk}, and a sequence {αk := α(δk)}
such that (φαk , c

j
αk) converges in Lp(Ω)×H−1(Ω)× R2 to solution of (7).

Notice that the limit elements (φ, cj) obtained in Theorem 13 (as limit of the sequence
{(φαk , c

j
αk)}k) satisfy F (Ppc(φ, cj)) = y. However, we cannot guarantee that K(φ) = 0.

3.2 Convergence Analysis: strict-pcLS

Let Rspc(φ, cj) := β1|Ppc(φ, cj)|BV + β2‖cj‖2R2 be the penalization term of Gα,spc. Given α, β1,
β2 > 0 it is possible to prove that the functional Gα,spc in (9) attains minimizers on the set
of admissible vectors. The proof follows the lines of the proof of Theorem 12 and only a few
changes are needed, namely:
— In order to guarantee the existence of a weak convergent subsequence, Lemma 9 ii) has to
be substituted by Lemma 11 iv), which guarantees the coercivity of the functional |Ppc(·, cj)|BV
(w.r.t. the L2-norm) on the set of admissible parameters.
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— Moreover, in order to guarantee the inf Gα,spc = Gα,spc(φ, cj), one has to argue with
Lemma 11 iii) and Lemma 10 1).

It is worth noticing that the convergence and stability results in Theorem 13 hold also for
the strict-pcLS approach, after obvious changes.

Differently from Theorem 13, the limit elements (φ, cj) obtained from the convergence-
stability theorem for the strict-pcLS approach satisfy not only F (Ppc(φ, cj)) = y, but also
‖K(φ)‖L1 = 0. Therefore, due to Lemma 10 ii), we conclude that the limit level-set function φ
is piecewise constant.

4 Numerical results

In this section we discuss the numerical implementations of iterative methods based on the
sLS and pcLS approaches. As test problem we use an inverse potential problem, similar to the
one considered in [13, 23, 8, 14, 24].

The forward problem consists of solving on a given Lipschitz domain Ω ⊂ Rn, for a given
source function u ∈ L2(Ω), the Poisson boundary value problem

−∆w = u , in Ω , w = 0 on ∂Ω . (15)

This problem can be modeled by the operator F : L2(Ω)→ L2(∂Ω), F (u) := wν |∂Ω [16].
The corresponding inverse problem is the so called em inverse potential problem, which

consists of recovering an L2–function u, from measurements of the Cauchy data of its corre-
sponding potential on the boundary of Ω. Using the notation introduced above, the inverse
potential problem can be written in the abbreviated form F (u) = yδ, where the available noisy
data yδ ∈ L2(∂Ω) have the same meaning as in (2).

It is worth noticing that this inverse problem has, in general, non unique solution [14].
Sufficient conditions for identifiability are given in [15]. For issues related to redundancy of
data as well as for an example of non identifiability we refer the reader to [14]. A generalization
of this inverse problem, with the Laplacian replaced by a general elliptic operator, appears in
many relevant applications including: inverse gravimetry [19, 16], EEG [9], and EMG [25].

In our experiments we follow [8] in the experimental setup, selecting Ω = (0, 1)× (0, 1) and
assuming that the unknown parameter is a piecewise constant function of the form u = 1+χD,
where D ⊂⊂ Ω. In particular, we allow piecewise constant functions u supported at domains,
which consist of a number of connected inclusions. For this class of parameters no unique
identifiability result is known and we restrict our attention to minimum-norm solutions [10].

4.1 A level set algorithm based on the sLS approach

The iterative algorithm based on the sLS approach proposed in this article is an explicit
iterative method derived from the conditions of optimality for the Tikhonov functional Gα,s in
(5). These optimality conditions can be written in in the form of the system

αφ = Lε,α,β(φ, c1, c2) , α cj = Ljε,α,β(φ, c1, c2) , j = 1, 2 , (16)

where

Lε,α,β(φ, c1, c2) = (c1 − c2)β−1
2 H ′ε(φ)∗F ′(Ps,ε(φ, c1, c2))∗(F (Ps,ε(φ, c1, c2))− yδ)

−β1(2β2)−1H ′ε(φ)∇·
[
∇Hε(φ)/|∇Hε(φ)|

]
, (17a)

L1
ε,α,β(φ, c1, c2) = (2β3)−1

(
F ′(Ps,ε(φ, c1, c2))Hε(φ)

)∗(F (Ps,ε(φ, c1, c2))− yδ), (17b)

L2
ε,α,β(φ, c1, c2) = (2β3)−1

(
F ′(Ps,ε(φ, c1, c2))(1−Hε(φ))

)∗(F (Pε(φ, c1, c2))− yδ). (17c)
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Each iteration of this method consists of three steps: i) The residual F (φk, cj)−yδ ∈ L2(∂Ω)
of the iterate (φk, c

j
k) is evaluated (this requires solving one elliptic BVP of Dirichlet type);

ii) The H1–solution of the adjoint problem for the residual is evaluated (this corresponds to
solving one elliptic BVP of Dirichlet type); iii) The updates for the level-set function φk and
for the levels cjk are evaluated (this corresponds to multiplying two functions).

A detailed description of the explicit iterative step above is given in Table 1. In order to
improve the regularity of the update δφk we suggest substituting step 3. by

3’. Evaluate the update δφk ∈ H1(Ω), solving

(I − µ∆)δφk = Lε,α,β(φk, c1
k, c

2
k) , in Ω ; (δφk)ν = 0 , at ∂Ω .

where the positive constant µ satisfies µ << 1. Notice that this corresponds to the optimality
condition for the functional Gα,s if we add β2µ‖∇φ‖L2(Ω) to the the penalization term in (5). In
[7] a similar Tikhonov functional (with µ = 1) based on BV –H1 regularization was proposed.
The corresponding update δφk was very smooth and lead to a slow convergence of the iteration.

4.2 A level set algorithm based on the pcLS approach

The iterative algorithm based on the pcLS approach proposed in this article is an explicit
iterative method based on the operator splitting technique [18] and derived from the optimality
conditions for the Tikhonov functional Gα,ppc in (8). First the operator Gα,ppc is splitted in the
sum Gα,ppc(φ, cj) = G1

α,ppc(φ, c
j) + G2

α,ppc(φ), where

G1
α,ppc(φ, c

j) := ‖F (Ppc(φ, cj))− yδ‖2Y + αβ1|Ppc(φ, cj)|BV + 2αβ2‖φ‖2L2(Ω) + αβ3‖cj‖2R2

G2
α,ppc(φ) := αβ2‖K(t)‖2L2(Ω) .

Each step of the iterative method consists of two parts: i) The iterate (φk, c
j
k) is updated using

an explicit gradient step w.r.t. the operator G1
α,ppc, i.e.

φk+1/2 := φk −
∂

∂φ
G1
α,ppc(φk, c

j
k) , cjk+1/2 := cjk −

∂

∂cj
G1
α,ppc(φk, c

j
k) .

It is worth noticing that this first part is analog to steps 1 – 4 in Table 1.
ii) The obtained approximation (φk+1/2, c

j
k+1/2) is improved by giving a gradient step w.r.t.

1. Evaluate the residual rk := F (Ps,ε(φk, c1
k, c

2
k)) − yδ = (wk)ν |∂Ω − yδ, where wk

solves
∆wk = Ps,ε(φk, c1

k, c
2
k) , in Ω ; wk = 0 , at ∂Ω .

2. Evaluate hk := F ′(Ps,ε(φk, c1
k, c

2
k))
∗(rk) ∈ L2(Ω), solving

∆hk = 0 , in Ω ; hk = rk , at ∂Ω .

3. Calculate δφk := Lε,α,β(φk, c1
k, c

2
k) and δcjk := Ljε,α,β(φk, c1

k, c
2
k), as in (17).

4. Update the level set function φk and the level values cjk, j = 1, 2:

φk+1 = φk + 1
α δφk , cjk+1 = cjk + 1

α δc
j
k .

Table 1: Iterative algorithm based on the sLS approach for the inverse potential problem.
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Figure 1: First experiment: The picture on the left hand side shows the coefficient uexact to be
reconstructed. On the right hand side, the initial condition for the sLS level-set method.

the operator G2
α,ppc, i.e.

φk+1 := φk+1/2 −
d

dφ
G2
α,ppc(φk+1/2) , cjk+1 := cjk+1/2 .

In [22] a similar operator splitting strategy was use to minimize a Tikhonov functional related
to an elliptic inverse problem in EIT.

4.3 First numerical example: exact data

In this first numerical experiment we aim to identify the right hand side u of (15) from the
knowledge of the exact data y = wν |∂Ω. We assume that the level value c2 = 0 is given, and
that we have to identify only the support of u and the level value c1 > 0.

The exact data y = F (u) is obtained by solving numerically the elliptic boundary value
problem in (15) at a very fine grid (the word ’exact’ here means: up to the precision of the
numerical method used for solving the direct problem). In order to avoid inverse crimes,
the direct problem (15) is solved on an adaptively refined finite element grid with 8.804 nodes.
However, in the numerical implementation of the level-set method, all boundary value problems
are solved at an uniform grid with 545 nodes (33 nodes at each boundary side).

For this experiment with exact data, the level-set method was tested without the BV
regularization term, i.e. we set β1 = 0. Moreover, we chose ε = 2−4 in (10).

In Figure 1 the solution uexact of the inverse problem and the initial guess for the iterative
method based on the sLS approach are presented (the initial guess c1

0 = 1.5 is used for the
unknown level value). Notice that the support of u is a non-connected proper subset of Ω. In
Figure 2 the evolution of the sLS level-set method for the first 1500 iterative steps is presented.
Notice, the shapes of both inclusions are reasonably reconstructed, and the level value c1 is
accurately reconstructed as well. The iteration is stopped when the residual drops below the
predefined precision ‖F (Ps,ε(φk, c1

k)) − y‖L2 < 10−2. For comparison purposes we present in
the second line of this figure the evolution of the BV –H1 level-set method [7] for the same
initial guess.

The same stop criteria is used. Both methods deliver good approximations for the support
of u as well as for the unknown level c1. However, the sLS level-set method uses a less regular
update and converges much faster. In Figure 2 (last line) we present the iteration error after
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k = 200 steps for sLS level-set method, and after k = 1900 steps for the BV –H1 level-set
method.

We performed other numerical simulations with different choice of initial guess (φ0, c
1
0),

and observed that the number of iterative steps required in order to obtain a reasonable
approximation (up to the predefined precision of 10−2 in the L2-norm) strongly depends on
the choice of the initial guess c1

0. On the other hand, the final result is not sensitive with
respect to the choice of the initial guess φ0.

What concerns the level-set method based on the pcLS approach, in Figure 3 we present the
results obtained for the exact data case. The initial guess is a smooth (polynomial) function
attaining values in the interval (1, 2). The initial guess for c1

0 is the same as before. The
evolution of the pcLS level-set method is shown for the first 1000 iterative steps of the algorithm
presented in Subsection 4.2. As in the previous methods the shape of the inclusions could
be well reconstructed. The level value c1 could be accurately reconstructed as well. For

Figure 2: First experiment sLS: On the first line, plots of Ps,ε(φk, c
1
k), k = 50, 100, 200, for the sLS

level-set method. The pictures on the second line show Ps,ε(φk, c
1
k), k = 500, 800, 1900, for the BV –H1

level-set method in [7]. On the third line, the picture on the left hand side shows the iteration error for
the sLS level-set method after k = 200 iterations, while the other picture shows the iteration error for
the BV –H1 level-set method after k = 1900 iterations.
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Figure 3: First experiment pcLS: The picture on the top left shows the initial condition for the pcLS
level-set method. On the 2 subsequent pictures of the first line, plots of φk, for k = 1000, 2000. The
bottom left picture shows Ppc(φk, c

1
k) for k = 2000. The bottom right picture shows the iteration error

after k = 2000 iterations.

comparison purposes, we used the same stop criterion as before, i.e. ‖F (Ppc(φk, c1
k))− y‖L2 <

10−2.
In the numerical implementation of the level-set method based on the pcLS approach, some

facts have to be observed:
— Due to the operator splitting technique, we compute several times the step-part (i) before
a single calculation of step-part (ii) is performed.
— Step-part (i) aims to minimize the misfit in the iteration and is the most relevant component
of the iteration step described in Subsection 4.2.
— Step-part (ii) aims to drag the iterate φk to a piecewise constant (integer valued) function. If
step-part (ii) is implemented too often, all the iterates φk become piecewise constant functions
and the misfit never decreases. If step-part (ii) is implemented only seldom, the iterates φk
become too smooth and may be trapped in some local minimizer (due to the non-uniqueness
of the inverse potential problem). — The constants α and β2 should be chosen in such a way
that the factor αβ2 << 1 in step-part (ii). This choice guarantees that the dragging effect
resulting from step-part (ii) is not enforced too strongly. If αβ2 ≈ 2 the iterates once again
become piecewise constant functions and the misfit never decreases.

4.4 Second numerical example: noisy data

In the sequel we consider once again the inverse potential problem in (15) with the solution
shown in Figure 1. This time, the data yδ for the inverse problem is obtained by adding to the
exact data y = F (u) random generated noise of 25%.

As in the previous experiment, the direct problem is solved at a grid that is finer than the
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one used in the numerical implementation of the level-set method. The initial guess (φ0, c
1
0)

is the same as in the experiment with exact data (see Figure 1), as well as the value used
for ε. For this experiment with noisy data, the level-set method was tested with the BV
regularization term and β1 = 10−3. As stop criteria, we used the generalized discrepancy with
τ = 2, i.e. the iteration was stopped when for the first time ‖F (Ps,ε(φk, c1

k))− yδ‖L2 < τδ.
In Figure 4 we show the evolution of the level-set method based on the sLS approach, white

in Figure 5 the evolution of the level-set method based on the pcLS approach is shown.

5 Conclusions

Two distinct level-set type approaches for solving ill-posed problems are considered, where
the level-set functions are chosen in L2-spaces. The first approach (sLS) corresponds to an
extension of the results obtained in [8] for H1 level-set functions. In the second approach
(pcLS) the parameter space consists of piecewise constant level-set functions.

Based on each one of the level-set approaches above, Tikhonov functionals are proposed
and we provide convergence analysis for the Tikhonov reconstruction methods.

In the pcLS approach, the piecewise constant constraint in 7 is enforced in two different
manners, which are called penalized-pcLS and strict-pcLS respectively. We observe that the
properties of the minimizers of the Tikhonov functionals corresponding to the penalized-pcLS
and strict-pcLS methods are slightly different. However, for a fixed noise level δ > 0, the
approximate solutions obtained by each of the pcLS methods are comparable.
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Figure 4: Second experiment sLS: On the first line, plots of Ps,ε(φk, c
1
k), k = 50, 100, 230, for the sLS

level-set method. On the second line the corresponding iterative error ek := |Ps,ε(φk, c
1
k)− uexact|.
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Figure 5: Second experiment pcLS: On the left, plots of φk for k = 2000, for the pcLS level-set
method. On the center the corresponding projection Ppc(φk). On the right hand side, the iterative
error ek := |Ps,ε(φk, c

1
k)− uexact|.
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