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Abstract

In the following we prove some sharp regularity results for the sta-
tionary and the evolution Navier-Stokes equations with shear dependent
viscosity, see (1.1), under the non-slip boundary condition (1.4). We are
interested in regularity results for the second order derivatives of the ve-
locity and the first order derivatives of the pressure up to the boundary, in
dimension n > 3. In reference [4] we consider the stationary problem in
the half space R’} under slip and non-slip boundary conditions. Here, by
working in a simpler context, we lay stress on the core of the proofs. We
consider a cubic domain and impose our boundary condition (1.4) only on
two opposite faces. On the other faces we assume periodicity, as a device
to avoid effective boundary conditions. This choice is made so that we
work in a bounded domain €2 and simultaneously with a flat boundary. In
the last section we provide the extension of the results from the stationary
to the evolution problem.

AMS subject classification 35Q30, 35K35, 76D03, 35K55.

1 Introduction

In the sequel v and 7 denote, respectively, the velocity and the pressure of a
viscous incompressible fluid. We are mainly interested in studying and improv-
ing regularity results for solutions to the evolution Navier-Stokes equations for
flows with shear dependent viscosity, namely

G+ (e V)u =V T = f,
(1.1)
V-u= 0)

under suitable boundary conditions, where T denotes the Cauchy stress tensor
(1.2) T=-nl+vyr(u)Du,
%Du denotes the symmetric gradient, i.e.,
Du= Vu+ VuT,
and
(1.3) vr(u) = vo + v1|DulP~?
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denotes the viscosity. Here vy and v; are strictly positive constants. In the
following we consider the case p > 2.

The system of equations (1.1), for p = 3, was introduced by J.S. Smagorinsky,
see [34], as a turbulence model. For arbitrary p the system was introduced and
studied by O.A. Ladyzenskaya, already as a turbulence model, in references
[13], [14], [15] and [16]. J.-L. Lions considered similar models, in which Du is
replaced by Vu. See [19] and [20], Chap.2, n.5. It is worth noting that (1.2)
satisfies the Stokes Principle, see [36]. A clear and rigorous discussion on this
subject is given by J. Serrin in reference [33], page 231, where the above physical
principle is stated in a postulational form.

In order to avoid additional calculations we assume that p < 3. However
this restriction is not at all necessary, in the sense that essentially the same
argument gives similar results for p > 3. The case 2 < p < 3 (specially p = 3)
has been applied in the last forty years to model turbulence phenomena in fluid
flows, a main problem in theoretical, applied and numerical Fluid Mechanics.
See, for instance, [5], [7], [10], [11], [12], [18], [27], [34] and the references given
by these authors. Nonlinear shear dependent viscosity also model of properties
of materials. The cases p > 2 and p < 2 captures shear thickening and shear
thinning phenomena, respectively. See, for instance, [28].

Higher order regularity results, up to the boundary, for solutions to problem
(1.1) (and similar) in regular bounded open sets @ C R3, under the non-slip
boundary condition

(1'4> Ur = O7

are studied in depth in reference [22]. Nevertheless these results may be im-
proved. In reference [4] particularly sharp regularity results in the half-space
R} (note the flat boundary) were obtained for the stationary problem

-V -Du—1nV- (|Du|p*2Du) + Vrn=f
(1.5)
V-u=20

under slip and non-slip boundary conditions. In the R’} case we do not have the
inclusion LY C LP if ¢ > p. The lack of this property, which holds in a bounded
domain 2, implies some secondary but involved arguments which substantially
upset the main stream of the proofs. In order to work once more with a flat
boundary I' and, simultaneously, in a functional framework in which the above
functional inclusions hold, we are led to consider here a cubic domain €2 and to
impose the boundary condition (1.4) just on two opposite faces. On the other
pair of faces we assume periodicity conditions (in this way we avoid singularities
due to the corner points). This enables us to emphasize the very basic ideas of
our method.

We have already obtained the extension of our results to arbitrary regular
open sets 2. This is the subject of a paper in preparation.

Remark 1.1. On the evolution problem. Below we show that higher order
regularity results for the evolution problem (1.1) can be obtained in quite a simple
way as corollaries of the corresponding results for the stationary problem (1.5).



This is shown below in the framework considered here. However one easily
verifies that the line of argument is "abstract” and immediately applicable to
other situations as, for instance, to the case of generic bounded regular domains,
provided that corresponding regularity results for the stationary problem hold.
Hence the crucial point is the study of the stationary problem (1.5).

Remark 1.2. On the convective term. In proving higher order regular-
ity results for the classical Navier-Stokes equations the convective term plays
a secondary rule, in spite of its responsibility for the lack of reqularity of the
solution. In fact, in proving these results, the central point in the known proofs
is the higher order regularity for the Stokes linear equation (for instance, the
classical works by Cattabriga and Solonnikov). The convective term is simply
treated "as a right hand side” (for want of anything better!). We do not face
a more favorable situation when p # 2. Hence we treat the stationary problem
(1.5) without the convective term and show, just as a final byproduct, that all
the regularity results proved for the generalized Stokes problem hold for the gen-
eralized Navier-Stokes problem provided that p > 2+ % .

Obviously, as in reference [4], no single term in the left hand side of (1.5) can
be treated ”as a right hand side” (as wrongly remarked somewhere).

Remark 1.3. On the slip boundary condition. In [/] we also consider the
more intricate slip boundary condition. For simplicity we take here into account
only the non-slip boundary condition (1.4) and assume n = 3. However, by
following [4], we easily extend to the slip boundary condition all the results
proved below.

Remark 1.4. On the regularity up to the boundary. When p # 2, there
is an unusually increment of difficulty in passing from interior to boundary
regularity for solutions to the system (1.5). A sign of this fact is the lower
reqularity obtained for the second order derivatives of the velocity (and for the
first order derivatives of the pressure) in the normal direction in comparison to
the other directions. One of the main reasons is the following one. In proving
interior regularity by appealing to the classical translation method, translations
are admissible in all the n independent directions. This allows suitable estimates
for VDu. Note that the above full gradient V is obtained here thanks to the
possibility of appealing to translations in all the directions. Furthermore, it is
easily shown that ¢|VVu| < |[VDu| < C|VVul|. This two facts together lead
to a not particularly distinct situation if we replace Du by Vu in equation (1.5).
However, in proving reqularity up to the boundary, the two cases are completely
distinct, as is well known to authors acquainted with these problems. In fact,
solutions to the J.-L. Lions model belong to W22 up to the boundary. It looks
not accidental that there is a very extensive literature on interior reqularity for
the above problem but, as far as we know, few literature concerning regularity
up to the boundary, at least in the 3 — D case.

Results. For the main results proved in the sequel see the Theorems 3.1,
3.2, 3.4 and 3.5(and also the Lemma 3.10) for the stationary problem, and the
Theorems 10.3 and 10.4 for the evolution problem. This set of theorems improve
the previous known results when applied under the same hypotheses.

Without any claim of completeness, and besides the articles quoted above,



see [1],[4], [6], [8], [9], [17], [21], [22], [23], [24], [29], [30], [31], [32], and the
references given by these authors.

2 Notation, weak solutions and some auxiliary
results.

In the sequel 2 denotes the 3-dimensional cube Q = (]0,1[)3.
Further, we set

= {z:|z], |xz2] < 1,z3=0}, Ty={z:|z], |z2| < 1l,2z3=1}.

The Dirichlet boundary condition (the condition in which we are interested here)
will be imposed only on
r=Tr_ul,.

The problem will be assumed periodic, with period equal to 1, both in the z;
and the z, directions. In the following the significant boundary is I'. Actually
I' = 09 provided that  and T' are indefinitely reflected in the x; and x4
directions. Sometimes we use the term ”boundary” to denote I'. For convenience
we set

' = (z1,22).

By a’-periodic we mean periodic of period 1 both in z; and zs. A similar
convention is assumed for expressions like z’-periodicity and so on.

If X is a Banach space, we denote by X’ its strong dual space. We use the
same notation for functional spaces and norms for both scalar and vector fields.
The symbol || - ||, denotes the canonical norm in LP(Q), and || - || that in L*(Q).
WLP(Q) denotes the usual Sobolev space.

We set

2.1 V,={veW'?(Q): (V-v)g=0; vy = 0; vis &’ — periodic} .
P \ \

Note that, by appealing to inequalities of Korn’s type, one gets the following
result.

Lemma 2.1. There is a positive constant ¢ such that the estimate
(2.2) IVullp + ol < ¢lDoll,

holds, for each v € V,,. Hence the two above quantities are equivalent norms in
Vp.

For the proof see, for instance, [27], Proposition 1.1.
Definition 2.1. Assume that
(2.3) fe).

We say that u is a weak solution to problem (1.5), (1.4) if u € V,, satisfies

(2.4) /QUT(u)Du-Dvdat: /Qf-vdx

DN | =

for allv € V,.



By defining < Awu, v >, for each pair u, v € V},, as the left hand side of
(2.4), the operator A : V,, — V satisfies the assumptions in the Theorems 2.1
and 2.2, Chap.2, Sect.2, [20]. This shows existence and uniqueness of the weak
solution.

By replacing v by u in equation (2.4) one gets

(2.5) vo | Vull® + vi | Dullb =< f,u >,

where the symbols < -,- > denote a duality pairing. Note that the left hand
side of equation (2.5) is just < Awu, u >. This shows that the assumption (2.3)
in Theorem 2.1 of reference [20] holds.

From (2.5) there readily follows the basic estimates

vg [Vull® + 2vo v [Dullf < el f]1?,
(2.6) L / /
v v IVull® + v [Dullp < ellfIl} -

In particular

vo [[Vull < ¢l fIl,
2.7) N
v [Vaullp < e|lfllym" -

By restriction of (2.4) to divergence-free test-functions v with compact sup-
port in €, and by De Rham’s theorem, there follows the existence of a distribu-
tion 7 (determined up to a constant) such that

(2.8) Vra=-V-[wwVu+tuv |Duf?Dul+ f=V- Ui+ Uz) + f,

Equation (2.8) shows that the first equation (1.5) holds in the distributions
sense.
The following result is well known.

Lemma 2.2. If a distribution g is such that Vg € W=1%(Q) then g € L*()
and

(2.9) l9llzg < clVgllw-1a,
where LY = L*/R.
From (2.8) and (2.7) it readily follows that m € L” (Q) and that

Il o < el + 1)

We end this section by introducing some more notation.

We denote by D?u the set of all the second derivatives of u. The meaning
of expressions like || D? u|| is clear. The symbol D2 u denotes any of the second
order derivatives 0%u;/ dx; Oy, except for the derivatives 0?u;/ 0z, if j = 1 or
7 = 2. Moreover,

82 us 2
3

2 3

0% u;

+ > .

P al'z 8xk
(i,k)#(3,3)

(2.10) |D2u|? = ’




Similarly, V* may denote any first order partial derivative, except for 9 /0 .

Some integrability exponents play a crucial role in our proofs and are, for
the reader’s convenience, introduced here.
In the sequel p denotes an exponent that lies in the interval

(2.11) 2<p<3
and ¢ an exponent that lies in the interval

p<qg<6.
We denote by p’ the dual exponent

(2.12) p=——.

In general, for 1 < r < 3 we define the Sobolev embedding exponent r* by the
equation

(2.13) — =

1
3"

Given p and ¢ as above we define r = r(q) by

1 p-2 1

2.14 -=—+4 =
( ) r 2q + 2
and 7 = q(q) by

1 p-2 1 p—22 p-2 1
2.15 = - = -
( ) q r* + 2 2q + 6 + 2
and set
(2.16) g = min{g,r}.

The assumption p > 2 is essential in many points of our proofs. However
the assumption p < 3 can be relaxed, or even dropped, in many statements (for
instance, 2 < p is sufficient in Theorem 3.1 and 2 < p < 4 in theorem 3.4).
However, in order to avoid cumbersome distinctions, we assume the condition
(2.11).

We denote by c a generic positive constant that may change from equation
to equation. The positive constants ¢ do not depend on the parameters p and
g, in the usual sense (i.e., they are bounded from above for p and ¢ varying in
the ranges considered here). As a rule, we let the constants ¢ depend on vy and
v1. It is easily seen that if 0 < v < vy, 1 < U the constants ¢ depend only
on v and 7. Nevertheless we may let the constants 1y and v, appear when this
provides a better understanding of some manipulation.

3 The stationary problem. Main results

In this section we state our main results concerning the stationary problem. We
also include some explanation regarding the ”architecture” of the proofs. We
start with the following very basic result.



Theorem 3.1. Assume that
(3.1) fe L}

and let u, w be the weak solution to problem (1.5) under the boundary condition
(1.4) plus a'-periodicity (problem (2.4)).
Then the derivatives D?u belong to L?(Q2), moreover

(3.2) vo [ D2 ull + (vor1)?

| 1Du|*=* V" Du | < c|IfI].

Furthermore D?w, |DulP~2V*Du and V* 7 belong to LP () and satisfy the
estimate

(3-3) IV* 7l + ID* ully + [|DulP~ V* Dully < K,

where K, has the form

(3.4) Kp=cllfll+ c|Dully” [If]-
Finally,
or
. LPO 9]
€ (@),
and
(3.5) | Val,, < e[+ 2] If + ckyp,

where pg = min{q, p’'} and G is given here by setting ¢ = p in equation (2.15).

Note that by (2.7) one has, in particular,

3p—4
Kp < clfll+ cllflz==.

Moreover, if p = 2 we reobtain the classical result for the Stokes linear equation,
namely, if f is square integrable so is V 7. It is curious enough that in the very
important and significant case of the Smagorinsky exponent p = 3 it follows
that po = g. Hence pj = 2, i.e. the pressure 7 is square integrable. The
exponents p’ and po in the estimates (3.3) and (3.5) will be improved below.
Nevertheless, for completness, we remark that pg = p' if 2 < p < 2+ i and

pozﬁifp22—|—%. Forp:Z—i—ionehaspo:p’:ﬁ:%

If we assume that (3.6) below holds for some ¢ > p then the Theorem
3.1 can be improved. Actually we will show that (3.6) holds provided that
p < 3. However it is more convenient to start by establishing the result in the
conditional form below. The assumption 3 < g < 6 is essentially superfluous.

Theorem 3.2. Let f, uw and 7w be as in Theorem 8.1 and assume, in addition,
that

(3.6) Due LI(Q)
for some 3 < q < 6. Then, in addition to (3.2), one has

(3.7) D?u, |[DulP~2V*Du, V1 e L'(Q).



More precisely,
(3.8) IV*all, + 1D*ull, + [1DufP~? V* Dul|, < K,

where ICq has the form

p—
2

(3.9) Kq=clfll + clDully® [f]

and r is given by (2.14).

Concerning the regularity of the derivative g—; one has the following result.

Lemma 3.3. Under the assumptions of Theorem 3.2 one has

or

B <ec [1—1— Kgfz} Ifl + ¢y

(3.10) ’

q
where q is defined in (2.16). In particular, by (3.8),
(3.11) IVrllg < e L+ K72 I+ ey

Remark. We note that the above quantity Xy, does not correspond to the
quantity defined in reference [4] by the same symbol. In fact, the quantity K,
defined by (3.9) corresponds to the quantity defined in [4] equation (5.5) by the
symbol K,., where r is related to g by (2.14).

Theorem 3.4. Let f, u and 7 be as in Theorem 3.1. Then, in addition to
(3.2), one has
D2u, |DulP~2V* Du, V* 7 € LY(Q),

where
4—p
3.12 l=3—.
More precisely,
* 2

(3.13) IV mll, + (1D?ulli + || [DulP~2 V* Dulls < ¢l fl| + ¢l fl=7 .
Finally,

o
3.14 =L e ™),
(3.14) e I7(®)
where

6(4— p)

3.15 = —=.
(3.15) m= 2
In particular,

Vrel™Q)),
and

2 »_

(3.16) 197l < e (117 + 171757) -



Remarks.
Note that (3.13) improves (3.5) since p’ < [ if 2 < p < 3. Moreover

we WH(Q),

where [* = 3 (4 — p). Clearly I* > p for 2 < p < 3. In addition, u € C%*(Q),
where o = Z:—g. Also note that m > p' if p< 2+ %

It is significant that, when p = 2, the statements and estimates established
in Theorems 3.1 and 3.4 coincide with the classical results for the linear Stokes
problem.

Theorem 3.5. All the regularity results stated in the Theorems 3.1, 8.2 and
3.4, and in the Lemma 3.10, hold for the generalized Navier-Stokes equations

-1V -Du—1nV- (|Du|p_2Du) + (u-V)u+ Vr=f,
(3.17)
V-u=0

provided that

2
Moreover all the estimates shown in the above statements hold provided that we

replace || f|| by [Lf]| + IV ull3 -

4 Main lines.

In order to help following the proofs we briefly illustrate the main lines. The
starting point is the proof of (3.2), given in section 4. Then in section 5 we
prove under the assumption (3.6), the estimate (3.8). In section 6 we prove the
estimate (3.10). At this point the Theorem 3.1 is completely proved since, if
g = p, weak solutions satisfy (3.6) and the estimates (3.3) and (3.5) coincide
with (3.8) and (3.3) respectively. In particular r = p’.

Now we comment on Theorem 3.2, which is a main step in order to prove
the Theorem 3.4. By Theorem 3.2 for ¢ = p (i.e. by Theorem 3.1) it follows
that u € W22 . A Sobolev embedding theorem shows that u € W19, where
g = (p') = 2523. If p < 3 then g5 is larger than p. This fact opens the way
to a bootstrap argument by applying again the Theorem 3.2, now with ¢ = ¢».
The bootstrap argument works well and leads to a chain of ”intermediate” W'»
regularity results, by applying at each steep the Theorem 3.2 to the previous
value of the parameter q. The Theorem 3.1 is just the first element of this chain.
By the above argument we prove an infinite sequence of regularity results. A
further, natural, problem is trying ”to pass to the limit” in the above sequence
of regularity results and proving in this way that « € W2!, where [ is the upper
bound of the exponents I,, for which u € W2, We succeed in proving this last
step. This leads to the Theorem 3.4 below. In this Theorem the exponent [
turns out to be just the exponent for which the Theorem 3.2 with ¢ = [* yields
u € W2t Then, by a Sobolev embedding Theorem, v € Wt . In other words,




l is the fixed point of the map ¢ — r — r*. So, further regularity cannot be
obtained by appealing to Theorem 3.2.

Finally, the reason that leads us to separate Lemma 3.3 from Theorem 3.2 is
to emphasize that the regularity of 8—” is simply obtained as a final by product
(in contrast with the main rule of the regulamty of all the other derivatives of u
and 7 in each steep of the bootstrap argument).

In the stationary case the above sequence of results obtained by the bootstrap
argument are stronger for larger values of the ”step number” n. Each of these
single results gives rise to a regularity result for the evolution problem, as follows
immediately from section 9. However, in the evolutionary case, as n increases
the space-regularity exponents still increase but the time-regularity exponents
decrease. See Theorems 10.3 and 10.4. The mathematical motivation for this
situation is clear from the proofs given in section 9.

Remark. For convenience, in treating the evolutionary case, we state in explicit
form only the two ”extreme” cases of the above chain of possible results.

5 Regularity of the D?u derivatives. Proof of
estimate (3.2).

in this section we prove Theorem 5.2 below concerning the Stokes stationary
problem (1.5). The proof of the following auxiliary result is left to the reader.

Lemma 5.1. Let U,V be two arbitrary vectors in RV, N > 1 and p > 2. Then
(lpP=2v - [vpP=2v) - (U~ V) = (IUI” VP U -V,
(5.1)
[UP~20 = [VP2V] < (\UI” P VPP U -Vl

Theorem 5.2. Assume that 2 < p and that f, u and © are as in Theorem 3.1.
Then the derivatives D2 u belong to L?(Q2) and satisfy the estimate (3.2).

Proof of Theorem 5.2.

Proof. Let u be a weak solution, i.e. u € V}, is a solution to the problem

? /Du- Dvdxr + % /|Du|p72Du- Dvdx

:/fmdx,

for each v € V,,. For arbitrary scalar or vector fields v we set

(5.2)

Tho(x) = v(X1, ey Tp—1, Tk + Py Tpp1, ey T
where h € R and k, k # n, is assumed to be fixed. Here, n = 3. We also set
h v— v

vt = v, Ahv:T7

10



Note that the above translations are done in the tangential directions.
By writing (5.2) with v replaced by v" and by replacing, in the integrals on
the left hand side, the variable x by x; — h , one easily shows that

% /Du‘h- Dovdzx + % /\Du_h|p_2Du_h- Dvdx

:/f~vhdx.

By taking the difference between equations (5.2) and (5.3), respecting the left
and right sides, and by dividing by h one gets

(5.3)

% (DA u) - Dvdz+
(5.4) ;—2 /(|Du\p*2Du— Du"P2Du") Dvdz

1 h
= = (v — dz .
3 ERNCEROLE
By setting v = Ay u in equation (5.4) and by taking into account the estimate

’U—'Uh

h

65 |; [re- < WA 9o

it follows that

< I/ H

% / |D Ah u|2 d.’L‘+

(5.6) % /(|Du|p‘2Du— Du P2 Du) - (DA u)da
< c[h[IFIIV (Apu)ll.

On the other hand, due to the divergence-free property, one has
/|Y)Ahu|2 de =2 /|VAhu|2 dx .

Since the second term on the left hand side of (5.6) is nonnegative it follows
that D2 u € L?(12), moreover,

3

82u3 8211,-
2 — J <
61 wiDul=w (15704 3 gl | <elfl.

i,j,k=1
(i,k)#(3,3)

The inclusion of the derivative 9?u3/dx% in the above estimate follows by differ-
entiation with respect to z,, of the equation V-u = 0. This proves the first part
of the estimate (3.2). Next we prove the second part of this estimate. Since

IV Apull < [[DZ ull

11



it readily follows from (5.6) and (5.7) that

% / 1D Ay ul? dot

141

(5.8) ([Duff?Du— [Du"P2Du") - DAjuds

c
< P
0
Setting U = Du and V = Du~" in equation (5.1) it follows that

(IDufP?Du — [Du™"P*Du™) - DAy u

Sl

(5.9)
> % (IDulP~2 + [Du"P~2) DA, ul?

almost everywhere in . From (5.8) and (5.9) it follows that

Vo / |D Ay ul? dx

(5.10) o /{(\Duv’*u DU P=2) |D Ay ul?} .

< ey MNP

Next we pass to the limit in (5.10), as h — 0. Clearly, Du~" — Dwu almost
everywhere in . On the other hand, due to (5.7), we know that

VAL u— v
61‘k

almost everywhere in ). In particular, the same property holds by replacing
V by D. The above considerations, together with the nonnegativity of the
integrands that appear on the left hand side of inequality (5.10), allow us to
pass to the limit by using Fatou’s lemma. This yields

o 9
(5.11) Yo /|Da—;k|2dx +u /|m|p*2 |Da—;k|2dx < eyt IfIIR,

for each k # 3. Hence,

2

2
p=2  Ou _
(5.12) w|[D2ul> + 1 > || [Dul™ DaT;k < eyt |11
k=1
The proof of the estimate (3.2) is accomplished. O

12



6 Proof of Theorem 3.2.

For convenience, from now on the positive constants ¢ may depend on vy and

vy1. It is easily seen, in particular, that if 0 < v < vy, ;1 < T the constant ¢

depends only on v and 7. Nevertheless, in some calculations we let the constants

vy and vy explicitly appear for a better understanding of the manipulations.
We start this section by recalling the following result.

Lemma 6.1. Let g(x) be a scalar field in Q0 such that
g=V-wy, andVg=V-W,
where wy € LP(Q) and W € L*(R), for some a > 3> 1. Then

(6.1) I9llze@) < ¢ (lwollLsy + W ]lLaqy) -

The above result (for a bounded domain with a Lipschitz-continuous bound-
ary) and 8 = « is proved in reference [25]. The above extension is easily proved
by applying (2.9) to g — g, together with simple devices. Here § denotes the
mean value of g.

It is also worth noting that the constant ¢ may be chosen independently of
«a and G, provided that 1 < a3 < 8 < a < «g, for some fixed exponents a;
and as.

It is worth noting that if 2 < p < 3 and p < ¢ < 6 then % < r < 2. The
lack of dependence of the constants ¢ on p, ¢, r follows from this fact, since the
constants that appear in the embedding theorems used in the sequel, as well as
n (2.9), are uniformly bounded from above if the exponents in the Lebesgue
spaces lie away from 1 and from oc.

Proof of Theorem 3.2.
Lemma 6.2. Assume (3.6). For k = 1,2, the terms \Du|p’2D3’37“jc and the

derivatives 5 Om satzsfy the estimate (3.8). In particular,

(6.2)

H Ay,

T

Proof. Straightforward calculations show that
0
— (IDulP2Du) =
(6.3)

ou ou
p—2 _ p—4
|D u| Daxk + (p— 2)|Dul (D D(‘)am) Du.

On the other hand, by differentiation of equation (1.5) with respect to xy,
k= 1,2, it follows that

or ou 0 _
e L] s [fimna] v

EV'[U3+ Uy + G],

13



where, for uniformity of notation, we introduce G; = 6y f;. Hence V-G = 5;97’;,
moreover |G| = ||f]-

Next we estimate suitable norms of the terms that appear inside square
brackets on the right hand side of equation (6.4). By (5.7),

ou
. = — | < .
(6.5) Vsl = D 5= < el

On the other hand, by using (6.3), one shows that

Ju

(6.6) o

([DufP?Du) | < c[Duff~? |D ,

19
8$k

almost everywhere in Q. Moreover, by Hélder’s inequality and assumption (3.6),
one has

du

ou
p—2
(6.7) HDM D"

b2 o2
< puls™ | pu o 2"

T

Hence, by (5.12), it follows that

0

_ U
©5) [ur=2p 2% < ool ipuls™ 1.

r

This proves the first statement in the Lemma. Furthermore,

)
1Uallr = {11 5 — (\DUI” *Du) |, <

(6.9)
cIDullg* gl

By using (6.1), with g = agg ,a= rand = p/, and by (2.8), (2.7) and (6.4),
it follows that

(6.10) H ¢ (A1 + 1l + 101+ 1G]+ 1Uall) -

By (6.5) and (6.9) we get (6.2). O

Note that from equations (6.8) and (6.2) we get the estimate (3.8) for the
first and the last term on the left hand side. The missing term is the subject of
the following lemma.

2.,
Lemma 6.3. The derivatives %, 7 = 1,2 satisfy the estimate
3

0

2.4
2
Oxs

< K,
.

(6.11) vo Y.
=1

14



Proof. By using (6.3), the j.** equation (1.5) may be written in the form

3 3
82 U, _9 82 U, 82 Uk
0 S i S (e 5 )
k=1

k=1

(6.12) 4 - 9w 0 u
. —(p—2 DulP™ Dy Dj -
(p—2)v1|Dul lmzk::1 m ik <8xm oxy, * Oz 39%)

on
37%_.]8]7

where D;; = (Du);; = g;‘? + %g? and 1 < j < 3. Let us write the first two
: J ;

equations (6.12), k = 1,2, as follows:

82 . 82 X
Yy D2
3

Ox x2

11}

2
02y,
—4
(6.13) +2(p—2)v1 |DulP™"Dj3 lgl D3 a2 =

where the F}(z),j # 3, are given by

(6.14)
9 2
0% u 2 0% u
Fila)i= -0 3, o —n[Dul™? 3 oy
k=1 k=1
2
0% uy,
—vy [DulP~?
;8% oy,
. 82U3 3 BQUl
—2(p—2)v1|DulP™* { D33 Djs = Dun it g 5on
(p—2)v1 |[Dul 33 Lj3 012 + lm; tm =gk Oxpm, Oy,
(m,k)#(3,3)

In the sequel, the equations (6.13), j = 1,2, will be treated as a 2 x 2 linear
2 .
system in the unknowns %, j # 3. Note that, with an obviously simplified
3
notation, the measurable functions F} satisfy

(6.15) [Fj(@)| < ¢ (v + (p— D [Du(@)["~?) |DZu(@)],

a.e. in €.

15



We denote by F  the right hand sides

(6.16) Fy(z) = Fj(x)+ o, i

that appear in the above 2 x 2 system (6.13).

Let us show that the 2 x 2 system (6.13) can be solved for the unknowns
2 0
%,j = 1,2, for almost all = € .
3
The elements a;; of the matrix system A are given by

aj| = (1/0 + 1 |D’U,|p_2)5jl + 2(])— 2) %1 |D’U,|p_4Dl3Dj3,
for j,1 # 3. Note that a;; = a;;. One easily shows that

2

3 a6 = (o + 01 [DuP2) [P+ 2(p — 2) v [DulP ™ [(Du) - €12 .
4l=1

Hence the matrix A is symmetric and positive definite. Moreover, the above
identity shows that all the eigenvalues are larger than or equal to vy +v |Du|P~2.
Hence,

det A > (vy + vy |DulP~%)2.

Next, by setting & = we get from (6.13), i.e. from

827

(617) Zaﬂfl ] y

that
2 ~
(6.18) Z a1 =Y Fj&.
lj=1 J=1

Consequently (vo + v1 [DulP~2) |¢|2 < |F| |¢|, which shows that

2 ) 2 1/2
(6.19) (vo + v1 |DulP~2 Z 2| < IFl= [ Y IR ,

=1 j=1

almost everywhere in . By appealing to (6.15) and (6.16) one shows that
8 Ul

2
(vo + 11 [DufP~? Z
=1

(6.20)

< c(vo+ v [Dul’~?) DI u(x)| + ¢ (V" 7| + |£])

where the bounded quantity p — 1 was incorporated in the constant c. In par-
ticular,

2
(6.21) Z

=1

0% u
| < clD?u(@) + cvgt (Vx| + |f])

almost everywhere in Q. There readily follows, by appealing to (6.2) and(5.7),
that (6.11) holds. The proof of Proposition 3.2 is accomplished. O

16



7 Proof of Lemma 3.3

Proof. We define r* as the Sobolev embedding exponent
p—2 1

1 - = £y
(7.1) 2q +6

—_
S|

_ L
3
and g by equation (2.15). By (6.11), (5.7) and a Sobolev embedding theorem,
(7.2) Vol Dulle < Ky

Hence, by Hélder’s inequality,

(7.3) 1 1DulP~2 Dullg < || Dul?=* || D2ul|

By (5.7) one gets

(7.4) IDulP~? Diullg < ¢||Du

—2 _
a7 Vi
or

From equation (6.12) written for j = 3, we get an expression for 9z, 1D terms
of functions already estimated. In particular,

< e+ (= DnlDu@P ) Do)+
3
(7.5)
2 82 uy
c(p—2)vi[Du(z)P2 ) 22z | T | fs(@)],
3

=1

almost everywhere in Q.
By appealing to (6.19), (6.16) and (6.15) we prove that

or

(7.6) .

<c[(v+ nDu)|P7?) [DIu(@)| + V7| + |f]]

where c is independent of p since p is bounded from above. Hence, by (7.4) and
(5.7),

or V] 9
— <c(l+ —||Du|?- Ve
(7.7 5], = e w1+ vl
By appealing to (6.2) and (7.2) one proves (3.10). O

8 Proof of Theorem 3.4.

In the sequel || ||, denotes the norm in the Sobolev space W*#(Q).
We define = r(q) by (2.14), and the Sobolev embedding exponent r* by
(2.13). Hence r* = r*(q) is defined by

_ 6a
3p—2)+q’

for p < ¢ < 6. In the following r = r(¢q) and r* = r*(q).

(8.1) r(q) =

17



Theorem 3.2 shows that if u € W4 then u € W2". Moreover, by (3.8),
[ullz.r < K-
Hence, by a Sobolev embedding theorem, v € W™ and

[ullire < o llulla,r < Kq-

Since 1+ %2 < r < 2, the distinct values of the embedding constants cg
are bounded from above by a constant independent of . We incorporate this
constant (once and for all) in K.

This shows the following result.

Lemma 8.1. If a solution u belongs to W4 then u belongs to W, where
r*(q) is given by (8.1), moreover

p—2
(8.2) [ullsre < el + ellull g 111

Since p > 2 the function 7*(g) is increasing and bounded from above (for
instance, by 6). Next we define the increasing sequence

g =p,
(8.3)

gn+1 = T*(qn) .
Clearly
(8.4) doo = 3(4—p)

is a fixed point of 7*, 1*(goo) = (oo , MoOTEOVET

(8.5) lim gn = goo -

n—oo

From (8.2) it follows that

p=2
(8.6) lullt,guys < cllfIl+ el fIHull 3, -

Next we appeal to an induction argument. Note that for n = 1 one has

ullig = [luflip-

If we are able to show that the quantities a,, = ||ul|1,q,, at least for large values
of n, are uniformly bounded by a finite number L then well know results in
Functional Analysis, together with (8.5), yield

(8.7) lullge < L.

For convenience set b = || f|| and a = 252. Note that 0 < a < 1 provided that
2 < p < 4. Denote by A the (unique) solution of the equation A = cb+ cbA*.
By (8.6) one has an11 < ¢b+ cba®. Set by = a; and byy1 = cb+ cbb.
Clearly a,, < b, for each n. It is easily seen that if by < A then the sequence
b, is strictly increasing an converges to the fixed point A. If by > A then the

18



sequence decreases to the value A\. Hence the sequence b,, converges to A, so
an, < 2\ for large values of n. On the other hand one easily shows that

A< 2+ (2¢h)Tw .
Hence, under the hypothesis of Theorem 3.4, one has

_2
(8.8) lullige < ellfll+ el flI= -

The Theorem 3.4 follows now by applying once more the Theorem 3.2, now with
g = ¢oo given by (8.4). In this case the equation (2.14) shows that r = 7(ge) =
I, with [ given by (3.12). Hence, from (3.8), it follows that

(8.9)

p=2
IV* 7l + 1D*ulls + [|DulP~* V" Dull < Ky, < cllfll+ clDulleZ [I£]-

Finally, by appealing to (8.8) we get (3.13).

Regularity and estimates for ‘1—” follows immediately from the Lemma 3.3.

Actually, -

p(p—1)
2

< c(Pullp + [IDully

0 »
(8.10) H&; INTENTIEESY

’ m

The estimate (3.16) follows by appealing to (2.6). Concerning the exponent m,
from (2.15) with ¢ = ¢ it follows that

oo = M.
Since m < [ and r = [, it follows from (2.16) that

Goo = min{g..,l} = m.

9 Proof of Theorem 3.5.

Since
/(u Vu- udx =0,
Q

it readily follows that all the estimates stated in section 2 hold here. On the
other hand

0.1 [ VyuP do < efuley [l
Q P=

Furthermore

92) lull 22, < ellully

if p satisfies (3.18). By appealing to a Sobolev embedding theorem one shows
that

(9-3) 1w V) ull < cl|Vullp.

Hence (u- V)u € L?(2). Consequently this term can be treated, in a standard
way, as a “right hand side”.
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10 The evolution Navier-Stokes equation
Let us write (1.1) in the more explicit form

U 4 (u-V)u-—

vwV:-Du—1 V- ([Duf2Du)+ Vr=f

(10.1)
V-u=0,

u(0) = ug(x).

In the sequel we merely prove the a priori estimates that lead to our results.
Complete proofs are done by applying the estimates to the approximate solu-
tions obtained by the Faedo-Galerkin method. By now this is a well known
device. See, for instance, [27] section 2 where this method is followed for the
evolution Ladyzhenskaya model.

Multiplication by w, integration in €2 followed by suitable integrations by
parts show that

1d

- 2, 2, P _
102 LR+ R Pl + Fpuly = [ fuds.

By integration of (10.2) with respect to time, one gets the following result:

Lemma 10.1. Let u be a weak solution to problem (10.1) under the boundary
condition (1.4) plus x’-periodicity. Then u satisfies the estimate

Hu(t)HZL‘”(O,T;L?) + o Hu||2L2(07T;H1) + ||U‘|€p(07T;W1,p)+
(10.3)
< (Jul)I2 + 5 1712200,z ) -

Next we prove a stronger estimate ”in time”. See (10.5). A complete proof
of this estimate is done by passing through the solutions of a suitable family
of approximate problems. This can be done by appealing to a Faedo-Galerkin
procedure as, for instance, in Theorem 2.2 in reference [27].

We define M by the equation

M? = 26xp{701 fOT ||Du||;§*P dt} .
(10.4)
T
{vo IDuol> + w1 IDwolly + ¢ f £t} -
Note that, by (10.3), the first integral in the right hand side of (10.4) can be

estimated in terms of the data since 4 — p < p.
One has the following result:

Lemma 10.2. Let u be as in Lemma 10.1 and assume that ug € V,, (3.18)
holds and f € L?(0,T;L?). Then

ou
sy |22

2
+ o Hqu%OC(O,T;L?) +n ||Vu||1[)/00(07T;LP) < cM?.
L2(0,T;L?)
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Proof. By suitable integrations by parts, it follows that

Q
e

— V-(vuVu+ v |DulP2Du) + V-
Q

N
QU
S
I

(10.6)
2D ull? + & LD ullp.

On the other hand

(10.7) [ e V)udo < cluly 19 ul?.
Q P2

Furthermore

(10.) lull 22, < ellull

if p satisfies (3.18).

Remark. The assumption (3.18) is superfluous if we drop the term (u- V) u
from equation (1.1).

By appealing to a Sobolev embedding theorem together with (2.2), one shows
that

(10.9) I(u V)ul < c||Duly.
Hence, from (10.1) and (10.6), one gets

15212 + vo IV ull® + w1 F 1D ul <
(10.10)

c (IF1? + 1D ullz~ P 1D ullp) -

From (10.10) straightforward, well known, manipulations show that

du|?
(10.11) Hat

+ 0 DUl oy + 11 D UlD gy < M.
L2(0,T;L?)

Finally, by (2.2), (10.5) follows for some constants c. O

One has the following results.
Theorem 10.3. Let u be a weak solution to problem (10.1) under the boundary
condition (1.4) plus 2’ -periodicity, where ug € V, and f € L?(0,T; L?). Assume
that p satisfies (3.18). Then
we L2(0,T; W2P') 0 Lo°(0, T; Whe)
(10.12) Ve L?0,T; L),
9u ¢ 12(0,T; L?).

In particular (10.5), (10.15) and (10.16) hold, where M is given by the equation
(10.4).
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Theorem 10.4. Under the assumptions of Theorem 10.3
u € LAP0,T; W3H N L0, T, WhP),

2(4—p)

(10.13) VrelL v (0,T;L™),

gu ¢ 12(0,T; L?).
Moreover the estimates (10.5), (10.18) and (10.19) hold.

Proof of theorem 10.3.
One has, almost everywhere in ]0, T|,

A u— iy V(DU Du) + V= (@)~ (- V) S

Hence, by taking into account (3.3), one shows that
p=2
ullzpr < c(LFI+ 1D ullp® [IF1D+

).

(10.14)
pt2 ou
c(ul + 12ul; ) + < (|5

=2 ||Qu
+ [ Dullp? H@t

By appealing to (10.5), straightforward calculations show that

lull 20, 75 wawry <

(10.15)

p+2 2(p—1)

M+ TEM + TEMS + M 7)),
in ]0, T[. Note that we may easily obtain more stringent estimates.
Similarly, by appealing to (3.5), one easily proves that
(1016) ||V T(”Lz(O,T;Lg) S ]:(T, M) .

An explicit expression for F is left to the reader.
In particular, (10.5), (10.15) and (10.16) show that (10.12) holds.
Proof of theorem 10.4.
Next we combine (10.5) with (3.13). Now p’ is replaced by I. The main

difference is that now there is the additional term || f |77, Instead of (10.14)
one gets

o0 < c(Ifl+ ILFI77)+

_2
4p>
’

a.e. in |0, T[. Hence, by taking the (4 — p).!" power of both sides of (10.17)
and by integrating in 2, one shows that

[ u

(10.17)

4 ou
(Dl + [Dul ™) + ¢ (Hat

L (2w
ot

(10.18) [ullLa= (0, 7y w2y < Fo(T, M),
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where an expression for Fo(T, M) is easily obtained from (10.17) and (10.5).
Finally, by appealing to (3.16), similar devices show that

(10.19) V7| 2a-m < F (T, M).

L7 (0,T;L™)
Remark. Note that stronger estimates for the terms V* 7, D?u and |Du[P~2V*Du
can be easily obtained.
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