Entropy-expansiveness and domination

M. J. Pacifico, J. L. Vieitez

May, 5, 2006

Abstract

Let $f: M \rightarrow M$ be a C^{r}-diffeomorphism, $r \geq 1$, defined in a compact boundary-less surface M. We prove that if K is a compact f-invariant subset of M with a dominated splitting then f / K is h-expansive. Reciprocally, if there exists a C^{r} neighborhood of f, \mathcal{U}, such that for $g \in \mathcal{U}$ there exists K_{g} compact invariant such that g / K_{g} is h-expansive then there is a dominated splitting for K_{g}.

2000 Mathematics Subject Classification: 37D30

1 Introduction

To obtain results about the complexity of the dynamics of a discrete or continuous time dynamical system as recurrence, existence of periodic orbits, SRB measures, etc., one usually try to express dynamic properties at the infinitesimal level, i.e.: precise definitions are given prescribing the behavior of the tangent map $D f: T M \rightarrow T M$ of a diffeomorphism $f: M \rightarrow M$. Examples of that are the concepts of hyperbolicity, partial hyperbolicity and the existence of a dominated splitting. On the other hand a robust dynamic property (i.e. a property that holds for a system and all nearby ones) should leave its impromptus in the behavior of the tangent map of those differentiable systems sharing that property. In [PPV], [SV] and [PPSV] it has been studied the influence of expansiveness when it holds in a homoclinic class H associated to a hyperbolic periodic point p such that H and the corresponding homoclinic classes H_{g}, for all diffeomorphism g nearby f, are expansive. It is proved there that in that case $D f / H$ has a dominated splitting and moreover f / H is hyperbolic in the codimension one case ([PPV], [PPSV]). In the general codimension case we also obtain hyperbolicity adding an extra hypothesis called germ-expansiveness (see [SV]).
In this paper we relax expansiveness asking what should be the properties of the tangent map $D f$ of a diffeomorphism f defined on a surface such that robustly
exhibits h-expansiveness (entropy-expansiveness, see definitions below). We obtain that for such maps it exists a dominated splitting. On the other hand we prove that if K admits a dominated splitting then it is h-expansive. Thus robust h expansiveness is equivalent to the existence of a dominated spitting.

Moreover, we give here an example of a C^{∞} diffeomorphism that is not h expansive. By a result of Buzzi (see [Bu]) such an example is asymptotically h-expansive (see definition below) since it is C^{∞}. The first examples of a diffeomorphism that is not h-expansive and even not asymptotically h-expansive was given by Misiurewicz in [Mi] answering a question posed by Bowen. We give our example here because of its good properties from various points of view. First it is clear that it has not a dominated splitting. Second it is defined on S^{2}, is ergodic and even has Bernoulli property. Third it admits analytic models a stronger property than being C^{∞}.

Let us now give precise definitions. Let M be a compact connected boundaryless Riemannian d-dimensional manifold and $f: M \rightarrow M$ a homeomorphism. Let K be a compact invariant subset of M and dist : $M \times M \rightarrow \mathbb{R}^{+}$a distance in M compatible with its Riemannian structure. For $E, F \subset K, n \in \mathbb{N}$ and $\delta>0$ we say that $E(n, \delta)$ spans F with respect to f if for each $y \in F$ there is $x \in E$ such that $\operatorname{dist}\left(f^{j}(x), f^{j}(y)\right) \leq \delta$ for all $j=0, \ldots, n-1$. Let $r_{n}(\delta, F)$ denote the minimum cardinality of a set that (n, δ) spans F. Since K is compact $r_{n}(\delta, F)<\infty$. We define

$$
h(f, F, \delta)=\lim \sup _{n \rightarrow \infty} \frac{1}{n} \log \left(r_{n}(\delta, F)\right)
$$

and

$$
h(f, F)=\lim _{\delta \rightarrow 0} h(f, F, \delta) .
$$

The last limit exists since $h(f, F, \delta)$ increases as δ decreases to zero.
For $x \in K$ let us define

$$
\Gamma_{\epsilon}(x, f)=\Gamma_{\epsilon}(x)=\left\{y \in M / d\left(f^{n}(x), f^{n}(y)\right) \leq \epsilon, n \in \mathbb{Z}\right\} .
$$

Following Bowen (see [Bo]) we say that f / K is entropy-expansive or h expansive if and only if there exists $\epsilon>0$ such that

$$
h_{f}^{*}(\epsilon)=\sup _{x \in K} h\left(f, \Gamma_{\epsilon}(x)\right)=0 .
$$

The importance of f being h-expansive is that the topological entropy of f restricted to $K, h(f / K)$, is equal to its estimate using $\epsilon: h(f, K)=h(f, K, \epsilon)$. More precisely:

Theorem 1.1. For all homeomorphism f defined in a compact invariant set K it holds

$$
h(f, K) \leq h(f, K, \epsilon)+h_{f}^{*}(\epsilon) \text { in particular } h(f, K)=h(f, K, \epsilon) \text { if } h_{f}^{*}(\epsilon)=0
$$

Proof. See [Bo], Theorem 2.4.
A weaker property of that of being h-expansive is that of being asymptotically h-expansive ([Mi]). Let K be a compact metric space and $f: K \rightarrow K$ an homeomorphism. We say that f is asymptotically h-expansive if and only if

$$
\lim _{\epsilon \rightarrow 0} h_{f}^{*}(\epsilon)=0
$$

Thus we do not require that for a certain $\epsilon>0 h_{f}^{*}(\epsilon)=0$ but that $h_{f}^{*}(\epsilon) \rightarrow 0$ when $\epsilon \rightarrow 0$. It has been proved by Buzzi that any C^{∞} diffeomorphism defined on a compact manifold is asymptotically h-expansive. Hence our example although not h-expansive is asymptotically h-expansive.
Definition 1.1. We say that a compact f-invariant set Λ admits a dominated splitting if the tangent bundle $T_{\Lambda} M$ has a continuous D-invariant splitting $E \oplus F$ and there exist $C>0,0<\lambda<1$ such that

$$
\begin{equation*}
\left\|D f^{n}\left|E(x)\|\cdot\| D f^{-n}\right| F\left(f^{n}(x)\right)\right\| \leq C \lambda^{n} \forall x \in \Lambda, n \geq 0 \tag{1}
\end{equation*}
$$

Our main results are the following:
Theorem A. Let M be a compact boundaryless C^{∞} surface and $f: M \rightarrow M$ be a C^{r} diffeomorphism such that $K \subset M$ is a compact f-invariant subset with a dominated splitting $E \oplus F$. Then f / K is h-expansive.

Since the property of having a dominated splitting is open we may conclude that any $g C^{1}$ close to f is such that g / K_{g} is h-expansive.

In case M is a d-dimensional manifold with $d \geq 3$ the existence of a dominated splitting is not enough to guarantee h-expansiveness as it is shown in the examples presented below.

Observe that the identity map $i d: M \rightarrow M$ is h-expansive and moreover if the topological entropy of a map $f: M \rightarrow M$ vanishes, $h(f)=0$, then it is h-expansive. Nevertheless, the persistence of h-expansiveness has a dynamical meaning.
Theorem B. Let M be a compact boundaryless C^{∞} surface and $f: M \rightarrow M$ be a C^{r} diffeomorphism. Let $H(p)$ be an f-homoclinic class associated to the f hyperbolic periodic point p. Assume that there is a C^{1} neighborhood \mathcal{U} of f such that for any $g \in \mathcal{U}$ it holds that there is a continuation $H\left(p_{g}\right)$ of $H(p)$ such that $H\left(p_{g}\right)$ is h-expansive. Then $H(p)$ has a dominated splitting.

2 Examples

Let us now give an example of an analytic diffeomorphism that is not h-expansive. We consider in \mathbb{R}^{2} the action given by the matrix $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$. Since the entries of A are integers and $\operatorname{det}(A)=1$, the lattice \mathbb{Z}^{2} is preserved by this action and therefore it passes to the quotient $\mathbb{T}^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$. This gives us a very well known linear Anosov diffeomorphism $a: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$. Let $[x, y]$ represent the equivalence class of $(x, y) \in \mathbb{R}^{2}$ in $\mathbb{R}^{2} / \mathbb{Z}^{2}$. We define in $\mathbb{R}^{2} / \mathbb{Z}^{2}$ the relation $[x, y] \sim[-x,-y]=-[x, y]$. The quotient \mathbb{T}^{2} / \sim gives the sphere S^{2}. In order to see this let us take the square in \mathbb{R}^{2} limited by the straight lines $x=-\frac{1}{2}$, $x=\frac{1}{2}, y=-\frac{1}{2}, y=\frac{1}{2}$. We obtain a fundamental domain for the torus and we identify it with \mathbb{T}^{2}. In the quotient \mathbb{T}^{2} the vertices $\mathrm{A}(1 / 2,1 / 2), \mathrm{B}(-1 / 2,1 / 2), \mathrm{C}$ $(-1 / 2,-1 / 2), \mathrm{D}(1 / 2,-1 / 2)$, of the square are all identified. Let us call E to the point $(1 / 2,0), \mathrm{F}$ to the point $(-1 / 2,0), \mathrm{G}$ to the point $(0,1 / 2)$ and H to the point $(0,-1 / 2)$. Observe that E is identified with F and G is identified with H in \mathbb{T}^{2}. Now observe that the boundary of the square OEAG is identified with the boundary of the square OEDH (by the relations $(x, y) \sim-(x, y)$ and $(x, y) \sim\left(x^{\prime}, y^{\prime}\right)$ if $\left.\left(x-x^{\prime}, y-y^{\prime}\right) \in \mathbb{Z}^{2}\right)$. Hence both squares are two different disks glued in their boundaries by this identification. This gives a sphere. Moreover, the rest of the square ABCD doesn't give more points to the quotient because the squares OEAG and OFCH, and OEDH and OFBG, are identified by the relation $(x, y) \sim-(x, y)$. On the other hand $a([x, y]) \sim-a([x, y])=a(-[x, y])$ by linearity, and therefore projects to S^{2} as a map $g: S^{2} \rightarrow S^{2}$, known as a generalized pseudo-Anosov map. If $\Pi: \mathbb{T}^{2} \rightarrow \S^{2}$ is the projection defined by the relation \sim, we may write $g(x)=\Pi\left(a\left(\Pi^{-1}(x)\right)\right)$. Observe that the projection $\Pi: \mathbb{T}^{2} \rightarrow S^{2}$ is a branched covering and that the definition of g doesn't depend on the pre-image of x by Π^{-1}. Therefore periodic points of a projects in periodic points of g and dense orbits of a projects in dense orbits of g. For g there are singular points P where the local ϵ-stable and ϵ-unstable sets are arcs with the point P as an end-point. This local stable (unstable) sets are called 1-prongs (see figure 1 where O is a point with 1-prongs).

Let $O \in S^{2}$ be the image by Π of $[0,0]$. Then O is (the unique) fixed point of g. The point O is singular because the unstable manifold of $[0,0]$ in \mathbb{T}^{2} projects to S^{2} as an arc ending at O (because $[x, y] \sim-[x, y]$). The stable and unstable manifolds of the points in \mathbb{T}^{2} near $(0,0)$ projects to points in S^{2} near O like in Figure 1. The intersection of the stable and unstable manifolds of the points $(0, x)$ and $(0,-x)$ consists of four points identified by pairs by the relation $[x, y] \sim-[x, y]$. If $[x, y] \in \mathbb{T}^{2}$ projects to $X \in S^{2}$, let us call s_{X} and u_{X} to the projections of the ϵ-local stable and ϵ-local unstable manifolds respectively of the point $[x, y]$. Hence
if a point X is very near to a singular point like O its local stable and unstable sets, s_{X} and u_{x}, will intersect twice. Points in s_{X} are in the ϵ-local stable set of X and points in u_{X} are in the ϵ-local unstable set of X. Moreover, if $Y \in s_{X}$ then $\operatorname{dist}\left(g^{n}(Y), g^{n}(X)\right) \rightarrow 0$ when $n \rightarrow+\infty$. Similarly for points in u_{X} replacing $n \rightarrow+\infty$ by $n \rightarrow-\infty$.

Let us choose the singular point O and given $\epsilon^{\prime}>0$ choose $P \neq O$ a periodic point satisfying $\operatorname{dist}(P, 0)<\epsilon^{\prime}$. Such a point exists since periodic points are dense for the Anosov diffeomorphism a defined on \mathbb{T}^{2} and projects on S^{2} as periodic points for g. Let $\left\{P, P^{\prime}\right\}=s_{P} \cap u_{P}$. Then it is not difficult to see that given $\epsilon>0$ there is $\epsilon^{\prime}>0$ small enough such that $P^{\prime} \in W_{\epsilon}^{u}(P) \cap W_{\epsilon}^{s}(P)$. Thus we have a homoclinic intersection between ϵ-local stable and ϵ-local unstable arcs of the periodic point P, P^{\prime} being a homoclinic point such that its orbit is always at a distance less than ϵ from the orbit of P. It follows that for all $\epsilon>0$ there are points P such that $\Gamma_{\epsilon}(P)$ contains a small horseshoe. Thus $g: S^{2} \rightarrow S^{2}$ is not h-expansive. Moreover, this example is transitive and there are real analytic models for $g: S^{2} \rightarrow S^{2}$ (see [Ge], and [LL]).

Figure 1: Generalized pseudo-Anosov

Clearly the example is a homoclinic class which has no dominated splitting.
Let us show that property (1) sole does not imply h-expansiveness in dimension 3 or more. Consider the 3 -manifold $S^{2} \times S^{1}$ with $g: S^{2} \rightarrow S^{2}$ as in the example above, and put in S^{1} a diffeomorphism $h: S^{1} \rightarrow S^{1}$ with a North-South dynamics, say, $N \in S^{1}$ is a source and $S \in S^{1}$ is a sink and the ω-limit of any point in S^{1} is S and the α-limit of every point in S^{1} is N. We may assume that $\left|D h_{N}\right|>2 k$ where $k=\sup \left\{\|D g(x)\|, x \in S^{2}\right\}$. Let us define $f: S^{2} \times S^{1} \rightarrow S^{2} \times S^{1}$ by
$f(x, y)=(g(x), h(y))$. Then if $K=S^{2} \times\{N\}, K$ is compact invariant and there is a dominated splitting for $K, E \oplus F$, where $E=T_{x} S^{2}, F=T_{N} S^{1}$. By the previous example f is not h-expansive.

This example shows what is the problem; the strongly expanding direction F along S^{1} does not interferes on the dynamics of f / S^{2}. Thus property (1) holds for f defined on $S^{2} \times S^{1}$ albeit does not for $g=f / S^{2}$.

3 Proof of Theorem A

Here we shall prove
Theorem 3.1. Let M be a closed smooth surface and $f: M \rightarrow M$ be a C^{r} diffeomorphism such that $K \subset M$ is a compact f-invariant subset with a dominated splitting $E \oplus F$. Then f / K is h-expansive.

We need the following lemma.
Lemma 3.2 (Pliss). Let $0<\lambda_{1}<\lambda_{2}<1$ and assume that there exists $n>0$ arbitrarily large such that

$$
\prod_{j=1}^{n}\left\|D f / E\left(f^{j}(x)\right)\right\| \leq \lambda_{1}^{n}
$$

Then there exist a positive integer $N=N\left(\lambda_{1}, \lambda_{2}, f\right), c=c\left(\lambda_{1}, \lambda_{2}, f\right)>0$ such that if $n \geq N$ then there exist numbers

$$
0 \leq n_{1} \leq n_{2} \leq \cdots \leq n_{l} \leq n
$$

such that

$$
\prod_{j=n_{r}}^{h}\left\|D f / E\left(f^{j}(x)\right)\right\| \leq \lambda_{2}^{h-n_{r}}
$$

for all $r=1,2, \ldots, l$, with $l \geq c n$, and for all h with $n_{r} \leq h \leq n$.
Proof. The proof of this lemma can be found in [Pl1].
Proof of Theorem A. Let M be a surface and $K \subset M$ a compact and f invariant subset such that there is a dominated splitting $E \oplus F$ defined on it. By continuity of f and $D f$ there is $\delta_{0}>0$ such that we may extend the cones defining equation (1) to the closed δ_{0} neighborhood of $K, U(K)=\left\{y \in M / \operatorname{dist}(y, K) \leq \delta_{0}\right\}$. If the orbit of a point $y, \operatorname{orb}(y)$, is contained in $U(K)$ then for that point there are defined local center-stable and center-unstable manifolds $W_{l o c}^{c s}(y)$ and $W_{l o c}^{c u}(y)$
where loc >0 stands for a small real number. Moreover, there is $\delta_{1}, 0<\delta_{1} \leq \delta_{0}$ such that if $\operatorname{dist}\left(f^{j}(y), f^{j}(z)\right) \leq \delta_{1}$ for all $j=0, \ldots, n$ and $z \in W_{\text {loc }}^{c s}(y)$ then $f^{j}(z) \in W_{\text {loc }}^{c s}\left(f^{j}(y)\right)$ for all $j=0, \ldots, n$. Similarly for the local center unstable manifold (see [PS1, Lemma 3.0.4 and Corollary 3.2]).

We need the following lemma:
Lemma 3.3. There is $\delta_{2}, 0<\delta_{2} \leq \delta_{1}$ such that if the length of the arc $[y, z]^{c s} \subset$ $W_{\text {loc }}^{c s}(y)$ is greater than $\delta>0$ for $0<\delta \leq \delta_{2}, \ell\left([y, z]^{c s}\right)>\delta$, then $\operatorname{dist}(y, z)>\delta / 2$. Moreover, there is a constant $L>0$ such that if $\operatorname{dist}(y, z) \leq \delta$ then $\ell\left([y, z]^{c s}\right) \leq L$. Similarly for an arc $[y, z]^{c u} \subset W_{l o c}^{c u}(y)$.

Proof. Since $E(y), E(z)$ are continuous sub-bundles in $U(K)$ we may find $\delta_{2}, 0<$ $\delta_{2} \leq \delta_{1}$ such that given $\eta>0 \angle(E(y), E(w))<\eta$ for all $w \in B\left(y, \delta_{2}\right) \cap U(K)$ (the number δ_{0} can be chosen so small that $B\left(y, \delta_{0}\right)$ is contained in a local chart, so that we may assume locally that we are in \mathbb{R}^{2}). Thus if we parameterize $[y, z]$ by arc-length $\beta:[0, l] \rightarrow M$, with $\beta(0)=y, \beta(l)=z$, then $\beta^{\prime}(s)=\left(\beta_{1}^{\prime}(s), \beta_{2}^{\prime}(s)\right)$ is parallel to $E(\beta(s))$. Therefore, since $\left(\beta_{1}^{\prime}(s)\right)^{2}+\left(\beta_{2}^{\prime}(s)\right)^{2}=1$, we have by the Mean Value Theorem

$$
\begin{gathered}
\operatorname{dist}(y, z)=\|\beta(l)-\beta(0)\|= \\
=\sqrt{\left(\beta_{1}(l)-\beta_{1}(0)\right)^{2}+\left(\beta_{2}(l)-\beta_{2}(0)\right)^{2}}=\sqrt{\left(\left(\beta_{1}^{\prime}\left(s_{1}\right)\right)^{2}+\left(\beta_{2}^{\prime}\left(s_{2}\right)\right)^{2}\right.} \cdot l= \\
=l\left(1-\left(\sqrt{\left(\left(\beta_{1}^{\prime}(0)\right)^{2}+\left(\beta_{2}^{\prime}(0)\right)^{2}\right.}-\sqrt{\left(\left(\beta_{1}^{\prime}\left(s_{1}\right)\right)^{2}+\left(\beta_{2}^{\prime}\left(s_{2}\right)\right)^{2}\right.}\right)\right)= \\
=l\left(1-\frac{\left(\beta_{1}^{\prime}(0)\right)^{2}-\left(\beta_{1}^{\prime}\left(s_{1}\right)\right)^{2}+\left(\beta_{2}^{\prime}(0)\right)^{2}-\left(\beta_{2}^{\prime}\left(s_{2}\right)\right)^{2}}{\left.1+\sqrt{\left(\left(\beta_{1}^{\prime}\left(s_{1}\right)\right)^{2}+\left(\beta_{2}^{\prime}\left(s_{2}\right)\right)^{2}\right)}\right) \geq}\right. \\
\geq l\left(1-\left|\beta_{1}^{\prime}(0)-\beta_{1}^{\prime}\left(s_{1}\right)\right|\left(\beta_{1}^{\prime}(0)+\beta_{1}^{\prime}\left(s_{1}\right)\right)+\left|\beta_{2}^{\prime}(0)-\beta_{2}^{\prime}\left(s_{2}\right)\right|\left(\beta_{2}^{\prime}(0)+\beta_{2}^{\prime}\left(s_{2}\right)\right)\right) .
\end{gathered}
$$

But, since $\angle(E(\beta(s)), E(\beta(0)))<\eta$,

$$
\left\|\left(\beta_{1}^{\prime}(s)-\beta_{1}^{\prime}(0), \beta_{2}^{\prime}(s)-\beta_{2}^{\prime}(0)\right)\right\| \leq 2 \sin (\eta / 2)<\eta, \text { for small } \eta \text {. }
$$

Therefore, taking into account that $\beta_{1}^{\prime}(0)+\beta_{1}^{\prime}\left(s_{1}\right) \leq\left|\beta_{1}^{\prime}(0)\right|+\left|\beta_{1}^{\prime}\left(s_{1}\right)\right| \leq 2$ and that the same is true with respect to β_{2}^{\prime} we have

$$
\operatorname{dist}(y, z) \geq l(1-4 \eta)>l / 2
$$

if $\eta>0$ is sufficiently small. The proof that if $\operatorname{dist}(y, z) \leq \delta$ then $\ell\left([y, z]^{c s}\right) \leq L$ is similar.

Continuing with the proof of Theorem A we observe that taking an iterate f^{m} of f we may assume that the constant $C>0$ appearing in the definition of the dominated splitting, equation (1), is one. Since for a compact invariant set X we have that the topological entropy $h\left(f^{m} / X\right)=m \cdot h(f / X)$, if we prove that for some $\epsilon>0, h\left(f^{m} / \Gamma_{\epsilon}(x, f)\right)=0$ then the same is true for f. Thus we assume that for f itself $C=1$.
Let $\lambda_{1}=\sqrt[3]{\lambda}<\lambda_{2}=\sqrt[4]{\lambda}<\lambda_{3}=\sqrt[5]{\lambda}<1$. If it were necessary we take δ_{3}, $0<\delta_{3} \leq \delta_{2}$ such that if $\operatorname{dist}(z, w) \leq \delta_{3}$ then

$$
1-c<\frac{\|D f / E(z)\|}{\|D f / E(w)\|}<1+c \text { and } 1-c<\frac{\left\|D f^{-1} / F(z)\right\|}{\left\|D f^{-1} / F(w)\right\|}<1+c
$$

where $c>0$ is such that $(1+c) \lambda_{2} \leq \lambda_{3}$.
We recall that when a dominated splitting $E \oplus F$ is defined in a compact set like $U(K)$ we may find $\gamma>0$ such that for all $y \in U(K)$ it holds that the angle between $E(y)$ and $F(y)$ is greater than $\gamma, \angle(E(y), F(y))>\gamma$. Let us pick a point $x \in U(K)$ and, identifying \mathbb{R}^{2} with a coordinate neighborhood around x, let $l_{E}(x)$ be the straight line for x with the direction of $E(x)$ and $l_{F}(x)$ the straight line with the direction of $F(x)$. From a point $y_{0} \in l_{F}(x), y_{0} \neq x$, we consider the straight line $y_{0}+l_{E}(x)$ parallel to $E(x)$. Then for any point y in $y_{0}+l_{E}(x)$ we have that the distance between y and x is greater than the distance between y_{0} and x multiplied by $\sin \gamma, \operatorname{dist}(y, x) \geq \operatorname{dist}\left(y_{0}, x\right) \sin \gamma$, (see figure 2).

Figure 2: Bounds for the distance between x and $y \in y_{0}+l_{E}(x)$

Since the local center unstable manifold is tangent to F and the local center
stable manifold is tangent to E we may assume that δ_{3} is so small that

$$
\begin{equation*}
\operatorname{dist}(y, x) \geq \operatorname{dist}\left(y_{0}, x\right)\left(\frac{\sin \gamma}{2+\sin \gamma}\right) \tag{2}
\end{equation*}
$$

for $y_{0} \in W_{\text {loc }}^{c u}(x) \cap B\left(x, \delta_{3}\right), y \in W_{\text {loc }}^{c s}\left(y_{0}\right) \cap B\left(x, \delta_{3}\right)$.
Let now $\epsilon>0$ be such that

$$
\begin{equation*}
\epsilon<\frac{\delta_{3}}{(1+2 \sin \gamma)} \tag{3}
\end{equation*}
$$

We will prove that for all $x \in K, h\left(f / \Gamma_{\epsilon}(x)\right)=0$. This will prove that f / K is entropy-expansive.

Let us assume first that $y \in W_{\text {loc }}^{c u}(x) \cap \Gamma_{\epsilon}(x), y \neq x$. Then $\operatorname{orb}(y) \subset U(K)$ and therefore for all $j \in \mathbb{Z}$ it holds that

$$
\left\|D f / E\left(f^{j-1}(y)\right)\right\|\left\|D f^{-1} / F\left(f^{j}(y)\right)\right\|<\lambda
$$

and so

$$
\prod_{j=1}^{n}\left\|D f / E\left(f^{j-1}(y)\right)\right\|\left\|D f^{-1} / F\left(f^{j}(y)\right)\right\|<\lambda^{n}, \forall n \geq 1
$$

If it were the case that

$$
\prod_{j=1}^{n}\left\|D f^{-1} / F\left(f^{j}(y)\right)\right\| \leq \lambda_{1}^{n}
$$

for arbitrarily large $n>0$ then by Lemma 3.2 there are $N=N\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{N}$ and $c=c\left(\lambda_{1}, \lambda_{2}\right)>0$ such that if $n \geq N$ there exists $1 \leq n_{k}<n_{k-1}<\ldots<n_{1} \leq n$ with $k>c \cdot n$ and

$$
\prod_{j=h}^{n_{i}}\left\|D f^{-1} / F\left(f^{j}(y)\right)\right\| \leq \lambda_{2}^{n_{i}-h}
$$

for $n_{i} \geq h \geq 1 ; i=1, \ldots, k$. Observe in particular that $n_{1}>c \cdot n$ otherwise we cannot have $k>c \cdot n$. By our choice of δ_{3} we then have that

$$
\prod_{j=h}^{n_{1}}\left\|D f^{-1} / F\left(f^{j}(z)\right)\right\| \leq \lambda_{3}^{n_{1}-h}
$$

for all $h: n_{1} \geq h \geq 1$ if $\operatorname{dist}\left(f^{j}(z), f^{j}(y)\right) \leq \delta_{3}$ for all $j: h \leq j \leq n_{1}$.
If now we have z in the local center unstable arc $[x, y]^{c u}$ joining x and y and $\rho=\operatorname{dist}(x, y)>0$, we have, taking $h=1$, that

$$
\ell\left([x, y]^{c u}\right) \leq \ell\left(\left[f^{n_{1}}(x), f^{n_{1}}(y)\right]^{c u}\right) \lambda_{3}^{n_{1}-1} .
$$

Since $\left[f^{h}(x), f^{h}(y)\right]^{c u}$ is tangent to F and $\operatorname{dist}\left(f^{h}(x), f^{h}(y)\right) \leq \epsilon$, by Lemma 3.3 there is a constant $L>0$ such that $\ell\left(\left[f^{h}(x), f^{h}(y)\right]^{c u}\right) \leq L$. Thus we obtain that

$$
\ell\left([x, y]^{c u}\right) \leq L \cdot \lambda_{3}^{n_{1}-1}
$$

and since $0<\lambda_{3}<1$ and $n_{1}>c \cdot n \rightarrow \infty$ when $n \rightarrow \infty$ we conclude that $\rho=0$ and $x=y$ contradicting our hypothesis.

Hence we have that it is not true that for arbitrarily large $n>0$

$$
\prod_{j=1}^{n}\left\|D f^{-1} / F\left(f^{j}(y)\right)\right\| \leq \lambda_{1}^{n}
$$

and since

$$
\prod_{j=1}^{n}\left\|D f / E\left(f^{j-1}(y)\right)\right\|\left\|D f^{-1} / F\left(f^{j}(y)\right)\right\|<\lambda^{n}
$$

we may conclude that

$$
\prod_{j=1}^{n}\left\|D f / E\left(f^{j-1}(y)\right)\right\| \leq \lambda_{1}^{n}
$$

for all n large. Thus, in the notation of $[\mathrm{PS} 1], I=[x, y]^{c u}$ is a ϵ - E-interval. There are two cases: either $\ell\left(f^{n}(I)\right) \rightarrow 0$ when $n \rightarrow \infty$ or $\ell\left(f^{n}(I)\right) \nrightarrow 0$. In any case we may assume that for all point $z \in I$ we have that $W_{l o c}^{c s}(z)$ is a stable manifold. Thus $W_{l o c}^{c s}(I)$ attracts a neighborhood in M.
Let us assume first that $\ell\left(f^{n}(I)\right) \rightarrow 0$ when $n \rightarrow \infty$. Choose $\zeta>0$ and let us find bounds for $r_{n}\left(\zeta, W_{\text {loc }}^{c s}(I)\right)$. Since $\ell\left(f^{n}(I)\right) \rightarrow 0$ there is $n_{0}>0$ such that $\operatorname{diam}\left(f^{n}\left(W_{l o c}^{c s}(I)\right)\right) \leq \zeta$ for all $n \geq n_{0}$. Then we may find a finite subset E such that $\left(\zeta, n_{0}\right)$-spans $W_{l o c}^{c s}(I)$ and this set also (ζ, n)-spans $W_{l o c}^{c s}(I)$ for all $n \geq 0$. It follows readily that

$$
h\left(f, W_{l o c}^{c s}(I), \zeta\right)=\limsup _{n \rightarrow \infty} \frac{1}{n} \log \left(r_{n}\left(\zeta, W_{l o c}^{c s}(I)\right)=0\right.
$$

and therefore $h\left(f, W_{l o c}^{c s}(I)\right)=0$.
On the other hand, if $\ell\left(f^{n}(I)\right) \nrightarrow 0$ then by [PS1, Proposition 3.1] we have that for all $z \in I$, the omega -limit set of $z, \omega(z)$, is a periodic orbit or lies in a periodic circle. In the proof of that proposition Pujals and Sambarino use that f is of class C^{2}. But this is used in the case when $\ell\left(f^{n}(I)\right) \rightarrow 0$ when $n \rightarrow \infty$ in order to argue as in Schwartz's proof of the Denjoy property ([Sc]). If we already know that $\ell\left(f^{n}(I)\right) \nrightarrow 0$ then it is enough to assume f of class C^{1} to ensure that the ω-limit of I is contained in a periodic arc or circle and this is implicit in the proof of [PS1, Proposition 3.1].

In case of $\omega(x)$ being included in a periodic circle \mathcal{C} this circle is normally hyperbolic attracting a neighborhood V of \mathcal{C} and points in V converge exponentially fast to \mathcal{C}. If f is C^{2} then as in [PS1] we conclude that the dynamics by $f^{\tau}(\tau$ being the period of \mathcal{C}) in \mathcal{C} is conjugate to an irrational rotation while if f is just C^{1} we only have semi-conjugacy (we may have a Cantor set in \mathcal{C} and wandering intervals). In any case (conjugacy or semi-conjugacy with an irrational rotation R_{α}) we profit from the fact that $h\left(R_{\alpha}\right)=0$. This implies that if f^{τ} / \mathcal{C} is conjugate or semi-conjugate to R_{α} then $h\left(f^{\tau} / \mathcal{C}\right)=0$.
On the other hand if $\omega(x)$ is a periodic orbit, say of a point q, since $\ell\left(f^{n}(I)\right)<\delta$ for all $n \geq 0$ we have that there is a periodic point q^{\prime} in $W_{\text {loc }}^{c u}(q)$ such that attracts points in $f^{n}(I \backslash\{x\})$ (for instance the other end-point of $f^{n}(I)$ different from $f^{n}(x)$), see [PS1, Lemma 3.3.1]. Note than since $W_{l o c}^{c u}(q)$ is an arc, the period of q^{\prime} is the same of that of q, or the double of it. Let P be the set of periodic points of f in $W_{l o c}^{c u}(q) \backslash\{q\}$. Then all of them have the same period, say τ. The set P divides $W_{l o c}^{c u}(q)$ in arcs on which the dynamics by f^{τ} is monotone. It follows that the topological entropy of $f^{\tau} / W_{l o c}^{c u}(q)$ is zero.
So in both cases, periodic orbit or periodic circle, $f^{\tau n}\left(W_{l o c}^{c s}(I)\right)$ approaches an f^{τ} invariant one-dimensional manifold \mathcal{L} such that the topological entropy $h\left(f^{\tau}, \mathcal{L}\right)=$ 0 . Let $\zeta>0$ and $m \in \mathbb{N}$ large be given an find $S^{\prime} \subset \mathcal{L},(m, \zeta)$ spanning \mathcal{L}. We may find n_{0} and a subset S of $f^{n}(I)$ for $n \geq n_{0}$, such that (m, ζ) spans $f^{n}(I)$ with respect to f^{τ}. Projecting along the fibers of the local center-stable manifolds which, by equation (1), are dynamically defined $\left(W_{l o c}^{c s}(z)\right.$ is strong stable for all $\left.z \in \mathcal{L}\right)$ we know that there is $n_{1}>0$ such that for any point $z \in I, \ell\left(f^{n}\left(W_{l o c}^{c s}(z)\right)\right)<\zeta$. We add points to S in order to ensure that we do have a (m, ζ) spanning set for $f^{m}\left(W_{l o c}^{c s}(I)\right)$ for $m=0,1, \ldots, n_{1}-1$. We conclude that $h\left(f, W_{l o c}^{c s}(I), \zeta\right)=0$. Since $\zeta>0$ is arbitrary we obtain that $h\left(f, W_{l o c}^{c s}(I)\right)=0$. By [Bo, Corollary 2.3] we have that if there is a ϵ-E-interval I such that $\Gamma_{\epsilon}(x) \subset W_{l o c}^{c s}(I)$ then $h\left(\Gamma_{\epsilon}(x), f\right)=0$.

Similarly if $y \in W_{l o c}^{c s}(x)$ then $J=[x, y]^{c s}$ is an ϵ - F-interval and reasoning with the α-limit of J we obtain that $h\left(f, W_{l o c}^{c u}(J)\right)=0$.

Assume now that $y \notin W_{l o c}^{c s}(x), y \notin W_{l o c}^{c u}(x)$. By domination

$$
\|D f / E(z)\| \| D f^{-1} / F(f(z) \|<\lambda, \quad \forall z \in K
$$

and this still holds for points such that their orbits are in the δ_{0}-neighborhood of K as is the case of y. Therefore there are defined $W_{l o c}^{c s}(y)$ and $W_{l o c}^{c u}(y)$ which are embedded arcs. Since the angle between E and F is bounded by $\gamma>0$ from below, reducing ϵ if it were necessary, we may assume that $W_{l o c}^{c s}(y)$ cuts $W_{l o c}^{c u}(x)$ and $W_{l o c}^{c s}(x)$ cuts $W_{l o c}^{c u}(y)$ in points y_{F} and y_{E} respectively. By our assumption $y_{E} \neq x$ and $y_{F} \neq x$.

Figure 3: Case when $y \notin W_{l o c}^{c s}(x), y \notin W_{l o c}^{c u}(x)$.

Suppose that there are $n>0$ arbitrarily large such that for λ_{1} it holds that

$$
\prod_{j=1}^{n}\left\|D f / E\left(f^{-j}\left(y_{E}\right)\right)\right\| \leq \lambda_{1}^{n}
$$

Then, choosing λ_{2} and λ_{3} as we did above, by Pliss ' Lemma there is $N=$ $N\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{N}$ and $c=c\left(\lambda_{1}, \lambda_{2}\right)>0$ such that if $n>N$ there is $n_{1}>c \cdot n$ such that

$$
\prod_{j=1}^{h}\left\|D f / E\left(f^{-j}\left(y_{E}\right)\right)\right\| \leq \lambda_{2}^{h} \quad \forall 1 \leq h \leq n_{1}
$$

and changing λ_{2} by λ_{3} the same holds for points z in $\left[x, y_{E}\right]^{c s}$. It follows that $\operatorname{dist}\left(x, y_{E}\right) \leq \operatorname{dist}\left(f^{-n_{1}}(x), f^{-n_{1}}\left(y_{E}\right)\right) \lambda_{3}^{n_{1}-1}$. Therefore

$$
\operatorname{dist}\left(f^{-n_{1}}(x), f^{-n_{1}}\left(y_{E}\right)\right) \geq \frac{\operatorname{dist}\left(x, y_{E}\right)}{\lambda_{3}^{n_{1}}} .
$$

Since by (2)

$$
\operatorname{dist}\left(f^{-n_{1}}(x), f^{-n_{1}}(y)\right) \geq \operatorname{dist}\left(f^{-n_{1}}(x), f^{-n_{1}}\left(y_{E}\right)\right) \frac{\sin \gamma}{2+\sin \gamma}
$$

we conclude, taking into account that $0<\lambda_{3}<1$, that

$$
\operatorname{dist}\left(f^{-n_{1}}(x), f^{-n_{1}}(y)\right) \geq \frac{\operatorname{dist}\left(x, y_{E}\right)}{\lambda_{3}^{n_{1}}} \cdot \frac{\sin \gamma}{2+\sin \gamma}>\epsilon
$$

if n_{1} is large enough contradicting the fact that $y \in \Gamma_{\epsilon}(x)$. We conclude in this case that y_{E} must coincide with x contradicting our hypothesis.

So, we cannot have arbitrarily large contraction from time $-n$ to 0 and as a consequence we have that $\left[x, y_{E}\right]^{c s}$ is a δ - F-interval for some $0<\delta<\delta_{0}$. So the arguments employed above in the case when $y \in W_{l o c}^{c u}(x)$ apply.

In any case we have proved that

$$
\Gamma_{\epsilon}(x) \subset W_{l o c}^{c s}(J) \cup W_{l o c}^{c u}(I)
$$

for a δ - E-interval I and a δ - F-interval J and that

$$
h\left(f, W_{l o c}^{c s}(J)\right)=h\left(f, W_{l o c}^{c u}(I)\right)=0
$$

so that $h\left(f, \Gamma_{\epsilon}(x)\right)=0$.

4 Proof of Theorem B

In this section we prove the following
Theorem 4.1. Let M be a compact boundaryless C^{∞} surface and $f: M \rightarrow M$ be a C^{r} diffeomorphism. Let $H(p)$ be an f-homoclinic class associated to the f hyperbolic periodic point p. Assume that there is a C^{1} neighborhood \mathcal{U} of f such that for any $g \in \mathcal{U}$ it holds that there is a continuation $H\left(p_{g}\right)$ of $H(p)$ such that $H\left(p_{g}\right)$ is h-expansive. Then $H(p)$ has a dominated splitting.

In order to prove this theorem we will use results of Downarowicz and Newhouse (see [DN] and [Nh2]). Recall that a subshift (g, Y) is the restriction of the full shift in a finite alphabet to a closed invariant subsystem.

Definition 4.1. Let $f: X \rightarrow X$ be a homeomorphism of a compact metric space X. A symbolic extension of the pair (f, X) is a pair (g, Y), where (g, Y) is a subshift with a continuous surjection $\pi: Y \rightarrow X$ such that $f \pi=\pi g$. A symbolic extension is principal if the topological entropy of the extension coincides with that of the original system, that is, $h(g, Y)=h(f, X)$.

In [DN] the following theorems are proved.

Theorem 4.2. Fix $2 \leq r<\infty$. There is a residual subset \mathcal{R} of the space Diff ${ }^{r}(M)$ of C^{r}-diffeomorphisms of a closed surface M such that if $f \in \mathcal{R}$ and f has a homoclinic tangency, then f has no principal symbolic extension.

Proof. See [DN, Theorem 1.4].
Moreover, if f has no principal symbolic extension then f cannot be asymptotically h-expansive as has been proved by M. Boyle, D. Fiebig and U. Fiebig (see [BFF]).

Proof of Theorem B. Let M and $f: M \rightarrow M$ be as in Theorem A and $H(p)$ an f-homoclinic class associated to the f-hyperbolic periodic point p. Assume that there is a C^{1} neighborhood \mathcal{U} of f such that for any $g \in \mathcal{U}$ it holds that there is a continuation $H\left(p_{g}\right)$ of $H(p)$ such that $H\left(p_{g}\right)$ is h-expansive. Let $x \in$ $W^{s}(p) \cap W^{u}(p)$ be a transverse homoclinic point associated to the periodic point p. We define $E(x)=T_{x} W^{s}(p)$ and $F(x)=T_{x} W^{u}(p)$. Since p is hyperbolic we have that $E(x) \oplus F(x)=T_{x} M$. Moreover, $E(x)$ and $F(x)$ are $D f$-invariant, i.e.: $D f(E(x))=E(f(x))$ and $D f(F(x))=F(f(x))$.

By definition $H(p)=\operatorname{clos}(\operatorname{hom}(p))$ where $\operatorname{hom}(p)$ is the set of transverse homoclinic points associated to p so if we prove that there is a dominated splitting for $\operatorname{hom}(p)$ we are done since then we can extend by continuity the splitting to the closure $H(p)$.

Let us prove that there is a dominated splitting for $\operatorname{hom}(p)$. To do so it is enough to prove that there exists $m>0$ such that for some $k: 0 \leq k \leq m$ it holds for all $x \in \operatorname{hom}(p)$ that

$$
\left\|D f^{k} / E(x)\right\|\left\|D f^{-k} / F\left(f^{k}(x)\right)\right\| \leq \frac{1}{2}
$$

Hence arguing by contradiction let us assume that for all $m>0$ there is $x_{m} \in$ $\operatorname{hom}(p)$ such that for all $k: 0 \leq k \leq m$ we have

$$
\left\|D f^{k} / E\left(x_{m}\right)\right\|\left\|D f^{-k} / F\left(f^{k}\left(x_{m}\right)\right)\right\|>\frac{1}{2} .
$$

Using the arguments developed by Mañé for periodic points in [Ma1] modified as in [SV] for homoclinic points, for any $\gamma>0$ and $\epsilon>0$ we may find $m>0$, depending on ϵ and γ, such that with an $\epsilon-C^{1}$-perturbation g^{\prime} of f we obtain a homoclinic point $x_{g^{\prime}}$ associated to $p_{g^{\prime}}$ such that the angle at $x_{g^{\prime}}$ between $W_{\text {loc }}^{s}\left(x_{g^{\prime}}, g^{\prime}\right)$ and $W_{\text {loc }}^{u}\left(x_{g^{\prime}}, g^{\prime}\right)$ is less than γ. Since C^{2}-diffeomorphisms are dense in C^{1}-topology we may assume that g^{\prime} is C^{2}. Since γ is arbitrarily small we may C^{1}-perturb g^{\prime} obtaining g of class C^{2} with a tangency at x_{g} between $W_{l o c}^{s}\left(x_{g}\right)$ and $W_{l o c}^{u}\left(x_{g}\right)$. Moreover this perturbation can be assumed to give us a C^{2}-robust tangency of Hènon-like type
(see [Nh1]). By the results of [DN] and [Nh2] we conclude that there is no symbolic extension for $g / H\left(p_{g}\right)$. Therefore, by [BFF], $g / H\left(p_{g}\right)$ is not asymptotic h-expansive and a fortiori it is not h-expansive contradicting our hypotheses. This finishes the proof of Theorem B.

References

[BFF] Boyle, M., Fiebig, D., Fiebig, U., Residual entropy, conditional entropy, and subshift covers, Forum Math., Vol. 14 (2002), p. 713-757.
[Bo] R. Bowen, Entropy-expansive maps, Transactions of the American Mathematical Society, vol 164 (February 1972), p. 323-331.
[Bu] J. Buzzi, Intrinsic ergodicity for smooth interval map, Israel J. Math., 100 (1997), p. 125-161.
[DN] T.A. Downarowicz, S.A. Newhouse, Symbolic extensions and smooth dynamical systems, Inventiones Mathematicae, 160, No.3, (2005), p. 453-499.
[Ge] Marlies Gerber, Conditional stability and real analytic pseudoAnosov maps, Mem. Amer. Math. Soc., 541985.321
[LL] J. Lewowicz, E. Lima de SÁ, Analytic models of pseudo-Anosov maps, Erg. Th. Dynam. Sys, 6 (1986), p. 385-392.
[Ma1] R. Mañé, An ergodic closing lemma, Annals of Mathematics, 116 (1982), p. 503-540.
[Mi] M. Misuriewicz, Diffeomorphisms without any measure with maximal entropy, Bull. Acad. Polon. Sci., 21 (1973), p. 903-910.
[Nh1] S. Newhouse, The abundance of wild hypebolic sets and nonsmooth stable sets for diffeomorphisms, Inst. Haute Études Sci. Publ. Math., 50 (1979), p. 101-151.
[Nh2] S. Newhouse, New phenomena associated with homoclinic tangencies, Ergod. Th. \& Dynam. Sys., 24 (2004), p. 1725-1738.
[Pl1] V. A. Pliss, Analysis of the necessity of the conditions of Smale and Robbin for structural stability of periodic systems of differential equations, Diff. Uravnenija, 8 (1972), p. 972-983.

[PS1]	E. Pujals, M. Sambarino, Homoclinic tangencies and hyperbolicity for surface diffeomorphisms, Annals of Mathematics, 151 (2000), p. 961-1023.
[PS2]	E. Pujals, M. Sambarino, On the Dynamics of Dominated Splitting, Preprint, (2002), p. -.
[PPV]	M. J. Pacifico, E. R. Pujals, J. L. Vieitez, Robust expansive homoclinic classes, Ergodic Theory and Dynamical Systems, 25 (2005), p. 271-300.
[PPSV]	M. J. Pacifico, E. Pujals, M. Sambarino, J. Vieitez, Robustly expansive codimension-one homoclinic classes are hyperbolic, submitted for publication, (preprint IMPA, série D), p. -.
[Sc]	Schwartz, A. J., A generalization of a Poincaré-Bendixson theorem to closed two-dimensional manifolds, Amer. J. Math., 85 (1963), p. 453-458.; Errata, ibid 85, (1963),p. 753.
[SV]	M. Sambarino, J. Vieitez, On C^{1}-persistently Expansive Homoclinic Classes, Discrete and Continuous Dynamical Systems, 14, No. 3 (2006), p. 465-481.

M. J. Pacifico,

Instituto de Matematica,
Universidade Federal do Rio de Janeiro, C. P. 68.530, CEP 21.945-970,

Rio de Janeiro, R. J., Brazil.
pacifico@im.ufrj.br
J. L. Vieitez,

Instituto de Matematica, Facultad de Ingenieria, Universidad de la Republica, CC30, CP 11300, Montevideo, Uruguay
jvieitez@fing.edu.uy

