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Abstract

We introduce piecewise convex transformations, and develop geo-
metric tools to study their complexity. We apply the results to the
complexity of polygonal inner and outer billiards on surfaces of con-
stant curvature.
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Introduction

Transformations that arise in geometric dynamics often fit into the following
scheme. The phase space of the transformation, T : X → X, has a finite
decomposition P : X = Xa ∪ Xb ∪ · · · into ‘nice’ subsets. The interiors of
Xa, Xb, . . . are disjoint, and T is discontinuous (or not defined) on the union
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of their boundaries, ∂P = ∂Xa∪∂Xb∪· · · . The sets Xa, Xb, · · · are endowed
with a ‘rigid structure’; the restrictions T : Xa → X, T : Xb → X, . . .
preserve that structure. Set P1 = P. The sets T−1(Xa) ∩ Xa, T

−1(Xa) ∩
Xb, . . . form the decomposition P2, which is a refinement of P1; it provides
a defining partition for the transformation T 2. Iterating this process, we
obtain a tower of decompositions Pn, n ≥ 1, where Pn plays for T n the same
role that P played for T .

Let A = {a, b, . . . } be the alphabet labeling the atoms of P. A phase
point x ∈ X is regular if every point of the orbit x, Tx, T 2x, . . . belongs to the
interior of an atom of P. Let x ∈ Xa, Tx ∈ Xb, . . . . The word σ(x) = ab · · ·
on the alphabet A is the code of x. Let Σ(n) be the set of words of length n
obtained this way. The function f(n) = |Σ(n)| is the complexity associated
with the triple X,P, T . Its behavior as n→ ∞ is an important characteristic
of the dynamical system in question. We will develop a geometric approach
to complexity.

Several classes of transformations (e. g., piecewise isometries, piecewise
affine mappings, etc) fit into the scheme above. The following examples have
directly motivated our study.

Example A. Let P ⊂ R2 be a polygon with sides a, b, . . . , and let X be
the phase space of the billiard map Tbil in P . Its elements are the billiard
segments in P . Let Xa, Xb, . . . be the set of segments that begin in a, b, . . . .
The decomposition P : X = Xa ∪Xb ∪ · · · yields the coding of billiard orbits
by the sides that they hit [16]. Basic questions about its complexity are open
[10].

Example B. Let P ⊂ R2 be a convex polygon with corners a, b, . . . . The
complement X = R2 \ P is the phase space of the outer billiard T out about
P . (It is also called the dual billiard. See [16] or [8]). The conical regions
bounded by its singularities form the natural decomposition P : X = Xa ∪
Xb ∪ · · · . In Xa, Xb, . . . the mapping Tout is the symmetry about a, b, . . . .
The decomposition P yields the coding of outer billiard orbits by the corners
that they hit.

We will study the complexity of (2-dimensional) piecewise convex trans-
formations. This is a wide class of geometric dynamical systems; in particu-
lar, it contains the examples above. Our setting is as follows.

A chord space is a topological space such that for any pair of distinct
points x0, x1 there is a unique chord [x0, x1] joining them. See examples of
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chord spaces in section 1. A convex cell complex is a cell complex whose closed
cells are chord spaces, and the chord structures agree on the intersections. Let
P : X = Xa ∪Xb ∪ · · · be the decomposition by the closed 2-cells. Suppose
that there are homeomorphisms Ta : Xa → X, Tb : Xb → X, . . . such that
for every chord γ ⊂ Xa and any 2-cell Xb ⊂ X the curve Ta(γ) ∩ Xb is a
chord. Then (X,P, T ) is a piecewise convex transformation of X.

In section 1 we develop geometric and combinatorial techniques to study
the complexity of piecewise convex transformations. Then we apply these
techniques to the inner and outer polygonal billiards on surfaces of constant
curvature, κ. One of our goals is to develop a uniform approach to these
dynamical systems. Note that the elliptic (κ = 1) and the hyperbolic (κ =
−1) cases have been studied much less than the parabolic case (κ = 0) [16].

Let P ⊂M be a geodesic polygon on a surface of any constant curvature.
Since the outer billiard about P is a piecewise isometry, it directly fits into the
framework of piecewise convex transformations. In section 2 we put the inner
billiard into this framework. In order to do this, we modify the definition of
the billiard phase space. Our phase space, X = X(P ), is the quotient of the
set of billiard segments in P by an equivalence relation. See Definition 5.
Endowed with the quotient topology and the natural chord structure, X is a
cell complex; it is also a (finite, branched) covering of the space, L = L(P ),
of rays intersecting P . See Theorem 1. In section 2 we develop a dictionary
to translate the statements of section 1 into the language of billiard orbits.
See Proposition 4.

In section 3 we investigate the inner billiard complexity. First, we es-
tablish the background by considering arbitrary polygons, and any constant
curvature. Then we study each of the three cases separately. Below is a
sample of our results.

Let κ = 0. The side complexity of billiard orbits in any rational polygon
grows at most cubically. See Theorem 3.
Let κ = 1. The side complexity of billiard orbits grows subexponentially.
See Theorem 4.
Let κ = −1. The side complexity f(n) of billiard orbits grows exponentially;
the exponent in question is the topological entropy htop of the billiard map.

More precisely, f(n) exp(−htopn) is a temperate function. See Theorem 5.

In section 4 we investigate complexity of the polygonal outer billiard on
surfaces of constant curvature. Here are some of our results.

Let κ = 0. For an arbitrary (resp. rational) polygon the compexity has poly-
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nomial (resp. quadratic) bounds from above and from below. See Theorem 6
and Theorem 7.
Let κ = 1. Then the complexity grows subexponentially. See Theorem 8.
Let κ = −1. For an arbitrary polygon, the complexity has a sharp linear
lower bound; for large polygons the complexity grows linearly. See Theorem 9.

Remark 1 The idea to relate the side complexity with the geometry and
combinatorics of billard orbits goes back to [5]. The duscussion in [5] concerns
the billiard in a convex, euclidean polygon. Thus, claim 2 of Theorem 3 is
contained in [5]. The structure of billiard singularities in convex polygons is
less complex than in general; certain types of the singularities that we had to
account for in the proof of Lemma 2 do not occur for convex polygons. This
circumstance allowed the authors of [5] to obtain an analog of our Lemma 4
directly from Euler’s identity. See the proof of Lemma 3.1 in [5]. The paper
N. Bedaride, Billiard complexity in rational polyhedra, Reg. & Chao. Dyn.
8 (2003) contains an attempt to adapt Lemma 3.1 to noncovex polygons.

Remark 2 The connection observed in [5] is a part of a more general phe-
nomenon. The class of transformations put forward here provides a natu-
ral framework to study the coding complexity, and, in particular, this phe-
nomenon. This class (of piecewise convex transformations) is general enough
to contain the billiard in any polygon on a surface of constant curvature.
However, putting the general billiard into the framework of piecewise convex
transformations is far from straightforward. See the discussion in section 2.
The preprint [12] is a preliminary version of this work.

Acknowledgements. We thank the Research in Pairs program in Ober-
wolfach and the Shapiro visiting program at Penn State University for their
support. The second author is also grateful to the Max-Planck-Institut in
Bonn for its hospitality. The first author thanks the Institute for Mathemat-
ical Research (FIM) of ETH in Zurich for its support and hospitality. The
second author was partially supported by an NSF grant.
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1 Piecewise convex transformations: geome-

try and combinatorics

1.1 Chord spaces and convex cell complexes

A topological space, X, is a chord space if for any pair of distinct points
x0, x1 ∈ X there is a unique chord [x0, x1] ⊂ X joining them. We require
that the chords satisfy the standard properties [3]. Let X, Y be chord spaces.
A mapping of chord spaces is a continuous mapping f : X → Y that sends
chords to chords. A subset Y ⊂ X of a chord space is chord-convex1 if for
any y0, y1 ∈ Y we have [y0, y1] ⊂ Y . Then Y itself is a chord space. The
convex hull, hull(Y ) ⊂ X, of any subset Y ⊂ X is a chord space.

Example 1 i) Let X be a Hadamard manifold, i. e., a simply connected,
complete riemannian manifold of nonpositive sectional curvature. Set [x, y]
be the unique connecting geodesic. Then X is a chord space.
ii) Let x, y ∈ RPn be a pair of distinct points in the real projective space
of n dimensions. Let l = l(x, y) be the projective line containing them. Let
X ⊂ RPn be a convex subset, disjoint from a hyperplane. Defining [x, y] to
be the intersection l(x, y) ∩X, makes X a chord space.

We will encounter situations where the chord joining x0, x1 ∈ X does not
always exist. For example, this happens if X is a nonconvex subset of a chord
space. We will say that X is a space with a chord structure. Mappings of
spaces with chord structures are defined the same way as the mappings of
chord spaces.

Example 2 Let R be the space of euclidean rays (i.e., oriented straight
lines) in R2. Endowed with the natural topology, R is the infinite cylinder
[15].

Two rays l0, l1 are parallel (resp. antiparallel) if the corresponding lines
are parallel, and their directions are the same (resp. opposite). Let l0, l1 ∈ R
be distinct rays. If they are not parallel or antiparallel, then l0, l1 intersect
at a point, say o ∈ R2, forming a cone, C ⊂ R2, with the apex at o. The
chord [l0, l1] consists of the rays passing through o and contained in C. If
l0, l1 are parallel, then C becomes a strip, and [l0, l1] is defined analogously.
If l0, l1 are antiparallel, then [l0, l1] is not defined. This is a chord structure
on R. Geometrically, [l0, l1] is the pencil of rays interpolating between l0, l1.

1We will simply say convex in what follows.
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Example 3 Let RH ⊂ R be the set of rays intersecting the unit disc. We
endow RH with the induced chord structure. Let l0, l1 ∈ RH be distinct rays.
By definition, the chord [l0, l1]H exists iff [l0, l1] exists and [l0, l1] ⊂ RH. Let
AB,CD be the chords of the unit disc corresponding to l0, l1 respectively.
Then [l0, l1]H does not exist iff the points A,B,C,D of the unit circle are in
a cyclic order. See figure 1.

A

B

C

D

Figure 1: Elements of RH that cannot be joined by a chord

For simplicity of exposition, we will restrict our considerations from here
on to two dimensions. A cell complex is a topological space, X, endowed
with a cell decomposition. By our assumption, a cell complex has zero-
cells (vertices), one-cells (edges), and two-cells (faces). Each cell C ⊂ X
is homeomorphic to the open disc of the same dimension. The boundary
∂C ⊂ X is homeomorphic to the sphere; it is a finite union of cells of smaller
dimension. We will often assume that X is a connected compact, and that
every point of X belongs to the closure of a face.

Definition 1 Let X be a cell complex. Suppose that each closed cell C ⊂ X
is a chord space, and that the chord structures agree on the intersections
C ′ ∩ C ′′. Then X is a convex cell complex.
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Let X be a convex cell complex, and let Γ ⊂ X be the union of closures
of one-cells. Then Γ is a graph, and its edges are chords; we will say that Γ
is a convex (chord) graph. We will also speak of spaces with convex graphs,
and use the notation (X,Γ).

Definition 2 Let (X,Γ) and (Y,∆) be convex cell complexes. Let ϕ : X → Y
be a continuous mapping. Suppose that for any cell D ⊂ Y the preimage
f−1(D) = C1 ∪ · · · ∪ Cn is a (nonempty) disjoint union of cells, and that
the maps ϕ : Ci → D are isomorphisms of chord spaces. Then ϕ : X → Y
is a (branched) covering of convex cell complexes. The maximal value of
n = n(D) is the degree of the covering.

Let X be a topological space, and let Y be a cell complex. A continuous,
surjective mapping f : X → Y is a (branched) topological covering if for
any cell D ⊂ Y we have f−1(D) = C1 ∪ · · · ∪ Cn, a disjoint union, and the
restrictions f : Ci → D are homeomorphisms.

Lemma 1 Let X (resp. (Y,∆)) be a topological space (resp. a convex cell
complex), and let f : X → Y be a (branched) topological covering. Then
there is a unique convex cell complex (X,Γ) such that f : (X,Γ) → (Y,∆) is
a (branched) covering of convex cell complexes.

Proof. The representations f−1(D) = C1 ∪ · · · ∪Cn, where n = n(D) and D
runs through the cells of Y , define the cells of X, and the unique chord struc-
tures on them such that f |Ci

: Ci → D are isomorphisms of chord spaces.
Setting Γ = f−1(∆), we obtain the claim.

We will say that the convex cell complex (X,Γ) of Lemma 1 is induced
by the mapping f : X → Y .

1.2 Piecewise convex transformations

We will now define a class of dynamical systems that will provide a common
framework for several kinds of geometric transformations with singularities.

Definition 3 Let (X,Γ) be a convex cell complex. Suppose that for each 2-
cell F ⊂ X we have a homeomorphism TF : F → X such that for any chord
γ ⊂ F and any 2-cell G ⊂ X the curve TF (γ)∩G is a chord. Then (X,Γ, T )
is a piecewise convex self-mapping.
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Let (X,Γ, T ) and (X,∆, S) be piecewise convex self-mappings. They are
mutually inverse if T ◦ S(x) = S ◦ T (x) = x for all x ∈ X \ (Γ ∪ ∆).

Definition 4 A piecewise convex transformation (X,Γ, T ) is an invertible
piecewise convex self-mapping. We will use the notation (X,Γ, T )−1 = (X,Γ−1, T

−1).

If (X,Γ) is a convex cell complex, we denote by P(Γ) the associated
representation of X as the union of closed faces of Γ; we will refer to it as a
convex partition.2 If Γ′,Γ′′ ⊂ X are convex graphs, their join Γ′ ∨ Γ′′ is also
a convex graph, and

P(Γ′ ∨ Γ′′) = P(Γ′) ∨ P(Γ′′). (1)

We outline a proof of this identity. A face, F , of Γ′ ∨ Γ′′ is a connected
component of X \ (Γ′ ∪Γ′′). For x, y ∈ F the chord [x, y] avoids Γ′,Γ′′. Thus,
[x, y] belongs to unique faces F ′ of Γ′ and F ′′ of Γ′′, i. e., F ⊂ F ′ ∩ F ′′. The
converse also holds; thus F = F ′ ∩ F ′′, implying equation (1).

Let (X,Γ, T ) be a piecewise convex transformation. Setting Γ1 = Γ and
Γn+1 = Γn ∨ T−1(Γn), we inductively define an increasing tower Γk, k ≥ 1,
of convex graphs on X. By construction, Γk is the singular set of T k, and
the piecewise convex transformation (X,Γk, T

k) is the kth iteration of T .
Let Pk = P(Γk). The set S∞ = ∪∞

k=1Γk is a countable (at most) union of
chords. The complement X∞ = X \ S∞ is the set of points x ∈ X such that
x, Tx, T 2x, . . . belong to open faces of Γ. We will refer to them as regular
points. Iterating (X,Γ−1, T

−1), we obtain the sequence of convex graphs
Γ−k, k ≥ 1 and the piecewise convex transformations (X,Γ−k, T

−k), inverse
to (X,Γk, T

k).
Let A = {a, b, . . . }, p = |A|, be a set labeling the faces of Γ, and let L

be the full shift space on the alphabet A. Assigning to a point x ∈ X∞ the
sequence of labels of the faces of Γ containing x, Tx, T 2x, . . . we obtain the
coding map σ : X∞ → L. Set Σ = σ(X∞), and let Σ(n) be the set of words
of length n that occur in Σ. The function f(n) = |Σ(n)| is the complexity of
(X,Γ, T ). The proposition below summarizes the discussion.

Proposition 1 Let (X,Γ, T ) be a piecewise convex transformation. Then
there is a sequence Γk, k ≥ 1 of convex graphs in X such that the iterations
of T correspond to piecewise convex transformations (X,Γk, T

k). There is a

2It is not a set-theoretic partition of X ; convex partitions provide an alternative ap-
proach to our material [11].
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natural bijection between Σ(n) and the set of faces of the convex graph Γn;
the complexity of (X,Γ, T ) satisfies f(n) = |P(Γn)|.

1.3 Joins of convex graphs: A combinatorial formula

Let X be a compact space with a chord structure. Let Γ′,Γ′′ ⊂ X be convex
chord graphs. Set Γ = Γ′ ∨ Γ′′.

Denote by F ′, F ′′, F, E ′, E ′′, E, V ′, V ′′, V the sets of faces, edges and ver-
tices of Γ′,Γ′′,Γ respectively.3 Let e′ ∈ E ′, e′′ ∈ E ′′ be arbitrary edges. If
they intersect, then either they intersect transversally, or they overlap. The
latter can occur in four ways. See figure 2. Denote by c(Γ′,Γ′′) the number
of overlappings.

Figure 2: Overlapping of edges of two chord graphs

Lemma 2 Let Γ′,Γ′′ ⊂ X be convex chord graphs, and let χ = χ(X) be the
Euler number. Let V ′

d , V
′′
d be the sets of vertices of Γ′,Γ′′ respectively, disjoint

from the other graph. Set Vess = V \ (V ′
d ∪ V

′′
d ). Then

|F | − |F ′| − |F ′′| + χ = |Vess| − c(Γ′,Γ′′). (2)

Proof. Any convex chord graph A ⊂ X satisfies |F (A)|− |E(A)|+ |V (A)| =
χ. Using this identity, we obtain

|F | − |F ′| − |F ′′| + χ = (|E| − |E ′| − |E ′′|) + (|V ′| + |V ′′| − |V |). (3)

3Recall that these are the open cells of a cell complex.
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Denote by e′i, e
′′
j the edges of Γ′,Γ′′ respectively. Let a′i, a

′′
j be the number

of vertices of Γ′′,Γ′ inside the edges e′i, e
′′
j respectively. Let b′i, b

′′
j be the number

of times that e′i, e
′′
j transversally intersects an edge of Γ′′,Γ′ respectively. Then

e′i, e
′′
j contribute a′i + b′i + 1, a′′j + b′′j + 1 edges to E respectively. Taking the

overlapping into account, we obtain

|E| =
∑

i

a′i +
∑

i

b′i + |E ′| +
∑

j

a′′j +
∑

j

b′′j + |E ′′| − c(Γ′,Γ′′). (4)

Let Vc be the set of common vertices of Γ′,Γ′′. Let V ′
e , V

′′
e be the sets of

vertices of Γ′,Γ′′ repectively that belong to edges of the other graph. Let
Vn = V \ (V ′ ∪ V ′′) be the set of “new” vertices of Γ. Then

|V ′| = |V ′
e |+ |V ′

d|+ |Vc|, |V
′′| = |V ′′

e |+ |V ′′
d |+ |Vc|, |V | = |V ′|+ |V ′′|−|Vc|+ |Vn|.

(5)
Besides ∑

i

a′i = |V ′′
e |,

∑

j

a′′j = |V ′
e |,

∑

i

b′i =
∑

j

b′′j = |Vn|. (6)

From equations (4-6), we have

|E| − |E ′| − |E ′′| = |V ′
e | + |V ′′

e | + 2|Vn| − c(Γ′,Γ′′).

Substituting this into equation (3), and using equation (5), we obtain the
claim.

The corollary below concerns a few special cases of Lemma 2.

Corollary 1 Suppose, in addition to the assumptions of Lemma 2, that χ =
1, and that the edges of graphs Γ′,Γ′′ do not overlap. Then

|F | − |F ′| − |F ′′| + 1 = |Vess| (7)

and
|Vn| ≤ |F | − |F ′| − |F ′′| + 1 ≤ |V |. (8)

If V ′
d = V ′′

d = ∅ then

|F | − |F ′| − |F ′′| + 1 = |V |. (9)

Proof. The claims are immediate from Lemma 2 and equation (5).
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1.4 Complexity of piecewise convex transformations:

a geometric formula

Let Σ be a language on a finite alphabet A, and let Σ(n) be the set of words
of length n in Σ. The complexity of Σ is the function f(n) = |Σ(n)|. Let
ϕ(n) = f(n+ 1) − f(n) and ψ(n) = ϕ(n+ 1)− ϕ(n) be the first and second
“derivatives” of complexity, respectively.

For any w ∈ Σ let ml(w), mr(w), mb(w) be the number of extensions of
w of the type aw,wb, awb respectively. Assume that ml(w), mr(w) ≥ 1 for
any w ∈ Σ. A word is bispecial if ml(w), mr(w) > 1. Let B ⊂ Σ be the set of
bispecial words, and set B(n) = B ∩Σ(n). Define the Cassaigne index [4] by

µ(w) = mb(w) −ml(w) −mr(w) + 1. (10)

Note that µ(w) = 0 if w is not bispecial. Then we have [4]

ψ(n) =
∑

w∈B(n)

µ(w) =
∑

w∈Σ(n)

µ(w). (11)

Set µ(n) =
∑

w∈Σ(n) µ(w) for 1 ≤ n and µ(n) = 0 for n ≤ 0. Set M(n) =∑
k≤n µ(k).

Lemma 3 The complexity of a language satisfies

f(n) = f(1) + (n− 1)(f(2) − f(1)) +
∑

k≤n−2

M(k). (12)

Proof. “Integrate” equation (11).

Let Σ be the coding language of (X, T,Γ). For w ∈ Σ(n) let X(w) ⊂ X
be the corresponding 2-cell of Γn. Let Γ(w) be the restriction of Γ−1 ∨ Γn+1

to X(w). Let Vess(w) (resp. OE(w)) be the set of essential vertices (resp.
edge overlappings) for Γ(w).

Lemma 4 For any w ∈ Σ we have

µ(w) = |Vess(w)| − |OE(w)|. (13)
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Proof. Let Γ′,Γ′′ be the restrictions of Γn+1,Γ−1 to X(w). In equation (2)
we have mb(w) = |F |, mr(w) = |F ′|, ml(w) = |F ′′|, χ = 1. Lemma 2 yields
the claim.

For n ≥ 1 set

Vess(n) = ∪w∈Σ(n)Vess(w), v(n) = |Vess(n)|, V (n) =
∑

k≤n

v(k); (14)

OE(n) = ∪w∈Σ(n)OE(w), c(n) = |OE(n)|, C(n) =
∑

k≤n

c(k). (15)

For k ≤ 0 set V (k) = C(k) = 0. Thus, v(n) (resp. c(n)) is the number of
essential vertices (resp. edge overlappings) of the join Γ−1 ∨ Γn+1.

Proposition 2 Let (X, T,Γ) be a piecewise convex transformation and set
Pk = P(Γk). Then the complexity of (X, T,Γ) satisfies

f(n) = |P1| + (n− 1)(|P2| − |P1|) +
∑

k≤n−2

V (k) −
∑

k≤n−2

C(k). (16)

Proof. Combine Lemma 3 with Lemma 4.

2 Billiard map as a piecewise convex trans-

formation: the dictionary

Let M be a complete riemannian surface, and let P ⊂ M be a connected,
compact domain with a piecewise smooth boundary. The billiard flow in
P is a particular case of the geodesic flow of a riemannian manifold (with a
boundary and corners, in general). The boundary, ∂P , provides the standard
cross-section; the corresponding Poincare map is the billiard in P . We refer to
[16] for details. We will restrict our attention to the case where the curvature
κ = κ(M) is constant,4 and ∂P is a finite union of geodesic segments. This
is the billiard in a geodesic polygon on a surface of constant curvature.

4We normalize κ = 0,−1, 1 and refer to these cases as parabolic, hyperbolic and elliptic
respectively.
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Let M̃ be the univeral covering,5 let q : M̃ → M be the projection, let
F ⊂ M̃ be a fundamental domain, and set PF ⊂ F be the preimage of P .
The geodesic polygon is tame if q : PF → P is a bijective isometry. We
will assume that P is tame.6 Hence P ⊂ M is a geodesic polygon, where
M = R2,H2,S2 respectively in our three cases.

In order to proceed in a uniform fashion, we will use the projective models
of the three geometries at hand: in a projective model the geodesics are
straight lines. For H2 this is the Klein-Beltrami model [2]; a projective
model of the elliptic geometry is obtained via the central projection of S2

onto a plane. (We make the technical assumption that P is contained in a
hemisphere.) Thus, in all three cases, P ⊂ R2 is a euclidean polygon. In the
hyperbolic case, we have the extra condition P ⊂ D where D is the unit disc.
Let L = L(P ) be the set of rays intersecting P . The chord structure on L is
induced by the inclusion L ⊂ R.7 See Examples 2, 3. Let S (resp. C) be the
set of sides (resp. corners) of P . Let Λ ⊂ L be the set of rays intersecting C.

Proposition 3 Let P ⊂ R2 be an arbitrary p-gon, let L = L(P ) be the set
of rays intersecting P , and let Λ = Λ(P ) ⊂ L be the set of rays intersecting
C. Then L is a closed annulus, and (L,Λ) is a convex cell complex. It has
at most p(p − 1) vertices, at most 2p(p − 1) edges, and less than 2p(p − 1)
faces.

Proof. Let P̃ ⊂ R2 be the convex hull of P . Then L = L(P̃ ), and for any
bounded, convex domain Ω ⊂ R2 the space L(Ω) is a topological annulus
[15].

For o ∈ C let Λo ⊂ L consist of rays containing o. Then Λo ⊂ Λ is a
topological circle; if o ∈ C, then Λo is the union of chords. Thus, Λ = ∪o∈CΛo

is a chord graph. Let F ⊂ L be a two-cell, i. e., a connected component of
L \ Λ. It suffices to show that for any l0, l1 ∈ F the chord [l0, l1] ⊂ F .

For o ∈ C and l ∈ L \ Λo, we define the sign of o with respect to l by
µl(o) = 1 (resp. µl(o) = −1) if o is on the left (resp. right) of l. By
continuity, for any o ∈ C the sign µl(o) is the same for all l ∈ F .

Suppose that l0, l1 ∈ F are anti-parallel, and let C ⊂ R2 be the closed
strip between them. The equality µlo(o) = µl1(o) holds iff o ∈ C. The

5In the three cases at hand M̃ = R
2,H2,S2.

6We make this assumption for simplicity of exposition; our results remain valid, mutatis
mutandis, without it.

7In the hyperbolic case we have L ⊂ RH ⊂ R. The chord structures on L induced
from RH,R coincide.
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absence of corners of P in R2 \ C implies that l0, l1 /∈ L, contrary to the
assumption. Thus, l0, l1 cannot be anti-parallel. Either they intersect or are
parallel.

Suppose that l0, l1 intersect, and let C be the cone defined in Example 2.
Now we have µlo(o) = µl1(o) iff o ∈ R2\C. Thus, C does not contain corners
of P . If l0, l1 are parallel, we apply the same argument to the strip between
l0, l1.

We have shown that l0, l1 ∈ F implies that the rays either intersect or
are parallel, and that the cone (resp. strip) between them is free of corners
of P . Thus, [l0, l1] ⊂ F .

It remains to estimate the numbers of cells of (L,Λ). Let v, e, f be the
number of vertices, edges, faces respectively. The vertices correspond to the
rays l ∈ Λ passing through a pair of points of C. Since there are p(p − 1)
ordered pairs of corners, we have v ≤ p(p−1). The edges belong to the circles
Λo, o ∈ C. The edges of Λo are separated by the vertices corresponding to
the pairs (o, o′), (o′, o), where o′ 6= o. Thus Λo consists of at most 2(p − 1)
edges. Since every edge belongs to a unique Λo, we have e ≤ 2p(p− 1). By
Euler’s formula, f = e− v; hence f < e.

We will define the billiard phase space by a sequence of steps. A segment
is an oriented line segment, x = [b, e〉, b 6= e. Let l ∈ L be the ray containing
[b, e〉 and having the same direction. A billiard segment is a segment such that
[b, e〉 ⊂ P and b, e ∈ ∂P . Let X0 = X0(P ) be the set of billiard segments, and
set b = β(x), e = η(x), l = λ0(x). The map β × η × λ0 : X0 → ∂P × ∂P × L
is injective; from here on we identify X0 with its image (β × η × λ0)X0 ⊂
∂P × ∂P × L. We endow X0 with the induced topology.

Let X1 ⊂ ∂P × ∂P × L be the closure of (β × η × λ0)(X0). Elements of
the boundary ∂X0 = X1 \X0 arise from sequences of billiard segments that
converge to degenerate limits. The mapping λ0 extends to X1 by continuity;
we denote this extension by λ1 : X1 → L. In the representation X1 ⊂
∂P × ∂P × L the map λ1 is the projection on the last coordinate. It is
continuous and surjective.

A billiard segment may (properly) contain other billiard segments. For
x′, x′′ ∈ X0 set x′ ∼ x′′ iff x′, x′′ are contained in the same billiard segment,
see figure 3. This is an equivalence relation on X0; it extends, by continuity,
to X1.
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P

x′

x′′

Figure 3: Equivalence relation for billiard segments

Definition 5 The quotient of X1 by this equivalence relation, endowed with
the quotient topology, is the billiard phase space X = X(P ).

For x ∈ X1 we denote by {x} ∈ X its equivalence class. By definition of
the equivalence relation, the mapping λ1 : X1 → L descends to a continuous,
surjective mapping λ : X → L. We will now turn to the billiard map and its
inverse.

Let x0 = [b, e〉 ∈ X0 be a billiard segment. The (inverse) billiard map
x0 7→ Tbil(x0) = [e, e1〉 (resp. x0 7→ T−1

bil
(x0) = [b−1, b〉) is defined, unless

e ∈ C (resp. b ∈ C) or b, e belong to the same side of P . Let Γ+
0 ,Γ

−
0 denote

these sets. We view X0 as a subset of X1, and let Γ+
1 = Γ+

0 ,Γ
−
1 = Γ−

0 ⊂ X1

be their closures. We view Tbil, T
−1

bil
as self-mappings of X1 not defined on

Γ+
1 ,Γ

−
1 respectively; besides, they are not defined on X1 \X0.

Let q : X1 → X be the projection. Set Γ+ = q(Γ+
1 ),Γ− = q(Γ−

1 ); let
Γq = {x ∈ X : |q−1(x)| > 1} and Γ∂ = q(X1 \X0). Let T, T−1 : X → X be
the push-downs of Tbil, T

−1

bil
respectively. By definition, T (resp. T−1) is not

defined on Γ+ ∪ Γq ∪ Γ∂ (resp. Γ− ∪ Γq ∪ Γ∂). Set Γ = Γ+ ∪ Γ− ∪ Γq ∪ Γ∂.

Theorem 1 Let P ⊂ M be a geodesic polygon on a surface of constant
curvature, let X = X(P ) be the billiard phase space.
1. The pair (X,Γ) is a convex cell complex, and λ : (X,Γ) → (L,Λ) is a
(branched) covering of cell complexes.
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2. The (partially defined) mappings T, T−1 yield piecewise convex transfor-
mations (X,Γ, T ) and (X,Γ, T−1). The set Γ ⊂ X is the union of the dis-
continuities of T and T−1.

Proof. 1. The mapping λ : X → L is continuous, surjective, and Γ =
λ−1(Λ). Indeed, Λ is the set of rays passing through C; by definition, x ∈ Γ
iff there is a (possibly degenerate) billiard segment in q−1(x) that contains a
corner of P . This holds iff λ(x) ∈ Λ. Hence x ∈ Γ iff λ(x) ∈ Λ. By Lemma 3
and Lemma 1, it suffices to show that λ is a branched covering of topological
spaces. For l ∈ L\Λ the intersection l∩P is a finite disjoint union of billiard
segments xi = [bi, ei〉, 1 ≤ i ≤ n(l). Projecting them to X, we obtain n(l)
phase points; we denote them by xi as well. Thus, λ−1(l) = {x1, . . . , xn(l)} ⊂
X\Γ. The number n(l) is constant on connected components of L\Λ. Hence,

for any two-cell, G ⊂ L, we have λ−1(G) = ∪
n(G)
i=1 Fi; the restriction of λ to

every Fi is a homeomorphism, λ : Fi → G.
Let now E ⊂ Λ be an edge. A similar argument shows that λ−1(E) =

∪
n(E)
i=1 ei, a disjoint union, where ei ⊂ Γ, and the restriction of λ to every ei is

a homeomorphism, λ : ei → E. This verifies the assumptions of Lemma 1,
hence the claim.
2. Let G ⊂ L be a two-cell, and let F ⊂ X be one of the components of
λ−1(G). In the proof of claim 1 we have identified F with a subset of X0.
Let F = {x = [b(x), e(x)〉}. Moreover, all points b(x) (resp. e(x)) belong to
the interior of a side, sb(F ) (resp. s = se(F )) of P ; furthermore, sb(F ) 6= se(F ).
Let σs ∈ Iso(M) be the geodesic reflection about s. The billiard segments
Tbil(x) = [e(x), e1〉 are well defined, unless the reflected ray l1 = σs(λ(x0))
passes through a nonconvex corner of P . See figure 4. In this case, the billiard
segment Tbil(x0) is not defined, and Tbil is discontinuous at x0. Nevertheless,
the phase point {Tbil(x0)} = T (x0) = x1 ∈ X is well defined. By definition
of the quotient topology, T is continuous at x0. This proves the continuity
of T on F , and hence on X \ Γ.

The same argument works for T−1, but we will present an alternative
proof. The claim will follow from a special symmetry of the billiard. Let
x0 = [b, e〉 ∈ X0. We define the direction reversing involution ρ0 : X0 → X0

by ρ0(x0) = [e, b〉 ∈ X0. It is continuous, and it extends by continuity to
ρ1 : X1 → X1, which descends to the involution ρ : X → X. For l ∈ L let l′ be
the same line with the opposite direction. Then l 7→ l′ defines the involution
r : L → L on the space of rays. The mappings λ0, λ1, and λ : X → L
commute with the respective involutions. In particular, λ ◦ ρ = r ◦ λ. The
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P

x′′
x1

x′′1

x′

x′1

x

Figure 4: Pushing the billiard map down to the quotient phase space; the
phase points x′1, x

′′
1, x1 are close to each other

billiard symmetry relates the maps T−1

bil
, Tbil, and ρ0. It says that whenever

both expressions are defined, we have T−1

bil
= ρ0 ◦ Tbil ◦ ρ0.

Note that T, T−1 are defined and continuous on X\Γ, and that ρ preserves
Γ; hence, we have the identity

ρ ◦ T = T−1 ◦ ρ. (17)

We have shown that the dicontinuities of both T and T−1 belong to Γ. It
remains to show the opposite inclusion. Recall that Γ = Γ+ ∪ Γ− ∪ Γq ∪ Γ∂ .
Neither T nor T−1 are defined on Γ∂ . The map T (resp. T−1) is not defined
on Γ+ (resp. Γ−). Let x ∈ Γq, i. e., |q−1(x)| > 1. Then there is a billiard
segment [b, e〉 ∈ q−1(x) such that either b ∈ C or e ∈ C. Hence, either
Tbil([b, e〉) or T−1

bil
([b, e〉) is not defined. Therefore, at least one of T, T−1 is

not defined on x, yielding a discontinuity.
Let now F ⊂ X \ Γ be a two-cell, and let x0, x1 ∈ F . Set G = λ(F ) ⊂ L,

and l0 = λ(x0), l1 = λ(x1) ∈ G. Then λ−1(G) = ∪
n(G)
i=1 Fi, and without loss

of generality, F = F1. By the proof of claim 1, l0, l1 either intersect or are
parallel. In either case we have [l0, l1] ⊂ G; the rays lt ∈ [l0, l1] intersect P
forming n(G) disjoint curves; each curve is a chord, γi, in Fi, 1 ≤ i ≤ n(G).
The chord γ1 joins x0 with x1. Denote by [bt, et〉 the corresponding family of
billiard segments. For 0 ≤ t ≤ 1 the points et belong to the interior of a side,
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s ∈ S. The reflected pencil {σs(lt) : 0 ≤ t ≤ 1} is the chord [σs(l0), σs(l1)].
Applying the preceding argument to [σs(l0), σs(l1)], we see that the intersec-
tion of T (γ1) ⊂ X with any face of X is a chord. Since F is an arbitrary
face of X, we have established that T is a piecewise convex transformation
(X,Γ, T ). Equation (17) yields the claim for T−1.

Lemma 5 Let P be a polygon with p corners, and let (X,Γ) be the corre-
sponding convex cell complex. Then (X,Γ) has at most 2p3 faces.

Proof. A typical ray l ∈ L intersects ∂P in at most p points. These
points partition l into at most p+ 1 intervals; at most p− 1 of them are bil-
liard segments. Hence, the degree of the covering λ : X → L is not greater
than p− 1. By Proposition 3, the number of faces of L is less than 2p(p− 1).
The product (p− 1) × 2p(p− 1) provides the desired estimate.

Let P ⊂ M be a polygon. Theorem 1 associates with the billiard in P
a piecewise convex transformation (X,Γ, T ). We will establish a dictionary
between the billiard in P and (X,Γ, T ). In particular, we will interprete
properties of billiard orbits in terms of the notions introduced in section 1.

A billiard segment s = [b, e〉 is regular (resp. singular) if it does not
contain (resp. contains) corners of P . A billiard orbit is a finite sequence of
billiard segments; their number is the length of the orbit. Let s0, s1, . . . , sn

be a sequence of billiard segments. It is a billiard orbit iff the segments
si, 0 < i < n, are regular and si+1 = Tbil(si), 0 ≤ i < n. To distinguish
billiard orbits from arbitrary sequences of billiard segments, we will use the
notation like ω = (s0, s1, . . . , sn). The orbit (s0, s1, . . . , sn) is regular (resp.
singular; resp. strongly singular) if the segments s0, sn are also regular (resp.
at least one of s0, sn is singular, resp. both s0, sn are singular).8

Analogously, a sequence (x0, x1, . . . , xn) ⊂ X is a regular (resp. singular,
resp. strongly singular) phase orbit if all xi are regular and T (xi) = xi+1, 0 ≤
i ≤ n (resp. either x0 or xn is singular, and x0 = T−1(x1) in the former case;
resp. both x0, xn are singular, with the convention above). We will also say
that (x0, x1, . . . , xn) is an orbit of (X,Γ, T ).

A generalized diagonal ω = (s0, s1, . . . , sn) is a strongly singular billiard
orbit such that b(s0) (resp. e(sn)) is a corner of P , and neither segment
contains other corners.

8Note that, by definition, a strongly singular billiard orbit has length at least three.
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Let ω(0) = (s0(0), s1(0), . . . , sn(0)) and ω(1) = (s0(1), s1(1), . . . , sn(1))
be two billiard orbits of the same length. Suppose that for 0 ≤ i ≤ n the
chord γi = [si(0), si(1)] exists, and for 0 ≤ i ≤ n− 1 we have Tbil(γi) = γi+1.
This defines the chord of billiard orbits [ω(0), ω(1)] joining ω(0), ω(1).

Let ω(0) = (s0(0), s1(0), . . . , sn(0)), ω(1) = (s0(1), s1(1), . . . , sn(1)) be
generalized diagonals such that the chord [ω(0), ω(1)] exists, and [ω(0), ω(1)] =
{ω(t) : 0 ≤ t ≤ 1, } where all ω(t) are generalized diagonals. Then [ω(0), ω(1)]
is a chord of generalized diagonals.

Definition 6 A generalized diagonal ω is isolated if it is not contained in a
chord of generalized diagonals.

A chord is maximal if it is not properly contained in a longer chord.
Every chord of generalized diagonals is contained in a unique open maximal
chord {ω(t) : 0 < t < 1}. Since the limits ω(0), ω(1) contain corners in their
interior, they are not generalized diagonals.

In what follows we refer to the correspondence established in the discus-
sion above as the dictionary (between billiard orbits and phase space orbits).

Proposition 4 Let P ⊂ M be a geodesic polygon on a surface of constant
curvature, let X be the billiard phase space, and let (X,Γ, T ) be the associated
piecewise convex transformation. Let n ≥ 1. Then the following holds:
1. The dictionary establishes a bijection between the set Vess(n) ⊂ X and
the set of isolated generalized diagonals of length (n+ 2) in P ;
2. The dictionary establishes a bijection between the set OE(n) ⊂ X and the
set of maximal chords of generalized diagonals of length (n + 2) in P .

Proof. Let x0 ∈ X \Γ. Then x0 does not contribute to Vess(n) or to OE(n)
unless the following conditions hold:
i) The points xi = T i(x0) ∈ X \ Γ for 1 ≤ i ≤ n− 1;
ii) The points xn = T n(x0), x−1 = T−1(x0) ∈ Γ.

Suppose that these conditions hold. Denote by ch+ ⊂ Γ (resp. ch− ⊂ Γ)
the chord containing xn (resp. x−1). Let γn ⊂ T−nch+ (resp. γ−1 ⊂ T ch−)
be the maximal chords contained in the respective pull-backs, and containing
x0. Then x0 ∈ Vess(n) (resp. x0 contributes to OE(n), increasing OE(n)
by 1) iff the chords γ−1, γn intersect transversally (resp. the chords γ−1, γn

overlap).
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By Theorem 1, x0, . . . , xn−1 defines a regular billiard orbit, (s0, . . . , sn−1).
The billiard segments s−1 = T−1

bil
(s0), sn = Tbil(sn−1) are singular. By choos-

ing them appropriately, we can assume without loss of generality that s−1

(resp. sn) begins (resp. ends) in a corner.
Let p−1(t),−α < t < β, and qn(t),−γ < t < δ, be the chords of bil-

liard segments corresponding to ch−, ch+ respectively. We normalize the
parameter t so that p−1(0) = s−1, qn(0) = sn. Applying the billiard map,
we obtain two chords of billiard orbits: (p−1(t), p0(t)),−α < t < β, and
(q0(t), q1(t), . . . , qn(t)),−γ < t < δ. By construction, p0(0) = q0(0) = s0. We
denote the two chords of billiard orbits by [p], [q] respectively.

The phase space cord γ−1 ⊂ T (ch−) (resp. γn ⊂ T−n(ch+)) corresponds
to the billiard segment chord p0(t),−α < t < β, (resp. q0(t),−γ < t <
δ). The chords γ−1, γn are transversal at x0 iff the billiard segment chords
p0(t),−α < t < β, q0(t),−γ < t < δ, that coincide at t = 0, have no other
common billiard segments. Equivalently, the billiard orbit chords [p], [q] fit
together forming the generalised diagonal ω only at t = 0, and not for t 6= 0.
This happens iff ω is isolated.

The phase space chords γ−1, γn overlap at x0 iff we have p0(t) = q0(t) for
−ε < t < ε. Equivalently, the billiard orbit chords [p], [q] fit together for
−ε < t < ε, forming a chord of generalised diagonals.

3 Complexity of the billiard in a geodesic poly-

gon

We will now apply the preceding material to the complexity of billiards in
geodesic polygons on surfaces of constant curvature. First, we consider the
three cases simultaneously, emphasizing their similarities.

3.1 Arbitrary curvature, any polygon

Let P ⊂ M be a geodesic polygon. Let G = G(P ) ⊂ Iso(M) be the group
generated by the geodesic reflections in the sides of P . Any g ∈ G is repre-
sented by a word whose letters are the generators; the length is the minimal
number of letters [7]. Let G(n) ⊂ G be the set of elements of length at most
n. Then G(n) ⊂ G(n+1), and G = ∪∞

n=0G
(n).
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The operation of unfolding sends billiard orbits in P into geodesics in M
[16]. See figure 5. Let γ = (x0, x1, . . . , xn) be a billiard orbit. Its unfolding
is the geodesic γ̃ = (x0, x̃1, . . . , x̃n); there is g = g(γ) ∈ G(n) such that
x̃n = g · xn.

γ̃

P

Figure 5: Unfolding a billiard trajectory

Lemma 6 1. If κ(M) ≤ 0, then all generalized diagonals in P are isolated.
2. Let κ(M) > 0. Let γ = (x0, x1, . . . , xn) be a generalized diagonal, and let
c0, cn ∈ C be its endpoints. Let γ̃ = (x0, x̃1, . . . , x̃n) be the unfolding of γ, and
let c̃n = g(γ) · cn ∈M be the ending point of γ̃. Then γ belongs to a chord of
generalized diagonals iff the points c0, c̃n coincide or are antipodal.

Proof. Let γ(t) = (x0(t), x1(t), . . . , xn(t)), −ε ≤ t ≤ ε, be a chord of gen-
eralized diagonals, and let γ̃(t) = (x0(t), x̃1(t), . . . , x̃n(t)), −ε ≤ t ≤ ε, be
the corresponding chord of geodesics. The elements of G produced by the
unfolding do not depend on the chord parameter. In particular, g(γ(t)) = g
for all t. Thus, c̃n(t) = g · cn ∈ M , hence all geodesics γ̃(t) begin at c0 and
end at g · cn.

The preceding argument is reversible. Therefore, a family γ(t) of (n+1)-
segment generalized diagonals is a chord iff the unfolded family γ̃(t) is a beam
of geodesics in M , emanating from c0 ∈ C and refocusing at g · cn ∈ M . If
κ ≤ 0, this is impossible, implying claim 1. Let κ > 0, i.e., M is the sphere.
A beam emanating from a point refocuses at the antipodal point and at the
initial point.
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We denote by gd(k) (resp. cgd(k)) the number of isolated (resp. maximal
chords of) k-segment generalized diagonals in P . Set

GD(n) =
∑

3≤k≤n

gd(k), CGD(n) =
∑

3≤k≤n

cgd(k).

Thus, GD(n) (resp. CGD(n)) is the number of isolated (resp. maximal
chords of) generalized diagonals of length at most n. (Recall that the minimal
length of a generalized diagonal is three.)

Theorem 2 Let P ⊂M be a geodesic polygon, and let κ be the curvature of
M . Let (X, T,Γ) be the piecewise convex transformation associated with the
billiard in P , and let fΓ(·) be the corresponding complexity. Then there are
integers q1, q2 depending on P , so that the following holds.
1. For κ = 1 we have

fΓ(n) = q1 + q2n+
∑

k≤n

GD(k) −
∑

k≤n

CGD(k). (18)

2. If κ ≤ 0, then

fΓ(n) = q1 + q2n+
∑

k≤n

GD(k). (19)

Proof. By Theorem 1 and Proposition 4, equation (16) yields the first claim.
Combining it with Lemma 6, we obtain equation (19).

It is traditional to code billiard orbits in P by the sides that they visit.
This is the side coding, and the corresponding complexity is the side com-
plexity, fside(n). We will define it. Recall that S is the set of sides of P .
Let ω = (s1, . . . , sn) be a regular billiard orbit, and let σ(ω) = a0a1 . . . an

be the word of the side coding language; its letters are the elements of S
that ω visited; here a0 = b(s1), a1 = b(s2), . . . , an = e(sn). The word
a0a1 . . . an ∈ Σside(n + 1) is a side code. We set fside(n) = |Σside(n + 1)|.

Proposition 5 Let P ⊂M be a geodesic polygon, and let κ be the curvature
of M . 1. If κ = 1, then there are integers q1, q2 (depending on P ) such that

fside(n) ≤ q1 + q2n+
∑

k≤n

GD(k) −
∑

k≤n

CGD(k). (20)
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2. If κ ≤ 0, then there are constants c1, c2 such that

fside(n) ≤ c1 + c2n+
∑

k≤n

GD(k). (21)

3. If P is a convex polygon, equations (20, 21) are equalities.

Proof. Denote by X0(a, b) ⊂ X0 the set of regular billiard segments [p, q〉
such that p ∈ a, q ∈ b. Let X(a, b) ⊂ X be the corresponding subset of the
phase space. Every face of Γ is contained in some X(a, b). Thus, any code by
the faces of Γ defines a side code, yielding a surjection Σ(n) → Σside(n+1).
Therefore fside(n) ≤ fΓ(n), and Theorem 2 yields claims 1, 2. Let now P be
convex. The discussion of section 2 shows that λ : X → L is an isomorphism
of convex cell complexes; the faces of Γ are the sets X(a, b) ⊂ X, where
a, b ∈ S are different sides of P . Thus, fside(n) = fΓ(n), and claim 3 follows
from Theorem 2.

We will now consider the parabolic, elliptic and hyperbolic cases.

3.2 The euclidean case

Billiard dynamics in euclidean polygons is a classical subject. Still, many
basic questions remain open [10, 16]. The side complexity is subexponential
[11];9 it is plausible that the complexity has a polynomial upper bound. A
subexponential upper bound on complexity has not been proved for general
polygons. A euclidean polygon is rational if all of its angles are rational
multiples of π. Billiard dynamics in rational polygons is of interest on its
own; also, it has been used to study the billiard in generic polygons [16].

Theorem 3 Let P ⊂ R2 be a rational euclidean polygon. 1. There exists
c = c(P ) > 0 such that

fside(n) < cn3. (22)

2. Suppose, in addition, that P is convex. Then there exist positive numbers
c1, c2 such that

c1n
3 < fside(n) < c2n

3. (23)

9Implying that the billiard in any euclidean polygon has zero topological entropy.
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Proof. By a theorem of Masur [14], for any rational polygon there exist
positive constants c′1, c

′
2 such that

c′1n
2 < GD(n) < c′2n

2.

Proposition 5 implies both equation (22) and equation (23).

3.3 The elliptic case

The theorem below holds for all spherical polygons P ; for simplicity of expo-
sition, we will prove it under the assumption that P is an admissible polygon.

Theorem 4 For any spherical polygon the side complexity grows subexpo-
nentially.

Proof. Let Geo(S2) be the space of oriented great circles, and let ϕ :
Geo(S2) → S2 be the standard diffeomorphism.10 It endows Geo(S2) with
an invariant riemannian metric. The geodesics in this metric are the chords
in Geo(S2). Let (X, T,Γ) be the associated piecewise convex transformation.
By the proof of Lemma 3, the branched covering λ : X → Geo(S2) induces
metrics on the faces of Γ; every face is a convex polygon.

The billiard map Tbil is a piecewise geodesic reflection; hence (X, T,Γ)
is a piecewise isometry on a convex partition. By Theorem 4.2 of [11], fΓ(n)
has subexponential growth. By the proof of Proposition 5, fside(n) ≤ fΓ(n).

By Lemma 6, a spherical polygon may have chords of generalised diag-
onals. The examples below illustrate other special features of the spherical
billiard.

Example 4 Let P ⊂ S2 be a polygon such that G(P ) is a finite group.11

Then every billiard orbit in P is periodic. Since the prime periodic orbits
yield a finite number of symbolic codes, fside is bounded.

Example 5 Let Pα be the “bigon”, bounded by two geodesics, a, b connect-
ing the North and the South poles, where α is the angle between them. (Note

10See section 4.2 for details.
11These polygons are classified. See, e.g., [6].
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that bigons are not admissible polygons.) For any n the set Σside(n) con-
sists of 2 elements: abab . . . and baba . . . . Thus, fside(n) = 2. For any α the
equator provides a 2-segment periodic orbit in Pα. If α is π-rational, then
Pα fits Example 4, hence every regular orbit is periodic.
Claim. Let α be π-irrational. Then this equator is the only prime periodic
orbit in Pα.
Proof. Denote by ρα the rotation by α about the z-axis. Let γ be a periodic
orbit. We can assume that it has an even number, 2m, of segments, and that
its symbolic code is ba . . . ba. Then the isometry g(γ) obtained by unfolding
γ is ρ2m

α 6= 1.
Let `(γ) be the spherical geodesic corresponding to γ. (Note that `(γ)

differs, in general, from the unfolding γ̃ which is a geodesic segment along
`(γ).) By periodicity of γ, `(γ) is invariant under g(γ). The only geodesic
invariant under ρ2m

α is the equator.

By convention, a periodic billiard orbit in P does not pass through its
corners. In particular, it cannot trace the boundary of P . It is not known
whether every euclidean polygon has a periodic orbit [10]. Our next example
is a spherical polygon without periodic orbits.

Example 6 For 0 < α < 2π let Q = Qα be the isosceles spherical triangle
with angle α and two right base angles.
Claim. If α is π-rational then every billiard orbit in Q is periodic. If α is
irrational, then Q has no periodic billiard orbits.
Proof. The bigon P of Example 5 is obtained by doubling Q about the
equator. Every billiard orbit, γ, in Q lifts to a billiard orbit γ̃ in P ; the orbit
γ is periodic iff so is γ̃. If α is π-rational, the claim holds, by Example 5.
Let α be irrational, and let γ be a periodic orbit in Q. Since, by Example 5,
γ̃ runs along the equator, γ traces the boundary of Q.

3.4 The hyperbolic case

It is not surpising that the complexity of the billiard in a hyperbolic polygon
grows exponentially. We will obtain a more precise result in this direction.
A positive function, s(·), of natural argument is temperate if for any h > 0
and all sufficiently large n we have e−hn < s(n) < ehn.
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Theorem 5 Let P ⊂ H2 be a geodesic polygon, and let htop be the topolog-
ical entropy of the billiard in P .

Then htop > 0; there exists a temperate function s(·) such that

fside(n) = s(n)ehtopn.

Proof. The billiard flow of P is (uniformly) hyperbolic [9].12 Thus, the
metric entropy of the billiard flow (with respect to the Liouville measure) is
positive. By Abramov’s formula [1], the metric entropy of the billiard map
in P (with respect to the canonical measure) is positive as well. By the
maximum principle, htop > 0.

Let (X, T,Γ) be the piecewise convex transformation associated with the
billiard in P , and let P = P(Γ) be the corresponding convex partition of X.
Let Q be the (possibly nonconvex) partition of X defined by the sides of P .

Let α(t), β(t) be infinite billiard orbits that visit the same sides of P for
−∞ < t < ∞. Then their unfoldings, α̃(t), β̃(t) are infinite geodesics in
H2; the distance between α̃(t), β̃(t) is bounded, as −∞ < t < ∞. Hence
α̃(−∞) = β̃(−∞) and α̃(∞) = β̃(∞) implying α̃ = β̃. Therefore, α = β.
Hence Q is a generating partition.

Since P ≺ Q, the defining partition P is generating as well. By [11], the
complexity of (X, T,Γ) satisfies fΓ(n) = s1(n)ehtopn, where s1 is a temperate
function. By the proof of Proposition 5, fside(n) ≤ s1(n)ehtopn.

Let Pn = P(Γn) (resp. Qn), 1 ≤ n, be the sequence of partitions of X
defined by (X, T,Γ) (resp. corresponding to the side coding). Then Pn ≺ Qn,
and fside(n) = |Qn|, fΓ(n) = |Pn|. Let A be an atom of Qn. Denote by rn(A)
the number of atoms of Pn that partition A, and let rn = maxA∈Qn

rn(A).
Then fΓ(n) ≤ rnfside(n).

Let (s1, . . . , sn) be the side-code of A. The unfolding of P along a billiard
orbit γ ∈ A is obtained by reflecting P consecutively about s1, . . . , sn. Hence
it is determined by A; we denote it by P̃A. Although P̃A is not a polygon, in
general,13 the basic concepts of polygonal billiard apply to it. In particular,
the billiard orbits γ ∈ A uniquely unfold into billiard segments γ̃ in P̃ . Let
(X̃, Γ̃) be the convex cell complex associated with the billiard in P̃A. Then A
determines an atom, Ã, of the side partition of X̃, and rn(A) is the number
of faces of Γ̃ that partition Ã.

12This is a special case of a more general result in [9]. It can also be obtained directly.
13If P is convex, then P̃A ⊂ R

2 is a polygon. In general, P̃A is a flat surface with a
boundary; the reader may think of P̃A as a polygon in a (branched) covering of R

2.
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If P has p corners, then the number of corners of P̃A is at most pn.
Lemma 5 applies, hence rn(A) ≤ 2p3n3. Since A was arbitrary, we have
rn ≤ constn3, and constn−3s1(n)ehtopn ≤ fΓ(n). Set s(n) = fΓ(n)e−htopn.

4 Complexity of the outer billiard

Let (X,Γ) be a convex cell complex, and let (X,Γ, T ) be a piecewise con-
vex transformation. Suppose that X is a metric space, and the chords are
geodesic segments. Assume that for any 2-cell, the restriction TF : F → X is
an isometry. See Definition 4. Then (X,Γ, T ) is a piecewise convex isometry.
This is a special class of piecewise isometries, in general; there are many
other special classes, for instance, interval exchange maps. These arise, in
particular, from the billiard in rational polygons, and have been extensively
studied [14].

We will investigate a particular subclass of piecewise convex isometries
– the outer billiard transformations. Let P ⊂ M be a convex geodesic p-
gon, where M is a simply connected surface of constant curvature κ. For
x ∈ M denote by Tx : M → M the geodesic symmetry about x. Let
a, b, c, . . . be the corners of P listed counterclockwise. If κ = 0,−1, set
X = X(P ) = M − P . If κ = 1 (i. e., M = S2), let P ′ be the antipodal
polygon,14 and set X = X(P ) = M − P − P ′.

For a corner, say a, of P , let Ra ⊂ X be the geodesic ray extending the
side ab in the direction of a. The set X ⊂ M is a metric space, the chords
are the geodesics in X, and the chord graph Γ = Ra ∪Rb ∪ . . . is convex. Set
P = P(Γ), and let Xa, Xb, . . . be the closed 2-cells. See figure 6.

Definition 7 The outer billiard about P is the piecewise convex isometry
(X,Γ, T ) such that the restrictions T |Xa

, T |Xb
, . . . are the geodesic symme-

tries Ta : Xa → X, Tb : Xb → X, . . . . The space X ⊂ M is the phase space
of the outer billiard.

We will use the notation T : X → X for the outer billiard.15 The
complexity of the outer billiard is the complexity of (X,Γ, T ) with respect

14In this section we assume, as before, that P is an admissible polygon.
15If a danger of confusion with the inner billiard arises, we will use the superscript,

Tout : X → X .
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Figure 6: Definition of the outer billiard map

to the partition P. Now we introduce the notation and terminology that will
be used throughout this section. If g(n), h(n) are two positive sequences,
we write g ≺ h if there is a constant C such that for all n sufficiently large
g(n) ≤ Ch(n). If g ≺ h and h ≺ g, we write g ∼ h; we will say that the
sequences have the same growth or are in the same (growth) class. If g ≺ nd

then we say that g grows at most polynomially with degree d, or that g is
bounded by nd.

If G is a group with a finite set S = {s1, . . . , sp} of generators, we denote

by G
(n)
S ⊂ G the set of elements that can be represented by products of at

most n elements of S and their inverses. The growth class of the sequence
gS(n) = |G

(n)
S | does not depend on the choice of S [7]. If gS(n) ∼ nd, then

we say that the group G grows polynomially, with degree d. In our case,
G = G(P ) ⊂ Iso(M) is the group generated by the set S = {Ta, Tb, . . . } of
geodesic symmetries about the corners of P . We proceed to study the three
cases at hand.

4.1 The euclidean case

We will obtain polynomial bounds on the complexity of outer billiard.

Theorem 6 Let P be a convex euclidean p-gon, and let f(·) be the complexity
of the outer billiard about P . Then n ≺ f(n) ≺ np+1.
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Proof. The edges of the graph Γn are parallel to the sides of P ; each edge
is a segment or a half-line. Assume, for simplicity of exposition, that P has
no parallel sides. Then there are p directions. For each direction there are
n parallel half-lines, hence their total number is pn. Since they partition X
into pn components, the number of faces of Γn is at least pn. This yields the
linear lower bound on complexity.16

Let G = G(P ), and let S = {T1, . . . , Tp} be the natural set of generators.
For the proof of the upper bound, we will need a few lemmas.

Lemma 7 The growth of G is bounded by np−1.

Proof. The subgroup H ⊂ G generated by T1Tp, T2Tp, . . . , Tp−1Tp is a quo-
tient group of Zp−1; hence its growth is bounded by np−1. Since H is a normal
subgroup of G of index 2, the two groups have the same growth.

Let Γ = ∂P, and let Γ1,Γ2, . . . be the canonical sequence of graphs; see
section 1. Let γn be the set of edges of Γn \ Γn−1.

Lemma 8 The first difference of the sequence |γn| is bounded by np−1.

Proof. The edges of γn+1 are obtained from the edges of γn by applying
T−1. Each time a singularity half-line of T−1 intersects an edge of γn, this
edge splits into two, and thus contributes 1 to |γn+1| − |γn|.

Let Ln be the set of straight lines obtained by reflecting at most n times
in the corners the extentions of the sides of P . By Lemma 7, |Ln| ≺ np−1.
Each of these lines intersects a singularity half-line of T−1 at most once,
therefore the total number of intersections of the lines in Ln with the singu-
larity half-lines of T−1 is bounded above by np−1. The edges of γn belong to
the lines from Ln, therefore the total number of intersections of these edges
with the singularity half-lines of T−1 is bounded above by np−1. (Note that
the number of edges of γn could be bigger.)

We will now estimate the number of faces of Γn. Denote by |Fn|, |En|, |Vn|
the number of faces, edges, vertices of the graph Γn respectively. By Lemma 8,
growth of the second difference of the sequence |En| is at most polynomial of

16We conjecture that there is a quadratic lower bound.
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degree p− 1, hence |En| ≺ np+1. The edges of Γn are parallel to the sides of
P , thus may have at most p possible directions. Therefore, each face of Γn is
at most a 2p-gon, and the valence of each vertex of Γn is at most 2p. Thus,
|En| ≤ p|Fn|, |En| ≤ p|Vn|. Euler’s formula |Vn| − |En| + |Fn| = 0 implies
p|Fn| ≤ (p− 1)|En|, hence |Fn| ≺ |En|.

We have assumed that the abelian group generated by the sides of P has
maximal rank, p − 1. Although generically this is the case, the rank may
drop. Our argument proves, in fact, the statement below.

Corollary 2 Let P be a convex euclidean p-gon, and let r ≤ p − 1 be the
rank of the abelian group generated by translations in the sides of P . Then
the complexity of the outer billiard about P is bounded by nr+2.

A polygon is rational if the rank above is 2. Rational polygons are dense
in the space of all polygons. We will study complexity of the outer billiard
about a rational polygon.

Q

P

Figure 7: Outer billiard; examples of polygons P and Q

We regard the plane as a vector space, with the center in the interior
of the convex p-gon P . A well known construction [16] associates with P
a homothetic family of centrally symmetric convex polygons with at most
(resp. exactly) 2p sides (resp. if P is a generic p-gon). Let Q be a particular
polygon in this family. Each of its sides is parallel to a diagonal of P . See
figure 7. We endow the plane with a Minkowski norm such that Q is the unit
disc. The vector norm | · |, radius, etc, will be understood with respect to it.
We set Q(r) = r ·Q.
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The polygon Q determines the geometry of orbits of T 2 “at infinity” [16].
We will elaborate. Let x be a point in the plane which is sufficiently far from
the origin. Let Qx be the circle centered at the origin and passing through x.
Let a ⊂ Qx be the side containing x, and let d be the corresponding diagonal
of P (parallel to a). Then T 2 translates x along a by 2|d|; this continues
until the orbit of x overshoots a. Let y = T 2m be the corresponding point.
Then the same recipe is applied to y, etc. See figure 8.

P

d

Qx

ax

T 2(x)

T 4(x)

Figure 8: Second iteration of the outer billiard map “at infinity”

Let a be an arbitrary side of Q, and let d be the corresponding diagonal of
P . The polygon P is quasirational if, up to a common factor, the p numbers
ra = |a|/|d| are rational.

Theorem 7 Let P be a rational polygon, and let f(·) be the complexity of
the outer billiard about P . Then f(n) ∼ n2.

Proof. Every rational polygon is quasirational. By a construction of R.
Kolodziej [13],17 there is a nested sequence of T -invariant, polygonal, simply
connected domains · · · ⊂ Ui ⊂ Ui+1 ⊂ · · · exhausting the plane. By [13],
there exists a constant C = C(P ) > 0 such that the Kolodziej domains satisfy
Q(Ci) ⊂ Ui ⊂ Q(C(i + 1)).

17Using it, Kolodziej proved that the outer billiard orbits for quasirational polygons are
bounded [13]. For general polygons this question is open [16].
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Lemma 9 Let P be an arbitrary convex polygon, and let f(·) be the com-
plexity of the outer billiard about P . There exists C1 > 0 such that the
contribution to f(n) of the exterior of the disc of radius C1n grows linearly.

Proof. We will use the preceding notation and terminology. Let C1 > 2/ra

for all sides of P .
Consider the T 2-orbit of length n of an arbitrary point x outside of

Q(C1n). It follows a side, a, of Q for k ≤ n iterations, then it “jumps”
to the adjacent side, a′, and follows it for n − k iterations. Counting the
possibilities (and assuming that Q is a 2p-gon, which is the generic sitiation)
we obtain 2p(n+ 1) types of T 2-orbits of length n. But different types mean
different contributions to f(2n), and vice versa.

Since P is a rational polygon, the group G ⊂ Iso(R2) is discrete. The
graphs Γn are obtained from a finite collection of half-lines by G-action,
hence Γ∞ = ∪n≥1Γn belongs to a discrete collection of lines. Therefore Γ∞

is a graph, and the sequence Γ1 ⊂ · · · ⊂ Γn ⊂ . . . stabilizes on compacta.
Moreover, there is a finite collection of convex polygons, such that every face
of Γ∞ is congruent to a polygon in this collection. Hence the areas of the
faces of Γ∞ are bounded away from zero and infinity.

Note that the constant C1 in Lemma 9 can be chosen arbitrarily large.
We choose it so that C1

C
= τ ∈ N. Then for all n sufficiently large

Q(C1n) ⊂ Uτn ⊂ Q(C1n+ C). (24)

By Lemma 9, up to a linear term, f(n) is the number of faces of Γn

intersecting Q(C1n). By the left inclusion in (24), this is less than or equal
to the number of faces of Γ∞ in Uτn. By preceding remarks, there is C2 > 0
such that that number is bounded by C2area(Uτn). By the right inclusion in
(24), area(Uτn) is quadratic in n. We have obtained the bound f(n) ≺ n2.

Now for the lower bound. All regular points in X are periodic [13]. A
face F ⊂ X of Γk is stable if F is a face of Γ∞. Let Vn ⊂ X be the set of
points with period at most n. Each connected component of Vn is an open,
stable face of Γn. By remarks above, the number of connected components
of Vn has the same growth as the area of Vn, thus area(Vn) ≺ f(n). By
Proposition 6 below, area(Vn) ∼ n2.
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The following proposition is used in the proof of Theorem 7. It is also of
independent interest. If g, h are positive functions on Y ⊂ R2, the notation
g ≺ h means that g(x)/h(x) is bounded as |x| → ∞. The notation g ∼ h
means that g ≺ h, h ≺ g.

Proposition 6 Let P be a convex polygon and let Xper ⊂ X be the set of
periodic points of the outer billiard. For x ∈ Xper let p(x) be the period.
1. We have |x| ≺ p(x).
2. Let P be a rational polygon. Then for all regular points p(x) ∼ |x|. Let
Vn be the set of points such that p(x) ≤ n. Then area(Vn) ∼ n2.

Proof. We assume, without loss of generality, that p(x) = 2m. Let Qx be
the circle through point x. The sequence x, T 2(x), . . . roughly follows Qx.
To come back to x, the sequence has to go around Qx at least once. Let δ
be the “largest step” of T 2. Then we need at least perimeter(Qx)/δ steps to
return. Since perimeter(Qx) ∼ |x|, the first claim follows.

Let now P be a rational (hence quasirational) polygon, and let Uk, k ≥ 1,
be the Kolodziej domains. Let k = k(x) be such that x ∈ Uk \ Uk−1. The
relations Q(Ck) ⊂ Uk ⊂ Q(C(k + 1)) imply that the function k(x) satisfies
k(x) ∼ |x|. By inclusion Uk \ Uk−1 ⊂ Q(C(k + 1)) \ Q(C(k − 1)), we have
area(Uk \ Uk−1) ∼ |x|. The point x belongs to a unique face, F = F (x), of
Γ∞, hence p(x)area(F ) ≤ area(Uk \ Uk−1). By preceding remarks, p(x) ≺
area(Uk \ Uk−1), implying p(x) ≺ |x|, and hence the equivalence p(x) ∼ |x|.

By this relation, there are constants C3, C4 > 0 such that, for n suffi-
ciently large, Q(C3n) ⊂ Vn ⊂ Q(C4n), proving the last claim.

4.2 The elliptic and the hyperbolic cases

We will first consider the elliptic case.

Theorem 8 Let P ⊂ S2 be a convex spherical polygon. The complexity of
the outer billiard about P grows subexponentially.

Proof. For x ∈ S2 let l = x∗ be the appropriately oriented great circle
centered at x. This diffeomorphism S2 → Geo(S2) is the spherical duality,
and we denote by x = l∗ the inverse diffeomorphism.

Let a, b, . . . be the corners of P , and let P ∗ be the convex polygon bounded
by the geodesics a∗, b∗, . . . . The correspondence P 7→ P ∗ is an automorphism
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of the space of convex spherical polygons. The proof of the following lemma
is contained in [16].

Lemma 10 Let P, P ∗ ⊂ S2 be as above. Let Xo, Xb be the phase spaces of
the outer billiard about P , inner billiard in P ∗; let Tout : Xo → Xo, Tbil :
Xb → Xb be the respective maps.

The spherical duality induces a diffeomorphism Xo → Xb; it conjugates
Tout : Xo → Xo and Tbil : Xb → Xb; it induces an isomorphism of the
codings.

Figure 9 illustrates Lemma 10. Let fo(n) (resp. fb(n)) be the corner
complexity of the outer billiard about P (resp. the side complexity of the
billiard in P ∗). By Lemma 10, fo(n) = fb(n). The claim now follows from
Theorem 4.

a∗

b∗

c∗

p

x∗ y∗

p∗

c a

y xb

P

P ∗

Figure 9: Duality between inner and outer billiards

Let P ⊂ H2 be a p-gon, and let X = H2 \ P . The outer billiard map18

T : X → X extends to a homeomorphism of the circle at infinity, τ : S → S.
Its rotation number satisfies ρ(P ) ≥ 1/p [8]. The polygon P is large if
ρ(P ) = 1/p and τ has a hyperbolic p-periodic orbit. See figure 10. The set
of large polygons is open in the natural topology [8].

Theorem 9 Let P ⊂ H2 be an arbitrary convex polygon, and let f(·) be the
complexity of the outer billiard, T . Then n ≺ f(n). If P is a large polygon,
then f(n) ∼ n.

18We refer to [8] for the background.
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P

Figure 10: A large quadrilateral

Proof. The bound n ≺ f(n) fails iff the sequence Γk, k ≥ 1, stabilizes. As-
sume this to be the case, and let Γm = Γm+1 = · · · = Γ∞. The outer billiard
map preserves Γ∞; its restriction to a closed face of Γ∞ is a diffeomorphism
onto another one. Since Γ∞ is a finite graph, we find n ∈ N such that every
face of Γ∞ is invariant under T n.

Let F be a closed face of Γ∞. Then ∂F ∩S is either empty, or a vertex, or
an edge of F . We will study the latter. Let v1, . . . , vN ∈ S be the consecutive
endpoints of these edges, let ei ⊂ S (resp. αi ⊂ H2) be the circular arc (resp.
the geodesic) with endpoints vi, vi+1 (we set N + 1 = 1), and let Fi be the
corresponding face of Γ∞. The restriction T n|Fi

is induced by an isometry,
gi ∈ Iso(H2). The elements g1, . . . , gN are all equal to the identity iff τN = 1.

Lemma 11 The map τ : S → S is not periodic.

Proof. Let z be a corner of P . For close points x1, y1 ∈ S let x2, y2 ∈ S
be their reflections about z. Let λ1 = |x2z|/|x1z| and let 2αi be the angular
measure of the arc xiyi, i = 1, 2. See figure 11. The triangles x1zy1 and
x2zy2 are similar, therefore

sinα2 = λ1 sinα1. (25)

Let x1, . . . , xN be a periodic trajectory of the map τ consisting of smooth
points, and let λ1 . . . , λN be the respective ratios. Set Λ = ΠN

i=1λi. Let
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Figure 11: Computing the distortion of the map τ

y1 be a point sufficiently close to x1, and let y1, . . . , yN be its τ -orbit; we
assume that both orbits reflect in the same corners of P . It follows from
equation (25) that y1, . . . , yN is a periodic trajectory iff Λ = 1. In particular,
if τ has a periodic interval, then Λ = 1 there.

Let now x1 cross counter-clockwise a singularity half-line of T . In the
notation of figure 12, λ1 = (b+ c)/a (resp. λ1 = c/(a+ b)) right before (resp.
after) this. By (b+ c)/a > c/(a+ b), the equality Λ = 1 before a singularity
half-line implies that Λ < 1 immediately after it (if, simultaneously, another
xi crosses a singularity half-line, Λ will decrease as well).

By Lemma 11, we can assume without loss of generality that g1 6= 1.
Then g1 is a (hyperbolic) parallel translation with the axis α1, and F1 is
the domain bounded by α1 and e1. We will say that F1 is a lunar face of
Γ∞. The union of lunar faces of Γ∞ is invariant under T . Therefore for any
k > 0 there is l = l(k) such that T−k(α1) = αl. A geodesic αi, 1 ≤ i ≤ N,
cannot contain a side of P . If it does, then Fi contains a singular line of
T in its interior, contrary to the definition of Fi. See figure 12, where x1x2
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Figure 12: Destruction of a periodic orbit of τ

represents now the geodesic α1. Thus, α1 is not an edge of Γm for any m.
This contradiction proves our first claim.

Let now P be a large p-gon. Then Γn is a disjoint union of p binary trees
[8] (see figure 13), hence |Γn| grows linearly.

Remark 3 The function f(·) is bounded below by the complexity of the
induced map τ : S → S with respect to the natural partition. However, the
latter may be finite. See figure 14.
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