CUBIC DYNAMICS ON THE HENON FAMILY

SHIN KIRIKI AND TERUHIKO SOMA

ABSTRACT. In this paper, we study a two-parameter family {t¥, .} of two-
dimensional diffeomorphisms such that g0 = % has two generic unfolding
quadratic heteroclinic tangencies which are cyclically associated with dissi-
pative saddle points pT,p~. With moderate extra conditions, it is proved
that there exists a parameter value (u0,v0) arbitrarily close to (0,0) such
that 1., has a generic unfolding cubic homoclinic tangency associated with
p*. Applying this result to the (original) Hénon family {f, 5}, we show that
fay,b, has such a cubic tangency for some (a1,b1) arbitrarily close to (—2,0).
Combining this fact with theorems in Kiriki-Soma [12] based on results in
Palis-Takens [15] and Wang-Young [20], one can observe the new phenomena
in the Hénon family, appearance of persistent antimonotonic tangencies and
cubic polynomial-like strange attractors.

0. INTRODUCTION

As was seen in [12], a generic unfolding cubic tangency with respect to a two-
parameter family of 2-dimensional diffeomorphisms exhibits various phenomena on
chaotic dynamical systems. In fact, there are some examples of 2-dimensional dif-
feomorphisms which admit cubic homoclinic tangencies, see Gonchenko-Shil’nikov-
Turaev [7], Kaloshin [9] and so on. However, for our purpose, we need to detect
such a diffeomorphism % in a given two-parameter family without perturbing it
in the infinite dimensional space Diff*(R?), and moreover to show that the cubic
tangency of ¥ unfolds generically with respect to the two-parameter family.

The following theorem presents sufficient conditions for guaranteeing that the
original two-parameter family has infinitely many diffeomorphisms admitting such
cubic tangencies.

Theorem A. Suppose that 1) is any C™-diffeomorphism on the plane R? with two
dissipative saddle fized points pt,p~ such that p~ satisfies the Sternberg- Takens C®
condition. Let {1, ,} be a two-parameter family in Diff>(R?) with ¢o0 = ¢ and
let {piy} be continuations of dissipative saddle fized points of 1, , with pé’:o =pT,

Poo =Dp - Suppose the following conditions.

(i) W(pT) and W¥(p~) have a heteroclinic quadratic tangency q* unfolding
generically with respect to {¢,0}.

(i) W*(p~) and W“(p™) have a heteroclinic quadratic tangency q~ wunfolding
generically with respect to {1, }.

(iii) There is a v-continuation g, of heteroclinic tangencies of W'* (pay) and W*(p.,)

with qf = q7.
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Then, there exists an element (o, o) # (0,0) in the uv-space arbitrarily close to
(0,0) such that 1, .., has a cubic homoclinic tangency associated with pf{oyyo which
unfolds generically with respect to {1, . }.

Here, we say that a saddle fixed point p of a 2-dimensional diffeomorphism f is
dissipative if the differential D f, has the eigenvalues A, o satisfying

(0.1) 0<Al<l<|o| and |Ao]<1.

The Sternberg-Takens C* condition given in [18] is a sufficient condition for C* lin-
earizing a C> diffeomorphism of R? in a neighborhood of a saddle point. This is a
refinement of the generic condition given by Sternberg [17]. Though the Sternberg-
Takens condition is rather technical, it is very useful to find locally linearizable
diffeomorphisms in fized two-parameter families, see Kiriki-Li-Soma [11] and The-
orem B below. Refer to Subsections 1.1, 1.2 for the definitions of quadratic and
cubic tangencies unfolding generically with respect to given families. In particular,
the right hand side of Figure 1.1 in Subsection 1.1 (resp. Figure 1.2 in Subsection
1.2) illustrates a typical behaviour of unstable manifolds near a generic unfolding
quadratic (resp. cubic) tangency with respect to coordinates fixing stable manifolds
on the z-axis. When ¢* are related to p* as in (i) and (ii), ¢T, ¢~ are said to be
heteroclinic tangencies cyclically associated with p™,p~, see Fig. 2.1 in Subsection
2.1.

Now, we apply Theorem A to the existence of generic unfolding cubic tangencies
in the Hénon family, which is the two-parameter family of diffeomorphisms f, ; of
R2, called Hénon maps, defined as

(0.2) fan(z,y) = (1 +y—ax? bx), b#D0.

We sometimes call these maps original Hénon maps consciously to distinguish them
from Hénon-like maps. The Hénon family is one of the most important research
subjects in the modern chaotic dynamical systems. Benedicks and Carleson [1]
found a positive Lebesgue measure subset J, of a-values near 2 for any sufficiently
small b > 0 such that f, ; has a strange attractor if a € J;. Afterward, Luzzatto and
Viana [13] filled gaps of some arguments in [1] in much more general contexts. Their
result was generalized by Mora-Viana [14] and Viana [19] to Hénon-like families
which admit renormalizations near quadratic homoclinic tangencies associated with
dissipative saddle periodic points. Despite these facts, we have not yet had any
mathematical proof of the existence of a strange attractor for the original Hénon
map fop with (a,b) = (1.4, 0.3) observed by Hénon [8]. We refer to [2, 3, 20, 21] for
ergodic results concerning such strange attractors, see also [4] for comprehensive
references related to these topics.

Carvalho [5, p. 769] presents a supporting evidence as numerical results for
the existence of generic unfolding cubic homoclinic tangencies in the Hénon fam-
ily at parameters (a,b) near (1.203,0.417) and (1.095,0.388). Figure 0.1 illus-
trates the stable and unstable manifolds of Hénon maps f,; with (a,b) around
(1.2027,0.41722), which are depicted by using the software Janet! produced by
Knudsen et al. However, as far as the authors know, any strict proof of the exis-
tence of such tangencies have not been obtained.

1 Available from http://dcwww.fys.dtu.dk/~janet/



CUBIC DYNAMICS ON THE HENON FAMILY 3
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FiGURE 0.1

For convenience in our arguments, we adopt the following topologically conju-
gated formula of the Hénon map f, p:

Cap(®,y) = (y,a — bx + )

which is obtained from the classical formula (0.2) by the reparametrization (a, b) —
(—a, —b) and the coordinate change (z,y) — (—ab~ 'y, —ax). The fixed points of
Pab Are pib = (yib,yib) € R? with yib = (14+b++/(1+b)?—4a)/2. Note that
p;b and p,, , converge respectively to (2,2) and (—1,—-1) as (a,b) — (-2,0).

The following is our second main theorem which is proved by invoking Theorem
A. In fact, we will find a parameter value (ag, by) with by > 0, arbitrarily close to
(—2,0) and such that ¢4, », has two quadratic tangencies cyclically associated with
pfmbo one of which unfolds generically with respect to a and the other with respect
to a certain b-parameter subfamily. Then, one can detect our desired parameter
value (a1,b1) in any neighborhood of (ag, by).

Theorem B. There exists (a1,b1) with by > 0, arbitrarily close to (—2,0) and
such that the Hénon map @q, b, has a cubic homoclinic tangency associated with
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p;’bl which unfolds generically with respect to {¢q.p}. Moreover, p:hbl satisfies the
Sternberg-Takens C* condition.

In the proof of Theorem B, we will show that Do bo and pjo’bo satisfy the

Sternberg-Takens C® and C* conditions respectively. The condition for Dby 1S
necessary for applying Theorem A to the proof of Theorem B. The condition for
p:mbo implies the same condition for p:hbl if (ay,by) is sufficiently near (ao,bp),
which is in turn used to apply Theorems in [12]. In fact, by our Theorem B together
with [12, Theorems A and B], we have the following corollary which presents the two
new phenomena for certain Hénon subfamilies, so called persistent antimonotonic
tangencies and cubic polynomial-like strange attractors.

Corollary C. There exist subsets O and Z in the ab-space such that the Hénon
subfamilies {@a,p}(ap)co and {Pab}(ap)cz satisfy the following conditions.

(i) O is an open set with C1(O) 3 (=2,0). For any (a,b) € O and a sufficiently
small € > 0, there exists a regular curve ¢ : (—e,e) — O with ¢(0) = (a,b)
such that the one-parameter family {@c)} exhibits persistent antimonotonic
tangencies.

(ii) For any open neighborhood U of (—2,0) in the ab-space, Z NU has positive
2-dimensional Lebesque measure. For any (a,b) € Z, there exists an integer
n+ N > 0 so that ‘PZ};N ezxhibits a cubic polynomial-like strange attractor
supported by an SRB measure.

A parametrized curve c(t) is regular if dec/dt(t) # (0,0) for any t € (—¢,¢).
A one-parameter family {¢;} of 2-dimensional diffeomorphisms is said to exhibit
contact-making tangencies (resp. contact-breaking tangencies) at t = t if there exist
continuations of basic sets Ay 4, A2, of ¢ and a quadratic tangency r;, associated
with Aj 4, and Ag g, such that, for a small neighborhood N (ry,) of ry, in R?, there
are continuations of curves I} C W¥(Aq ) NN (1), If C W5(Agy) NN (ry,) and
a sufficiently small § > 0 such that (i) I} NIlf = & for t < to (resp. t > to) with
[t —to| <6, (ii) I} NIE = {rs} and (iii) [} meets [ non-trivially and transversely
for t > to (resp. t < to) with [t —tg| < 0, see Fig. 0.2. Contact-making and breaking
tangencies associated with the same pair of basic sets and occurring simultaneously
are called antimonotonic tangencies. The family {u;} is said to exhibit persistent
antimonotonic tangencies if each 1; has antimonotonic tangencies.

An invariant set € of a 2-dimensional diffeomorphism ¢ is called a strange at-
tractor if (a) there exists a saddle point p € Q such that the unstable manifold
W*(p) has dimension 1 and C1(W*"(p)) = €, (b) there exists an open neighborhood
U of Q such that {¢"(U)}32, is a decreasing sequence with Q = (2, " (U), and
(c) there exists a point zy € 2 whose positive orbit is dense in © and a non-zero
vector vy € T, (R?) with [ D97 (vo)|| > e |lvg| for any integer n > 0 and some
constant ¢ > 0. The strange attractor is cubic polynomial-like if there exists an
integer m > 0 such that ¥™|Q is close (up to scale) to the one-dimensional map
x — —3 + ar with a € (3v/3/2,3) and has three saddle fixed points, see Fig. 0.3.

Here, an SRB measure means a t-invariant Borel probability measure which is
ergodic, has a compact support and has absolutely conditional measures on unstable
manifolds.

We finish this section by proposing the following problem asking if one can
generalize Theorem B.
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FIGURE 0.2. Each region encircled by one of the dotted loops rep-
resents the same neighborhood N (r¢,). The point 74, is a contact-
making tangency.

FI1GURE 0.3

Problem 0.1. Does the original Hénon family unfold generically in a reasonable
sense an arbitrarily higher order homoclinic tangency associated with p;b for some
(a,b)? Moreover, with respect to the parameter value (a,b), does paJr , satisfy the
Sternberg-Takens smooth linearizing condition? )

1. GENERIC UNFOLDING TANGENCIES

In this section, we will review some properties of quadratic and cubic tangencies
which are associated with dissipative saddle points and unfold generically with
respect to two-parameter families of 2-dimensional diffeomorphisms.

1.1. Generic unfolding quadratic tangencies. A diffeomorphism v on R? has
a transverse point r associated with saddle fixed points p1, po if

o 7€ W¥(p1) NW?(p2) \ {p1,p2},
o dim(T, W"(p1) + T, W?(p2)) = 2.
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We also say that ¢ has a tangency q of order n associated with saddle fixed points
p1, p2 if it satisfies the following conditions.

e g€ W"(p1) NW?*(p2) \ {p1,p2}.

[] dlm(Tun(pl) + TqWS<p2)) =1.

e There exists a local C"*! coordinate (z,y) in a neighborhood of ¢ such
that ¢ = (0,0), {(z,y);y =0} C W*(p1) and {(z,y);y = ()} C W"(p2),
where « is a C""1-function satisfying

(1.1) a(0)=a/(0)=---=a™0)=0 and o"FV(0)#0.

In the case when p; = po, the transverse point or the tangency is called to be
homoclinic, and otherwise heteroclinic. The definition of a tangency of order n is
independent of the choice of a local C™t! coordinate satisfying the condition as
above. Usually, the first order tangency is called to quadratic, and the second order
is cubic. In particular, the tangency ¢ is quadratic if and only if W*(p,) and W*(p2)
have distinct curvatures at q.

Let {t,} e be a one-parameter family in Diff**(R?) such that the parameter
space J is an interval, and pi ., p2,, (possibly pi1, = p2,) continuations of saddle
fixed point of 1, such that W*(py ,,) and W*(p2,,,) have a quadratic tangency
Quo at po € J. We say that the tangency g, unfolds generically with respect to
{¥, } e if there exist local coordinates (z,y) on NV, and C? functions a,,(z) which
C? depend on u and satisfy the following conditions, where {\V,} is a continuation
of small open neighborhoods of g,, in R?.

o oy, (x) satisfies (1.1)p—1 and a, (0) = gu,-
o {(z,y);y = 0} C W3(p1,,) and {(z,y);y = au(z)} € W*(p2,) for any

w € J near pyg.
e For the two variable function a(u, z) := a,(z),
O
1.2 —(p0,0) # 0.
(12) o0, 0) 7

It is not hard to see that the definition of this generic condition is independent of
the choice of the coordinate neighbhorhoods N, as above.

Now, we study the generic condition under more general coordinates ./\N/H of a
neighborhood of ¢,,. With respect to N, > suppose that there exists a continuation
S, of curves in W*(p; ) with g, € IntS,, and which are represented as graphs of

C? functions 7, (x) of z with |z| < § for some ¢ > 0, that is,

Su =A@, nu(2)); [z < 6}.
The 7, is called the holding function of S,. Let U, be a continuation of curves in
W*(pa,,) with g, € IntU,,,, and o a vertical segment passing through S, at g,,.
The intersection S, No (resp. U, N o) defines a continuation of points 7*(p) (resp.
r(1)). We denote the velocity vectors of 7*(u) and () at p = po by v5*(qu,),
UZ’J'(quo) respectively. That is,

s, L

d s u d u
vy (o) = " (ho)s vy (guo) = i (ko)

Let @, be the coordinate change of N, defined by ®,(z,y) = (z,y — 1(x)).
Then, S, = ®,(5,) is contained in the z-axis. Let (z,(t),y,(t)) be a C? regular
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curve parametrization of U, which C? depends on z and such that the curve passes
through g, at t = 0. Then, y,(t) = o, (z,(t)). Set

(1.3) 0,(t) = yu(t) — nu(zpu(t)).

Then, (2,(t),0,(t)) is a parametrization of U, = ®,(U,,). Since U, is a quadratic
curve for any p close to i, there exists a unique ¢, near 0 such that 6, (¢) has
an extremal point at ¢ = ¢, which C* depends on . Similarly, since Uu meets
the y-axis transversely in a single point 7*(u), there exists a unique tAH near (0 with
(0,0,(f,)) = 7(u) which C? depends on y, see Fig. 1.1. The generic condition

o
. v i,
ir () - QP TR Ot Bulty)
:. \“ U "‘4— E Say A

FIGURE 1.1

(1.2) for U,, with respect to the new coordinate is df,,(f,)/du(uo) # 0. Since
() = r*(pu) —r°(p) as a vector,

(07 dG,:iEfu) (MO)) _ dﬂ(uo) =

dp
From the definitions as above, t,,, = t,,,. Thus, t, —, = O(Ap) for g = g + Ap.
Since 6,,(t) has an extremal value at ¢t = ¢, and x,(t,) = 0,
Ou(ty) = 0u(t) = Oz ,u(t,)?) = O(( — 1,)?) = O(Ap?).

This shows that df,,(t,)/dulu=p, = d0,(t,)/dp| =y Hence, the generic condition
(1.2) is equivalent to

l(qm)) - 'UZ’L (quo)'

(1.4) o ) — 03 ) = (0. 755 (1)) # (0,01

1.2. Generic unfolding cubic tangencies. Suppose that 1 is a C* diffeomor-
phism of R? with a dissipative saddle fixed point p. A cubic homoclinic tan-
gency q of 1 associated with p is said to unfold gemerically with respect to a
two-parameter family {1, ,} in Diff*(R?) with g0 = ¢ if there exist (u,v)-
dependent local coordinates (x,y) on a neighborhood of ¢ with ¢ = (0,0) such
that W*(pu,0) = {(z,9);y = 0} and W*(pu) = {(z,9); ¥ = yu,0(x)}. Here, {puv}
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is a continuation of saddle fixed points of ¥, , with po o = p, and y,, ,(z) = y(u,v, x)
is a C* function satisfying

(1.5) (Ouy - Ovay — Doy - Duzy)(0,0,0) # 0.
Since 0,0(0) = 0,0(0) = ¥ 0(0) = 0, y,.,, has the Taylor expansion
(1.6) Yuv(T) = a1u + agv + aguz + agvzr + asuv + h(z,u,v),
where a1, ..., as are constants and h(t,u,v) is a C* function with
h = 0yh = Oyh = Oyh = Oyzh = Opyh = Oyah =0
at (x,u,v) = (0,0,0). Then, the generic condition (1.5) is rewritten as follows.
(L.7) a1aq — asgag # 0.
Let F: (u,v) — (,9) is a C*-diffeomorphism with F(0,0) = (0,0), and let
Yp-1(a,0) () = b1t + bod + bytix + bada + by + h(z, F~1 (4, 1))

be the expansion of yp-1(4,4), where h is a C* function as h. Then, we have

ap ag\ bl b2
(o @) =2 ) Pron
This equation implies the following.

Lemma 1.1. With the notation as above, ¢ = (0,0) is a cubic tangency unfolding
generically with respect to {1y} if and only if unfolding generically with respect

to {Yr-1(a,0)}

Now, we show that this generic condition is preserved under coordinate changes
of the xy-plane fixing the x-axis as a set. Let U be a small neighborhood of
(0,0) in the uv-space. Suppose that {®y ,}(u,v)ev is @ two-parameter family of c*
diffeomorphisms of the xy-plane which C* depends on (u,v) and such that each
®,, ., fixes the z-axis as a set and ®¢(0,0) = (0,0). Let p,, is a continuation of
curves in W*(p, ) with Intp, , > ¢. We set

p~u,v = (I)u,v(pu,v)v qzju,v = (pu,v o quu,v o éqzﬁ)'

Lemma 1.2. With the notation as above, if ¢ = (0,0) is a cubic tangency of poo
and the x-azis which unfolds generically with respect to {1y}, then § = Py o(q) is
also a cubic tangency of poo and the x-azxis which unfolds generically with respect

to {¢u,v}~
Proof. Since ®,,, preserves the z-axis, @, , is represented as
Do (2, y) = (Buo(T,Y), YYuw(,9)),

where B, (resp. Yu.) is a C* (resp. C®) function. Moreover, the condition
,(0,0) = (0,0) implies

Bo,0(0, 0) =0.
Since the differential of ®,, ,, is
Oz 0y )
Dq)uv _ x Mu,v yMu,v
’ (yﬁﬂu,v Yo+ YOy Vu,v

det(D(I)o,o)(xyy):(O,o) = 0:00,0 (0, 0) -’70’0(0, 0). Since @ ¢ is a diffeomorphism,
b= 89:60,0(07 0) # 07 c= ’70,0(07 O) 7é 0.
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The curve p, , is parametrized as

(I’u,v ('r7 yu,v(x)) = (ﬂu,v (377 Yu,v (-77))7 Yu,v (33) : 'Yu,v(xa yu,'u(x)))-
Set & = Z(z,u,v) = Buv(Z, Yuv(z)). Then, £(0,0,0) = By,0(0,0) = 0. Differentiat-
ing T by z,
0% = Tﬁu v (fE Yu, 1)(93)) + ayﬂu,v (1:7 Yu,v (x))amyu,v(x)~
) =

Since 95Y0,0(0 , 0;2(0,0,0) = b # 0. Thus, Z(x,u,v) has a local inverse
function z = d,,,(& ) with 5070( ) = 0 defined for any (u,v) near (0,0) and any &
near 0. Then,

Qo (@, Yu,w () = (T, Guw(T)) = (CE?“N’ 0(Z)  Fu,w (T)),
where Wy, »(Z) = Yu,p © I, (Z) and Yy o () = Yu,v (0u,0(Z), Wy,» (Z)). Then,
(1.8) Ouu,p (%) = (OuYu,w) (0uw(T)) + (8zyu,v)(6u,v(i))8u5u,v(j)~

Since 0240,0(0) = 0, 0y Wy,0(0)|u=0 = a1. We have as well 9,0 4, (0)|y=0 = az. From
gu,'u( )—wuv(-%) ’3/ 'u( )
(1.9) Ou(Yuw(Z)) = Outluwo(T) - Yu,o(T) + Woo (T) - OuFuw(T)-

Since F0,0(0) = 70,0(0) = ¢ and W (0) = 0, 9y(Yu,0(0))|u=0 = a1c. A similar
argument shows 9, (9o,4(0))|v=0 = azc.
Differentiating the both sides of (1.8) by # and putting (u,Z) = (0,0), we have
as
aur(wuo( ))|(u9c) (0,0) = D
Then, from this equation together with the differentiation of (1.9) by Z, we have

asc
8UI(yuO( ))|(um) (0,0) = b + a1d,

where d = 0z%0,0(Z)|z=0. Similarly,

U asc
5vi(yo,v(93))|(u,5:)=(o,o) = % + aad.
By using the equalities as above,
Du(9,0(0)) - Doz (Fo,0(Z))] (u,0,2)=(0,0,0) — Fw(F0,6(0)) * uz (Fuu,0(%)) (u,0,5)=(0,0,0)
c c
= 016(604 + a2d> — azc<ga3 + ald)

2
= z(a1a4 — agasg) # 0.
It follows that (0, 0) is a cubic tangency of pg ¢ and the Z-axis which unfolds gener-
ically with respect to {ty, .} O

The following lemma presents sufficient conditions for the generic unfolding of a
cubic tangency of a two-parameter family {1, ,} in Diff*(R?).

Lemma 1.3. Let U be an open neighborhood of (0,0) in the uv-space, and py .,
a continuation of curves in W*(py,.). Suppose that these p,. have regular curve
parametrizations py,(t) = (Tuo(t), Yuw(t)) for any t near 0 which C* vary with
respect to (u,v) and satisfy the following conditions.
(i) 20,0(0) = 0 and y0,0(0) = H0,0(0) = Fjo,0(0) = 0, ¥o,0(0) # 0.
(ii) There exists a C? function tun on U with too =0 and §y ,(ty.) =0 for any
(u,v) € U.
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(iii) There exists a C* function v = v(u) of u with v(0) = 0 and Gy y(u) (tu,v(w)) = 0
for any u near 0.

(iv) (OuYu,v(w))(0)lu=0 # 0 and (0vYo,»)(0)]v=0 # 0.

Then, the origin (0,0) in the xy-plane is a cubic tangency of poo and the x-azxis

which unfolds generically with respect to {1y}

The condition (ii) means that r,, ., = pu.v(tu,w) is a reflection point of p,,,. The
condition (iv) implies that the height of 7, ,(,) varies with non-zero speed at u = 0
and the slope of the line tangent to pg, at ro, also varies with non-zero speed at
v = 0. Figure 1.2 illustrates a typical movement of p,, , obtained by the combination
of these two variations.

u=0,v=0
FIGURE 1.2

Proof. Since pg o(t) is a regular curve, poo(0) = (£0,0(0),0) # (0,0). Thus, for any
(u,v) near (0,0), there exists a C* inverse function t = 1., (z) of x, ,(t) defined
on any t close to 0. Define the coordinate change ¥, , from a neighborhood of
(0,0) in the xy-plane to that in the ty-plane by ¥, ,(z,y) = (uo(2),y). Set
Puv = Yyu(puw) Then, p,, is the regular curve parametrized by (¢, yu,.(¢)).
By Lemmas 1.1 and 1.2, it suffices to show that (0,0) is a cubic tangency of pg o
and the t-axis which unfolds generically with respect to the uw-parameter family

{ﬁu,w-{-v(u)}'
By the conditions of (i), the origin (0,0) is a cubic tangency of oo and the

t-axis. Set Yy wov(u) = Ju,w and consider the Taylor expansion
Gu,w(t) = a1u + agw + agut + aqwt + asuw + fL(t, u, W)
of gy as (1.6). By the former condition of (iv),
ay = (8ugu,0)(0)|u:0 = (auyu,v(u))(0)|u:0 7é 0.
Since Ju, v (u) (fu,v(w)) = 0 for any v near 0 by the condition (iii),
8u (yu,'u(u) (tu,v(u))) = (auyu,v(u))(tu,v(u)) + yu,v(u) (tu,v(u))au (tu,v(u)) =0.
Since oy, v (u) (tu,o(w)) = 0 by the condition (i), (Oulu,v(u))(tu,vw)) = 0. Thus,
a3 = (8u?ju,0)(0)|u:0 = (8uyu,v(u))(0)|u:0 =0.
Suppose that v = 0. Then, v = w. Hence, the latter condition of (iv) implies
a4 = (Du0,0)(0)lw=0 = (9,0,0)(0) u=o # 0.

It follows that g, , satisfies the generic condition (1.7), and hence the point (0,0)
is a cubic tangency unfolding generically with respect to {ty wtv(u)}- O
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2. EXISTENCE OF GENERIC UNFOLDING CUBIC TANGENCIES

In this section, we give the proof of Theorem A.

2.1. Outline of proof of Theorem A. Let {¢, .} be a two-parameter family
in Diff**(R?) with 10 = ¢, and {pi,,} continuations of dissipative saddle fixed
points of v, , with pér’o =pT, Poo =p  satisfying the conditions of Theorem A. In
particular, there exist heteroclinic quadratic tangencies ¢, ¢~ cyclically associated
with pT,p~ such that ¢* (resp. ¢”) unfolds generically with respect to {¢,0}
(resp. {0, }). Moreover, there is a v-continuation ¢, of heteroclinic tangencies of
We(p{,) and W*(py,,) with qf = ¢*. Thus, when (u,v) = (0,0), we have the
situation as illustrated in Fig. 2.1, where r is a point in W*(p, ) with ¥, (r) = ¢*
for some integer N > 0. ’ 7

Y

'

FIGURE 2.1

Let pyu,Yup be continuations of quadratic curves in W*(p/t ), W*(p,,,) re-
spectively with Intpgo 3 ¢~, Intyp,0 2 ¢*, and let Qv qIV be continuations of
minimal points of p,, ., V., based at ¢~ and ¢* respectively. From the generic
conditions for the cubic tangencies g%, we may suppose that, the level of q;f)y (resp.

q,,,) rises as y1 (vesp. v) increases. Now, we consider the situation where y decreases
and v increases slightly from 0, see Fig. 2.2. Then, pff,z = ﬁ,y(pﬂyy) is a pinched

quadratic curve with a unique minimal point s, ,, such that z/JfX (8u,0) is sufficiently

close to Fq;y. Figure 2.2 suggests that, if we choose pg < 0 and 1y > 0 suitably,

then pf]},iﬁv) has a cubic tangency. From the fact that ¢™ unfolds generically with

respect to the p-parameter {wu’y(ﬁxed)}7 the reflection point of an;r N moves up-

ward or downward together with qIV when p varies. Moreover, as is suggested in

Fig. 2.3, the slope of the line tangent to pff;r M) at its reflection point decreases as

v increases. Then, by using Lemma 1.3 (see also Fig. 1.2), one can prove that the

. . (n+N)
reflection point of p;ig,v,
{Yuw}-

Now, we have known that the idea of our proof is simple and elementary. How-
ever, in the actual argument below, we need to deal higher order terms appeared

is a cubic tangency unfolding generically with respect to
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FIGURE 2.2

W=Ho R=Ug =k
V<V0 V=V0 V>V0
FIGURE 2.3

in the Taylor expansions of the holding functions of p, , and 7, , much precisely
and carefully.

2.2. Rearrangements. Take any neighborhood U of (0,0) in the uv-space such
that, for any (u,v) € U, P, is a dissipative saddle fixed point of 1, , such that
(Dq/’u,v)p;,, has the eigenvalues A\ = X\, ,, 0 = 0,,,. If necessarily replacing v, ,,
by wi’y, we may assume that

(2.1) 0<A<l<o, M<l

Since the Sternberg-Takens C® condition given in [18] is an open condition, one
can replace U by a smaller neighborhood if necessary so that, for any (u,v) € U,
there exists a C®-coordinate neighborhood N, of p, , C®-depending on (u,v)
with respect to which ¢, |V, , is a linear, that is, ¢, ,(z,y) = (A\z,oy) if both
(2,9), Yuw(x,y) belong to Ny, .. Tt follows that the z-axis is contained in W*(p,,,)
and the y-axis is contained in W*(p,, ) for any (u,v) € U. Moreover, one can
retake that the coordinates so that the following conditions hold without violating
the linearity condition for 1, , .
(a.i) For any (p,v) € U, N, contains the square [—2,2] x [—2,2].
(a.ii) A continuation of minimal points g, , of W*(p/\ ,) NN, based at ¢~ is on
the vertical line = 1, see Fig. 2.2. In particular, ¢~ = (1,0).
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(a.iii) There exists an integer N > 0 such that 1/’6\,,0 (r) = g7, where r is the point
of Np,o with coordinate (0,1).
One can suppose that a curve p,, , in W*(p;} ) passing through ¢, , is parametrized
as follows.

(2.2)  pupir=u+1l, y=y(u,uv)=ap+av+bu®+cu + h(u,p,v),

where the parameter u varies in a fixed open interval containing 0 for any (u,v) € U.
Since ¢~ unfolds generically with respect to {0}, a2 # 0. Consider the new
parametrization with g = pu, 7 = a;pu+aqv. It is not hard to see that the conditions
(1)-(iii) of Theorem A still hold with respect to (ji, 7). For example, the condition
(iii) is derived from the fact that (0,7) in the fio-plane corresponds to (0,7/az) in
the pv-plane. For simplicity, we denote (i, 7) and h(u, fi, (0 — a1fi)/az) again by
(u,v) and h(u, p, v) respectively. Then, (2.2) is rewritten as follows:

(2.2') puviz=u+1, y=ylupv)=rv+bu?+cu®+ h(u,p,v).
Since po,o is a quadratic curve tangent to the z-axis,

(2.3) b#0.

Moreover, h(u, u,v) is a C® function satisfying the following conditions.

(b.i) qu , = (1,v+ h(0, p,v)) for any (u,v) € U. In particular, h(0,0,0) = 0.
(b.ii) 0,h(0, p,v) =0 for any (u,v) € U.

(b.iii) Guh(() 0, O) 0,h(0,0,0) = 0.

(b.iv) Fuuh(0,0,0) = Duuuh(0,0,0) = 0.

Here, the conditions (b.i) and (b.ii) are derived from (a.ii). The conditions (b.iii)
and (b.iv) are derived from the form (2.2") of pyu-

For any integer n > 0, let p be the component of ¢} o (Puw) NN, containing

i (@) When n is very large, pE“), may be empty if |v| is bounded away from

(n ) is parametrized as follows.

zero. When |v] is sufficiently small, p,,
pfj’y r=\N"(u+1), y=oc"v+bo"u?®+co"u®+ o"h(u,p,v).

Consider the new parameters , 1, 7 defined as

(2.4) i=o0"u, [p=o"u, ©v=o"v.

We fix a sufficiently small constant € > 0 independent of n, which will be chosen
suitably later. From now on, we only consider [i, 7’s contained in the rectangle

R={(pv); gl <1, |7 —1] < e}.

In our argument, it is crucial that R does not depend on n. Since R is compact,
(2.4) implies that

(2.5) p=0(""), v=0("").
Here, O(c™™) and o(c~") represent functions of @, fi, 7 satisfying
O(o™" "
lim sup M <oo and lim sup @ =0.
"7 (pp)ERjal<2e O " (ap)eR,|al<2e O

Furthermore, O(-) denotes an O(-)-function of p, v which is constant on u, that is,
9,0(-) = 0 and hence 9;0(-) = 0.
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Now, we introduce the new coordinate (&,9) on N, , by
=z, y=y-—1
By the condition (a.iii), we have

(2.6) Yi(0,0) = ¢*

with respect to the new coordinate. For saving symbols, we denote (Z,¢) again by

(z,y). Then, p,(fl,l is parametrized with respect to the new coordinate as follows.
x=zy(a, g, v7) = A" + 17",

2.7
&7 Y = Y@, i, 7) = =1+ 7+ bia® + co~ 2@ + " (o™ *4,0 " 1,0 "D),

(2.8) r=MXo"Y2
By (2.1), the 7 satisfies
O<T<A<o l<l
By (b.ii), h(u, 1, v) does not have any term the u-order of which is one. Moreover,

by (b.i), (b.iii) and (b.iv), h(u, u, v) is represented as
h(uaﬂa V) = 0(2)(,“71/) +O(1)(,uvl/)u2+é(1)( ) +O( ),

where OW (11, v) = O(u) +O(v) and O® (u,v) = O(12) + O(uv) +O(12). Tt follows
from this fact together with (2.7) that

(2.9) Y (@, 1, 7) = K + bia@? + c;o 2@ + O(c "),
where
(2.10) K=—-140+0(™), bi=b+0(0™), c1=c+0(™").

Since y, (1, ji, 7) is a C® function, K, by, c; are C8,C% C® functions of i,  respec-
tively.

From the form (2.9) of y,, we may assume that, for any sufficiently large inte-
ger n > 0 and any (4,1, 7) € [—2¢,2¢] x R, the point (2, (@, i, 7), yn (T, fi, 7)) is
contained in N, , if necessary replacing € by a smaller positive number. The new

(n )

parameter ¢ of the curve p, ; is introduced by

(2.11) t=uv1+0"/2cu

for @i € [—¢, €], where co = ¢1/by. Then, one can suppose that i is a C® function of
t, i, U
U=t (t, i, 7).
By (2.11), it is not hard to show that @, C® converges to the identity of t as n — oo
uniformly. In particular, the derivative i, (resp. t,) converges uniformly to 1 (resp.
0) asm — oo, where f denotes the derivative of a function f by t, that is, f = df /dt.
From now on, we always assume that the domain of any function of ¢ is [—&, e]. For
short, set xn(ﬂn (t, u, 17), , 17) e xn(t, , 17) and y, (ﬂn(t, , l_/)7 u, 17) = Yn (t, u, 17),
which are C® functions of ¢, i, 7. Then, by (2.7), (2.9) and (2.11), we have
T (b, i, ) = A" + 77Uy (¢, 1, D),

2.12
(2.12) (s 7) = K + brt? + 00",
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where the equality O(an(t,fi,7)") = O(t') is derived from (2.11). By the first
equation of (2.10) and (2.12), for any (@1, 7) € R and for all sufficiently large n > 0,

Ty = O\Y), & = 7", = O0(T"),
(2.13) Yn = O(€), Un = 201t + O(c™ %),
Yniin = 2b1 Kt + 2b7t° + O (o "t%).

Since |t| < 2e, the fourth equation implies that g, is an O(e)-function, but ¢, =
2b1 + O(o~"t?) is not. This implies that the t-derivative of an O(e)-function is not
necessarily an O(e)-function. On the other hand, since o, A are functions of u,v
independent of ¢, we have dO(o~™)/dt = O(c™™), dO(A\™)/dt = O(A™) and so on.

2.3. Differentiations with respect to the new parameters. In this subsec-
tion, we consider derivatives of functions of u,v by the variables f, 7 which are
given by i = 0", 7 = c™v as in (2.4). Note that o is not in general a constant but
a function of u,v. Let F, : (u,v) — (fi,7) be the function defined by (2.4). Then,
the differential of F,, is

F) = (

By (2.5), (DF,),, has the inverse matrix for all sufficiently large n such that

(2.14) (Do) = (00(75(;:2) O(g?g‘_j;)) '

By the Inverses Function Theorem, F,, has a local inverse C'*° diffeomorphism
defined in a neighborhood D,, of any point of R in the fiv-space. Moreover, since
o~ "(DFy,)u,, converges uniformly to the identity matrix as n — oo, from the
Covering Estimate Theorem (see for example Robinson [16, §5.2.2, Theorem 2.4
and §5.12, Exercise 5.3]), one can take the neighborhood D,, so that D,, D R for
all sufficiently large n.

For 6 = [i, 7,

o™ +no" 19,0 p no" 10,0 - u
na"‘laua -V o +no" 1o,0-v)"

Os0 " = —no "t (GNU . aa% + 0,0 - gg) .
Then, by (2.14), we have
(2.15) 050" =0(mo " 07" = 0(no"?) =0(c™").

Here, the equality O(no~2") = O(c~") means that any O(no~2")-function is an
O(o~™)-function, but it does not necessarily imply that the inverse holds. Similarly,

(2.16) Ot =O0(nt" "t 07™) = O(r").

Moreover, by using (2.11) and (2.15), one can show that both dsu, and i,
converge uniformly to the zero function as n — co.

2.4. The Taylor expansion of holding functions. By the condition (i) of The-
orem A, there exists a continuation v, , of curves in W*(p,, ,) such that v = o0
and W*(p™) have a quadratic tangency ¢+ unfolding generically with respect to
{uo}. Let Ny = N, (F,9) be a C coordinate of a neighborhood of ¢+ C>
depending on (u, v) such that ¢* = (0,0) in N o and the #-axis in NV, ,, is contained
in W#(p},) for any (u,v) near (0,0). Note that we have not assumed that pf
satisfies the Sternberg-Takens condition, and hence lec(pf;y) is not necessarily
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represented as a straight segment in A, ,,, possibly W, (pt,) N N, = 0. Since
the y-axis in NV, ,, is contained in W* (p;ﬂ/), Vu,v is a regular curve parametrized by
wixl, (0,y) for y near 0. Denote the Z and g-entries of the coordinate of wﬁy(m‘,y)
by Z(x,y, u,v) and §(x,y, i, v) respectively. Since 7(0,y,0,0) is a C® function with
4(0,0,0,0) = 9,4(0,0,0,0) = 0 and 8,,7(0,0,0,0) # 0, there exists a C® function
k(y) satisfying y?k(y) = §(0,%,0,0) and k(y) # 0 for any y near 0. The correspon-
dence y +— 7(0,,0,0) has the C® inverse & +— y = y(Z) if |y| is sufficiently small.
For any (u,v) near (0,0), we consider the C% coordinate change of a neighborhood
of the origin in R? defined by

Note that this coordinate change is independent of (i, v). For saving symbols, we
denote the new C% coordinate again by (Z,§). In particular, when (u,v) = (0,0),

(2.17) (0,y,0,0) =

with respect to the new coordinate.
Now, we will consider the Taylor expansion of §(z,y, i, ) given as

(2.18) G,y pyv) = p+ y* + ax + by (p,v) + ha(y, p,v) + ha(z,y, p,v).

Since ¢t unfolds generically with respect to {1, 0}, the coefficient of the p-term
is non-zero. Here, we adjusted the p-parameter linearly so that the coefficient is
one. The absence of a v-term with non-zero constant coefficient is derived from the
condition (iii) of Theorem A. Let le, ﬁg, hs be the C® functions defined as

Bl(ﬂ’a V) = E(O’O’ILL7I/)7
}32(y7,uﬂl/) = il((),y,,u,l/) - ill(,u’vy)v
ﬁ3($ay7uay) = iL(l‘,y,M,V) - ﬁl(uvl/) - 52(21,1%1/)7

where h(z,y, i, v) = §(x, y, p, v)— (u4y>+az). These functions satisfy the following
conditions.

(c.i) h1(0,0) = 9,11 (0,0) = d,h1(0,0) = 0.

(c.ii) ha(y,0,0) = 0 for any y near 0, and hy (0, 1, v) = 0 for any (y, ) near (0,0).
(c.iii) 8;,;%(0,0,0,0) =0, and ﬁg(O,y,u,l/) = 0 for any (y, u,v) near (0,0,0).
Since hy does not contain any constant term or u, v-terms with non-zero constant
coefficient, the condition (c.i) holds. The first condition of (c.ii) is derived from
(2.17). The first condition of (c.iii) is derived from the fact that hs does not contain
the z-term with non-zero constant coefficient.

By (2.18) and (c.ii), (c.ii), 8;%(0,0,0,0) = a and 8,5(0,0,0,0) = 0. Since 9,

is a diffeomorphism, @ must be non-zero. If necessary reflecting the coordinates on

N, along the j-axis, we may assume that
a > 0.

We need to estimate the t-derivatives of §(x,y, u,v) with = z,(t, u,v),y =
Yn(t, V), p =0 ", v=0""0 for (fi,7) € R up to third order. Since x,(t, u,v),
yn(t, p,v) are C® functions, the 7 is also a C® function of ¢, u, v.

By the first condition of (c.ii), we have dyha(y,0,0) = 0 for any y near 0. This
fact together with (2.5) shows that dyha(y, i, v) = O(c~"). Since gli=o = 0 by
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(2.13), d(d,ha)/dt|i—0 = (8yyh2)yli—0 = 0 and hence d,hy does not have a t-term
with non-zero constant coefficient. This shows that d,he = O(c™") + O(c™"?).

Since EQ(y, w,v) = 8yi~12(y, i, V)Un, we have again by (2.13)

ha(y, p,v) O(U‘”)t +O(o7"t%)

O(c™™)t + O(c™™)t> + O(c™"t).

(2.19)

Differentiating hs by ¢, we have

B3<x7ynu? V) = 89;;7/3(.%',:(], Hy V)xn + ayBS(vaya/% V)yn

From the first condition of (c.iii) together with (2.13),

axiLB(xa Y, K, I/)‘rn

(O(z) + O(y) + O(k) + O(v)) &
(OA") +0(e) +O0(e™") +O(c™")) - O(7")
= O(er™).

From the second condition of (c.iii), 8yi~13(0,y,u,v) = 0. Hence, ayizg(x,y,u,u) =
O(z,) = O(A™). Since moreover

d(ayil?))
dt t=0

= (Qyahs)itli=o + (Dyyha)ilio = (Dyaha)idli—o = O(r™),

it follows that d,hs(z,y, p,v) = O(N") + O(7™)t + O(A\"t?). Thus, we have
Oyhs(,y, 1, v)jn = O(N")t + O(r")E* + OA"1°).

Since O(7™)t? = O(et™),

ha(,y, 11, 1) = OA™)E + ON3) + O(e7™)

(2.20) K .
O\t + O\ + O(\"t*) + O(et™).

Then, by (2.13), (2.18), (2.19), (2.20) together with dhy(u, v)/dt =0,

§ = ar™i, + K1t + Lt® + O(c™ %) + O(em™),

(2.21) y =K +3Lt> + O(c™"t®) + O(t™),

Y = 6Lt + O(c %) + O(r"),
where

K1 =40 K +O(c™") = 4b(v — 1) + O(c™™),
(2.22) 1 1 (™) ( )+0(@™™)

L =42+ 0\ +O0(c™™) = 4b* + O(c™").

Here, we used the facts that K1 = L = 0 and O(e7") = O(7"). Note that (2.3)
implies L > 0 for all sufficiently large n. Since % is a C* function, K; and L are C®
and C! functions of u, v respectively.
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2.5. Proof of Theorem A. We will give the proof of Theorem A under the no-
tation and estimates as in Subsection 2.4. Define the C® function .z 5(t) by

gn;ﬁ,ﬁ(t) = g(xn <t7 i, ﬂ)a yn(t7 i, D)’ U_nﬂa U_nf/)'
We often write §n.5.5(t) = Un(t) for short if the parameters fi, 7 are understood
explicitly.

Throughout the remainder of this section, for non-zero sequences a,b,, we
denote the property lim,, o, a, /b, = 1 by a, = b,. When a,, = a,(t),b, = b,(t)
are functions, a,, = b,, means that a,,(t)/b,(t) converges uniformly to 1 as n — oc.
We note that, for smooth functions a,(t), b, (t), a, = b,, does not necessarily imply
day,/dt ~ db,,/dt.

By Lemma 1.3, the following assertion implies Theorem A.

Assertion 2.1. For any sufficiently large n > 0, the following (i)-(iii) hold.
(i) For any p € [~1,1], there exists an open interval J,  in the U-parameter
space such that Jn = Upe—q i} X Jn,p is an open subset of R, and there

exists a C* function t 5 (or more strictly tp.;5) on Jy, with Un(tps) =0.
(i) There is a C? function Up t [-1,1] — R of i with (5, vn(f1)) € R and
satisfying Gu(ty,9) = 0. § (0, ) # 0 and (D) (b0, ) # 0 for amy
e [-1,1].
(iii) Un(tao,o0(50)) = 0 for some fig € [—1,1], and (Opln:p,5, (3)) (tion (@) 7 0 for
any @ € [—1,1].

In particular, (ii) and (iii) imply that
(2.23) (050n:fio.7) (to.o0) =m0 # 0 and  (afinyja,i, (7)) (Lo =0 7 O,
where 7y = Dp(fig). We reparametrize (fi,7) (resp. t) by the parallel translation

(f,7) — (B — fig, ¥ — Dy) (resp. t +— t —tg,.5,) and apply Lemma 1.3, where (2.23)
corresponds to the condition (iv) of Lemma 1.3.

Proof. (i) By (2.22), for any i € [~1,1], one can choose 7 with (fi,7) € R so
that K; takes an arbitrarily given value in [—2|b|e, 2|b|e] for all sufficiently large n.
Take positive constants 7,72 independent of n with 71 < 12, which will be chosen
suitably later. When 7p72"/3 < 2|ble, for any s € [n1,72] and i € [~1,1], there
exists 7 with (i, 7) € R satisfying

K = —s72/3,

Since 9K, ~ 4b # 0 by (2.22) and 9,7%"/3 = O(72"/3) by (2.16), ¥ is a uniquely
determined from and C® depending on ji, s. In fact, for any fixed i € [—1,1], ¥ and
s are mutually related as

(2.24) 4b(7 — 1) + O(o™™) = —s72"/3,

The second equation of (2.21) implies that the graph of the C® function u = g, (t)
is an ‘almost quadratic’ C® curve in the tu-plane meeting the t-axis transversely in
two points one of which has a positive t-coordinate and the other negative. Thus,
the there exists a unique ¢35 > 0 C3 depending on ji,s (and hence on ji, 7) with
ﬂn(tﬁ;s) = 0 and satisfying

/2
(2.25) tap = tps <i> .
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Let J, s be the open interval in the r-space corresponding to (71,72). Since 7 — 1
satisfying (2.24) converges uniformly to zero as n — oo for any s € (11,72), the
union Jn, = Upep—1,1{A} X Jn,u is an open subset of R for all sufficiently large n.
This shows (i).

(ii) Since 1y, ~ 1 uniformly, we may assume that @, (tzs) — 1 = O(e) and hence

Un(tps) = A" n (tpis) + Kutps + Lt + O(0"t5,) + O(er™)

)1/27' + L i)3/27'”

~ (@+0(e)r - (57

(51

2 3/2) n
3\/375 T
Since a is a positive constant, one can choose the constants €,7n1,72 so that the
above function O(e) of (t,[i,7) € [—¢,¢] x R satisfies sup{|O(¢)|} < @/10 and, for
any fi € [—1,1], there exists an s = s, (1) € (71,72) With §n(tps, () = 0. Let
Un () € Jn,z be the element of the D-space corresponding to s, (f).

We need to prove that the 7, (f) is a uniquely determined smooth function. By
(2.15) and (2.22),

OpK1 =0(0c™™), 9K, =4b+O0(c™"), 9;L =O0(c™™), 3L = O(c™™).

Here, we used the fact that L is a C' function, which was shown above under the

assumption that p~ satisfies the Sternberg-Takens C® condition. The authors do

not know whether L is differentiable under the condition for p~ weaker than C2.
It follows from (2.21) and (2.16)

Oiin(t) = O(T™") + O(a™ ")t + O(0")t* + O(o™"t*) + O(7")
=0(@ ")t +0(7"),
Oiin(t) = (4 + O(c™ ™))t + O(7™).

- (d+0(€)—

Then, for all sufficiently large n and any (i1, 7) € Jy,
O (Un(ti)) = (Opin) (tuw) + Un(tuw) - Ootus
- ( uyn)( ) ~ 4bt /,L v 7é 0

where the last approximation is induced from ¢; ; = O(7"/3) in (2.25). This shows
that the value 7, (i) € Jp 5 with g, (t i, Vn(u)) 0 is uniquely determined and C3
depends on fi € [~1,1], and moreover (9,4, )(tz.5) # 0. Similarly,

0 (U (tuw)) = (Oalin) (tuw) = O(c™ " )tuw + O(T™).
Again by t; , = O(T/3),

I tn

do,, (U (tg v

L_ ﬂ) - _ M(?{n( M, )) — O(U—n) + O(TQn/S) — O(O'_n),

dp 9 (Yn(ti,))

where we used the fact that 72/3 = X\¥/3071/3 < ¢72/3571/3 = g=1. By using the
third equality of (2.21), it is not hard to show that ¢, (tz,5) # 0 for all sufficiently
large n and any (1, 7) € J,. This completes the proof of (ii).

(2.26)

i (
that hy does not contain any y" (m=1,2,...), por v-terms with non-zero constant
coefficients. Tt follows that hg(yy (t), i, 7n (i) = O(c~™)yn(t) + O(c—2"). From
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(c.iii) and the first equation of (2.12), we have hs(n, yn, 1, v) = O(z,) = O(A™).
By (2.18),

Tnspoin (o) (D) = 0"+ (1) + O(@ " Jyn(t) + O(a7") + O(A™).
By (2.22), K = K1/(4by) + O(c™") = O(r**/3) + O(6~™) = O(0~™). Then, from
(2.12), we have Yp.5.5, (2) (ta,5, (3)) = O(c™™). It follows that

Gnsji,on () Ui (y) = 0 "+ O(072") +ON") = 0 i+ 0(0™").
By applying the Intermediate Value Theorem to the continuous function g, (tz,5, (i)
for i € [—1,1], there exists fig € [~1,1] such that §,(tz, 5, (0)) = 0

It remains to show that (9pFnu,s, () (ta,,.(z)) 7 0. Here, we should remark

that t;, = O(7"/%) does not necessarily imply that Ot = O(T™/3) since tj ; is
not in general a function with 7/3 as a factor. So, we will give the proof without
invoking the estimate of 0zt; 5. By (2.15) and (2.16),

Opnsinv () = 07" + O(no™") i + 2y (1) Dy (1)
+ 0 [0(6™ ) yn(t) + O(a72") + O(A™)],
OoGni,o(t) = O(no ") i + 2y () Bpyn (¢)
+35[0(0™")yn(t) + O(c72") + O(A")].
Since y,(t) = O(¢) by (2.13) and since dpy,(t) = O(c™") + O(a"t*) = O(c™™)
and Jpyn (t) = O(1) by (2.10) and (2.12), it follows that
(14+0(€)o™™ 4+ O(no )i+ O(c ") + O(\")
=({14+0(E)c™" +o(c™™),
oGn:no(t) = Oyn(t)) + O(c™").

By the last equality together with y,(tz5, (7)) = O(c™"),

(O5Tnsia,o) o (7)) =i () = O0™™).

auyn,u, ( )

Then, by (2.26),

(Oan;a,om () En ()
duo,

= (0aTn;n5) ()| o=pn () + (O5Fns,5) o () o= (1) - dji —— (1)
(1405 +ole™) + (™) - O(6™) > 0

for all sufficiently large n and any i@ € [—1, 1]. This completes the proof of (iii) and
hence that of Theorem A. O

3. GENERIC CUBIC TANGENCIES IN THE HENON FAMILY

In this section, we give the proof of Theorem B.

3.1. Saddle fixed points of Hénon maps. Let ¢, ; be the Hénon map given in
Introduction such that

Yab(2,y) = (y,a — bz + ¢?).
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For any element (a,b) of a small neighborhood of (—2,0) in the parameter space,
©q,» has the two fixed points pib with

1+b++/(14+0b)?—4a
5 :

Then, the eigenvalues of the differential (Dapmb)pib are

(3.2) Ny =vE, T WE) = b 0F, = uE, £/ (6E) - b

Since ()‘Iw‘f;b) — (0,4) and (A, ,,0,,) — (0,-2) as (a,b) — (-2,0), for any
(a,b) near (—2,0) with b # 0, the eigenvalues satisfy

+ + + +
(3.1) Pop = (ya)b,ya}b), where y,, =

0< A5yl <1<lof,| and |Afor,[<1.
Thus, both the saddle fixed points pf , are dissipative.

3.2. Outline of proof of Theorem B. Throughout the remainder of this paper,
A ~ B (resp. v ~ w) for two real numbers (resp. vectors) means that one can
suppose that |A — B| < € (resp. ||v — w]|| < ¢) for any given £ > 0. We note that it
does not necessarily imply that A/B is close to 1, e.g. A =¢/10 and B = £/1000.

By using some results in Kiriki-Li-Soma [11, §2], we have a C'*° function h :
I. = (—¢,e) — R with h(0) = —2 and such that ¢y,(); admits a heteroclinic
quadratic tangency q;' associated with pf( b).b and contained in a small neighborhood

V(=2,2) of (—2,2) € R% One can also prove that the tangency g5 C°° varies
with respect to b and unfolds generically with respect to the a-parameter family
{#a,b(fixed) }. Moreover, there exists a locally finite set B of I. \ {0} such that, for
any b € I. \ (BU{0}), the fixed point Prv) b (resp. pz(b),b) satisfies the Sternberg-
Takens C® (resp. C*) condition. Then, there exists by > 0 arbitrarily near 0 such
that ©n(p,),5, admits a heteroclinic quadratic tangency g, —in V(—2,2) associated
to pf(bo)ybo such that q;; » Gy, are cyclically associated with pf(bo%bo' The situation
in the present case is illustrated in Figure 3.1, which corresponds to the general
situation in Figure 2.1. When by ¢ B, these tangencies are our desired ones. In
the exceptional case of by € B, we will need some more arguments, see the proof
of Lemma 3.1 for details. It remains now to show that ¢, unfolds generically with
respect to the b-parameter family {yp)5}. The authors do not know effective
approximations of the velocity vectors 'u;j’l(qb_o ), 'vZ’l(qb_0 ) defined as in Subsection
1.1. However, as will be seen in Subsection 3.4, it is possible to approximate the
difference so that
v (@) = 03 (gy,) ~ (0, -6V/2).

From this fact together with (1.4), we know that Dy, unfolds generically. Then,
the proof of Theorem B is completed by taking the new parameter (u,r) with
u=a—h(b),v =b—by and applying Theorem A.

3.3. Existence of pairs of generic unfolding quadratic tangencies. Now, we
recall some arguments and results in [11, §2] which are needed to prove Theorem
B.

When b =0, ¢, is not a diffcomorphism. Even in this case, one can define the
stable and unstable manifolds associated with pio in a usual manner. The stable

manifold Ws(pio) of 4,0 contains the horizontal segment Sj,o = {(z,Y0,0); 2] <
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I // -
///

FIGURE 3.1

5/2} passing through pio. By the Stable Manifold Theorem (see e.g. Robinson
[16, Chapter 5, Theorem 10.1]), for any (a,b) near (—2,0), there exists an almost
horizontal segment S+b C Ws(p:b) containing p+b which C* depends on (a,b)

and such that one of the end points of S+b is in the vertical line x = —5/2 and the
other in « = 5/2. In particular, each S+b has a holding function na p» that is,

Saw = (@ m()); x| < 5/2}.

Note that n;b is a C'*° function C*° depending on (a, b), and the family {n;b} c>
converges to the constant function 77;,0 uniformly as (a,b) — (ag,0).

From the definition, the unstable manifold W* (pio) consists of the points g € R?
which admits a sequence {g, }2, in R? with o = ¢, ¢, € go;%)(qn,l) forn=1,2,...
and lim, o ¢, = p;O. In particular, W“(pj)o) is contained in the parabolic curve
Im(¢a,0) = {(z,2% + a); —o00 < x < oo}. Then, it is not hard to show that

w (pao) {(z,2* +a);a < x < 00}

for any a near —2. Again by the Stable Manifold Theorem, for any (a, b) near ( 2,0)
(possibly b = 0), there exist short curves T, in VVloc(pa p) with Int(T, ) 3 pf p and
varying C'*° with respect to (a,b). Thus, for any integer m > 0, T(SZ) = Oup(Tap)
C'™ converges to T(EO ()) = ¢ 0(Tae0) as (a,b) — (ap,0). As was illustrated in [11,
Fig. 2.1], T(m) is the folded curve when m is large enough.

Let V(f2, 2) be a fixed small neighborhood of (—2,2) in the zy-plane. Since Sj,o
is the horizontal line y, 0 = (1 + /1 —4a)/2, for any (a,b) near (—2,0) and any
point r in Sa ps V3 (r) is arbitrarily and uniformly close to dy,,0/0alqa=—2 = —1/3.
Recall that vflj-( ) is the velocity vector dr®(a)/da at r defined as in Subsection
1.1, where r°(a) is the intersection point of S:b(ﬁxe ) and a short vertical segment
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passing through r. From now on, we denote such a closeness by

o~ (052 ) = (0-3)

The fact that S;: o is horizontal does not necessarily imply that 'vz’L(r) is constant

onr € S:,o~ However, if we take V' (—2, 2) is sufficiently small and (a, b) is sufficiently
near (—2,0), then

db
for any ' € S:b NV(—2,2), where r*(b) is the intersection point of SjQ,b and the
vertical line z = —2.
Since W* (p;O) contains the horizontal line passing through p, o, Ws(p;b) and
w (p;b) have a transverse point 7 for any (a,b) near (—2,0) as illustrated in Fig.
3.2. By the Inclination Lemma, there exists a sequence of curves in W* (p;b) Ok

+

Sap
[% e fp‘;’b
1 AY }l {
\ 4 7 4

FIGURE 3.2

converges to S;, for any (a,b) near (—2,0). In particular, W*(p, ,) contains an
almost horizontal curve S, , well approximated by Sjb. Thus, S, , has a C*°
holding function 7, , C°° depending on (a,b). Since S,  is a horizontal segment,
N, C°° converges to a constant map 7, , as (a,b) — (ao,0). The Inclination
Lemma also guarantees that one can choose the S, so that
1

(3.3) vt~ (0.-3), vt )~
for any  in S, and 7" in S, NV (-2,2).

It is well known that there exists a continuation of horseshoe sets A, of @44
associated with a transverse homoclinic orbit of p;b just as Agug in [11, §2]. Let

W (Aqp) be alocal stable manifold of A, consisting of almos’t horizontal leaves
connecting the vertical lines + = —5/2 and z = 5/2. Consider an arc I, in
W“(pj,b) with p, as an end, meeting each leaf of W (A,p) in a single point.
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Moreover, I, is taken so that it is smallest among all such arcs. Then, I, is
uniquely determined, see Fig. 3.3.

x=-5/2 x=5/2

FIGURE 3.3. The union of the shaded regions represents the sup-
port of F; ;. and the darker part does that of ]-"é(k)

According to Lemma 4.1 in Kan-Kogak-Yorke [10] based on results in Franks [6],
there exists a continuation of foliations 7 , in the zy-plane satisfying the following
conditions. Such foliations are said to be compatible with Wi (Aqp).

(i) Each leaf of Wy (Aqp) is a leaf of Fy ;.
(ii) [l crosses F, , exactly. That is, if each leaf of 77, intersects I, 5 transversely
in a single pomt and any point of I, ; is passed through by a leaf of 72,
(ili) Leaves of Fy , are C®-curves connecting the vertical lines 2 = +5/2 and such
that themselves, their directions, and their curvatures vary C' with respect
to any transverse direction and a, b.

For any sufficiently large integer k£ > 0, let .7:5(: ) be a foliation obtained by
shortening all the leaves of cpg’]g(Fj’b) so that each leaf of fj(f ) is a C3-curve

connecting vertical lines x = £5/2 and the support (the union of leaves of fs(: ))
is contained in a small neighborhood of S:b. Then, it is not hard to show that

1
(3.4) vt~ (0.-5). vt~
for any point r (resp. r') in a p;b-leafl of f;ff) (resp. f;’(bk)|v(,2,2)), where [ being
a p;b-leaf means that [ C W#(p Jr,b). This fact is a special case of Accompanying

Lemma (Lemma 1.1 in [12]). Moreover, for any sufficiently large k, F, (b is disjoint

from S,

Let IF, (resp. I ,) be a short curve in W*(py ) (resp. W*(p_ ,)) as illustrated in
Fig. 3.4 such that both Int(lib) meet the x-axis transversely. Set llj;b = @37b(lib).
The curve lib is parametrized as (mib(t)J) for any ¢ near 0, where xib isa C®
function converging uniformly to 2%, (t) = Fvt+2 as (a,b) — (—2,0). For
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Qa,b (Ia“,b)

FIGURE 3.4. ¢, |W"(p,,) exchanges the two components of
W (pg ) \{Pas}-

w==, lA‘;’b is parametrized as 7, (t) = (2%, (t), 9, (t)), where
Top(t) = 2 - bz + a,
U p(t) = (fg,b)2 —bt+a.

Since g, (t) C>° converges to g (t) = (t* + a)* + a as b — 0, (9/da)yy,(t) O
converges to (9/9a)js o(t) = 2(t*+a)+1 as b — 0. This implies that, for any (a,b)
near (—2,0) and any ¢ near 0, we have (9/0a)jy ,(t) ~ —3 and hence

(3.5) vt (7 (1)) ~ (0, =3).
The following lemma is based on some results in [11].

Lemma 3.1. There exists a C* function h(b) defined for b near 0, a continuation
S:’b of curves in Ws(p;b) and a continuation S, of curves in W*(p, ) satisfying
the following conditions.
(i) R(0) is arbitrarily close to —2.
(ii) For any non-zero b near 0, there is a continuation q;' of quadratic tangencies
of S,Jlr(b) p and lA;(b) , each of which unfolds generically with respect to the a-

parameter family {©q p(fixed) } -

(iii) For any b, with 0 < b, < e, there is a by with 0 < by < b, such that Sf:(bo),bo

and iZ(bo),bU have a quadratic tangency g, .
(iv) Ph(bo)bo’ pz(bo) b satisfy the Sternberg-Takens C® and C* conditions respec-
tively.
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Proof. By an argument quite similar to the proofs of Propositions 2.2 and 3.1 in
[11], there exists a C'* function h : I. = (—¢,¢) — R with h(0) = —2 and such
that Sh (5).b and l R(b).b have a quadratic tangency [jb+ . Moreover, there exists a
locally finite set B~ (resp. B™) in I. \ {0} such that, for any b € I. \ (B~ U {0})
(resp. b € I. \ (BT U{0})), Prv)b (resp. p:(b)’é) satisfies the Sternberg-Takens C®
(resp. C*) condition. We will show that the h is our desired function h except a
special case. However, in the exceptional case, we need other two functions h; and
h such that the deformation along a = hy(b) (resp. a = h(b)) keeps a tangency of
S, and l+ (resp. S+b and [, ).

Fix b, € (0,¢) arbitrarily. If necessarily retaking fh(b )b, and S )b, Given as
above, we may assume that

(175

U Sl;(b ) N lit(b*),b* =10,

where |‘7:ZE];*)),Z7*| denotes the support of fz(b*) p.» see Fig. 3.5 (a). Note that l~(b) X

+ +
b Sﬁ(b‘).b* S h(b).b
72
Sh(b Vb (b,).by
E_(b*),b,
(a) (b) (©)

F1GURE 3.5. The shaded regions represent the support of F;EIZ)) b

h(b),b
to S, o, which is a horizontal segment disjoint from St, o- By the Intermediate

Value Theorem, there exists bo with 0 < bo < b, such that Sﬁ(g ¥ and lh(bo) B

have a quadratic tangency ql;O, see Fig. 3.5 (c). If bo Z BTUB™, we may set by = by,

h(b) = h(b), S:Lr(b .o S;'(bo),bg and G5 = Gy, see Fig. 3.6 (a).

Suppose that by € Bt U B~. Then, we have a C™° function h1(b) defined
on an open neighborhood of by with hi(by) = h(by) and such that there exists a

approaches to Sh(b as b\, 0, see Fig. 3.5 (b). On the other hand, S; . converges

continuation of quadratic tangencies of Sh (b) and lh )b based at (jg_ , see Fig.
0
+
3.6 (b). Since A, (1,5 15 a horseshoe set, .F L(0)b has a sequence of p;ll(b)yb—leaves
+

ST (b).b converging to Sh (0).0° 5 Fig. 3.7( ). Since BT U B~ is locally finite in
n;hy
I.\ {0}, one can take n sufficiently large so that there exists by € I.\ (BT UB~U{0})
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h -
>
k-
>

ia=h(b)
2 h(0) i/
2 r——'/—_/
- \ 5 o~ \
a=h(b)=h(b) a=F,(b) a=h(b)

(a) (b)

FIGURE 3.6

o Ste o o §te
W q,b".‘o n;hy(bg).bg K\ qg n;hy(bg).by
0
Vs ' /-
N

N

(@) (b)

FIGURE 3.7

. 7 . . 7 + A
with 0 < by < by arbitrarily close to by and such that Sn;ﬁl(bo),bo and lﬁl(b0)7b0 have

a quadratic tangency qbt, see Fig. 3.7 (b). Let S’:b be a continuation of pr—leaves

s(k) + A+ o+ . .
of F, ;" based at Sn;ﬁl(bo)’boa that is, Sﬁl(b0)7b0 = Sn;ﬁl(bo),bo‘ Again by using results

in [12, §2], one can define a C™ function h : (—e,e) — R with h(bg) = hy(by) and
such that there is a continuation q;r of quadratic tangencies of S,j(b)’b and l,:(b)’b
based at q;;. If necessary replacing n by a larger integer, we may assume that h(0)
arbitrarily close to —2. In fact, since the horizontal segment 5‘,‘1"(0) o Dasses through
the end point gi = (h(0), h(0)% + h(0)) of W“(p::(o)’o), h(0)2 + h(0) coincides with

the height of the horizontal segment S“Z(O) 0~ 2.
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The tangency g, is equal to 7, (t,) for some t;,, near 0. Then, the generic

condition (1.4) and the approximations (3.3) and (3.5) show that ¢;” unfolds gener-
ically with respect to {®q p(fixea)}- This completes the proof. O

3.4. Proof of Theorem B. For the completion of the proof of Theorem B, it
suffices to show that the tangency Gy, = f;(bo) b, Siven in Lemma 3.1 unfolds gener-

ically with respect to the b-parameter family {@n) 5} Then, {@,} satisfies the
conditions (i)-(iv) of Theorem A with respect to the new parameter
w=a—nh(), v=>b-—Db.

From now on, we denote the holding function of S:b given in Lemma 3.1 newly
by an and the subscription pair ‘h(b), b’ only by ‘b’ e.g. n}f(bm = 771:;‘:‘ Recall that
7, is the holding function of S;(b) b

For w = =+, consider the function 6y (t) of ¢ corresponding to (1.3) defined by
(3.6) 05 (t) = (& (1))” — bt + h(b) —m, “ (&5 (1)),
where we set

2P (t) =7 — bay () + h(b)
and suppose —w = F if w = =+ respectively. Since 0y (t) C°° converges to 0% (t) =
(t? + h(0))? + ¢~ as b — 0 for some constant ¢, 6 (t) and 6% (t) C°° converge
respectively to 0% (t) = 4t3 +4h(0)t, 6% (t) = 12t +4h(0) ~ —8 # 0, where the ‘dot’
represents the derivative of a function by ¢. From this fact, we have a unique ¢y’
near 0 C* depending on b and such that 6y (¢y’) = 0. In particular, ¢t§ = 0. Note
that, since qlf is in 5”,;" for any b near bo, 6, (t, ) is a zero function of b.

We set zy(t) = z¥(b,t) and ny'(z) = n¥(b,x), and suppose that the ‘prime’
represents the derivative of a function by b. For example, 2’ (t) = (9/9b)z* (b, )
and 1" (z) = (0/0b)1 (b, ).

Proof of Theorem B. First, we show that, for any sufficiently small b > 0,

d
(3.7) %ej(t;) ~ —6V/2.
Set thr =tp, x; =1, :%;r = 23 and 1, = for short. By (3.6),
doy (ty)

— = 2i‘b(tb) (tht;) — xb(tb) — bl‘g(tb) — bx'b(tb)t;, + h/(b))

— ty — bty, + h'(b) — my (2o (ts)) — %(b, () (2o (1))

Since 7 is a constant function of x, (0/0x)ny = 0. Since moreover ty = 0, z¢(0) =
- 27 jO(O) = h(O) ~ 723

dg;r (t;F
% ~ —3v2 — 31'(0) — (0, -2).
Similarly, we have
do, (t,
0= % ~3v2 — 31/ (0) — ' (0, -2).

By (3.3) and (3.4),
(07 777/(07 _2)) ~ Vo, (07 77+,(07 _2)) ~ Vg-
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The above four approximations imply (3.7).
We have from (1.4) and (3.7)

u, L, — s, L, — deb+ (thr)
vy (5,) = vy (a5,) = (0. =t (b)) ~ (0,—6v2).

This implies that g, unfolds generically with respect to the b-parameter family
{@n),p}- This completes the proof of Theorem B. O
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