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Abstract

We present the projected gradient method for solving constrained quasi-convex minimization

problem with a competitive search strategy, i.e., an appropriate stepsize rule through an Armijo-

search along feasible direction obtaining global convergence properties. Differently from other

similar stepsize rule, we perform only one projection onto the feasible set per iteration, rather

than one projection for each tentative step during the search of the stepsize, which represents a

considerable saving when the projection is computationally expensive.
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1 Introduction

Consider the following constrained minimization problem:

min f(x) s.t. x ∈ C, (1)

where f : Rn → R is continuously differentiable and C ⊂ Rn is closed and convex. We denote by

S∗ the solution set and by S̄ the set of stationary points of this problem. We remind that x ∈ C

is stationary for problem (1) if and only if 〈∇f(x), x− x〉 ≥ 0 for all x ∈ C.
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Many methods have been proposed to solve the problem (1). The simplest is the projected

gradient method. The projected gradient method with constants stepsize was proposed by Goldstein

in [11]. It was also studied by Levitin and Polyak in [14]. The use of the Armijo-rule for the search

along projection arcs was proposed by Bertsekas in [5] and its use for the search along feasible

directions was studied by Iusem in [12].

The projected gradient method has some advantages. Firstly, it is easy to implement (specially,

for optimization problems with relative simple constrains), uses little storage and readily exploits

any sparsity or separable structure of ∇f or C. Secondly, it is able to drop from or add to the

active set many constraints at each iteration. Hence, it has been developed for solving various cases

of problem (1).

Each iteration of the projected gradient method, which we describe formally later, consists,

basically, of two stages: starting from the iterate xk, we move us on the direction of −∇f(xk), the

resulting vector is projected onto C, and on the direction from this projection to xk we find the

next iterate, namely xk+1, such that a sufficient decrease of the function value is guaranteed.

1.1 The projected gradient method

We describe the main iterative scheme of the projected gradient method and the possible chooses

for the stepsize. A formal description of the algorithm is the following:

Projected gradient method

Initialization: Take x0 ∈ C.

Iterative step: Given xk, compute

zk = xk − βk∇f(xk), (2)

If xk = PC(zk) then stop. Otherwise, let

xk+1 = αkPC(zk) + (1− αk)xk, (3)

where βk, αk are positive.

The coefficients βk and αk are called stepsizes and PC : H → C is the orthogonal projection

onto C, i.e., PC(x) = argminy∈C ‖x − y‖. Several choices are possible for the stepsizes. Before
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discussing them, we make mention that in the unconstrained case, i.e. C = Rn, the method given

by (2)-(3) with αk = 1, for all k, reduces to the iteration xk+1 = xk−βk∇f(xk), called the steepest

descent method (see [6]).

Following [4] and [12], we will focus our comments in four strategies for the stepsizes:

a) Constant stepsize: βk = β and αk = 1, for all k, where β > 0 is a fixed number.

b) Armijo search along the boundary of C: αk = 1, for all k, and βk is given by

βk = β2−j(k)

with

j(k) = min
{

j ≥ 0 : f(zk,j)− f(xk) ≤ −δ〈∇f(xk), xk − PC(zk,j)〉
}

and

zk,j = xk − β2−j∇f(xk),

for some β > 0, and δ ∈ (0, 1).

c) Armijo search along the feasible direction: the sequence {βk} is contained in [β̂, β̃], where

0 < β̂ ≤ β̃, and αk is determined by an Armijo rule, namely

αk = 2−j(k)

with

j(k) = min
{

j ∈ N : f
(
2−jPC(zk) + (1− 2−j)xk

)
− f(xk) ≤ −δ2−j〈∇f(xk), xk − PC(zk)〉

}
,

for some δ ∈ (0, 1).

d) Exogenous stepsize before projecting: The αk’s are constant equal to 1 and the elements of

the sequence {βk} are given by

βk =
δk

‖∇f(xk)‖
with ∞∑

k=0

δk = ∞ and
∞∑

k=0

δ2
k < ∞. (4)
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Several comments are in order.

In Strategy (a) it is necessary to assume Lipschitz continuity of ∇f and to choose β ∈ (0, 2
L),

where L is the Lipschitz constant, in order to ensure that the cluster points of {xk} are stationary,

see [4].

Note that Strategy (b) requires one projection onto C for each step of the inner loop resulting

from the Armijo search, i.e. possibly many projections for each k, while Strategy (c) demands only

one projection for each outer step, i.e. for each k. Thus, Strategy (b) is competitive only when PC

is very easy to compute (e.g. when C is a halfspace, or a box, or a ball, or a subspace).

We make mention that Strategy (d) fails to be a descent method, also in the unconstrained

case. Finally, it is easy to show that ‖xk+1 − xk‖ ≤ δk for all k, with δk exogenous and satisfying

(4). In view of (4), all stepsizes in Strategy (d) are small, while Strategies (c) and (b) allow,

occasionally, long steps. More important, Strategy (d) does not take into account the information

available at iteration k for determining the stepsizes, which, in general, entails worse computational

performance. Its redeeming feature is that its convergence properties hold also in the nonsmooth

case, in which the Armijo searches given by (b) and (c) may be unsuccessful.

Without assuming convexity of f , the convergence results for these methods closely mirror the

ones for the steepest descent method in the unconstrained case: cluster points may fail to exist,

even when (1) has solutions, but if they exist, they are stationary and feasible. These results can

be found in Section 2.3.2 of [4].

The convergence results for Strategy (b) can be found in [10]. In order to ensure existence of

cluster points, it is necessary to assume that the starting iterate x0 belongs to a bounded level set

of f .

On the other hand, when f is convex, it is proved for Strategies (b) and (c) the convergence

of the whole sequence to a minimizer of f under the sole assumption of existence of minimizers,

i.e., without any additional assumption on boundedness of level sets. These results can be found

in [12].

The projected gradient method under Strategy (d) keeps its good convergence properties in

an arbitrary Hilbert space also when f is convex but nonsmooth, after replacing ∇f(xk) by a

subgradient uk of f at xk, i.e., uk ∈ ∂f(xk). See [2] and [1] for convergence properties in this

setting. It is proved in these references that the whole sequence {xk} converges weakly to a solution

of problem (1) under the sole assumption of existence of solutions. This strategy has been used to
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solve non-smooth variational inequalities problems in [3].

Another stepsize rule was proposed in [7] by Calamai and Moré. They studied convergence

properties of the projected gradient method with a general steplength rule given by:

e) αk = 1 for all k, and βk is given by

βk = β2−j(k)

with

j(k) = min
{

j ≥ 0 : f(zk,j)− f(xk) ≤ −δ1〈∇f(xk), xk − PC(zk,j)〉
}

(5)

and

zk,j = xk − β̄2−j∇f(xk),

for some β > 0, δ1 ∈ (0, 1) and

βk ≥ γ1 or βk ≥ γ2β̄k,

where β̄k satisfies

f(zk)− f(xk) > −δ2〈∇f(xk), xk − PC(zk)〉 (6)

and

zk = xk − β̄k∇f(xk),

with γ1 and γ2 are positive constants and δ2 ∈ (0, 1).

It was showed that any cluster point of the generated sequence by the projected gradient method

under Strategy (e) is a stationary point of (1). These stepsize rule is fairly mild and is satisfied by

several well-known stepsize rules for the gradient projection method, including Strategies (a) and

(b). We remark that the condition (6) guarantees that βk is not too small, thus, such algorithm

allows long steps.

Later, Wang and Xiu studied in [15] convergence properties of the gradient projection algorithm

with the stepsize rule given by Strategy (e) when f is quasi-convex or pseudo-convex function. They

showed that there are only two possibilities: either the sequence has cluster points, in this case

such points are minimizer, when f is quasi-convex, or stationary, when f is pseudo-convex, or

the sequence has not cluster points, the solution set is empty and the sequence of function values

converges to the infimum of f over C. This result improves upon or extend the one by Cheng
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in [8], and by Kiwiel and Murty in [13], and are also related to the results in [9], [16], [17], [18],

[19] and [20]. We recall that f : D ⊂ Rn → R, where D is convex, is called quasi-convex if

f(λx + (1− λ)y) ≤ max{f(x) , f(y)}, for all x, y ∈ D, and λ ∈ [0, 1], and is called pseudo-convex

when it is of class C1 and 〈∇f(y) , x−y〉 ≥ 0 implies that f(x) ≥ f(y). Other equivalent definitions

of quasi-convexity are: all level sets of f are convex, and for differentiable f , f(x) ≤ f(y) implies

that 〈x−y , ∇f(y)〉 ≤ 0. Finally, observe that Strategy (e), as Strategy (b), requires one projection

onto C for each tentative step of the Armijo-search in (5), i.e., possibly, many projections for each

k.

Reduction of the number of required projections onto the feasible set is quite significant in cases

in which the evaluation of this projection is considerably harder than the evaluation of ∇f . This is

a rather frequent situation. While many operators of interest in the applications are given by easily

computable closed formula, this is exceptional for orthogonal projections onto convex sets. Outside

the cases of boxes, balls or hyperplanes, the computation of a projection is in itself an optimization

problem which must be approximately solved with the help of some auxiliary numerical procedure.

2 Preliminary materials

In this Section we present two facts that are used in the convergence analysis. Projection has been

extensively studied and we recall, briefly, some of its properties.

Lemma 1. Take x ∈ C and α > 0, and define x(α) := PC (x− α∇f(x)), then

i) 〈x(α)− x + α∇f(x), y − x(α)〉 ≥ 0, for all y ∈ C;

ii) 〈∇f(x), x− x(α)〉 ≥ ‖x(α)− x‖2

α
;

iii) x = x(α) if and only if x is stationary point for (1).

Proof. See [7].

An immediate fact on descent directions is the following.

Proposition 1. Take δ ∈ (0, 1), x ∈ C and v ∈ Rn such that 〈∇f(x), v〉 < 0. Then there exists ζ̄

such that f(x + ζ∇f(x)) < f(x) for all ζ ∈ (0, ζ̄].

Proof. The result follows from the differentiability of f .

6



3 Statement of Algorithm A

We present the projected gradient method with Strategy (c) for solving constrained quasi-convex

minimization problems. The algorithm requires the following exogenous parameters: δ ∈ (0, 1), β̂

and β̃ satisfying 0 < β̂ ≤ β̃ and a sequence {βk} ⊂ [β̂, β̃].

Algorithm A

Initialization: Take x0 ∈ C.

Iterative step: Given xk, compute

zk = xk − βk∇f(xk).

If xk = PC(zk), then stop. Otherwise, set

xk+1 = αkPC(zk) + (1− αk)xk, (7)

where αk is computed by the following Armijo search along the feasible direction through xk and

PC(zk). Set

zk,j = 2−jPC(zk) +
(
1− 2−j

)
xk, for j = 0, 1, . . . ,

compute

j(k) = min
{

j ∈ N : δ2−j〈∇f(xk) , xk − PC(zk)〉 ≤ f(xk)− f(zk,j)
}

,

and define

αk = 2−j(k).

Next we establish that Algorithm A is well defined and it is descent one.

Proposition 2. Let {xk} and {zk} be the sequences generated by Algorithm A.

i) xk belongs to C for all k.

ii) If xk is not stationary point, then 〈∇f(xk), PC(zk)− xk〉 < 0.

iii) j(k) is well defined.

Proof. For (i), using induction in k, (ii) follows from Lemma 1(ii)-(iii), and (iii) is the classical

result consequence of (ii).
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4 Convergence analysis

Stationarity of cluster point of the sequence is a classical result.

Proposition 3. Every cluster point of {xk} is stationary.

Proof. See Proposition 4 in [12].

Two comment are in order. First, no result proved up to this point requires any assumption

over f , only f must be continuously differentiable. Second, all these results are rather standard

and well known. The novelty of this paper occurs in that follows.

Next, we present a vital lemma.

Lemma 2. For all x ∈ C and all k, we have

‖xk+1 − x‖2 ≤ ‖xk − x‖2 + m
{

f(xk)− f(xk+1)
}

+ 2αkβk〈∇f(xk), x− xk〉,

where m =
2 β̃

δ
.

Proof. Using (7) and elementary algebra, we get

‖xk+1 − xk‖2 + ‖xk − x‖2 − ‖xk+1 − x‖2 = 2〈xk − xk+1, xk − x〉 = 2αk〈PC(zk)− xk, x− xk〉. (8)

Lemma 1(i) and (3) imply that

0 ≤ 〈PC(zk)− xk + βk∇f(xk), x− PC(zk)〉
= 〈PC(zk)− xk + βk∇f(xk), x− xk〉+ 〈PC(zk)− xk + βk∇f(xk), xk − PC(zk)〉.

Then,

〈PC(zk)− xk, x− xk〉 ≥ βk〈∇f(xk), xk − x〉 − 〈PC(zk)− xk + βk∇f(xk), xk − PC(zk)〉
= βk〈∇f(xk), PC(zk)− x〉+ ‖PC(zk)− xk‖2. (9)

Combining now (8) and (9), and taking into account (7), we obtain that

‖xk+1 − x‖2 ≤ ‖xk − x‖2 + (1− 2
αk

)‖xk+1 − xk‖2 + 2αkβk〈∇f(xk), x− PC(zk)〉

≤ ‖xk − x‖2 + 2αkβk〈∇f(xk), x− PC(zk)〉
= ‖xk − x‖2 + 2αkβk〈∇f(xk), xk − PC(zk)〉+ 2αkβk〈∇f(xk), x− xk〉.
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Then by (3)

‖xk+1 − x‖2 ≤ ‖xk − x‖2 +
2βk

δ

{
f(xk)− f(xk+1)

}
+ 2αkβk〈∇f(xk), x− xk〉.

The aim of this paper is to analyze the behavior of the projected gradient method with Armijo

search along the feasible direction as strategy for the stepsize computation, i.e., Algorithm A,

under the hypothesis of quasi-convexity of f or of pseudo-convexity of f . We present now the main

convergence result in the quasi-convex case.

Theorem 1. Assume that f is a quasi-convex function. Then, either

i) {xk} converges to a stationary point, or

ii) limk→∞ ‖xk‖ = ∞, the problem 1 has not solution and limk→∞ f(xk) = inf {f(x) : x ∈ C}.

Proof. There exist three different cases to analyze.

First: the sequence {xk} converges to x̄. By Proposition 3, x̄ is stationary point.

Second: the sequence {xk} is divergent and has at least one cluster point. Let x̄ be cluster point of

{xk}. Since the sequence {f(xk)} is decreasing and f is continuos, we have that limk→∞ f(xk) =

f(x̄) and f(x) ≤ f(xk), for all k. Using the quasi-convexity of f , we get 〈∇f(xk) , x− xk〉 ≤ 0, for

all k. It follows from Lemma 2 that

mf(x) ≤ ‖xk+1 − x‖2 + mf(xk+1) ≤ ‖xk − x‖2 + mf(xk), (10)

for all k. By (10), the sequence
{‖xk − x‖2 + mf(xk)

}
is convergent. Using that one cluster point

of this sequence is mf(x̄), we obtain that ‖xk − x̄‖ goes to zero. This fact is a contradiction with

what we have assumed. Therefore this option is not possible.

Third: the sequence {xk} diverges and has not cluster points, i.e. limk→∞ ‖xk‖ = ∞. Suppose x̄ is

solution of Problem (1). Then x̄ is also stationary point. Using Lemma 2, we obtain

‖xk − x̄‖2 + mf(xk) ≤ ‖x0 − x̄‖2 + mf(x0).

We conclude that {‖xk − x̄‖} is bounded, contradicting limk→∞ ‖xk‖ = ∞. Henceforth, Problem

(1) can not has solution.
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We claim that limk→∞ f(xk) = inf {x ∈ C : f(x)}. It is clear that limk→∞ f(xk) = f̃ ≥
inf{f(x) : x ∈ C}. Suppose that f̃ > inf{f(x) : x ∈ C}. By continuity of f , there exists x̃ ∈ C such

that f(x̃) = f̃ . Then f(x̃) ≤ f(xk), for all k, because the sequence {f(xk)} is decreasing. Using

the quasi-convexity of f and Lemma 2 with x = x̃, we get

‖xk − x̃‖2 + mf(xk) ≤ ‖x0 − x̃‖2 + mf(x0).

Again, we conclude that {‖xk − x̃‖} is bounded, contradicting limk→∞ ‖xk‖ = ∞.

Define T :=
{
x ∈ C : f(x) ≤ f(xk), ∀k}

. Note that if the problem (1) has solutions or {xk}
has cluster points, then T 6= ∅.

Corollary 1. Assume that f is a quasi-convex function. If T 6= ∅ then, {xk} converges to a

stationary point.

Proof. Take x̃ ∈ T . Using the quasi-convexity of f and Lemma 2 with x = x̃, we get

‖xk − x̃‖2 + mf(xk) ≤ ‖x0 − x̃‖2 + mf(x0).

As in the proof of Theorem 1, we conclude that {‖xk − x̄‖} and {xk} are bounded. Then, by

Theorem 1, {xk} converges to a stationary point.

In the pseudo-convex case we obtain the following result.

Corollary 2. Assume that f is a pseudo-convex function. Then, S∗ 6= ∅ if and only if there exists

at least one cluster point of {xk}. In this case {xk} converges to a stationary point.

Proof. Follows from Theorem 1 and Corollary 1.
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