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Abstract. We consider the conic feasibility problem associated with the linear homogeneous
system Ax ≤ 0, x 6= 0. The complexity of iterative algorithms for solving this problem depends
on a condition number C (A). When studying the typical behaviour of algorithms under stochastic
input one is therefore naturally led to investigate the fatness of the distribution tails of C (A). We
study an unprecedently general class of probability models for the random input matrix A and show
that the tails of the Goffin-Cheung-Cucker condition number decay at algebraic rates. Furthermore,
the exponent naturally emerges when applying a theory of uniform absolute continuity – which we
also develop in this paper – to the distribution of A. We then develop similar results for Renegar’s
condition number. Finally we discuss lower bounds on the tail decay of C (A) and show that there
exist absolutely continuous input models for which the tail decay is subalgebraic.
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1. Introduction. Any matrix A ∈ IRn×m defines a pair of linear systems

(D(A)) Ax ≤ 0, x 6= 0

(P(A)) ATy = 0, y ≥ 0, y 6= 0.

If A has full column rank then one of these systems has a strict solution if and only if
the other has no solutions at all. In other words, the existence of x such that Ax < 0
yields a certficate of infeasibility of (P(A)), and conversely, the existence of y such
that ATy = 0, y > 0 proves the infeasibility of (D(A)). In the first case we say that A
is strictly feasible, and in the second case that A is strictly infeasible. If neither case
occurs we say that A is ill-posed. In this case both (D(A)) and (P(A)) have solutions
but none that will satisfy all inequalities strictly.

The conic feasibility problem (CFP) associated with A is to decide which of
(D(A)) and (P(A)) is strictly feasible and to compute a solution for it. When A
is ill-posed, then conic feasibility algorithms will usually fail, unless preprocessing is
used to restrict the problem to a subspace where it is well-posed.

It is well known that from a complexity theoretic point of view linear programming
is equivalent to the conic feasibility problem defined by a general matrix A. As a
consequence, the conic feasibility problem was studied extensively in the LP literature,
where ellipsoid and interior-point methods have been established as polynomial-time
algorithms under the (rational number) Turing machine model. In the real number
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Turing machine model (see [1]) the complexity of the same algorithms is typically
bounded by a linear function of log C (A), i.e., the worst case running time is of order

O
(
log C (A)

)
, (1.1)

where C (A) is either Renegar’s condition number CR(A) [10], the Goffin-Cheung-
Cucker condition number CGCC(A) [8, 9, 2] or another related concept of geometric
measure, and where the multiplicative constant is polynomial in the matrix dimen-
sions n and m. See [10] for an extensive discussion and examples of condition-number
based complexity analyses. The complexity of the CFP is also known to be polynomial
as a function of log C (A) under the finite-precision complexity model, see [4] where
a bound of O

(
(log C (A))3

)
was established for an interior-point method. To avoid

confusing the reader, we should point out that in the classical Turing machine model
the complexity of CFP is also of order O

(
log C (A)

)
, but log C (A) is polynomially

bounded in the size of the input data of A when the data are rational numbers. Thus,
the dependence on C (A) under the real-number or finite-precision complexity models
replaces the dependence on the input size of the problem data under the rational-
number complexity model.

Conic feasibility also appears in the machine learning literature but with the im-
portant difference that in this context the focus is entirely on (D(A)): The problem is
now to produce a solution that lies deeply inside the feasible region when A is strictly
feasible, or a solution that is “as feasible as possible” in an appropriate sense when
A is not strictly feasible. Certificates of infeasibility play no role in this context, and
certain popular algorithms cannot actually produce these. Despite this difference, the
complexity of these algorithms typically also depends on C (A) when A is feasible.
For example, the improved perceptron algorithm of Dunagan and Vempala [7] has a
O(CGCC(A)) probabilistic complexity, where CGCC(A) is the Goffin-Cheung-Cucker
condition number, and the classical perceptron algorithm [11] has a O(CGCC(A)2)
deterministic complexity.

One of the main theorems of this paper establishes that when A is a random
matrix whose rows are i.i.d. and have an absolutely continuous distribution on the
(m− 1)-dimensional unit sphere, then

P[CGCC(A) > t] = Õ(t−α), (1.2)

where α is a parameter that depends on the distribution of the rows of A and f(t) =
Õ(t−α) means that f(t) = O(t−α+ε) for all ε > 0. Similar results are established for
the condition number CR(A), see Theorems 5.1 and 7.2. Such results are interesting
because together with complexity estimates of the form (1.1) they imply that when
random input data A are fed to interior-point and ellipsoid algorithms for the conic
feasibility problem, then the distributions of the (random) running times RT have
tails that satisfy

P[RT > t] < exp (−(α− ε)t) (1.3)

when t is large enough. In other words, if α > 0 then extremely long running times are
exponentially rare and thus not observable in practice. The bound (1.3) also implies
that for α > 0 all moments of RT are finite. This can be used to establish that the
conic feasibility problem is strongly polynomial on average for all input distributions
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with α > 0. For the sake of brevity we will not discuss this further, but the arguments
are similar to the special case where A has uniformly distributed unit row vectors,
discussed in [3].

Special cases of tail decay results of the form (1.2) were already obtained in [5, 6]
and [3], however for much more restricted families of distributions for which α is al-
ways equal to 1: Cucker-Wschebor [5] considered the case where A is a matrix with
i.i.d. Normal entries, Dunagan-Spielman-Teng [6] the case where A has a multivariate
normal distribution centred at a given matrix and Cheung-Cucker-Hauser analysed
the case where A has i.i.d. rows that are uniformly distributed on the sphere. All
of these cases fall under the framework of Example 1 of Section 6. In the present
paper we extend the family of input models considerably: In the case of CGCC , our
random input matrices have i.i.d. rows that are absolutely continuous with respect
to the uniform measure on the (m − 1)-dimensional sphere Sm−1. In such measures
an event has probability zero if its probability under the uniform measure is also
zero. To derive bounds of the form (1.2) we need a slightly stronger condition that
allows us to give bounds on the probability of an event if its probability under the
uniform measure is small. This leads to a notion of uniformly absolutely continuous
measure and an associated smoothness parameter that seems to be new. A measure
with smoothness parameter α ∈ (0, 1] can be seen as having a Radon-Nikodym density
that is essentially bounded by a function that has a delocalised singularity of degree
1− (m− 1)α. We develop some of the relevant theory in the appendix of this paper.
A related family of distributions is used in the context of CR, but since this condition
number is not invariant under row scaling, the rows of A are scaled with i.i.d. positive
random variables Ri whose tail decay rates now play a similar role as α. In the last
two sections we discuss a further tightening of the tail decay bounds of CGCC , and we
prove a lower bound which is then used to show that there exist absolutely continuous
distributions with α = 0 for which P[CGCC(A) > t] does not decay at any algebraic
rate.

2. Notation. We denote the probability measure defined by the distribution of
any random variable or vector X on its image space by L (X). Following the usual
practice, we use upper case letters for random variables and vectors, and lower case
letters for deterministic variables wherever possible. When two random vectors X

and Y have identical distribution, we write X
D= Y . Inner products are denoted by

〈·, ·〉, whereas · denotes a scalar multiplication and is used in places where it improves
the readability of formulae. B always denotes a completed Borel σ-algebra. The
topological space it resides in is usually clear from the context. Let

Ik(ρ) :=
∫ ρ

0

sink τdτ.

Then it can easily be shown that

Im(π)Im−1(π) =
2π

m
, ∀m ≥ 1, (2.1)

Vm(Br) = 2rm
m∏

j=2

Ij(π), m ≥ 2, and (2.2)

Am−1

(
cap(p, ρ)

)
= 2πIm−2(ρ)

m−3∏
j=1

Ij(π), m ≥ 2, (2.3)
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where Vm and Am−1 denote the standard volume and area in IRm and on Sm−1

respectively, i.e., the Lebesgue and Hausdorff measures, Br denotes the open ball of
radius r in IRm centered at the origin, and cap(p, ρ) denotes the circular cap with half
opening angle ρ which is centered at p.
The uniform measure of a circular cap can therefore be expressed as

νm−1

(
cap(p, ρ)

)
= Im−2(ρ)/Im−2(π).

Using integration by parts and induction on k it is easy to show that

Ik(π)
√

k

2
≥ 1 ∀k ∈ IN. (2.4)

3. Condition Numbers for CFP. In this section we will briefly summarise
the definitions and essential properties of two of the standard condition numbers that
appear in the LP and CFP literature.

Considering arccos(t) as a function from [−1, 1] into [0, π], both cos and arccos
are decreasing functions. Let ai be the ith row of A. Denote by θi(A, x) the angle
between ai and x, that is, arccos(ai ·x/‖ai‖‖x‖). Let θ(A, x) = min1≤i≤n θi(A, x) and
x̄ be any vector in IRm \ {0}, s.t. θ(A) = θ(A, x̄) = supx∈IRm θ(A, x). A compactness
argument shows that such a vector x̄ exists. The Cheung-Cucker [2] condition number
CGCC(A) is defined as

CGCC(A) = | cos(θ(A))|−1.

CGCC(A) is a generalisation of Goffin’s condition number [8, 9] which was defined
for strictly feasible A only. It is not difficult to see that A is strictly feasible iff
θ(A) > π/2, ill-posed iff θ(A) = π/2 and infeasible iff θ(A) < π/2. Note that since
CGCC(A) is defined purely in terms of angles between vectors, this condition number
is invariant under positive scaling of the rows of A. Hence, we may assume without
loss of generality that all rows of A have been scaled to unit length.

The second condition number we consider relates ill-conditioning to a notion of
distance to ill-posedness. Recall from the introduction that if the matrix A is well-
posed then (P(A)) has a strict solution if and only if (D(A)) has no nontrivial solution
and vice versa. Let us also recall that ‖A‖1,∞ := supx∈Rn\{0} ‖Ax‖∞/‖x‖1. Let

%P (A) := inf {‖∆A‖1,∞ : (P(A + ∆A)) is infeasible} ,

%D(A) := inf {‖∆A‖1,∞ : (D(A + ∆A)) is infeasible} .

Then %(A) := max {%P (A), %D(A)} yields a notion of how far A is located from the
set of ill-posed matrices, or by how much A can be perturbed before it switches from
feasible to infeasible or vice versa. Renegar’s condition number [10] is defined as the
inverse relative distance to ill-posedness

CR(A) :=
‖AT‖1,∞

%(A)
.

An important difference between the two condition numbers introduced above is
that unlike CGCC(A), CR(A) does depend on the scaling of the rows of A. Cheung-
Cucker [2] established the following inequalities linking the two condition numbers,

1√
m
· CGCC(A) ≤ CR(A) ≤ ‖A‖2

mini ‖ai‖2
· CGCC(A). (3.1)
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4. Uniformly Absolutely Continuous Distributions. In this section we will
build up the measure-theoretic tools that are necessary to conduct the tail decay
analysis of Sections 5, 7 and 8. Let B be the Borel σ-algebra of a sigma-compact
Hausdorff space (E,O) whose topology has a locally countable basis, and let ν 6= 0
be a sigma-finite atom-free measure on B. For simplicity, the reader may keep in
mind the example that will play a role in later sections in which E is chosen as the
(m− 1)-dimensional unit sphere Sm−1 endowed with the subspace topology inherited
from IRm, and ν is chosen as the uniform measure or the Hausdorff measure.

Lemma 4.1. For any B-measurable set A with ν(A) > 0 and for any δ > 0 there
exists B ⊆ A such that 0 < ν(B) ≤ δ.

Proof. Since (E,O) is sigma-compact and ν is sigma-finite we may assume w.l.o.g.
that ν(A) < ∞ and A ⊆ C for some compact set C. We claim that for all x ∈ E there
exist an open neighbourhood Ox of x such that ν(Ox ∩ A) ≤ δ. In fact, since (E,O)
has a locally countable basis, there exists a nested countable collection {Ox,n : n ∈ IN}
of open neighbourhoods of x such that {x} =

⋂
n∈IN Ox,n, and since ν is atom-free we

have

0 = ν

( ⋂
n∈IN

Ox,n ∩A

)
= lim

n→∞
ν(Ox,n ∩A).

The sets {Ox : x ∈ C} form an open cover of C. By compactness there exists a finite
subcover Ox1∪· · ·∪Oxm

⊇ C. Writing Bi := Oxi
∩A, we find 0 < ν(A) ≤

∑m
i=1 ν(Bi),

so that at least one of the sets Bi satisfies 0 < ν(Bi) ≤ δ.

Next, let µ be a ν-absolutely continuous probability measure on B. In other
words, the assumption is that ν(B) = 0 implies µ(B) = 0 for all B-measurable B. By
the Radon-Nikodym Theorem this is equivalent to the existence of a B-measurable
density function f : E → IR+ := {x ∈ IR : x ≥ 0} such that µ(B) =

∫
B

fdν for all
B-measurable sets B. In what follows we will use the convention ln(0) := −∞.

Theorem 4.2. The limit

αν(µ) := lim
δ→0

inf
{

lnµ(B)
ln ν(B)

: B is B-measurable and 0 < ν(B) ≤ δ

}
is well-defined and takes a value in the interval [0, 1].

Proof. For all δ ∈ (0, 1) let

inf(δ) := inf
{

lnµ(B)
ln ν(B)

: B is B-measurable and 0 < ν(B) ≤ δ

}
.

Since µ is a probability measure, lnµ(B) ≤ 0 for any B-measurable B, giving inf(δ) ≥
0 for all δ ∈ (0, 1). Furthermore, since inf(δ) is decreasing in δ, we have

lim
δ→0

inf(δ) = sup
δ∈(0,1)

inf(δ).
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It only remains to show that the right-hand side of this equation is bounded by 1.
Since

∫
E

fdν = 1, there exists some constant c ∈ (0, 1) such that ν({f > c}) > 0. By
Lemma 4.1 there exists a B-measurable set Bδ ⊆ {f > c} such that 0 < ν(Bδ) ≤ δ
for all δ > 0. Finally, since µ(Bδ) =

∫
Bδ

fdν > cν(Bδ), we have

inf(δ) ≤ lnµ(Bδ)
ln ν(Bδ)

< 1 +
ln(c)
ln(δ)

.

Letting δ → 0 now establishes the result.

The following proposition is easy to prove and illustrates the meaning of αν(µ).

Proposition 4.3. The following statements are equivalent:
i) α = αν(µ),
ii) α is the smallest nonnegative real for which it is true that for all ε > 0 and

δ > 0 there exists a B-measurable set Bε,δ such that 0 < ν(Bε,δ) ≤ δ, yet
ν(Bε,δ)α+ε ≤ µ(Bε,δ),

iii) α is the largest nonnegative real for which it is true that for all ε > 0 there
exists δε > 0 such that ν(B) ≤ δε implies µ(B) ≤ ν(B)α−ε,

iv) α is the largest nonnegative real for which it is true that for all ε ∈ (0, α)
there exists cε > 0 such that µ(B) ≤ cε · ν(B)α−ε for all B-measurable B.

A further characterisation of α is given by the following result whose proof is
given in the appendix. Here we use the convention that −∞/−∞ := 0/0 := 1.

Proposition 4.4. αν(µ) = lim infn→∞
ln(µ({f>n}))
ln(ν({f>n})) .

Absolute continuity tells us that all ν-null-sets must be µ-null-sets, but it does
not tell us that µ(B) is small when ν(B) is small but positive. However, if α > 0 then
Proposition 4.3 gives uniform upper bounds on µ(B) in terms of ν(B). In this case
we say that µ is uniformly ν-absolutely continuous. Furthermore, for smaller α the
variation of µ in terms of ν is larger. We call αν(µ) the smoothness parameter of µ
with respect to ν.

5. Tail Events of the Goffin-Cheung-Cucker Number. In this section we
will analyse the tail behaviour of the Goffin-Cheung-Cucker number CGCC(A). To
derive any meaningful information about CGCC(A), we require a family of distribu-
tions for the random n×m matrix A. Each row vector of A determines a constraint in
the system of linear inequalities Ax ≤ 0. It is therefore natural to consider matrices
A = [ X1 ... Xn ]T where the Xi are i.i.d. m-dimensional random vectors. Furthermore,
since CGCC(A) = CGCC(DA) for any strictly positive diagonal matrix D, we may
restrict the model to random vectors Xi on the (m−1)-dimensional unit sphere Sm−1

without losing any generality.

We endow Sm−1 with the subspace topology inherited from IRm and the associ-
ated Borel σ-algebra B. The uniform measure νm−1 on Sm−1 is then a Borel measure.
Let µ be any probability measure on Sm−1 that is νm−1-absolutely continuous and
has smoothness parameter α := αν(µ) > 0. The random matrix A is then well-defined
by choosing the law L (Xi) = µ for its rows. We also refer to α as the smoothness
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parameter of A.

Next we will derive upper bounds on P[CGCC(A) ≥ t]. In [3] it was shown that
in the special case where µ = νm−1 the bound

P[CGCC(A) ≥ t] ≤ c(n, m)t−1 (5.1)

holds, where c(n, m) :=
(

n
m

)
2m

5
2 . Theorem 5.2 below will yield a tool that allows one

to boost this results to the general case discussed here. Recall from Section 1 that we
write f(t) = Õ(t−α) if f(t) = O(t−α+ε) for all ε > 0.

Theorem 5.1. The tails of the Goffin-Cheung-Cucker condition number of an
arbitrary random n×m matrix A with smoothness parameter α are bounded by

P[CGCC(A) > t] = Õ
(
t−α
)
.

Proof. Consider the B-measurable set

W :=
{
(x1, . . . , xn) ∈ (Sm−1)n : CGCC([ x1 ... xn ]T ) > t

}
.

Let X1, . . . , Xn be i.i.d. random unit vectors with law L (Xi) = µ and let U1, . . . , Un

be i.i.d. uniformly distributed unit vectors, L (Ui) = U (Sm−1). From (5.1) we know
that P[(U1, . . . , Un) ∈ W ] ≤ c(n, m)t−1. Furthermore, Theorem 5.2 below establishes
that for all ε > 0 there exists tε > 0 such that for t ≥ tε,

⊗nµ(W ) ≤ (⊗nνm−1(W ))α−ε
. (5.2)

Therefore, for t ≥ tε,

P [CGCC(A) > t] = P [(X1, . . . , Xn) ∈ W ] = ⊗nµ(W )

≤ (⊗nνm−1(W ))α−ε = (P [(U1, . . . , Un) ∈ W ])α−ε ≤ c(n, m)α−εt−α+ε.

It remains to prove the claim (5.2), which follows readily by applying Theorem
5.2 below n − 1 times. Let (E1,O1) and (E2,O2) be two sigma-compact Hausdorff
spaces whose topologies have locally countable bases and associated Borel σ-algebras
B1 and B2. We endow the space E1 × E2 with the usual product topology O1 ⊗O2

generated by O1×O2. The product space is then sigma-compact and Hausdorff with
locally countable basis, and the corresponding Borel σ-algebra B1 ⊗ B2 is gener-
ated by B1 × B2. For (i = 1, 2), let νi be a sigma-finite, atom-free measure and
µi a νi-absolutely continuous probability measure on Bi with smoothness parameter
αi := ανi(µi). Finally, let ν1⊗ν2 and µ1⊗µ2 be the corresponding product measures.
It is well known that then ν1 ⊗ ν2 is sigma-finite and atom-free, and that µ1 ⊗ µ2 is
a (ν1 ⊗ ν2)-absolutely continuous probability measure.

Theorem 5.2. Under the above made assumptions,

αν1⊗ν2(µ1 ⊗ µ2) = min(α1, α2).
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Proof. Without loss of generality we may assume that α1 = min(α1, α2). Let an
arbitrary ε > 0 be fixed. By Proposition 4.3 ii), for all δ > 0 and (i = 1, 2) there exist
Bi-measurable sets Bi

ε,δ such that 0 < νi(Bi
ε,δ) ≤ δ and νi(Bi

ε,δ)
αi+ε ≤ µi(Bi

ε,δ). Let
δ0 ∈ (0, 1) be chosen such that

µ2(B2
ε,1) ≥ ν2(B2

ε,1)
α1+ε · δ

ε
2
0 .

For δ ≤ δ0, let us set B := B1
ε
2 ,δ ×B2

ε,1, so that

ν1 ⊗ ν2(B) = ν1(B1
ε
2 ,δ) · ν2(B2

ε,1) ≤ δ · 1,

and

µ1 ⊗ µ2(B) = µ1(B1
ε
2 ,δ) · µ2(B2

ε,1) ≥ ν1(B1
ε
2 ,δ)

α1+
ε
2 · ν2(B2

ε,1)
α1+ε · δ

ε
2
0

≥
(
ν1(B1

ε
2 ,δ) · ν2(B2

ε,1)
)α1+ε =

(
ν1 ⊗ ν2(B)

)α1+ε
.

Proposition 4.3 ii) now implies αν1⊗ν2(µ1 ⊗ µ2) ≤ α1. It remains to prove that

α1 ≤ αν1⊗ν2(µ1 ⊗ µ2). (5.3)

For this purpose, let 0 < ε < α1, and let B := (C1×D1)∪ · · ·∪ (CN ×DN ) be a finite
union of elements from B1 ×B2. It is easy to see that without loss of generality we
may assume that the Di are disjoint. Let η := ν1 ⊗ ν2(B) and

I0 := {i : ν1(Ci) ≤ η} ,

Ik :=
{

i : ν1(Ci) ∈ [η1−(k−1) ε
2 , η1−k ε

2 )
}

(k = 1, . . . , b2/εc),

Ib 2
ε c+1 :=

{
i : ν1(Ci) ≥ η1−b 2

ε c
ε
2

}
.

For all k let Ak :=
⋃

i∈Ik
Di and Bk := B ∩ (E1 × Ak). For k ≥ 1 it must then be

true that

η ≥ ν1 ⊗ ν2(Bk) =
∑
i∈Ik

ν1(Ci)ν2(Di) ≥ η1−(k−1) ε
2

∑
i∈Ik

ν2(Di) = η1−(k−1) ε
2 ν2(Ak),

(5.4)
which establishes that ν2(Ak) ≤ η(k−1) ε

2 . The assumption that α1 ≤ α2 together
with Proposition 4.3 iv) implies that for (i = 1, 2) there exist ci ∈ (0, 1) such that
µi ≤ ciν

α1− ε
2

i . In particular, we have µ2(Ak) ≤ c2η
(α1− ε

2 )(k−1) ε
2 . It follows that

µ1 ⊗ µ2(Bk) =
∑
i∈Ik

µ1(Ci)µ2(Di) ≤ c1(η1−k ε
2 )α1− ε

2

∑
i∈Ik

µ2(Di)

= c1(η1−k ε
2 )α1− ε

2 µ2(Ak) ≤ c1c2η
(α1− ε

2 )(1− ε
2 ) ≤ c1c2η

α1−ε.

For k = 0 we find similarly,

µ1 ⊗ µ2(B0) =
∑
i∈I0

µ1(Ci)µ2(Di) ≤ c1η
α1− ε

2 µ2(A0) ≤ c1c2η
α1−ε,

so that

µ1⊗µ2(B) =
∑

k

µ1⊗µ2(Bk) ≤ (2 + b2/εc) c1c2η
α1−ε = (2 + b2/εc) c1c2ν1⊗ν2(B)α1−ε.

(5.5)
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Next, let B be an arbitrary B1 ⊗ B2-measurable set. Since B1 × B2 generates
B1 ⊗B2, the outer measure construction tells us that ν1 ⊗ ν2(B) = infB

∑
B′∈B ν1 ⊗

ν2(B′), where the infimum is over all countable collections B ⊂ B1 ×B2 that satisfy
B ⊆

⋃
B′∈B B′. Hence, there exists a countable family (Bi)IN ⊂ B1 × B2 such that

B ⊆
⋃

i Bi and

ν1 ⊗ ν2(B) ≥ (1− ε)ν1 ⊗ ν2

( ∞⋃
i=1

Bi

)
. (5.6)

It must also hold that for some i0 ∈ N,

µ1 ⊗ µ2

(
i0⋃

i=1

Bi

)
≥ (1− ε)µ1 ⊗ µ2

( ∞⋃
i=1

Bi

)
. (5.7)

Therefore, we have

µ1 ⊗ µ2(B) ≤ µ1 ⊗ µ2

( ∞⋃
i=1

Bi

)
(5.7)

≤ 1
1− ε

· µ1 ⊗ µ2

(
i0⋃

i=1

Bi

)
(5.5)

≤
(
2 + b 2

εc
)
c1c2

1− ε
·

(
ν

(
i0⋃

i=1

Bi

))α1−ε

≤
(
2 + b 2

εc
)
c1c2

1− ε
·

(
ν

( ∞⋃
i=1

Bi

))α1−ε

(5.6)

≤
(
2 + b 2

εc
)
c1c2

(1− ε)1+α1−ε
· (ν(B))α1−ε

.

Since this holds for all ε ∈ (0, α) and B-measurable sets B, Proposition 4.3 iv) im-
plies that (5.3) holds.

6. Examples. The class of input models for the CFP analysed in Section 5 is
considerably more general than the family of distributions with continuous density
functions. To illustrate this, we will now give a few nontrivial examples. The proofs
of most statements made in this section are sketched in the appendix (see Section 11).
The reference measure ν is chosen as the uniform measure νm−1 on Sm−1.

Example 1. If the density f of µ is νm−1-essentially bounded (i.e., ∃M > 0 s.t.
ν({f > M}) = 0), then αν(µ) = 1.

We remark that when µ as in Example 1, Theorem 5.1 shows that P[CGCC(A) >
t] = Õ(t−1). As mentioned in the introduction, special cases of this result were al-
ready established in [5, 6] and [3].

Next, let g ∈ C0(Sm−1 \{x0}, IR+). We say that g has a singularity of degree ς
at x0 if there exists a C1-coordinate map ϕ : D → B1(IRm−1), where D ⊂ Sm−1 is
an open domain containing x0 and B1(IRm−1) is the open unit ball in IRm, such that
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ϕ(x0) = 0 and the limit a0 := limx→x0 ‖ϕ(x)‖ςg(x) is well defined with a0 ∈ (0,+∞).
Functions g with this property can easily be constructed using a partition of unity.
The next example shows that absolutely continuous probability distributions exist for
all values of the smoothnesss parameter in (0, 1].

Example 2. Let g be as above and ς ∈ (0,m− 1).
i) If µ is a νm−1–absolutely continuous probability measure on Sm−1 such that

dµ/dνm−1 is essentially bounded by g then µ is has smoothness parameter
α ≥ 1− ς/(m− 1).

ii) If µ is the νm−1–absolutely continuous probability measure on Sm−1 defined by
the density function dµ/dνm−1 ≡ g/

∫
Sm−1 g(x)νm−1(dx) then µ has smooth-

ness parameter α = 1− ς/(m− 1).

In passing, let us note that if dµ/dνm−1 has a pole of degree ς ≥ m − 1 then µ
cannot be a finite measure and hence not a probability measure either. Hence, this
case need not be considered.

Example 2 ii) provides an intuitive way of thinking about nontrivial values α < 1
of the smoothness parameter as arising due to a singularity of the density function.
It can even be established that all uniformly νm−1–absolutely continuous probability
measures arise as the composition of a measure of the type exhibited in Example 2 i)
with measure preserving maps from Sm−1 to itself. Thus, in the general case the den-
sity is essentially bounded by a “delocalised” singularity. We cannot enter the details
of this discussion here, as it would deviate too far from the central theme of this paper.

Not all νm−1-absolutely continuous measures are uniformly νm−1-absolutely con-
tinuous. The following construction yields a counterexample:

Example 3. By virtue of Example 2 we know that there exists a sequence
(µi)IN of νm−1-absolutely continuous probability measures with smoothness parame-
ters α(µi, νm−1) ≤ i−1. For all i ∈ IN let Xi be a random vector on Sm−1 with law
L (Xi) ∼ µi, and let N be a random variable independent of the Xi taking values in
IN such that P[N = k] > 0 for all k (e.g., a Poisson variable). Then the distribution
µ = L (XN ) of the random vector XN is νm−1-absolutely continuous with smoothness
parameter α(µ, νm−1) = 0.

7. Tail Events of the Renegar Number. In the present section we take the
analysis of Section 5 a step further and establish similar results for the Renegar num-
ber CR(A). Recall that, in contrast to the Goffin-Cheung-Cucker number CGCC(A),
the Renegar number CR(A) is not invariant under row scaling. Thus, the assumption
that A has unit row vectors is no longer justified. A natural extension of the frame-
work studied above is to consider random matrices A = DX, where X : Ω → IRn×m is
an absolutely continuous matrix with i.i.d. unit row vectors and smoothness parame-
ter α, and where D = Diag(R1, . . . , Rn) is a diagonal matrix whose diagonal elements
are i.i.d. absolutely continuous positive random variables independent of X.

Like in the case of CGCC(A), the tail decay of CR(A) depends on the smoothness
parameter α of X, but in addition the tails of Ri also play a similar role. We say
that the diagonal matrix D is absolutely continuous with tail exponents (β, γ) ∈ IR2

+
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if the law L (Ri) is absolutely continuous with respect to the Lebesgue measure on
IR++ := {x ∈ IR : x > 0} and furthermore,

P[Ri > t] = Õ
(
t−β
)
,

P[R−1
i > t] = Õ

(
t−γ
)
.

Example 4. If A has i.i.d. standard normal entries Aij ∼ N (0, 1), then the rows
of A are of the form Ai = RiXi, where Xi ∼ U (Sm−1) are i.i.d. uniform random
vectors on the unit sphere and R2

i ∼ χ2
m are i.i.d. chi-square distributed random

variables with m degrees of freedom. Since the density of this latter distribution is

f(t) =
t

m
2 −1e−

t
2

2
m
2 Γ(m/2)

,

one finds that we can take γ = m and β may be taken arbitrarily large.

Next, we present a result that will put us in a position to bound the tail decay
of Renegar’s condition number. We call f : IRk → IR non-increasing (respectively
non-decreasing) if whenever y ≤ z ∈ IRk (component-wise) implies f(y) ≥ f(z) (re-
spectively f(y) ≤ f(z)). The following lemma is a standard result. For a proof of
part i) see e.g. [12]. The proof of part ii) is completely analogous.

Lemma 7.1. Let Y = (Y1, . . . , Yk) be a random vector consisting of independent
random variables, and let f, g : IRk → IR be measurable functions. Then the following
hold true.

i) If f, g are either both non-increasing or both non-decreasing then

E[f(Y )g(Y )]) ≥ E[f(Y )]) · E[g(Y )].

ii) If f is non-increasing and g is nondecreasing or vice versa then

E[f(Y )g(Y )] ≤ E[f(Y )] · E[g(Y )].

Theorem 7.2. Let A = DX be a random matrix as defined above. Then

P[CR(A) > t] = Õ
(
t−min(α,β,γ)

)
.

Proof. Let ε > 0 and set ξε := min(α, β, γ) − ε. Let Z := maxi Ri

mini Ri
and X :=

[X1 . . . Xn]T. Because of the inequalities (3.1) and ‖A‖2 ≤ maxi ‖Ai‖2 ·
√

n, it suffices
to show that

P
[
Z · CGCC(X) > t

]
= O(t−ξε). (7.1)

By virtue of Theorem 5.1 there exists a constant cε such that for all t > 0,

P
[
CGCC(X) > t

]
≤ cε · t−ξε .
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Writing fZ for the density function of Z, we have

P
[
Z · CGCC(X) > t

]
=
∫ ∞

0

P
[
CGCC(X) >

t

s

]
· fZ(s)ds

≤
∫ ∞

0

cε ·
(

t

s

)−ξε

· fZ(s)ds

≤ cε · t−ξε

∫ ∞

0

sξε · fZ(s)ds

= cε · t−ξε · E
[
Zξε
]
,

In order to prove (7.1) it remains to establish that E
[
Zξε
]

is finite. Noting that
r 7→ (mini ri)−ξε and r 7→ (maxi ri)ξε are non-increasing respectively non-decreasing
functions on IRn, Lemma 7.1 ii) yields

E
[
Zξε
]
≤ E

[
(min

i
Ri)−ξε

]
· E
[
(max

i
Ri)ξε

]
.

But note that

P
[
max

i
Ri > t

]
=

n∑
k=1

(
n

k

)
· P [R1 > t]k ·

(
1− P[R1 > t]

)n−k ≤ c · t−β+ ε
2

for some c > 0. Therefore, we have

E
[
(max

i
Ri)ξε

]
=
∫ ∞

0

P
[
(max

i
Ri)ξε > t

]
dt

≤ cε

∫ ∞

0

t−
β− ε

2
ξε dt

< +∞.

Analogously, P
[
(mini Ri)−1 > t

]
= O

(
t−γ+ ε

2
)
, and E

[
(mini Ri)−ξε

]
< +∞. There-

fore, E
[
Zξε
]

< ∞ as required.

8. Tightness of Bounds. The upper bound in Theorem 5.1 already establishes
that if the random input A = [ X1 ... Xn ]T ∈ IRn×m of a random family of conic feasi-
bility problems has smoothness parameter α > 0, then the random running time RT
of several interior-point methods for this family of problems has exponential tail-decay
P[RT > t] < exp(−γt) for some γ > 0. This result was obtained through a simple
mechanism provided by Theorem 5.2 which allowed us to boost the corresponding re-
sult for the case where the problem input matrix A has rows that are i.i.d. uniformly
distributed on the sphere. However, the decay rates of Theorem 5.1 are not tight and
can be further improved at the expense of working a bit harder. In this section we
will show that when n ≥ m,

P [CGCC(A) > t] = Õ
(
t−min(1,2α)

)
,

and that there exist measures for which

P [CGCC(A) > t] = Ω
(
t−mα

)
.

12



We conjecture that the upper bound can be further improved to

P [CGCC(A) > t] = Õ
(
t−min(1,mα)

)
.

Let n ≥ m and denote Pm := {S ⊆ {1, . . . , n} : |S| = m}. For S ∈ Pm let
AS be the m × m matrix obtained by removing all rows from A with index not in
S. Since the probability models of A we study are all with i.i.d. νm−1-absolutely
continuous row vectors, AS is nonsingular with probability one, US := A−1

S 1 is well
defined, where 1 := [ 1 ... 1 ]T ∈ IRm. Proposition 4.2 and Lemmas 4.3 and 4.4 of [3]
show the inclusion of events

{CGCC > t} ⊆ {∃S ∈ Pm s.t. ‖US‖2 > t} . (8.1)

Since ASUS = 1, it is the case that 〈Xi, US〉 = 1 for all i ∈ S, and this implies

US =
∑
i∈S

Yi

〈Xi, Yi〉
,

where Yi is the unique unit vector in Span({Xj : j ∈ S \ {i}})⊥ that turns {Xj :
j ∈ S \ {i}} ∪ {Yi} into a positively oriented basis of IRm when ordered according to
increasing indices (this latter convention is only necessary to render Yi well defined,
i.e., to make a definite choice between Yi and −Yi). Hence, if CGCC(A) > t then there
must exist S ∈ Pm such that

m∑
i=1

∣∣∣∣ 1
〈Xi, Yi〉

∣∣∣∣ ≥ ‖US‖2 > t,

and then at least one of the terms on the left must exceed t/m. Using the fact that
the Xi are i.i.d., the previous discussion implies that

P[CGCC(A) > t] ≤ m

(
n

m

)
· P
[
|〈Y (X − 1, . . . , Xm−1), Xm〉| <

m

t

]
, (8.2)

where Y (X1, . . . , Xm−1) equals the vector Ym defined for S = {1, . . . ,m}.

Lemma 8.1. If Xi (i = 1, . . . ,m − 1) are i.i.d. random unit vectors in IRm

with νm−1-absolutely continuous distribution L (Xi) = µ of smoothness parameter
α = ανm−1(µ), then the distribution L (Y (X1, . . . , Xm−1)) is νm−1-absolutely contin-
uous with the same smoothness parameter value α.

Proof. This follows quite straightforwardly from Theorem 5.2: Let V1, . . . , Vm−1

be uniformly distributed on Sm−1, and note that then Y (V1, . . . , Vm−1) is also uni-
formly distributed on Sm−1. For any B-measurable W ⊆ Sm−1 and ε > 0 we have

P[Y (X1, . . . , Xm−1) ∈ W ] = P
[
(X1, . . . , Xm−1) ∈ Y −1(W )

]
= ⊗m−1µ

(
Y −1(W )

)
≤ cε · ⊗m−1νm−1

(
Y −1(W )

)α−ε

= cε · P
[
(V1, . . . , Vm−1) ∈ Y −1(W )

]α−ε

= cε · P [Y (V1, . . . , Vm−1) ∈ W ]α−ε

= cε · νm−1(W )α−ε,
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where cε is chosen as in Proposition 4.3 iii) applied to the measure ⊗m−1µ.

Proposition 8.2. Let X, Y be independent random vectors with νm−1-absolutely
continuous distributions on Sm−1, and such that the smoothness parameter takes the
same value α > 0 for both. Then P[|〈X, Y 〉| < r] = Õ(rmin(1,2α)).

Proof. To reduce the amount of notation required in the proof, we first show that
it suffices to establish the result for X, Y identically distributed. Let W0,i (i = 1, 2)
be independent copies of X, W1,i (i = 1, 2) independent copies of Y and Ni (i = 1, 2)
independent Bernoulli variables with parameter 1/2. Then Wi := WNi,i (i = 1, 2) are
i.i.d. random vectors with smoothness parameter α, and furthermore,

P [|〈X, Y 〉| < r] ≤ 2 P [|〈W1,W2〉| < r] ,

so that it suffices to show the right-hand side is Õ(rmin(1,2α)). In what follows we
will thus assume that X and Y are identically distributed and denote their common
distribution by µ. Let us first assume that α ≤ 1/2. For r > 0 let ρ(r) := 2 arcsin(r/2).
For a fixed r > 0 let Let x1, . . . , xN ∈ Sm−1 be chosen 1 so that

cap (xi, ρ(r/2)) ∩ cap (xj , ρ(r/2)) = ∅ (i 6= j), (8.3)

Sm−1 ⊆
⋃
i

cap (xi; ρ(r)) . (8.4)

Thus we can partition the sphere Sm−1 into disjoint sets C1, . . . , CN such that

cap (xi, ρ(r/2)) ⊆ Ci ⊆ cap (xi, ρ(r)) .

Since νm−1(cap(x, ρ)) = Im−2(ρ)/Im−2(π), there exist constants c1 < c2 such that for
all r ∈ (0, 1),

c1 · rm−1 ≤ νm−1 (cap(x, ρ(r))) ≤ c2 · rm−1.

Note that this gives that N = O(r−(m−1)). Next, we define an undirected graph G
with vertex set {1, . . . , N} and an edge ij ∈ E(G) if and only if |〈xi, xj〉| < 4r. We
remark that

P [|〈X, Y 〉| < r] ≤ P [There exists an edge ij ∈ E(G) such that X ∈ Ci, Y ∈ Cj ] .

To see this, note that if |〈X, Y 〉| < r holds and X ∈ Ci, Y ∈ Cj , then, using the
Cauchy-Schwartz inequality,

|〈xi, xj〉| = |〈(xi −X) + X, (xj − Y ) + Y 〉|
≤ |〈(xi −X), (xj − Y )〉|+ |〈(xi −X), Y 〉|+ |〈X, (xj − Y )〉|+ |〈X, Y 〉|
< r2 + 3r.

We can conclude that

P [|〈X, Y 〉| < r] ≤
∑

ij∈E(G)

pipj , (8.5)

1This can be achieved by iteratively adding points xi as long as (8.3) can be satisfied. Since
the area of Sm−1 is finite, this process must end after N < ∞ choices have been made. Criterion
(8.4) is now automatically satisfied, because for each x ∈ Sm−1 there exists y ∈ cap(x, ρ(r/2)) ∩
cap(xi, ρ(r/2)) for some i, and then ‖x − xi‖2 ≤ ‖x − y‖2 + ‖y − xi‖2 < r, showing that x ∈
cap(xi, ρ(r)).
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where pi := P[X ∈ Ci]. The formulas of Section 2 imply that for all y ∈ Sm−1,
νm−1({x : |〈x, y〉| < r}) = 1 − 2 · Im−2(arccos(r))/Im−2(π), so that there exist
constants 0 < d1 < d2 such that for all r ∈ (0, 1),

d1 · r ≤ νm−1 ({x : |〈x, y〉| < r}) = νm−1 ({x : |xm| ≤ r}) ≤ d2 · r.

Also observe that if ij ∈ E(G) then, by an inner product computation similar to the
one above, Cj ⊆ {x : |〈xi, x〉| < 5r}. It follows that the degree of any vertex in G is
bounded above by

D :=

⌊
5d2r

c1

(
r
2

)m−1

⌋
= Θ

(
r−(m−2)

)
.

Without loss of generality we may assume that the xi were ordered so that p1 ≥ p2 ≥
· · · ≥ pN . Let us write

Jk := {(k − 1)(D + 1) + 1, . . . , k(D + 1)} , (k = 1, . . . , bN/D + 1c) ,

JbN/(D+1)c+1 := {bN/(D + 1)c · (D + 1) + 1, . . . , N} ,

where the last index set is obviously empty if D + 1 divides N . Let us now apply the
following rule until exhaustion of candidate edges.

If ij ∈ E(G) for some i ∈ J1, j 6∈ J1, then there exists k ∈ J1 \ {i}
such that ik 6∈ E(G), for otherwise i would have degree ≥ D + 1.
Node k either has degree < D or it has a neighbour ` with ` /∈ J1. In
the first case, add the edge ik and remove ij from E(G). In the sec-
ond case, add ik and remove ij, lk, and note that 2pipk ≥ pipj +plpk.

After this process has finished it is still the case that the degree of none of the nodes of
the new graph exceeds D, and furthermore, nodes with indices in J1 are only joined to
nodes with indices in J1. Therefore, if we next apply the same procedure to the nodes
i ∈ J2, none of the edges incident to nodes in J1 will change again. After applying
the procedure to J2, . . . , JbN/(D+1)c+1, we end up with a graph G′ that satisfies∑

ij∈E(G)

pipj ≤ 2
∑

ij∈E(G′)

pipj ≤ 2
∑

l

∑
i,j∈Il

pipj <
∑

l

µ(Al)2, (8.6)

where Ak :=
⋃

i∈Jk
Ci. The Ak form a partition of the sphere Sm−1, and νm−1(Ak) ≤

(D + 1)c2r
m−1. Hence, setting γ := 5c2d2c

−1
1 2m−1 + 1 we find that for all 0 < r < 1,

νm−1(Ak) ≤ γ · r.

Let ε > 0, and set

L` :=
{

k : µ(Ak) ∈ [rα+`ε, rα+(`−1)ε)
}

, (` = 0, . . . , d(1− α)/εe) ,

Ld 1−α
ε e+1 := {k : µ(Ak) ≤ r} .

Note that when r is small enough then every Ak is contained in some L`. Now, for
` ≤ d(1− α)/εe we have,

|L`| · rα+`ε ≤ µ

( ⋃
k∈L`

Ak

)
≤ cε · (|L`| · γ · r)α−ε

,
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giving |L`| = O(r−
(`+1)ε

(1−α+ε) ). Since α ≤ 1/2 by assumption, we find |L`| = O(r−2(`+1)ε).
On the other hand, ∣∣∣Ld 1−α

ε e+1

∣∣∣ ≤ ⌈N

D

⌉
= O

(
r−1
)
,

as N = O(r−(m−1)) and D = Θ(r−(m−2)). Combining (8.5) and (8.6) with the above
estimates we find

P [|〈X, Y 〉| < r] ≤
d 1−α

ε e∑
`=0

|L`| · r2(α+(`−1)ε) +
∣∣∣Ld 1−α

ε e+1

∣∣∣ · r2 = O
(
r2α−4ε

)
.

This shows that P[|〈X, Y 〉| < r] = Õ(r2α), provided that α ≤ 1/2. Finally, notice that
in the computations so far the only facts used about α are the upper bounds provided
by parts iii) and iv) of Proposition 4.3, which also hold if we replace α by α′ < α.
Hence, if α > 1/2 the computations still carry through using α′ = 1/2 instead, and
we get P[|〈X, Y 〉| < r] = Õ(r) in this case.

Corollary 8.3. If A is a random n × m matrix with smoothness parameter
α > 0 and m ≥ n, then

P [CGCC(A) > t] = Õ
(
t−min(1,2α)

)
.

Proof. This follows immediately from inequality (8.2), Lemma 8.1 and Proposi-
tion 8.2.

It is now natural to ask whether the upper bound on P[CGCC(A) > t] can be
further improved. While we suspect that there is indeed room for further improve-
ments when m > 2, Theorem 8.6 below establishes that in the case m = 2 the
exponent of Theorem 8.3 cannot be improved for general input distributions with
smoothness parameter α. Furthermore, the same result establishes that in general
(for arbitrary m and arbitrary input distributions with smoothness parameter α > 0)
P[CGCC(A) > t] does not decay faster than at an algebraic rate. Finally, a variant
of Theorem 8.6 will be presented in Section 9 to show that for absolutely continuous
input distributions with α = 0 the tail probabilities P[CGCC(A) > t] do not decay at
an algebraic rate in general. Before we can present these results, we need two lemmas.

Lemma 8.4. Let X be a random variable on IR with cumulative distribution func-
tion FX and let Y be a random variable on IR with cumulative distribution function
FY (x) = FX(x)α with 0 < α ≤ 1. Then

i) P[Y ∈ B] ≤ P[X ∈ B]α holds true for all Borel-measurable B ⊆ IR and
αL (X)(L (Y )) = α.

ii) If X = |Z|, where Z is a symmetric random variable on IR, then P[Y ∈ B] ≤
2α ·P[Z ∈ B]α holds and αL (Z)(L (Y )) = α. Furthermore, for B of the form
B = [0, c] we have P[Y ∈ B] = 2α · P[Z ∈ B]α.

Proof. First note that FY in fact determines a unique probability distribution on
IR. The case α = 1 is trivial, so we may assume that α ∈ (0, 1). We notice that

P[X ∈ B] = P[FX(X) ∈ FX(B)] = P[U ∈ FX(B)],
16



where U is a random variable with uniform distribution on [0, 1], and P[Y ∈ B] =
P[U ∈ FY (B)]. Setting C := FX(B) and φ(x) := xα, we find P[X ∈ B] =

∫
C

1dx and

P[Y ∈ B] =
∫

φ[C]

1dx =
∫

C

φ′(y)dy =
∫

C

αyα−1dy,

where we used the substitution y = φ−1(x). Now note that of all the sets C ⊆ [0, 1]
of Lebesgue measure p := P[X ∈ B] the set [0, p] maximises

∫
C

αyα−1dy (using that
[0, p] is of the form {y : αyα−1 ≥ c}, this can be shown via an argument similar to
the proof of Lemma 11.1 in the appendix). Therefore, P[Y ∈ B] ≤ pα, as required in
part i). Furthermore, the above argument shows that equality is achieved for sets of
the form B = F−1

X ([0, p]) = (−∞, c]. Part ii) is an immediate extension of the same
argument.

Lemma 8.5. Let V := [ V1 ... Vm−1 ] be a random vector with uniform distribution
on Sm−2 and Z a random variable independent of V and identically distributed as the
m-th component Um of a random vector U with uniform distribution on Sm−1. Finally,
let W be a random variable independent of V and such that P[W ≤ z] = P[|Z| ≤ z]α

for some α ∈ (0, 1). Then µ := L ([√1−W 2V W ]) is a νm−1-absolutely continuous
measure on Sm−1 with smoothness parameter ανm−1(µ) = α.

Proof. Firstly, note that L ([√1−Z2·V Z ]) = L (U) = νm−1. Lemma 8.4 shows
that αL (|Z|)(L (W )) = α, and by Theorem 5.2 this implies

αL ([ V Z ])

(
L
([

V W
]))

= min
(
1, αL (Z) (L (W ))

)
= α.

It follows that for all B-measurable B ⊆ Sm−1 and ε > 0,

µ(B) = P
[[√

1−W 2 · V W
]
∈ B

]
= P

[[
V W

]
∈ B′]

≤ cε · P
[[

V Z
]
∈ B′]α−ε

= cε · P
[[√

1− Z2 · V Z
]
∈ B

]α−ε

= cε · νm−1(B)α−ε,

where cε is chosen as in Proposition 4.3 iii) and

B′ :=
{
(x, z) ∈ Sm−2×[−1, 1] :

[√
1− z2 · x z

]
∈ B

}
.

Thus we see that ανm−1(µ) = α as claimed.

Theorem 8.6. For any α ∈ (0, 1) there exists a νm−1-absolutely continuous
measure µ on Sm−1 with smoothness parameter α and such that

P [CGCC(A) > t] = Ω
(
t−mα

)
.

Proof. Let p1, . . . , pm ∈ Sm−2 and c > 0 be chosen such that for all x ∈ Sm−2

there is an i such that 〈x, pi〉 ≥ c. 2 Let Vi and Wi (i = 1, . . . ,m) be i.i.d. copies of

2It is easily checked that pi = ei (i = 1, . . . , m− 1), pm = −(e1 + · · ·+ em−1)/
√

m− 1, and c =
((m−2)

√
m− 1+m−1)−1 is an example of a valid choice: Suppose that x = [ x1 ... xm−1 ] ∈ Sm−2

satisfies 〈x, pi〉 < c for all i. Then, since ‖x‖2 = 1, there exists at least one i with |xi| ≥ 1/
√

m− 1
and thus xi < −1/

√
m− 1 < −c. But then 〈x, pm〉 ≥ (1/

√
m− 1− (m− 2)c)/

√
m− 1 = c.
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the random vector V and the random variable W respectively that were defined in
Lemma 8.5, and let

Xi =
[√

1−W 2
i · Vi Wi

]
for all i. For t > 0 let us consider the event

Bt :=
{
‖Vi − pi‖2 <

c

2
, Wi ≤

1
t

(i = 1, . . . ,m)
}

,

and let c̃ := (Im−3(2 arcsin(c/4))/Im−3(π))m, where Ik are the functions defined in
Section 2. We remark that P[|Z| ≤ t−1] = Ω(t−1). 3 By Lemma 8.4 ii) we therefore
have

P [Bt] = c̃ · P
[
W ≤ t−1

]m
= c̃ · P

[
|Z| ≤ t−1

]mα
= Ω

(
t−mα

)
.

To prove our claim, it thus suffices to show that Bt ⊆ {C (A) ≥ t}. By the definition
of C (A),

C (A)−1 =
∣∣∣∣cos

(
sup

x∈Sm−1
min

i
arccos〈Xi, x〉

)∣∣∣∣ = ∣∣∣∣ inf
x∈Sm−1

max
i
〈Xi, x〉

∣∣∣∣ ,
where we used that arccos and cos are decreasing on [0, π]. Writing x = [√1−z2·u z ],
we have

〈Xi, x〉 =
√

(1−W 2
i )(1− z2) · 〈Vi, u〉+ Wi · z

and

inf
x∈Sm−1

max
i
〈Xi, x〉 ≤ max

i
〈Xi,−em〉 = max

i
−Wi ≤ 0.

By construction of the pi there exists an index i such that 〈pi, u〉 ≥ c, and hence, by
the Cauchy-Schwartz inequality, 〈Vi, u〉 > c/2 when Bt occurs, and in that case we
also have

〈Xi, x〉 >
√

(1−W 2
i )(1− z2) · c

2
+ Wi · z ≥ −Wi ≥ −t−1,

and consequently,

0 ≥ inf
x∈Sm−1

max
i
〈Xi, x〉 ≥ −t−1.

This shows that the occurrence of Bt implies C (A) ≥ t, as required.

We conclude this section with a result that implies that in general there does not
exists an upper bound on P[C (A) > t] better than Õ(t−min(1,mα). We conjecture that
−min(1,mα) is the exponent that corresponds to tight bounds for general random
matrices A with smoothness parameter α.

Proposition 8.7. For α > m−1 there exists a distribution µ with ανm−1(µ) = α
and such that

P [CGCC(A) > t] = Ω(t−1).

3In fact, P[|Z| ≤ t−1] = 1− 2 · Im−2(arccos(1/t))/Im−2(π).
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Proof. In [3] it was shown that in the case where the rows of A are i.i.d. uniformly
distributed on Sm−1, there exists a lower bound P[C (A) > t] = Ω(t−1). Let X0

i

(i = 1, . . . , n) be i.i.d. random vectors with distribution νm−1, let X1
i (i = 1, . . . , n)

be i.i.d. random vectors with distribution µ on Sm−1 with ανm−1(µ) = α, and let
Ni (i = 1, . . . , n) be independent Bernoulli variables with parameter 1/2. Then the
random matrix

Ã =
[
XN1

1 . . . XNn
n

]T
also has smoothness parameter α (as can be shown using an argument similar to
Example 9), and

P
[
CGCC(Ã) > t

]
≥ 2−n · P [CGCC(A) > t] = Ω

(
t−1
)
.

9. Tail Decay for the Case α = 0. In the case where A has rows with νm−1-
absolutely continuous distribution but not uniformly so, i.e., when α = 0, the tail
decay of CGCC(A) is subalgebraic in general. In other words, although

lim
t→∞

P[C (A) > t] = 0,

there does not exist an exponent γ > 0 such that P[C (A) > t] = O(t−γ). This is
established by the following result.

Theorem 9.1. There exists a random n ×m matrix with i.i.d. νm−1-absolutely
continuous rows Xi ∼ µ and smoothness parameter ανm−1(µ) = 0 such that

P[C (A) > t] = Ω(t−γ)

for all γ > 0.

Proof. We repeat the construction of Theorem 8.6 with a small modification. Let
Z be as in Lemma 8.5, and for all j ∈ IN let Wj be defined as in Lemma 8.5 when
α = j−1. For (i = 1, . . . , n) and j ∈ IN let Wi,j be i.i.d. copies of Wj , let Vi,j be i.i.d.
copies of the random vector V defined in Lemma 8.5, and let

Xi,j =
[√

1−W 2
i,j · Vi,j Wi,j

]
.

Finally, let p1, . . . , pm ∈ Sm−1 and c > 0 be chosen as in the proof of Theorem 8.6,
let Ni (i = 1, . . . , n) be i.i.d. Poisson variables with parameter 1 and let

A =
[
X1,N1 . . . Xn,Nn

]T
.

For t > 0 consider the events

Bt =
{
‖Vi,Ni − pi‖2 <

c

2
, Wi,Ni ≤

1
t

(i = 1, . . . ,m)
}

,

Bt,j = Bt ∩ {Ni = j (i = 1, . . . , n)} ,
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and let c̃ be as in the proof of Theorem 8.6. Then Bt,j ⊂ Bt ⊆ {C (A) ≥ t}, where
the second inclusion can be shown exactly like in the proof of Theorem 8.6, and

P [Bt,j ] = c̃

(
e−1

j!

)m

· P
[
Wj ≤ t−1

]m
= c̃

(
e−1

j!

)m

· P
[
|Z| ≤ t−1

]m
j

= Ω
(
t−

m
j

)
.

Since this holds for all j, the claim of the theorem is established.

10. Conclusions. This paper shows that the distribution tails of the Goffin-
Cheung-Cucker condition number and the Renegar condition number decays alge-
braically for a very large class of random matrices A. Furthermore, the rate of the
tail decay is governed by the smoothness parameter of A, a simple and natural quan-
tity defined by the distribution of A. Our findings explain why extremely long running
times in ellipsoid and interior-point methods for the conic feasibility problem are ex-
ponentially rare on random input of the discussed kind, that is, CFP is “empirically”
strongly polynomial for a large class of random input.
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11. Appendix. In this appendix we fill in the missing proofs of Proposition 4.4
and of Examples 1–3.

Proof of Proposition 4.4
Proof. Let Bn := {f > n}, where f = dµ/dν, and set

β := lim inf
n→∞

ln(µ(Bn))
ln(ν(Bn))

.

By definition of α we have β ≥ α. Now let δ > 0 be an arbitrary small number and
A ∈ B an arbitrary Borel-measurable set such that 0 < ν(A) < δ. Then there exists
n ∈ IN such that ν(Bn+1) ≤ ν(A) < ν(Bn). In the case where µ(Bn+1) ≥ µ(A\Bn+1),
we have

ln(µ(A))
ln(ν(A))

≥ ln(2µ(Bn+1))
ln(ν(A))

≥ ln(2µ(Bn+1))
ln(ν(Bn+1))

=
ln(µ(Bn+1)) + ln(2)

ln(ν(Bn+1))
. (11.1)

On the other hand, in the case where µ(Bn+1) < µ(A \Bn+1) we have

nu(Bn+1) < ν(A \Bn+1),

since f |Bn+1 > f |Bn\Bn+1 , and hence,

ln(µ(A))
ln(ν(A))

≥ ln(2µ(A \Bn+1))
ln(ν(A))

≥ ln(2µ(A \Bn+1))
ln(ν(A \Bn+1))

≥ ln(2(n + 1)ν(A \Bn+1))
ln(ν(A \Bn+1))

≥ ln(2(n + 1)ν(Bn))
ln(ν(Bn))

. (11.2)

But note that

(n + 1)ν(Bn) ≤ n + 1
n

µ(Bn \Bn+1) + µ(Bn+1) ≤ 2µ(Bn),

so that (11.2) implies

ln(µ(A))
ln(ν(A))

≥ ln(4µ(Bn))
ln(ν(Bn))

=
ln(µ(Bn)) + ln(4)

ln(ν(Bn))
. (11.3)

Inequalities (11.1) and (11.3) show

ln(µ(A))
ln(ν(A))

≥ min
(

ln(µ(Bn+1)) + ln(2)
ln(ν(Bn+1))

,
ln(µ(Bn)) + ln(4)

ln(ν(Bn))

)
.

Therefore, if inf(δ) is as in the proof of Theorem 4.2, we have

α = lim
δ→0

inf(δ) ≥ lim inf
n→∞

ln(µ(Bn))
ln(ν(Bn))

= β.

In the remainder of this section, let η denote the standard Lebesgue measure on
IRk and B the standard Borel σ-algebra of IRk completed with the subsets of Borel
sets of ν-measure zero. The dimension of the space is usually clear from the context,
so we drop the dependence on k in the notation. We write Bm−1 for the standard
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Borel σ-algebra and νm−1 for the uniform probability measure on Sm−1. Also recall
the functions Ik(ρ) introduced in Section 2 and the associated volume and area for-
mulae.

Proof of the Claims of Example 1
Proof. For all B ∈ Bm−1 we have

µ(B) =
∫

B

f(x)νm−1(dx) ≤ M

∫
B

νm−1(dx) = Mνm−1(B).

Therefore, lnµ(B) ≤ lnM + ln νm−1(B). If νm−1(B) < 1 this implies

lnµ(B)
ln νm−1(B)

≥ lnM

ln νm−1(B)
+ 1,

and hence,

α = lim
δ→0

inf
{

lnµ(B)
ln νm−1(B)

: B ∈ Bm−1, 0 < νm−1(B) ≤ δ

}
≥ 1.

It was also established in Theorem 4.2 that α ≤ 1, so that α = 1.

Lemma 11.1. Let ς, δ > 0, k ∈ IN and r =
(
2
∏k

j=2 Ij(π)/δ
)−1/k. Then the open

ball Br = {y ∈ IRk : ‖y‖ < r} is a global maximiser of the optimization problem

max
{∫

B

‖x‖−ςη(dx) : B ∈ B, η(B) ≤ δ

}
. (11.4)

Proof. First, let us observe that Br ∈ B and that (2.2) shows η(Br) = δ. Hence,
the set Br is feasible for (11.4). Moreover, for all feasible B ∈ B,∫

B

‖y‖−ςη(dy) =
∫

B∩Br

‖y‖−ςη(dy) +
∫

B\Br

‖y‖−ςη(dy)

≤
∫

B∩Br

‖y‖−ςη(dy) + r−ςη(B \ Br)

≤
∫

B∩Br

‖y‖−ςη(dy) + r−ςη(Br \B) (11.5)

≤
∫

B∩Br

‖y‖−ςη(dy) +
∫

Br \B
‖y‖−ςη(dy)

=
∫

Br

‖y‖−ςη(dy),

where the inequality

η(B ∩ Br) + η(B \ Br) = η(B) ≤ δ = η(Br) = η(B ∩ Br) + η(Br \B)

was used in (11.5).

Lemma 11.2. Let C1, C2 > 0 and 0 < ι < 1. Then for δ < (ιC2/C1)1/(1−ι),
x = 0 maximises the function h : x 7→ C1x + C2(δ − x)ι over the interval [0, δ].
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Proof. We have

h′(x) = C1 − C2ι(δ − x)ι−1, and

h′′(x) = C2ι(ι− 1)(δ − x)ι−2 < 0 ∀x < δ.

Hence, h is strictly concave on [0, δ] and has a unique maximiser at

x∗ = δ − (C1/(ιC2))1/(ι−1).

Note that x∗ becomes negative when δ < (ιC2/C1)1/(1−ι), and then we have h′(x) < 0
for all x ∈ [0, δ]. Therefore, x = 0 maximises h on [0, δ].

Proof of the Claims of Example 2
Proof. Let ϕ : D → B1(IRm−1) and a0 be chosen as in the remarks preceeding

Example 2. Let φ = ϕ−1 and D1/2 = φ(B1/2(IRm−1)). We regard Sm−1 as embedded
in IRm and φ as a function from IRm−1 to IRm. For y ∈ B1(IRm−1) we use the abuse
of notation

|detφ′(y)| :=
∣∣det

[
φ′(y) v

]∣∣ ,
where v is a unit vector in Spanφ′(y)⊥ Likewise, we use the abuse of notation
|detϕ′(x)| := |det φ′(ϕ(x))|−1. Since g is continuous on the compact set Sm−1 \D1/2,
it takes a maximum G1 there. Let B ∈ Bm−1, and set δ := νm−1(B). We have

µ(B) =
∫

B

dµ

dνm−1
(x)νm−1(dx)

≤
∫

B

g(x)νm−1(dx)

=
∫

B\D1/2

g(x)νm−1(dx) +
∫

B∩D1/2

g(x)νm−1(dx)

≤ G1 · νm−1(B \D1/2) +
∫

ϕ(B∩D1/2)

g
(
φ(y)

)
· |detφ′(y)|
Am−1(Sm−1)

· η(dy). (11.6)

Since y → ‖y‖ςg
(
φ(y)

)
is continuous on the compact closure of B1/2(IRm−1) when

prolonged by continuity at the origin, and since φ ∈ C1, the quantities

supDet := sup
{
|det φ′(y)| : y ∈ B1/2(IRm−1)

}
,

supdet := sup
{
|det φ′(y)| : y ∈ B1/2(IRm−1)

}
,

M := sup
{
‖y‖ςg

(
φ(y)

)
: y ∈ B1/2(IRm−1)

}
are all well-defined and finite, and we have a0 ≤ M . Let ω := νm−1(B \D1/2). Then

η
(
ϕ(B ∩D1/2)

)
=
∫

B∩D1/2

|detϕ′(x)| ·Am−1(Sm−1) · νm−1(dx)

≤ Am−1(Sm−1) · νm−1(B ∩D1/2) · sup
x∈B∩D1/2

|det ϕ′(x)|

≤ δ − ω

supdet
·Am−1(Sm−1).
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This implies that the radius of the ball Bρ(IRm−1) with volume η
(
ϕ(B∩D1/2)

)
satisfies

ρ =

(
η(ϕ(B ∩D1/2))

2
∏m−1

j=2 Ij(π)

) 1
m−1

≤
(

π · (δ − ω) · I1(π)
supdet · Im−1(π)

) 1
m−1

, (11.7)

and then Lemma 11.1 shows∫
ϕ(B∩D1/2)

g
(
φ(y)

)
· |detφ′(y)|
Am−1(Sm−1)

· η(dy)

≤ supDet ·M
Am−1(Sm−1)

·
∫

ϕ(B∩D1/2)

‖y‖−ςη(dy)

≤ supDet ·M
Am−1(Sm−1)

·
∫

Bρ

‖y‖−ςη(dy)

=
supDet ·M
Am−1(Sm−1)

·Am−2(Sm−2) ·
∫ ρ

0

rm−2−ςdr

=
supDet ·M

(m− 1− ς) · Im−2(π)
· ρm−1−ς

(11.7)

≤ G2 · (δ − ω)1−
ς

m−1 , (11.8)

where

G2 :=
supDet ·M

(m− 1− ς) · Im−2(π)
·
(

π · I1(π)
supdet · Im−1(π)

)1− ς
m−1

.

Substituting (11.8) into (11.6), we find

µ(B) ≤ G1 · ω + G2 · (δ − ω)1−
ς

m−1

and by Lemma 11.2 this implies

µ(B) ≤ G2 · δ1− ς
m−1

for δ � 1. Taking logarithms on both sides of this inequality, we obtain

lnµ(B)
ln δ

≥ lnG2

ln δ
+ 1− ς

(m− 1)
,

and hence,

lim
δ→0

inf
{

lnµ(B)
ln νm−1(B)

: νm−1(B) ≤ δ,B ∈ B

}
≥ 1− ς

m− 1
.

This establishes that the claims of part i). To prove part ii), note that ς was chosen so
that

∫
Sm−1 g(x)νm−1(dx) < +∞. Therefore, µ is a well-defined probability measure

on Sm−1. Moreover, it follows from part i) that its smoothness parameter satisfies
α ≥ 1 − ς/(m − 1). It only remains to show that α ≤ 1 − ς/(m − 1). For all ε > 0
there exists a radius ρε > 0 such that for all y ∈ Bρε

,∣∣∣|det φ′(y)| − |detφ′(0)|
∣∣∣ < ε,∣∣∣‖y‖ςg(φ(y))− a0

∣∣∣ < ε.
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Thus, on the one hand we have

νm−1

(
φ(Bρε

)
)

=
∫

Bρε

|detφ′(y)|
Am−1(Sm−1)

· η(dy) ≤ η(Bρε
) · |detφ′(0)|+ ε

Am−1(Sm−1)
, (11.9)

and on the other hand,

µ
(
φ(Bρε

)
)
≥

(
|detφ′(0)| − ε

)
·
∫
Bρε

g(φ(y))η(dy)

Am−1(Sm−1) ·
∫
Sm−1 g(x)νm−1(dx)

≥

(
|detφ′(0)| − ε

)
· (a0 − ε) ·

∫
Bρε

‖y‖−ςη(dy)

Am−1(Sm−1) ·
∫
Sm−1 g(x)νm−1(dx)

=

(
|detφ′(0)| − ε

)
· (a0 − ε) · ρm−1−ς

ε

Im−2(π) ·
∫
Sm−1 g(x)νm−1(dx) · (m− 1− ς)

(2.2)
=

(
|detφ′(0)| − ε

)
(a0 − ε) · η(Bρε)

1− ς
m−1

(m− 1− ς)Im−2(π)
∫
Sm−1 g(x)νm−1(dx) ·

(
2
∏m−1

j=2 Ij(π)
)1− ς

m−1

(11.9)

≥ G3 · νm−1

(
φ(Bρε)

)m−1−ς
m−1 , (11.10)

where

G3 =
(|det φ′(0)| − ε) · (a0 − ε)

(m− 1− ς)Im−2(π)
∫
Sm−1 g(x)νm−1(dx)

·
(

π · I1(π)
Im−1(π) · (|det φ′(0)|+ ε)

)1− ς
m−1

.

Taking logarithms on both sides of (11.10) and dividing by ln νm−1(φ(Bρε
)), we obtain

lnµ
(
φ(Bρε

)
)

ln νm−1

(
φ(Bρε

)
) ≤ lnG3

ln νm−1

(
φ(Bρε

)
) + 1− ς

m− 1
.

Letting ε → 0, this implies that α ≤ 1− ς/(m− 1), as claimed.

Proof of the Claims of Example 3
Proof. For B ∈ Bm−1 we have

µ(B) =
∑

k

P[N = k] · P
[
XN ∈ B‖N = k

]
=
∑

k

P[N = k] · µk(B).

If B is a νm−1-nullsets, it follows from this formula that µ(B) = 0. Thus, µ is
νm−1– absolutely continuous. Proposition 4.3 ii) implies that for any ε, δ > 0 there
exists Bε,δ ∈ Bm−1 such that νm−1(Bε,δ) ∈ (0, δ) and

lnµdε−1e(Bε,δ)
ln νm−1(Bε,δ)

≤ 2ε.

Since µ(Bε,δ) ≥ P[N = dε−1e] · µdε−1e(Bε,δ), this implies that for

δ ≤ exp
(

ln P[N = dε−1e]
ε

)
we have

lnµ(Bε,δ)

ln νm−1(B
[ε]
δ )

≤ 2ε +
lnP

[
N = dε−1e

]
ln νm−1(Bε,δ)

≤ 3ε.

Therefore, alphaνm−1(µ) ≤ 3ε, and the claim follows by letting ε → 0.
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