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Abstract. In this paper, we prove that the only compact two-sided hypersur-
faces with constant mean curvature H which are weakly stable in RPn+1 and have
constant scalar curvature are (i) the twofold covering of a totally geodesic projec-
tive space; (ii) the geodesic spheres in RPn+1; and (iii) the quotient to RPn+1 of
the hypersurface Sk(r) × Sn−k(

√
1− r2) ↪→ Sn+1 obtained as the product of two

spheres of dimensions k and n−k, with k = 1, . . . , n−1, and radii r and
√

1− r2,
respectively, with

√
k/(n + 2) 6 r 6

√
(k + 2)/(n + 2).

1. Introduction

Let ψ : Mn → RPn+1 be a compact hypersurface immersed into the real proyective
space RPn+1 = Sn+1/{±}. We will say that the hypersurface is two-sided if the
normal bundle of M is trivial or, equivalently, if M admits a globally defined normal
unit vector field. As is well-known, when RPn+1 is orientable, this property is
equivalent to the orientablity of M . Assume that ψ : Mn → RPn+1 is two-sided and
denote by A its second fundamental form (with respect to a globally defined normal
unit vector field N) and by H its mean curvature function, H = (1/n)tr(A). Then,
every smooth function u ∈ C∞(M) induces a normal variation ψt of the immersion
ψ, with variational normal field uN and first variation of the area functional A(t)
given by

δuA =
d

dt
|t=0A(t) = −n

∫
M

uHdv.

As a consequence, minimal hypersurfaces (H = 0) are characterized as critical points
of the area functional whereas constant mean curvature hypersurfaces can be viewed
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as critical points of the area functional restricted to variations that preserve a certain
volume function, that is, to smooth functions u with mean value zero,

∫
M
udv = 0.

For such critical points, the stability equation of the corresponding variational
problem is given by the second variation of the area functional,

δ2
uA =

d2

dt2
|t=0A(t) = −

∫
M

uJ(u)dv,

with J(u) = ∆u + (|A|2 + n))u, where ∆ stands for the Laplacian operator on M .
The operator

J = ∆ + |A|2 + n

is called the Jacobi or stability operator of the hypersurface (for the details see [2]).

The Jacobi operator induces the quadratic form Q(u) = −
∫

M
uJ(u)dv acting on

the space C∞(M) of smooth functions on M . In the case of minimal hypersurfaces,
the index of a minimal hypersurface M , Ind(M), is defined as the maximum di-
mension of any subspace V of C∞(M) on which Q is negative definite. Equivalently,
Ind(M) is the number of negative eigenvalues of J (counted with multiplicity), which
is necessarily finite and, intuitively, it measures the number of independent direc-
tions in which the hypersurface fails to minimize area1. If Ind(M) = 0, then M is
said to be stable.

Using u ≡ 1 as a test function, one observes that

Q(1) = −
∫

M

(|A|2 + n)dv 6 −n area(M) < 0.

In particular, Ind(M) > 1 for every compact minimal hypersurface in RPn+1, which
means that there is no stable one. In [4], do Carmo, Ritoré and Ros proved that
Ind(M) = 1 if and only if M is either a totally geodesic sphere (that is, the twofold
covering of a totally geodesic projective space in RPn+1) or the quotient to RPn+1

of any of the minimal Clifford tori, Sk(
√
k/n) × Sn−k(

√
n− k/n) ⊂ Sn+1, k =

1, . . . , n− 1.

Our objective in this paper is to consider the same kind of problems for the
case of constant mean curvature hypersurfaces. In contrast to the case of minimal
hypersurfaces, in the case of hypersurfaces with constant mean curvature one can
consider two different eigenvalue problems: the usual Dirichlet problem, associated
with the quadratic form Q acting on the whole space of smooth functions on M ,
and the so called twisted Dirichlet problem, associated with the same quadratic
form Q, but restricted to the subspace of smooth functions u ∈ C∞(M) satisfying
the additional condition

∫
M
udv = 0.

1Observe that with our criterion, a real number λ is an eigenvalue of J if and only if Ju+λu = 0
for some smooth function u ∈ C∞(M), u 6≡ 0.
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Similarly, there are two different notions of stability and index, the strong stability
and strong index, denoted by Ind(M) and associated to the usual Dirichlet problem,
and the weak stability and weak index, denoted by IndT (M) and associated to the
twisted Dirichlet problem. Specifically, the strong index is simply the maximum
dimension of any subspace V of C∞(M) on which Q is negative definite, and M is
called strongly stable if and only if Ind(M) = 0. On the other hand, the weak index
is the maximum dimension of any subspace V of C∞T (M) on which Q is negative
definite, where C∞T (M) = {u ∈ C∞(M) :

∫
M
udv = 0}, and M is called weakly

stable if and only if IndT (M) = 0 (see [1] for a detailed study of the relationship
between these two eigenvalue problems and their corresponding stability and index
notions).

From a geometrical point of view, the weak index is more natural than the strong
index. However, from an analytical point of view, the strong index is more natural
and easier to use. For instance, observe that for a hypersurface with constant mean
curvature H in RPn+1, the Jacobi operator can be written as

J = ∆ + |A|2 + n = ∆ + |φ|2 + n(1 +H2),

where |φ|2 = |A|2 − nH2 > 0, and |φ|2 ≡ 0 if and only of M is totally umbilical.
Therefore, using again u ≡ 1 as a test function for estimating Ind(M), one observes
that

Q(1) = −
∫

M

(|φ|2 + n(1 +H2))dv = −n(1 +H2)area(M)−
∫

M

|φ|2dv

6 −n(1 +H2)area(M) < 0.

In particular, Ind(M) > 1 for every constant mean curvature hypersurface in RPn+1,
which means that no constant mean curvature hypersurface is strongly stable.

When n = 2, Ritoré and Ros [6] proved that the only compact (indeed, complete)
two-sided surfaces with constant mean curvature H which are weakly stable in RP3

are the twofold covering of a totally geodesic projective plane, the geodesic spheres,
and the flat tubes of radius % about a geodesic in RP3, with π/6 ≤ % ≤ π/3. In
this paper we consider the case of higher dimension n ≥ 3 and, under the additional
hypothesis of constant scalar curvature, we obtain the following classification.

Theorem 1. The only compact two-sided hypersurfaces with constant mean curva-
ture H which are weakly stable in RPn+1 and have constant scalar curvature are:

(i) the twofold covering of a totally geodesic projective space;
(ii) the geodesic spheres in RPn+1; and

(iii) the Clifford hypersurfaces Mn(k, r) with k = 1, . . . , n− 1 and
√
k/(n+ 2) 6

r 6
√

(k + 2)/(n+ 2).
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The first ones, (i), are immersed while the two other, (ii) and (iii), are embedded.
The first ones are minimal and they are the twofold covering of the totally geodesic
projective spaces RPn ⊂ RPn+1 obtained as the quotient to RPn+1 of the totally
geodesic equators of the sphere Sn+1. The second ones are totally umbilical spheres
in RPn+1 with non-zero constant mean curvature. The third ones are the quotient to
RPn+1 of the product of two spheres of dimensions k and n−k, with k = 1, . . . , n−1,
and radii r and

√
1− r2, respectively, with

√
k/(n+ 2) 6 r 6

√
(k + 2)/(n+ 2) (see

Section 2 for further details). In particular, when n = 2 they can be seen also as
flat tubes of radius % about a geodesic in RP3, with π/6 ≤ % ≤ π/3 (case (ii) in [6,
Corollary 7]).

2. Stability index of CMC Clifford hypersurfaces in RPn+1

Apart from the totally umbilical spheres, the easiest CMC hypersurfaces in the
unit sphere Sn+1 ⊂ Rn+2 are the CMC Clifford hypersurfaces. A CMC Clifford hy-
persurface in Sn+1 is obtained by considering the standard immersions Sk(r) ↪→
Rk+1 and Sn−k(

√
1− r2) ↪→ Rn−k+1, for a given radius 0 < r < 1 and inte-

ger k ∈ {1, . . . , n − 1}, and taking the product immersion Tn(k, r) = Sk(r) ×
Sn−k(

√
1− r2) ↪→ Sn+1 ⊂ Rn+2.

At a point (x, y) ∈ Tn(k, r), the vector field

N(x, y) =

(√
1− r2

r
x,− r√

1− r2
y

)
defines a unit vector normal to Tn(k, r) at the point (x, y). With respect to this
orientation, the principal curvatures of Tn(k, r) are given by

κ1 = · · · = κk = −
√

1− r2

r
, κk+1 = · · · = κn =

r√
1− r2

,

and its constant mean curvature H = H(r) is given by

nH(r) =
nr2 − k

r
√

1− r2
.

In particular, H(r) = 0 precisely when r =
√
k/n, which corresponds to the minimal

Clifford hypersurface.

Observe that a CMC Clifford hypersurface Tn(k, r) ⊂ Sn+1 is invariant under the
antipodal map and its normal vector field N is odd with respect to the antipodal
map, that is, it satisfies N(−x,−y) = −N(x, y). Therefore, it induces an embedded
two-side CMC hypersurface Mn(k, r) = Tn(k, r)/{±} in the real projective RPn+1 =
Sn+1/{±} with the same mean curvature H = H(r), which we will also call a CMC
Clifford hypersurface.



STABLE CMC HYPERSURFACES IN THE REAL PROJECTIVE SPACE 5

For a CMC Clifford hypersurface, one gets

|A|2 + n =
k

r2
+
n− k

1− r2

and its Jacobi operator, as a CMC hypersurface in RPn+1, reduces to

J = ∆ +

(
k

r2
+
n− k

1− r2

)
,

where ∆ denotes here the Laplacian on the quotient manifold Tn(k, r)/{±}. In
particular, the spectrum of J is directly related to the spectrum of ∆; specifically,
they have the same eigenfunctions, and their eigenvalues are related by

λJ
i = λ∆

i −
(
k

r2
+
n− k

1− r2

)
, i = 1, 2, . . . .

Therefore, taking into account that λ∆
1 = 0 with constant eigenfunctions, we know

that λJ
1 = −

(
k
r2 + n−k

1−r2

)
with multiplicity 1 and its corresponding eigenfunctions

are the constant functions. Observe that λJ
1 = −

(
k
r2 + n−k

1−r2

)
< 0 contributes to

Ind(M) but not to IndT (M), because its eigenfunctions do not satisfy the restriction∫
M
udv = 0. Even more, since all the rest of eigenfunctions of J are orthogonal to

the constant functions, they do satisfy the restriction
∫

M
udv = 0 and do contribute

to IndT (M). Therefore, in this case we have Ind(M) = IndT (M) + 1, and IndT (M)
is given by the number of positive eigenvalues of the Laplacian operator on the
quotient manifold Mn(k, r) (counted with multiplicity) which are strictly less than
k
r2 + n−k

1−r2 .

To compute it, first recall that the eigenvalues of the Laplacian on the product
manifold Tn(k, r) are given by

(1)
`(k + `− 1)

r2
+
m(n− k +m− 1)

1− r2
,

where ` ≥ 0 and m ≥ 0 are nonnegative integers, with multiplicity

(2)
∑
i,j

µiνj,

where

µi =

(
k + i

i

)
−

(
k + i− 2

i− 2

)
, i ≥ 0,

νj =

(
n− k + j

j

)
−

(
n− k + j − 2

j − 2

)
, j ≥ 0,
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with the convention that
(

p
q

)
= 0 when q < 0, and the sum in (2) extends to all

possible values of i, j ≥ 0 for which

i(k + i− 1)

r2
+
j(n− k + j − 1)

1− r2
=
`(k + `− 1)

r2
+
m(n− k +m− 1)

1− r2
.

Since Mn(k, r) = Tn(k, r)/{±}, then the eigenvalues of the Laplacian on Mn(k, r)
are only those in (1) whose corresponding eigenfunctions on Tn(k, r) are invariant
under the antipodal map. Recall now that the eigenfunctions on Tn(k, r) associated
to an eigenvalue given by (1) are given by

P`(x)Qm(y)

where P`(x) (resp. Qm(y)) denotes a homogeneous harmonic polynomial on Rk+1

(resp. Rn−k+1) of degree ` (resp. m). Therefore, the eigenvalues of the Laplacian on
the quotient Mn(k, r) = Tn(k, r)/{±} are only those in (1) for which `+m is even
(for the details, see [3]).

It follows from here that the computation of the index of a CMC Clifford hyper-
surface in RPn+1 reduces to count when

0 <
`(k + `− 1)

r2
+
m(n− k +m− 1)

1− r2
<

k

r2
+
n− k

1− r2

with `+m even. Observe that

`(k + `− 1)

r2
+
m(n− k +m− 1)

1− r2
≥ k

r2
+
n− k

1− r2

when ` ≥ 1 and m ≥ 1. In particular, a CMC Clifford hypersurface in RPn+1 is
stable if and only if

2(n− k + 1)

1− r2
≥ k

r2
+
n− k

1− r2
and

2(k + 1)

r2
≥ k

r2
+
n− k

1− r2
,

that is, if and only if √
k

n+ 2
6 r 6

√
k + 2

n+ 2
.

Observe that, in particular, this happens when r =
√
k/n, so that the minimal

Clifford hypersurfaces in RPn+1 are stable when regarded as CMC hypersurfaces.

3. Proof of Theorem 1

We will follow closely the ideas of do Carmo, Ritoré and Ros in their proof of [4,
Theorem 3] for the case of minimal hypersurfaces with index one. Actually, when
H = 0 our result follows directly from their Theorem 3 because, under our assump-
tions, we get that the hypersurfaces in question are minimal hypersurfaces with
index one, that is Ind(M) = 1. In fact, since the scalar curvature is constant, the
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Jacobi operator reduces to J = ∆+ q, where q = |A|2 +n > 0 is a positive constant.
In particular λJ

1 = −q < 0 with multiplicity 1 and constant eigenfunctions. Observe
that λJ

1 contributes to Ind(M) but not to IndT (M), because its eigenfunctions do
not satisfy the restriction

∫
M
udv = 0. Even more, since all the rest of eigenfunc-

tions of J are orthogonal to the constant functions, they do satisfy the restriction∫
M
udv = 0 and do contribute to IndT (M). Therefore, in the case where the scalar

curvature is constant we obtain that Ind(M) = IndT (M) + 1. In particular, a mini-
mal M is weakly stable (as a constant mean curvature hypersurface) if and only if
Ind(M) = 1, that is, M has index one as a minimal hypersurface.

Therefore, we will assume in what follows that H 6= 0. Consider ψ : Mn → RPn+1

a compact two-sided hypersurface immersed with constant mean curvature in RPn+1,
and assume that it is weakly stable and has constant scalar curvature. From the
stability assumption, we conclude that M must be connected by the following stan-
dard argument. Suppose that M is not connected and take a locally constant test
function u given by u ≡ 1 on a connected component Ω and u ≡ c on M − Ω,
where the constant c is chosen such that

∫
M
udv = 0. But then, we would get

J(u) = (|A|2 +n)u and Q(u) = −
∫

M
(|A|2 +n)u2dv < 0, in contradiction to the fact

that M is weakly stable.

Similarly to the minimal case [4, Theorem 3], when ψ lifts to an immersion of M
into the sphere Sn+1, then the lifting ψ : Mn → Sn+1 defines an orientable weakly
stable compact hypersurface with the same constant mean curvature in Sn+1, and
by [2] it is a totally umbilical sphere. Therefore, from now on we assume that ψ
does not lift to an immersion into the sphere. In that case, following the ideas in

the proof of [4, Theorem 3], there is a connected twofold covering π : M̃ → M and

an isometric immersion ψ̃ : M̃n → Sn+1 with the same constant mean curvature H
which is locally congruent to ψ and such that

(3) ψ̃ ◦ τ = −ψ̃,

where τ : M̃ → M̃ is the isometric involution induced by the covering map. More-

over, the two-sidedness of M implies that M̃ is orientable and that its Gauss map

Ñ : M̃ → Sn+1 also satisfies

(4) Ñ ◦ τ = −Ñ .

In particular, M̃ is not totally umbilical in Sn+1.

Our stability hypothesis on M , when translated to M̃ , says that

Q(u) = −
∫

fM uJ(u)dv ≥ 0
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for every smooth function u on M̃ such that u ◦ τ = u and
∫fM udv = 0. Moreover,

if Q(u) = 0 for such a function u, then u is a Jacobi function, that is, J(u) = 0.

For a fixed arbitrary vector v ∈ Rn+2, we will consider with the functions `v =

〈ψ̃,v〉 and fv = 〈Ñ ,v〉 defined on M̃ . Observe that their gradients are given by

(5) ∇`v = v> and ∇fv = −A(v>),

where v> ∈ X (M̃) denotes the tangent component of v along the immersion ψ̃,

v = v> + fvÑ + `vψ̃.

Therefore, for every X ∈ X (M̃) we have

∇X∇`v = ∇Xv> = −`vX + fvA(X),

so that

(6) ∆`v = tr(∇2`v) = −n`v + nHfv,

and

(7) J`v = |A|2`v + nHfv,

On the other hand, using Codazzi equation,

∇X∇fv = −∇X(A(v>)) = −(∇XA)(v>)− A(∇Xv>)

= −(∇v>A)(X) + `vA(X)− fvA
2(X).

Therefore

∆fv = −tr(∇v>A) + nH`v − |A|2fv = −n〈v>,∇H〉+ nH`v − |A|2fv
= nH`v − |A|2fv,(8)

since the mean curvature H is constant, and

(9) Jfv = nH`v + nfv,

We will consider test functions of the form

gv,w = fv∆`w − `w∆fv.

Observe that the functions gv,w clearly satisfy the condition
∫fM gv,wdv = 0 because

of the self-adjointness of ∆. Moreover, a straightforward computation using (6) and
(8) gives

(10) gv,w = (|A|2 − n)`wfv + nH(fvfw − `v`w).

In particular, by (3) and (4), the functions gv,w also satisfy the condition gv,w ◦ τ =
gv,w. Therefore

Q(gv,w) ≥ 0
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for every fixed arbitrary directions v,w ∈ Rn+2, with equality if and only if J(gv,w) =
0.

On the other hand, a tedious but straightforward computation from (10), using
(5), (6) and (8), gives

(11)
1

2
J(gv,w) = 〈Lv>,w>〉 = 〈Lv>,w〉,

where L : X (M̃) → X (M̃) is given by

L = nHA2 + (n− |A|2)A− nHI.

Take e1, . . . , en+2 an orthonormal basis in Rn+2. Then for every v ∈ Rn+2 we obtain
by (10) and (11) that

1

2
gv,ei

J(gv,ei
) = (|A|2 − n)fv〈Lv>, ei〉〈ψ̃, ei〉

+nHfv〈Lv>, ei〉〈Ñ , ei〉 − nH`v〈Lv>, ei〉〈ψ̃, ei〉,

and

1

2

n+2∑
i=1

gv,ei
J(gv,ei

) = (|A|2 − n)fv〈Lv>, ψ̃〉

+nHfv〈Lv>, Ñ〉 − nH`v〈Lv>, ψ̃〉 = 0.

Therefore,
n+2∑
i=1

Q(gv,ei
) = −

∫
M

n+2∑
i=1

gv,ei
J(gv,ei

)dv = 0,

but being Q(gv,ei
) ≥ 0 for every i, this implies that J(gv,ei

) = 0 for every i =

1, . . . , n + 2. In other words, Lv> = 0 on M̃ for every arbitrary fixed vector v ∈
Rn+2. It follows from here that L = 0; that is, the second fundamental form of

ψ̃ : M̃n → Sn+1 satisfies the quadratic equation

A2 +
n− |A|2

nH
A− I = 0.

As a consequence, since M̃ is not totally umbilical, we obtain that M̃ is a compact
hypersurface of Sn+1 with two different principal curvatures, and by a well known

result by Cartan [5] we deduce that M̃ is a CMC Clifford torus in Sn+1 of the
form Sk(r) × Sn−k(

√
1− r2) with radius 0 < r < 1. Finally, from our previous

discussion about the values of the weak index for the quotients to RPn+1 of the
products Sk(r) × Sn−k(

√
1− r2), we conclude that it must be

√
k/(n+ 2) 6 r 6√

(k + 2)/(n+ 2). This finishes the proof of Theorem 1.
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[4] M. do Carmo, M. Ritoré and A. Ros, Compact minimal hypersurfaces with index one in the
real projective space, Comment. Math. Helv. 75 (2000), 247–254.

[5] E. Cartan, Familles de surfaces isoparamtriques dans les espaces courbure constante, Annali
di Mat. 17 (1938), 177–191.
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