Entropy-expansiveness and domination

M. J. Pacifico, J. L. Vieitez

May, 5, 2006

Abstract

Let $f: M \to M$ be a C^r -diffeomorphism, $r \geq 1$, defined in a compact boundary-less surface M. We prove that if K is a compact f-invariant subset of M with a dominated splitting then f/K is h-expansive. Reciprocally, if there exists a C^r neighborhood of f, \mathcal{U} , such that for $g \in \mathcal{U}$ there exists K_g compact invariant such that g/K_g is h-expansive then there is a dominated splitting for K_g .

2000 Mathematics Subject Classification: 37D30

1 Introduction

To obtain results about the complexity of the dynamics of a discrete or continuous time dynamical system as recurrence, existence of periodic orbits, SRB measures, etc., one usually try to express dynamic properties at the infinitesimal level, i.e.: precise definitions are given prescribing the behavior of the tangent map $Df:TM \to TM$ of a diffeomorphism $f:M \to M$. Examples of that are the concepts of hyperbolicity, partial hyperbolicity and the existence of a dominated splitting. On the other hand a robust dynamic property (i.e. a property that holds for a system and all nearby ones) should leave its *impromptus* in the behavior of the tangent map of those differentiable systems sharing that property. In [PPV], [SV] and [PPSV] it has been studied the influence of expansiveness when it holds in a homoclinic class H associated to a hyperbolic periodic point p such that H and the corresponding homoclinic classes H_g , for all diffeomorphism g nearby f, are expansive. It is proved there that in that case Df/H has a dominated splitting and moreover f/H is hyperbolic in the codimension one case ([PPV], [PPSV]). In the general codimension case we also obtain hyperbolicity adding an extra hypothesis called germ-expansiveness (see [SV]).

In this paper we relax expansiveness asking what should be the properties of the tangent map Df of a diffeomorphism f defined on a surface such that robustly

exhibits h-expansiveness (entropy-expansiveness, see definitions below). We obtain that for such maps it exists a dominated splitting. On the other hand we prove that if K admits a dominated splitting then it is h-expansive. Thus robust hexpansiveness is equivalent to the existence of a dominated splitting.

Moreover, we give here an example of a C^{∞} diffeomorphism that is not *h*-expansive. By a result of Buzzi (see [Bu]) such an example is asymptotically *h*-expansive (see definition below) since it is C^{∞} . The first examples of a diffeomorphism that is not *h*-expansive and even not asymptotically *h*-expansive was given by Misiurewicz in [Mi] answering a question posed by Bowen. We give our example here because of its good properties from various points of view. First it is clear that it has not a dominated splitting. Second it is defined on S^2 , is ergodic and even has Bernoulli property. Third it admits analytic models a stronger property than being C^{∞} .

Let us now give precise definitions. Let M be a compact connected boundaryless Riemannian d-dimensional manifold and $f: M \to M$ a homeomorphism. Let K be a compact invariant subset of M and dist $: M \times M \to \mathbb{R}^+$ a distance in Mcompatible with its Riemannian structure. For $E, F \subset K, n \in \mathbb{N}$ and $\delta > 0$ we say that $E(n, \delta)$ spans F with respect to f if for each $y \in F$ there is $x \in E$ such that dist $(f^j(x), f^j(y)) \leq \delta$ for all $j = 0, \ldots, n-1$. Let $r_n(\delta, F)$ denote the minimum cardinality of a set that (n, δ) spans F. Since K is compact $r_n(\delta, F) < \infty$. We define

$$h(f, F, \delta) = \lim \sup_{n \to \infty} \frac{1}{n} \log(r_n(\delta, F))$$

and

$$h(f,F) = \lim_{\delta \to 0} h(f,F,\delta) \, .$$

The last limit exists since $h(f, F, \delta)$ increases as δ decreases to zero.

For $x \in K$ let us define

$$\Gamma_{\epsilon}(x,f) = \Gamma_{\epsilon}(x) = \{ y \in M / d(f^{n}(x), f^{n}(y)) \le \epsilon, n \in \mathbb{Z} \}.$$

Following Bowen (see [Bo]) we say that f/K is entropy-expansive or *h*-expansive if and only if there exists $\epsilon > 0$ such that

$$h_f^*(\epsilon) = \sup_{x \in K} h(f, \Gamma_\epsilon(x)) = 0.$$

The importance of f being *h*-expansive is that the topological entropy of f restricted to K, h(f/K), is equal to its estimate using ϵ : $h(f, K) = h(f, K, \epsilon)$. More precisely: **Theorem 1.1.** For all homeomorphism f defined in a compact invariant set K it holds

$$h(f,K) \leq h(f,K,\epsilon) + h_f^*(\epsilon)$$
 in particular $h(f,K) = h(f,K,\epsilon)$ if $h_f^*(\epsilon) = 0$.

 \square

Proof. See [Bo], Theorem 2.4.

A weaker property of that of being *h*-expansive is that of being **asymptotically** *h*-expansive ([Mi]). Let K be a compact metric space and $f : K \to K$ an homeomorphism. We say that f is asymptotically *h*-expansive if and only if

$$\lim_{\epsilon \to 0} h_f^*(\epsilon) = 0.$$

Thus we do not require that for a certain $\epsilon > 0$ $h_f^*(\epsilon) = 0$ but that $h_f^*(\epsilon) \to 0$ when $\epsilon \to 0$. It has been proved by Buzzi that any C^{∞} diffeomorphism defined on a compact manifold is asymptotically *h*-expansive. Hence our example although not *h*-expansive is asymptotically *h*-expansive.

Definition 1.1. We say that a compact f-invariant set Λ admits a dominated splitting if the tangent bundle $T_{\Lambda}M$ has a continuous Df-invariant splitting $E \oplus F$ and there exist C > 0, $0 < \lambda < 1$ such that

$$\|Df^n|E(x)\| \cdot \|Df^{-n}|F(f^n(x))\| \le C\lambda^n \ \forall x \in \Lambda, \ n \ge 0.$$
(1)

Our main results are the following:

Theorem A. Let M be a compact boundaryless C^{∞} surface and $f : M \to M$ be a C^r diffeomorphism such that $K \subset M$ is a compact f-invariant subset with a dominated splitting $E \oplus F$. Then f/K is h-expansive.

Since the property of having a dominated splitting is open we may conclude that any $g C^1$ close to f is such that g/K_q is *h*-expansive.

In case M is a d-dimensional manifold with $d \ge 3$ the existence of a dominated splitting is not enough to guarantee h-expansiveness as it is shown in the examples presented below.

Observe that the identity map $id: M \to M$ is *h*-expansive and moreover if the topological entropy of a map $f: M \to M$ vanishes, h(f) = 0, then it is *h*-expansive. Nevertheless, the persistence of *h*-expansiveness has a dynamical meaning.

Theorem B. Let M be a compact boundaryless C^{∞} surface and $f : M \to M$ be a C^r diffeomorphism. Let H(p) be an f-homoclinic class associated to the fhyperbolic periodic point p. Assume that there is a C^1 neighborhood \mathcal{U} of f such that for any $g \in \mathcal{U}$ it holds that there is a continuation $H(p_g)$ of H(p) such that $H(p_g)$ is h-expansive. Then H(p) has a dominated splitting.

2 Examples

Let us now give an example of an analytic diffeomorphism that is not h-expansive. We consider in \mathbb{R}^2 the action given by the matrix $A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$. Since the entries of A are integers and det(A) = 1, the lattice \mathbb{Z}^2 is preserved by this action and therefore it passes to the quotient $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$. This gives us a very well known linear Anosov diffeomorphism $a: \mathbb{T}^2 \to \mathbb{T}^2$. Let [x, y] represent the equivalence class of $(x, y) \in \mathbb{R}^2$ in $\mathbb{R}^2/\mathbb{Z}^2$. We define in $\mathbb{R}^2/\mathbb{Z}^2$ the relation $[x, y] \sim [-x, -y] = -[x, y]$. The quotient \mathbb{T}^2/\sim gives the sphere S^2 . In order to see this let us take the square in \mathbb{R}^2 limited by the straight lines $x = -\frac{1}{2}$, $x = \frac{1}{2}$, $y = -\frac{1}{2}$, $y = \frac{1}{2}$. We obtain a fundamental domain for the torus and we identify it with \mathbb{T}^2 . In the quotient \mathbb{T}^2 the vertices A (1/2, 1/2), B (-1/2, 1/2), C (-1/2, -1/2), D(1/2, -1/2), of the square are all identified. Let us call E to the point (1/2,0), F to the point (-1/2,0), G to the point (0,1/2) and H to the point (0, -1/2). Observe that E is identified with F and G is identified with H in \mathbb{T}^2 . Now observe that the boundary of the square OEAG is identified with the boundary of the square OEDH (by the relations $(x, y) \sim -(x, y)$ and $(x, y) \sim (x', y')$ if $(x - x', y - y') \in \mathbb{Z}^2$. Hence both squares are two different disks glued in their boundaries by this identification. This gives a sphere. Moreover, the rest of the square ABCD doesn't give more points to the quotient because the squares OEAG and OFCH, and OEDH and OFBG, are identified by the relation $(x, y) \sim -(x, y)$. On the other hand $a([x,y]) \sim -a([x,y]) = a(-[x,y])$ by linearity, and therefore projects to S^2 as a map $g: S^2 \to S^2$, known as a generalized pseudo-Anosov map. If $\Pi : \mathbb{T}^2 \to \S^2$ is the projection defined by the relation \sim , we may write $g(x) = \Pi(a(\Pi^{-1}(x)))$. Observe that the projection $\Pi : \mathbb{T}^2 \to S^2$ is a branched covering and that the definition of g doesn't depend on the pre-image of x by Π^{-1} . Therefore periodic points of a projects in periodic points of g and dense orbits of a projects in dense orbits of q. For q there are singular points P where the local ϵ -stable and ϵ -unstable sets are arcs with the point P as an end-point. This local stable (unstable) sets are called 1-prongs (see figure 1 where O is a point with 1-prongs).

Let $O \in S^2$ be the image by Π of [0,0]. Then O is (the unique) fixed point of g. The point O is singular because the unstable manifold of [0,0] in \mathbb{T}^2 projects to S^2 as an arc ending at O (because $[x,y] \sim -[x,y]$). The stable and unstable manifolds of the points in \mathbb{T}^2 near (0,0) projects to points in S^2 near O like in Figure 1. The intersection of the stable and unstable manifolds of the points (0,x) and (0,-x) consists of four points identified by pairs by the relation $[x,y] \sim -[x,y]$. If $[x,y] \in \mathbb{T}^2$ projects to $X \in S^2$, let us call s_X and u_X to the projections of the ϵ -local stable and ϵ -local unstable manifolds respectively of the point [x,y]. Hence

if a point X is very near to a singular point like O its local stable and unstable sets, s_X and u_x , will intersect twice. Points in s_X are in the ϵ -local stable set of X and points in u_X are in the ϵ -local unstable set of X. Moreover, if $Y \in s_X$ then $\operatorname{dist}(g^n(Y), g^n(X)) \to 0$ when $n \to +\infty$. Similarly for points in u_X replacing $n \to +\infty$ by $n \to -\infty$.

Let us choose the singular point O and given $\epsilon' > 0$ choose $P \neq O$ a periodic point satisfying dist $(P,0) < \epsilon'$. Such a point exists since periodic points are dense for the Anosov diffeomorphism a defined on \mathbb{T}^2 and projects on S^2 as periodic points for g. Let $\{P, P'\} = s_P \cap u_P$. Then it is not difficult to see that given $\epsilon > 0$ there is $\epsilon' > 0$ small enough such that $P' \in W^u_{\epsilon}(P) \cap W^s_{\epsilon}(P)$. Thus we have a homoclinic intersection between ϵ -local stable and ϵ -local unstable arcs of the periodic point P, P' being a homoclinic point such that its orbit is always at a distance less than ϵ from the orbit of P. It follows that for all $\epsilon > 0$ there are points P such that $\Gamma_{\epsilon}(P)$ contains a small horseshoe. Thus $g: S^2 \to S^2$ is not h-expansive. Moreover, this example is transitive and there are real analytic models for $g: S^2 \to S^2$ (see [Ge], and [LL]).

Figure 1: Generalized pseudo-Anosov

Clearly the example is a homoclinic class which has no dominated splitting.

Let us show that property (1) sole does not imply *h*-expansiveness in dimension 3 or more. Consider the 3-manifold $S^2 \times S^1$ with $g: S^2 \to S^2$ as in the example above, and put in S^1 a diffeomorphism $h: S^1 \to S^1$ with a North-South dynamics, say, $N \in S^1$ is a source and $S \in S^1$ is a sink and the ω -limit of any point in S^1 is *S* and the α -limit of every point in S^1 is *N*. We may assume that $|Dh_N| > 2k$ where $k = \sup\{||Dg(x)||, x \in S^2\}$. Let us define $f: S^2 \times S^1 \to S^2 \times S^1$ by f(x,y) = (g(x), h(y)). Then if $K = S^2 \times \{N\}$, K is compact invariant and there is a dominated splitting for $K, E \oplus F$, where $E = T_x S^2$, $F = T_N S^1$. By the previous example f is not h-expansive.

This example shows what is the problem; the strongly expanding direction F along S^1 does not interferes on the dynamics of f/S^2 . Thus property (1) holds for f defined on $S^2 \times S^1$ albeit does not for $g = f/S^2$.

3 Proof of Theorem A

Here we shall prove

Theorem 3.1. Let M be a closed smooth surface and $f : M \to M$ be a C^r diffeomorphism such that $K \subset M$ is a compact f-invariant subset with a dominated splitting $E \oplus F$. Then f/K is h-expansive.

We need the following lemma.

Lemma 3.2 (Pliss). Let $0 < \lambda_1 < \lambda_2 < 1$ and assume that there exists n > 0 arbitrarily large such that

$$\prod_{j=1}^n \|Df/E(f^j(x))\| \le \lambda_1^n.$$

Then there exist a positive integer $N = N(\lambda_1, \lambda_2, f)$, $c = c(\lambda_1, \lambda_2, f) > 0$ such that if $n \ge N$ then there exist numbers

$$0 \le n_1 \le n_2 \le \dots \le n_l \le n$$

such that

$$\prod_{j=n_r}^h \|Df/E(f^j(x))\| \le \lambda_2^{h-n_r},$$

for all r = 1, 2, ..., l, with $l \ge cn$, and for all h with $n_r \le h \le n$.

Proof. The proof of this lemma can be found in [Pl1].

Proof of Theorem A. Let M be a surface and $K \subset M$ a compact and f invariant subset such that there is a dominated splitting $E \oplus F$ defined on it. By continuity of f and Df there is $\delta_0 > 0$ such that we may extend the cones defining equation (1) to the closed δ_0 neighborhood of K, $U(K) = \{y \in M / \operatorname{dist}(y, K) \leq \delta_0\}$. If the orbit of a point y, $\operatorname{orb}(y)$, is contained in U(K) then for that point there are defined local center-stable and center-unstable manifolds $W_{loc}^{cs}(y)$ and $W_{loc}^{cu}(y)$ where loc > 0 stands for a small real number. Moreover, there is $\delta_1, 0 < \delta_1 \leq \delta_0$ such that if $dist(f^j(y), f^j(z)) \leq \delta_1$ for all j = 0, ..., n and $z \in W_{loc}^{cs}(y)$ then $f^j(z) \in W_{loc}^{cs}(f^j(y))$ for all j = 0, ..., n. Similarly for the local center unstable manifold (see [PS1, Lemma 3.0.4 and Corollary 3.2]).

We need the following lemma:

Lemma 3.3. There is δ_2 , $0 < \delta_2 \leq \delta_1$ such that if the length of the arc $[y, z]^{cs} \subset W_{loc}^{cs}(y)$ is greater than $\delta > 0$ for $0 < \delta \leq \delta_2$, $\ell([y, z]^{cs}) > \delta$, then $\operatorname{dist}(y, z) > \delta/2$. Moreover, there is a constant L > 0 such that if $\operatorname{dist}(y, z) \leq \delta$ then $\ell([y, z]^{cs}) \leq L$. Similarly for an arc $[y, z]^{cu} \subset W_{loc}^{cu}(y)$.

Proof. Since E(y), E(z) are continuous sub-bundles in U(K) we may find δ_2 , $0 < \delta_2 \leq \delta_1$ such that given $\eta > 0 \ \angle(E(y), E(w)) < \eta$ for all $w \in B(y, \delta_2) \cap U(K)$ (the number δ_0 can be chosen so small that $B(y, \delta_0)$ is contained in a local chart, so that we may assume locally that we are in \mathbb{R}^2). Thus if we parameterize [y, z] by arc-length $\beta : [0, l] \to M$, with $\beta(0) = y, \ \beta(l) = z$, then $\beta'(s) = (\beta'_1(s), \beta'_2(s))$ is parallel to $E(\beta(s))$. Therefore, since $(\beta'_1(s))^2 + (\beta'_2(s))^2 = 1$, we have by the Mean Value Theorem

$$dist(y, z) = \|\beta(l) - \beta(0)\| =$$

$$= \sqrt{(\beta_1(l) - \beta_1(0))^2 + (\beta_2(l) - \beta_2(0))^2} = \sqrt{((\beta'_1(s_1))^2 + (\beta'_2(s_2))^2} \cdot l =$$

$$= l \left(1 - (\sqrt{((\beta'_1(0))^2 + (\beta'_2(0))^2} - \sqrt{((\beta'_1(s_1))^2 + (\beta'_2(s_2))^2}) \right) =$$

$$= l \left(1 - \frac{(\beta'_1(0))^2 - (\beta'_1(s_1))^2 + (\beta'_2(0))^2 - (\beta'_2(s_2))^2}{1 + \sqrt{((\beta'_1(s_1))^2 + (\beta'_2(s_2))^2})} \right) \ge$$

$$\ge l \left(1 - |\beta'_1(0) - \beta'_1(s_1)| (\beta'_1(0) + \beta'_1(s_1)) + |\beta'_2(0) - \beta'_2(s_2)| (\beta'_2(0) + \beta'_2(s_2)) \right)$$
at since $\langle (E(\beta(s)), E(\beta(0))) < n$

But, since $\angle (E(\beta(s)), E(\beta(0))) < \eta$,

$$\|(\beta_1'(s) - \beta_1'(0), \beta_2'(s) - \beta_2'(0))\| \le 2\sin(\eta/2) < \eta$$
, for small η .

Therefore, taking into account that $\beta'_1(0) + \beta'_1(s_1) \le |\beta'_1(0)| + |\beta'_1(s_1)| \le 2$ and that the same is true with respect to β'_2 we have

$$\operatorname{dist}(y, z) \ge l(1 - 4\eta) > l/2$$

if $\eta > 0$ is sufficiently small. The proof that if $dist(y, z) \le \delta$ then $\ell([y, z]^{cs}) \le L$ is similar.

Continuing with the proof of Theorem A we observe that taking an iterate f^m of f we may assume that the constant C > 0 appearing in the definition of the dominated splitting, equation (1), is one. Since for a compact invariant set X we have that the topological entropy $h(f^m/X) = m \cdot h(f/X)$, if we prove that for some $\epsilon > 0$, $h(f^m/\Gamma_{\epsilon}(x, f)) = 0$ then the same is true for f. Thus we assume that for f itself C = 1.

Let $\lambda_1 = \sqrt[3]{\lambda} < \lambda_2 = \sqrt[4]{\lambda} < \lambda_3 = \sqrt[5]{\lambda} < 1$. If it were necessary we take δ_3 , $0 < \delta_3 \le \delta_2$ such that if $\operatorname{dist}(z, w) \le \delta_3$ then

$$1 - c < \frac{\|Df/E(z)\|}{\|Df/E(w)\|} < 1 + c \text{ and } 1 - c < \frac{\|Df^{-1}/F(z)\|}{\|Df^{-1}/F(w)\|} < 1 + c,$$

where c > 0 is such that $(1 + c)\lambda_2 \leq \lambda_3$.

We recall that when a dominated splitting $E \oplus F$ is defined in a compact set like U(K) we may find $\gamma > 0$ such that for all $y \in U(K)$ it holds that the angle between E(y) and F(y) is greater than γ , $\angle(E(y), F(y)) > \gamma$. Let us pick a point $x \in U(K)$ and, identifying \mathbb{R}^2 with a coordinate neighborhood around x, let $l_E(x)$ be the straight line for x with the direction of E(x) and $l_F(x)$ the straight line with the direction of F(x). From a point $y_0 \in l_F(x)$, $y_0 \neq x$, we consider the straight line $y_0 + l_E(x)$ parallel to E(x). Then for any point y in $y_0 + l_E(x)$ we have that the distance between y and x is greater than the distance between y_0 and x multiplied by $\sin \gamma$, $\operatorname{dist}(y, x) \geq \operatorname{dist}(y_0, x) \sin \gamma$, (see figure 2).

Figure 2: Bounds for the distance between x and $y \in y_0 + l_E(x)$

Since the local center unstable manifold is tangent to F and the local center

stable manifold is tangent to E we may assume that δ_3 is so small that

$$\operatorname{dist}(y, x) \ge \operatorname{dist}(y_0, x)\left(\frac{\sin\gamma}{2+\sin\gamma}\right) \tag{2}$$

for $y_0 \in W_{loc}^{cu}(x) \cap B(x, \delta_3), y \in W_{loc}^{cs}(y_0) \cap B(x, \delta_3).$

Let now $\epsilon > 0$ be such that

$$\epsilon < \frac{\delta_3}{(1+2\sin\gamma)} \,. \tag{3}$$

We will prove that for all $x \in K$, $h(f/\Gamma_{\epsilon}(x)) = 0$. This will prove that f/K is entropy-expansive.

Let us assume first that $y \in W^{cu}_{loc}(x) \cap \Gamma_{\epsilon}(x), y \neq x$. Then $orb(y) \subset U(K)$ and therefore for all $j \in \mathbb{Z}$ it holds that

$$||Df/E(f^{j-1}(y))|| ||Df^{-1}/F(f^{j}(y))|| < \lambda$$

and so

$$\prod_{j=1}^{n} \|Df/E(f^{j-1}(y))\| \|Df^{-1}/F(f^{j}(y))\| < \lambda^{n}, \, \forall \, n \ge 1.$$

If it were the case that

$$\prod_{j=1}^n \|Df^{-1}/F(f^j(y))\| \le \lambda_1^n$$

for arbitrarily large n > 0 then by Lemma 3.2 there are $N = N(\lambda_1, \lambda_2) \in \mathbb{N}$ and $c = c(\lambda_1, \lambda_2) > 0$ such that if $n \ge N$ there exists $1 \le n_k < n_{k-1} < \ldots < n_1 \le n$ with $k > c \cdot n$ and

$$\prod_{j=h}^{n_i} \|Df^{-1}/F(f^j(y))\| \le \lambda_2^{n_i-h},$$

for $n_i \ge h \ge 1$; i = 1, ..., k. Observe in particular that $n_1 > c \cdot n$ otherwise we cannot have $k > c \cdot n$. By our choice of δ_3 we then have that

$$\prod_{j=h}^{n_1} \|Df^{-1}/F(f^j(z))\| \le \lambda_3^{n_1-h},$$

for all $h: n_1 \ge h \ge 1$ if $\operatorname{dist}(f^j(z), f^j(y)) \le \delta_3$ for all $j: h \le j \le n_1$.

If now we have z in the local center unstable arc $[x, y]^{cu}$ joining x and y and $\rho = \text{dist}(x, y) > 0$, we have, taking h = 1, that

$$\ell([x,y]^{cu}) \le \ell([f^{n_1}(x),f^{n_1}(y)]^{cu})\lambda_3^{n_1-1}.$$

Since $[f^h(x), f^h(y)]^{cu}$ is tangent to F and $\operatorname{dist}(f^h(x), f^h(y)) \leq \epsilon$, by Lemma 3.3 there is a constant L > 0 such that $\ell([f^h(x), f^h(y)]^{cu}) \leq L$. Thus we obtain that

$$\ell([x,y]^{cu}) \le L \cdot \lambda_3^{n_1 -}$$

and since $0 < \lambda_3 < 1$ and $n_1 > c \cdot n \to \infty$ when $n \to \infty$ we conclude that $\rho = 0$ and x = y contradicting our hypothesis.

Hence we have that it is not true that for arbitrarily large n > 0

$$\prod_{j=1}^{n} \|Df^{-1}/F(f^{j}(y))\| \le \lambda_{1}^{n},$$

and since

$$\prod_{j=1}^{n} \|Df/E(f^{j-1}(y))\| \|Df^{-1}/F(f^{j}(y))\| < \lambda^{n}$$

we may conclude that

$$\prod_{j=1}^{n} \|Df/E(f^{j-1}(y))\| \le \lambda_1^n,$$

for all *n* large. Thus, in the notation of [PS1], $I = [x, y]^{cu}$ is a ϵ -*E*-interval. There are two cases: either $\ell(f^n(I)) \to 0$ when $n \to \infty$ or $\ell(f^n(I)) \not\to 0$. In any case we may assume that for all point $z \in I$ we have that $W_{loc}^{cs}(z)$ is a stable manifold. Thus $W_{loc}^{cs}(I)$ attracts a neighborhood in M.

Let us assume first that $\ell(f^n(I)) \to 0$ when $n \to \infty$. Choose $\zeta > 0$ and let us find bounds for $r_n(\zeta, W_{loc}^{cs}(I))$. Since $\ell(f^n(I)) \to 0$ there is $n_0 > 0$ such that $\operatorname{diam}(f^n(W_{loc}^{cs}(I))) \leq \zeta$ for all $n \geq n_0$. Then we may find a finite subset E such that (ζ, n_0) -spans $W_{loc}^{cs}(I)$ and this set also (ζ, n) -spans $W_{loc}^{cs}(I)$ for all $n \geq 0$. It follows readily that

$$h(f, W_{loc}^{cs}(I), \zeta) = \limsup_{n \to \infty} \frac{1}{n} \log(r_n(\zeta, W_{loc}^{cs}(I))) = 0$$

and therefore $h(f, W_{loc}^{cs}(I)) = 0.$

On the other hand, if $\ell(f^n(I)) \neq 0$ then by [PS1, Proposition 3.1] we have that for all $z \in I$, the omega -limit set of z, $\omega(z)$, is a periodic orbit or lies in a periodic circle. In the proof of that proposition Pujals and Sambarino use that fis of class C^2 . But this is used in the case when $\ell(f^n(I)) \to 0$ when $n \to \infty$ in order to argue as in Schwartz's proof of the Denjoy property ([Sc]). If we already know that $\ell(f^n(I)) \neq 0$ then it is enough to assume f of class C^1 to ensure that the ω -limit of I is contained in a periodic arc or circle and this is implicit in the proof of [PS1, Proposition 3.1]. In case of $\omega(x)$ being included in a periodic circle \mathcal{C} this circle is normally hyperbolic attracting a neighborhood V of \mathcal{C} and points in V converge exponentially fast to \mathcal{C} . If f is C^2 then as in [PS1] we conclude that the dynamics by f^{τ} (τ being the period of \mathcal{C}) in \mathcal{C} is conjugate to an irrational rotation while if f is just C^1 we only have semi-conjugacy (we may have a Cantor set in \mathcal{C} and wandering intervals). In any case (conjugacy or semi-conjugacy with an irrational rotation R_{α}) we profit from the fact that $h(R_{\alpha}) = 0$. This implies that if f^{τ}/\mathcal{C} is conjugate or semi-conjugate to R_{α} then $h(f^{\tau}/\mathcal{C}) = 0$.

On the other hand if $\omega(x)$ is a periodic orbit, say of a point q, since $\ell(f^n(I)) < \delta$ for all $n \ge 0$ we have that there is a periodic point q' in $W_{loc}^{cu}(q)$ such that attracts points in $f^n(I \setminus \{x\})$ (for instance the other end-point of $f^n(I)$ different from $f^n(x)$), see [PS1, Lemma 3.3.1]. Note than since $W_{loc}^{cu}(q)$ is an arc, the period of q' is the same of that of q, or the double of it. Let P be the set of periodic points of fin $W_{loc}^{cu}(q) \setminus \{q\}$. Then all of them have the same period, say τ . The set P divides $W_{loc}^{cu}(q)$ in arcs on which the dynamics by f^{τ} is monotone. It follows that the topological entropy of $f^{\tau}/W_{loc}^{cu}(q)$ is zero.

So in both cases, periodic orbit or periodic circle, $f^{\tau n}(W_{loc}^{cs}(I))$ approaches an f^{τ} invariant one-dimensional manifold \mathcal{L} such that the topological entropy $h(f^{\tau}, \mathcal{L}) = 0$. Let $\zeta > 0$ and $m \in \mathbb{N}$ large be given an find $S' \subset \mathcal{L}$, (m, ζ) spanning \mathcal{L} . We may find n_0 and a subset S of $f^n(I)$ for $n \ge n_0$, such that (m, ζ) spans $f^n(I)$ with respect to f^{τ} . Projecting along the fibers of the local center-stable manifolds which, by equation (1), are dynamically defined $(W_{loc}^{cs}(z)$ is strong stable for all $z \in \mathcal{L}$) we know that there is $n_1 > 0$ such that for any point $z \in I$, $\ell(f^n(W_{loc}^{cs}(z))) < \zeta$. We add points to S in order to ensure that we do have a (m, ζ) spanning set for $f^m(W_{loc}^{cs}(I))$ for $m = 0, 1, \ldots, n_1 - 1$. We conclude that $h(f, W_{loc}^{cs}(I), \zeta) = 0$. Since $\zeta > 0$ is arbitrary we obtain that $h(f, W_{loc}^{cs}(I)) = 0$. By [Bo, Corollary 2.3] we have that if there is a ϵ -E-interval I such that $\Gamma_{\epsilon}(x) \subset W_{loc}^{cs}(I)$ then $h(\Gamma_{\epsilon}(x), f) = 0$.

Similarly if $y \in W^{cs}_{loc}(x)$ then $J = [x, y]^{cs}$ is an ϵ -*F*-interval and reasoning with the α -limit of J we obtain that $h(f, W^{cu}_{loc}(J)) = 0$.

Assume now that $y \notin W_{loc}^{cs}(x), y \notin W_{loc}^{cu}(x)$. By domination

$$||Df/E(z)|| ||Df^{-1}/F(f(z))|| < \lambda, \quad \forall z \in K$$

and this still holds for points such that their orbits are in the δ_0 -neighborhood of K as is the case of y. Therefore there are defined $W_{loc}^{cs}(y)$ and $W_{loc}^{cu}(y)$ which are embedded arcs. Since the angle between E and F is bounded by $\gamma > 0$ from below, reducing ϵ if it were necessary, we may assume that $W_{loc}^{cs}(y)$ cuts $W_{loc}^{cu}(x)$ and $W_{loc}^{cs}(x)$ cuts $W_{loc}^{cu}(y)$ in points y_F and y_E respectively. By our assumption $y_E \neq x$ and $y_F \neq x$.

Figure 3: Case when $y \notin W_{loc}^{cs}(x), y \notin W_{loc}^{cu}(x)$.

Suppose that there are n > 0 arbitrarily large such that for λ_1 it holds that

$$\prod_{j=1}^{n} \|Df/E(f^{-j}(y_E))\| \le \lambda_1^n.$$

Then, choosing λ_2 and λ_3 as we did above, by Pliss ' Lemma there is $N = N(\lambda_1, \lambda_2) \in \mathbb{N}$ and $c = c(\lambda_1, \lambda_2) > 0$ such that if n > N there is $n_1 > c \cdot n$ such that

$$\prod_{j=1}^{n} \|Df/E(f^{-j}(y_E))\| \le \lambda_2^h \quad \forall \, 1 \le h \le n_1 \,,$$

and changing λ_2 by λ_3 the same holds for points z in $[x, y_E]^{cs}$. It follows that $\operatorname{dist}(x, y_E) \leq \operatorname{dist}(f^{-n_1}(x), f^{-n_1}(y_E))\lambda_3^{n_1-1}$. Therefore

$$\operatorname{dist}(f^{-n_1}(x), f^{-n_1}(y_E)) \ge \frac{\operatorname{dist}(x, y_E)}{\lambda_3^{n_1}}.$$

Since by (2)

$$\operatorname{dist}(f^{-n_1}(x), f^{-n_1}(y)) \ge \operatorname{dist}(f^{-n_1}(x), f^{-n_1}(y_E)) \frac{\sin \gamma}{2 + \sin \gamma}$$

we conclude, taking into account that $0 < \lambda_3 < 1$, that

$$\operatorname{dist}(f^{-n_1}(x), f^{-n_1}(y)) \ge \frac{\operatorname{dist}(x, y_E)}{\lambda_3^{n_1}} \cdot \frac{\sin \gamma}{2 + \sin \gamma} > \epsilon$$

if n_1 is large enough contradicting the fact that $y \in \Gamma_{\epsilon}(x)$. We conclude in this case that y_E must coincide with x contradicting our hypothesis.

So, we cannot have arbitrarily large contraction from time -n to 0 and as a consequence we have that $[x, y_E]^{cs}$ is a δ -*F*-interval for some $0 < \delta < \delta_0$. So the arguments employed above in the case when $y \in W_{loc}^{cu}(x)$ apply.

In any case we have proved that

$$\Gamma_{\epsilon}(x) \subset W^{cs}_{loc}(J) \cup W^{cu}_{loc}(I)$$

for a δ -*E*-interval *I* and a δ -*F*-interval *J* and that

$$h(f, W_{loc}^{cs}(J)) = h(f, W_{loc}^{cu}(I)) = 0$$

so that $h(f, \Gamma_{\epsilon}(x)) = 0$.

4 Proof of Theorem B

In this section we prove the following

Theorem 4.1. Let M be a compact boundaryless C^{∞} surface and $f : M \to M$ be a C^r diffeomorphism. Let H(p) be an f-homoclinic class associated to the fhyperbolic periodic point p. Assume that there is a C^1 neighborhood \mathcal{U} of f such that for any $g \in \mathcal{U}$ it holds that there is a continuation $H(p_g)$ of H(p) such that $H(p_g)$ is h-expansive. Then H(p) has a dominated splitting.

In order to prove this theorem we will use results of Downarowicz and Newhouse (see [DN] and [Nh2]). Recall that a subshift (g, Y) is the restriction of the full shift in a finite alphabet to a closed invariant subsystem.

Definition 4.1. Let $f : X \to X$ be a homeomorphism of a compact metric space X. A symbolic extension of the pair (f, X) is a pair (g, Y), where (g, Y) is a subshift with a continuous surjection $\pi : Y \to X$ such that $f\pi = \pi g$. A symbolic extension is principal if the topological entropy of the extension coincides with that of the original system, that is, h(g, Y) = h(f, X).

In [DN] the following theorems are proved.

Theorem 4.2. Fix $2 \le r < \infty$. There is a residual subset \mathcal{R} of the space $\text{Diff}^r(M)$ of C^r -diffeomorphisms of a closed surface M such that if $f \in \mathcal{R}$ and f has a homoclinic tangency, then f has no principal symbolic extension.

Proof. See [DN, Theorem 1.4].

Moreover, if f has no principal symbolic extension then f cannot be asymptotically h-expansive as has been proved by M. Boyle, D. Fiebig and U. Fiebig (see [BFF]).

Proof of Theorem B. Let M and $f : M \to M$ be as in Theorem A and H(p)an f-homoclinic class associated to the f-hyperbolic periodic point p. Assume that there is a C^1 neighborhood \mathcal{U} of f such that for any $g \in \mathcal{U}$ it holds that there is a continuation $H(p_g)$ of H(p) such that $H(p_g)$ is h-expansive. Let $x \in$ $W^s(p) \cap W^u(p)$ be a transverse homoclinic point associated to the periodic point p. We define $E(x) = T_x W^s(p)$ and $F(x) = T_x W^u(p)$. Since p is hyperbolic we have that $E(x) \oplus F(x) = T_x M$. Moreover, E(x) and F(x) are Df-invariant, i.e.: Df(E(x)) = E(f(x)) and Df(F(x)) = F(f(x)).

By definition $H(p) = \operatorname{clos}(\operatorname{hom}(p))$ where $\operatorname{hom}(p)$ is the set of transverse homoclinic points associated to p so if we prove that there is a dominated splitting for $\operatorname{hom}(p)$ we are done since then we can extend by continuity the splitting to the closure H(p).

Let us prove that there is a dominated splitting for hom(p). To do so it is enough to prove that there exists m > 0 such that for some $k : 0 \le k \le m$ it holds for all $x \in hom(p)$ that

$$||Df^k/E(x)|| ||Df^{-k}/F(f^k(x))|| \le \frac{1}{2}.$$

Hence arguing by contradiction let us assume that for all m > 0 there is $x_m \in hom(p)$ such that for all $k : 0 \le k \le m$ we have

$$||Df^k/E(x_m)|| ||Df^{-k}/F(f^k(x_m))|| > \frac{1}{2}.$$

Using the arguments developed by Mañé for periodic points in [Ma1] modified as in [SV] for homoclinic points, for any $\gamma > 0$ and $\epsilon > 0$ we may find m > 0, depending on ϵ and γ , such that with an ϵ - C^1 -perturbation g' of f we obtain a homoclinic point $x_{g'}$ associated to $p_{g'}$ such that the angle at $x_{g'}$ between $W^s_{loc}(x_{g'}, g')$ and $W^u_{loc}(x_{g'}, g')$ is less than γ . Since C^2 -diffeomorphisms are dense in C^1 -topology we may assume that g' is C^2 . Since γ is arbitrarily small we may C^1 -perturb g' obtaining g of class C^2 with a tangency at x_g between $W^s_{loc}(x_g)$ and $W^u_{loc}(x_g)$. Moreover this perturbation can be assumed to give us a C^2 -robust tangency of Hènon-like type

(see [Nh1]). By the results of [DN] and [Nh2] we conclude that there is no symbolic extension for $g/H(p_g)$. Therefore, by [BFF], $g/H(p_g)$ is not asymptotic *h*-expansive and *a fortiori* it is not *h*-expansive contradicting our hypotheses. This finishes the proof of Theorem B.

References

[BFF]	BOYLE, M., FIEBIG, D., FIEBIG, U., <i>Residual entropy, conditional</i> entropy, and subshift covers, Forum Math., Vol. 14 (2002), p. 713-757.	
[Bo]	R. BOWEN, <i>Entropy-expansive maps</i> , Transactions of the American Mathematical Society, vol 164 (February 1972), p. 323-331.	
[Bu]	J. BUZZI, Intrinsic ergodicity for smooth interval map, Israel J. Math., 100 (1997), p. 125-161.	
[DN]	T.A. DOWNAROWICZ, S.A. NEWHOUSE, Symbolic extensions and smooth dynamical systems, Inventiones Mathematicae, 160, No.3, (2005), p. 453-499.	
[Ge]	MARLIES GERBER, Conditional stability and real analytic pseudo- Anosov maps, Mem. Amer. Math. Soc., 54 1985.321	
[LL]	J. LEWOWICZ, E. LIMA DE SÁ, Analytic models of pseudo-Anosov maps, Erg. Th. Dynam. Sys, 6 (1986), p. 385-392.	
[Ma1]	R. MAÑÉ, An ergodic closing lemma, Annals of Mathematics, 116 (1982), p. 503-540.	
[Mi]	M. MISURIEWICZ, Diffeomorphisms without any measure with maximal entropy, Bull. Acad. Polon. Sci., 21 (1973), p. 903-910.	
[Nh1]	S. NEWHOUSE, The abundance of wild hypebolic sets and non- smooth stable sets for diffeomorphisms, Inst. Haute Études Sci. Publ. Math., 50 (1979), p. 101-151.	
[Nh2]	S. NEWHOUSE, New phenomena associated with homoclinic tan- gencies, Ergod. Th. & Dynam. Sys., 24 (2004), p. 1725-1738.	
[Pl1]	V. A. PLISS, Analysis of the necessity of the conditions of Smale and Robbin for structural stability of periodic systems of differential equations, Diff. Uravnenija, 8 (1972), p. 972-983.	

[PS1]	E. PUJALS, M. SAMBARINO, Homoclinic tangencies and hyperbol- icity for surface diffeomorphisms, Annals of Mathematics, 151 (2000), p. 961-1023.	
[PS2]	E. PUJALS, M. SAMBARINO, On the Dynamics of Dominated Split- ting, Preprint, (2002), p	
[PPV]	M. J. PACIFICO, E. R. PUJALS, J. L. VIEITEZ, <i>Robust expansive homoclinic classes</i> , Ergodic Theory and Dynamical Systems, 25 (2005), p. 271-300.	
[PPSV]	M. J. PACIFICO, E. PUJALS, M. SAMBARINO, J. VIEITEZ, <i>Robustly expansive codimension-one homoclinic classes are hyperbolic</i> , submitted for publication, (preprint IMPA, série D), p	
[Sc]	SCHWARTZ, A. J., A generalization of a Poincaré-Bendixson theo- rem to closed two-dimensional manifolds, Amer. J. Math., 85 (1963), p. 453-458.; Errata, <i>ibid</i> 85 , (1963), p. 753.	
[SV]	M. SAMBARINO, J. VIEITEZ, On C ¹ -persistently Expansive Homo- clinic Classes, Discrete and Continuous Dynamical Systems, 14 , No.3 (2006), p. 465-481.	
M. J. Pacifico,	J. L. Vieitez,	

M. J. Pacifico,	J. L. Vieitez,
Instituto de Matematica,	Instituto de Matematica,
Universidade Federal do Rio de Janeiro,	Facultad de Ingenieria,
C. P. 68.530, CEP 21.945-970,	Universidad de la Republica,
Rio de Janeiro, R. J. , Brazil.	CC30, CP 11300,
	Montevideo, Uruguay
pacifico@im.ufrj.br	jvieitez@fing.edu.uy