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ABSTRACT

For general constraint systems in Banach spaces, we present the directional stability theorem
based on the appropriate generalization of directional regularity condition, suggested earlier
in [1]. This theorem contains Robinson's stability theorem but does not reduce to it. Further-
more, we develop the related concept of directional metric regularity which is stable subject
to small Lipschitzian perturbations of the constraint mapping, and which is equivalent to
directional regularity for su�ciently smooth mappings. Finally, we discuss some applications
in sensitivity theory.
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1 Introduction. Directional Regularity
Let Σ be a topological space, X and Y be Banach spaces, and Q be a �xed closed set in Y .
Consider a smooth mapping F : Σ × X → Y (our smoothness hypotheses will be speci�ed
below), and set

D(σ) = {x ∈ X | F (σ, x) ∈ Q} (1.1)
with σ ∈ Σ playing the role of a parameter. For a given (base) parameter value σ0 ∈ Σ,
�x x0 ∈ D(σ0). In this paper we are concerned with the following question: for which
(σ, x) ∈ Σ×X close to (σ0, x0), and under which assumptions dist(x, D(σ)) can be estimated
from above via the �residual� of constraints in (1.1), that is, via dist(F (σ, x), Q)? Here
dist(z, S) = infs∈S ‖z − s‖ stands for the distance from a point z to a set S.

The answer to this question is well-known provided Q is convex and the so-called Robin-
son's constraint quali�cation (CQ) is satis�ed at x0 for the mapping F (σ0, ·), that is,

0 ∈ int
(

F (σ0, x0) + im
∂F

∂x
(σ0, x0)−Q

)
, (1.2)

where intS is the interior of a set S, and imΛ is the range (image space) of a linear operator
Λ. According to Robinson's stability theorem [21] (see also [3, Theorem 2.87]), under these
assumptions there exists a constant c > 0 such that the estimate

dist(x, D(σ)) ≤ c dist(F (σ, x), Q) (1.3)

holds for all (σ, x) ∈ Σ×X close enough to (σ0, x0).
In its turn, estimate (1.3) serves as a motivation for the very important concept of metric

regularity. Apparently, the term �metric regularity� appeared for the �rst time in [4] but the
concept dates back to earlier works [14, 20, 10] (or even to classical works [15, 12]; see also
[6, 5, 19]), and it �nds multiple applications in modern variational analysis. Speci�cally, the
mapping F : X → Y is said to be metrically regular at x0 ∈ F−1(Q) with respect to Q if
there exists a constant c > 0 such that the estimate

dist(x, F−1(Q + y)) ≤ cdist(F (x)− y, Q) (1.4)

holds for all (x, y) ∈ X × Y close enough to (x0, 0). Note that (1.4) is nothing else but the
estimate (1.3) for F (σ, x) = F (x) − σ and σ = y, i.e., for the special parametrization of the
mapping F in question (the �right-hand side� perturbations). Thus, by Robinson's stability
theorem, if Q is convex then Robinson's CQ

0 ∈ int(F (x0) + imF ′(x0)−Q)

implies metric regularity of F at x0 with respect to Q. Moreover, as is well-known (see, e.g.,
[3, Proposition 2.89]), under the appropriate smoothness hypothesis, the converse implication
is true as well, and thus, metric regularity and Robinson's CQ are actually equivalent.

For more recent developments and extensions of the metric regularity theory see, e.g.,
[17, 22, 13, 18, 16] and references therein.
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In particular, if Robinson's CQ does not hold, one cannot expect a smooth mapping to be
metrically regular. Accordingly, for a parametric mapping F , estimate (1.3) for all (σ, x) close
enough to (σ0, x0) cannot be guaranteed if (1.2) does not hold. However, we demonstrate
below that under the regularity condition weaker than (1.2), estimate (1.3) is still valid but
possibly not for all (σ, x) in a neighborhood of (σ0, x0): the set of appropriate (σ, x) will be
speci�ed. To this end, we give the following

De�nition 1.1 The mapping F (σ0, ·) : X → Y is regular at x0 ∈ D(σ0) in a direction ȳ ∈ Y
if

0 ∈ int
(

F (σ0, x0) + im
∂F

∂x
(σ0, x0)− cone{ȳ} −Q

)
, (1.5)

where coneS stands for the conic hull of a set S.

Note that for ȳ = 0, condition (1.5) reduces to Robinson's CQ (1.2). Moreover, if the latter
is satis�ed, the directional regularity condition (1.5) holds in any direction ȳ ∈ Y , including
ȳ = 0.

Condition (1.5) and the corresponding directional stability result were �rst suggested in
[1] for the case of �nite-dimensional Y . However, the estimate obtained in [1, Theorem 4.1]
is somewhat weaker than (1.3). This is a consequence of the general framework adopted
in [1]. Speci�cally, the authors �rst consider the case of equality constraints and direct set
constraints with a closed convex set P , and prove the directional stability theorem with the
estimate to the solution set only from points in P . Then they reduce (1.1) to this setting. On
the other hand, the proof of directional stability theorem in [1] is very concise and clear, and
in particular, it does not appeal to any set-valued analysis. At the same time, the assumption
dimY < ∞ cannot be dropped in that proof (and hence, in all the results obtained in [1])
because the argument there employs (completely �nite-dimensional) Brouwer's �xed point
theorem. (We note, however, that in [1, Theorem 4.1], X can actually be just a normed linear
space, not necessarily complete.)

In Section 2, we prove the directional stability theorem (Theorem 2.1) under the same
set of assumptions as in [1], but with the resulting estimate of the �proper� form (1.3), and
for a (possibly in�nite-dimensional) Banach space Y . In particular, Theorem 2.1 contains
Robinson's stability theorem but does not reduce to it, in general.

Furthermore, in Section 3, for a nonparametric mapping, we develop the directional metric
regularity concept suggested by Theorem 2.1. In Theorem 3.1 we demonstrate that this
property is stable subject to small Lipschitzian perturbations of F . This result combined
with Theorem 2.1 implies the equivalence of directional regularity and directional metric
regularity for su�ciently smooth mappings.

Finally, in Section 4, we demonstrate that Theorem 2.1 can be used in order to directly
obtain various stability results, widely used in sensitivity analysis [3]. Speci�cally, assuming
that Σ is a normed linear space, we consider the case when for a given direction d ∈ Σ it holds
that

0 ∈ int
(

F (σ0, x0) + im
∂F

∂x
(σ0, x0) + cone

{
∂F

∂σ
(σ0, x0)d

}
−Q

)
. (1.6)
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Note that (1.6) is a particular case of (1.5) for a speci�c ȳ, namely for ȳ = −∂F
∂σ (σ0, x0)d. On

the other hand, (1.5) can be interpreted as (1.6) with F replaced by F (σ, y, x) = F (σ, x)−y,
where y ∈ Y is regarded as an additional parameter, and with d = (0, ȳ) ∈ Σ× Y .

In the context of mathematical programming problems, (1.6) is known as Gollan's condi-
tion [11]. It was extended to the general case in [2] (see also [3, Theorem 4.9]). Moreover,
in parametric optimization, this condition (which is a particular case of (1.5)) is commonly
known as the directional regularity condition. Taking into account the relations between the
two conditions discussed above, the authors prefer to use the same name for the property
stated in De�nition 1.1. Note, however, that unlike (1.6), (1.5) does not depend on a speci�c
parametrization at all: it is entirely a property of the unperturbed constraints. This makes
our directional regularity particulary useful for uni�cation of some diverse developments, like
those based on Robinson's CQ and on customary directional regularity (1.6).

2 Directional Stability Theorem
In the sequel, we shall need some equivalent formulations of the directional regularity condition
introduced in De�nition 1.1.

Proposition 2.1 Let Q be closed and convex.
Then condition (1.5) is equivalent to either of the following three conditions:

cone{ȳ} ∩ int
(

F (σ0, x0) + im
∂F

∂x
(σ0, x0)−Q

)
6= ∅, (2.1)

ȳ ∈ int
(

im
∂F

∂x
(σ0, x0)−RQ(F (σ0, x0))

)
, (2.2)

and
im

∂F

∂x
(σ0, x0)− cone{ȳ} −RQ(F (σ0, x0)) = Y, (2.3)

where RS(z) = cone(S − z) stands for the radial cone to a set S at a point z ∈ S.

Note that condition (2.1) can be expressed in the following form: there exists θ ≥ 0 such
that

θȳ ∈ int
(

F (σ0, x0) + im
∂F

∂x
(σ0, x0)−Q

)
. (2.4)

Proof. (1.5) ⇒ (2.1). The proof of this implication is almost identical to that of the
corresponding assertion in [3, Theorem 4.9] (see the argument showing that (4.12) implies
(4.13)). De�ne the multifunction Ψ : X ×R → 2Y ,

Ψ(x, θ) =

{
F (σ0, x0) + ∂F

∂x (σ0, x0)x− θȳ −Q if θ ≥ 0,
∅ if θ = 0.

(2.5)

Evidently, Ψ is a closed convex multifunction (that is, graphΨ is a closed convex set; see,
e.g., [3, p. 55]), and

Ψ(X ×R) = F (σ0, x0) + im
∂F

∂x
(σ0, x0)− cone{ȳ} −Q,
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and thus, (1.5) means that 0 ∈ intΨ(X ×R). Furthermore, 0 ∈ Ψ(0, 0), and hence, by the
generalized open mapping theorem [3, Theorem 2.70] and by (2.5), 0 ∈ intΨ(X× [0, 1]). This
means that there exists δ > 0 such that

Bδ(0) ⊂ Ψ(X × [0, 1])

= F (σ0, x0) + im
∂F

∂x
(σ0, x0)− {θȳ | θ ∈ [0, 1]} −Q, (2.6)

where Bδ(z) stands for the ball centered at z and of radius δ.
Fix δ̃ > 0 small enough so that δ̃ȳ ∈ Bδ(0). Then inclusion (2.6) implies that there exists

θ̃ ∈ [0, 1] such that
δ̃ȳ ∈ F (σ0, x0) + im

∂F

∂x
(σ0, x0)− θ̃ȳ −Q,

and hence,
(δ̃ + θ̃)ȳ ∈ F (σ0, x0) + im

∂F

∂x
(σ0, x0)−Q.

The set in the right-hand side of the latter inclusion is convex and contains 0, and thus

{(δ̃ + θ̃)θȳ | θ ∈ [0, 1]} ⊂ F (σ0, x0) + im
∂F

∂x
(σ0, x0)−Q.

Then inclusion (2.6) implies that

Bδ(0) ⊂ F (σ0, x0) + im
∂F

∂x
(σ0, x0)− ȳ + {θȳ | θ ∈ [0, 1]} −Q

⊂ (1 + 1/(δ̃ + θ̃))
(

F (σ0, x0) + im
∂F

∂x
(σ0, x0)−Q

)
− ȳ.

It follows that

Bδθ(θȳ) = θȳ + Bδθ(0)

⊂ F (σ0, x0) + im
∂F

∂x
(σ0, x0)−Q

holds with θ = (1 + 1/(δ̃ + θ̃))−1 > 0, and (2.4) (and hence (2.1)) is thus proved.
(2.1) ⇒ (2.2). Since Q− F (σ0, x0) ⊂ RQ(F (σ0, x0)), condition (2.1) clearly implies that

int
(

im
∂F

∂x
(σ0, x0)−RQ(F (σ0, x0))

)
6= ∅.

Suppose that (2.2) does not hold. Then by the �rst separation theorem [3, Theorem 2.13],
there exists µ ∈ Y ∗ such that

〈µ, ȳ〉 ≤ 〈µ, η〉 ∀ η ∈ im
∂F

∂x
(σ0, x0)−RQ(F (σ0, x0)).

This evidently implies that

〈µ, θȳ〉 ≤ 0 ≤ 〈µ, y〉 ∀ θ ≥ 0, ∀ y ∈ F (σ0, x0) + im
∂F

∂x
(σ0, x0)−Q,
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where the inclusion Q− F (σ0, x0) ⊂ RQ(F (σ0, x0)) was again taken into account. Hence, µ
separates cone{ȳ} and F (σ0, x0) + im ∂F

∂x (σ0, x0) − Q, and according to the �rst separation
theorem [3, Theorem 2.13], this contradicts (2.1).

(2.2) ⇒ (2.3). By (2.2), there exists δ > 0 such that

ȳ + Bδ(0) = Bδ(ȳ)

⊂ im
∂F

∂x
(σ0, x0)−RQ(F (σ0, x0)),

and hence

Bδ(0) ⊂ im
∂F

∂x
(σ0, x0)− ȳ −RQ(F (σ0, x0))

⊂ im
∂F

∂x
(σ0, x0)− cone{ȳ} −RQ(F (σ0, x0)).

Thus,
0 ∈ int

(
im

∂F

∂x
(σ0, x0)− cone{ȳ} −RQ(F (σ0, x0))

)
,

holds, which evidently implies (2.3).
(2.3)⇒ (1.5). The proof of this implication is almost identical to that of the corresponding

assertion in [3, Proposition 2.95] (see the argument showing that (2.180) implies (2.178)).
De�ne the multifunction Ψ : X ×R×R → 2Y ,

Ψ(x, θ, τ) =

{
∂F
∂x (σ0, x0)x− θȳ − τ(Q− F (σ0, x0)) if θ ≥ 0, τ ≥ 0
∅ otherwise. (2.7)

Evidently, Ψ is a closed convex multifunction, and

Ψ(X ×R×R) = im
∂F

∂x
(σ0, x0)− cone{ȳ} −RQ(F (σ0, x0)),

and thus, (2.3) implies that 0 ∈ intΨ(X ×R×R). Furthermore, 0 ∈ Ψ(0, 0, 0), and hence,
by the generalized open mapping theorem [3, Theorem 2.70] and by (2.7),

0 ∈ intΨ(X ×R+ × [0, 1]). (2.8)

On the other hand,

Ψ(X ×R+ × [0, 1]) = im
∂F

∂x
(σ0, x0)− cone{ȳ} − {τ(q − F (σ0, x0)) | τ ∈ [0, 1], q ∈ Q}

= F (σ0, x0) + im
∂F

∂x
(σ0, x0)− cone{ȳ}

−{τq + (1− τ)F (σ0, x0)) | τ ∈ [0, 1], q ∈ Q}
⊂ F (σ0, x0) + im

∂F

∂x
(σ0, x0)− cone{ȳ} −Q,

where the convexity of Q was taken into account. It follows that (2.8) implies (1.5).

We shall also need the following
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Proposition 2.2 Let Q be convex, y0 ∈ Q.
Then for any ȳ ∈ Y and any δ1 > 0, δ2 > 0 there exists ε > 0 and δ > 0 such that

(Q− cone Bδ(ȳ)) ∩Bε(y0) ⊂ Q ∩Bδ1(y0)− coneBδ2(ȳ). (2.9)

Proof. First suppose that ȳ ∈ TQ(y0), where TQ(y0) = clRQ(y0) is the tangent cone to Q

at y0. We claim that in this case

y0 ∈ int(Q ∩Bδ1(y0)− cone Bδ2(ȳ)), (2.10)

and hence, (2.9) evidently holds with an arbitrary δ > 0 and a su�ciently small ε > 0.
Indeed, the interior of the set in the right-hand side of (2.10) is nonempty, and if (2.10)

does not hold then by the �rst separation theorem [3, Theorem 2.13] there exists µ ∈ Y ∗ such
that

〈µ, y〉 ≥ 〈µ, y0〉 ∀ y ∈ Q ∩Bδ1(y0)− coneBδ2(ȳ). (2.11)
Then evidently

〈µ, η〉 ≥ 0 ∀ η ∈ TQ(y0). (2.12)
On the other hand, for any y ∈ Bδ2(0) such that 〈µ, y〉 > 0 from (2.11) we obtain

〈µ, y0 − ȳ〉 > 〈µ, y0 − (ȳ + y)〉
≥ 〈µ, y0〉,

and thus 〈µ, ȳ〉 < 0 which contradicts (2.12) (recall that ȳ ∈ TQ(y0)).
Now let ȳ 6∈ TQ(y0). Since TQ(y0) is closed, by the second separation theorem [3, Theo-

rem 2.14] we then obtain the existence of µ ∈ Y ∗ such that (2.12) holds and 〈µ, ȳ〉 < 0.
Consider arbitrary sequences {qk} ⊂ Q, {ηk} ⊂ Y and a sequence of real numbers {tk}

such that tk ≥ 0 ∀ k and {qk − tkη
k} → y0. Hence

〈µ, qk − y0〉+ tk(−〈µ, ηk〉) = 〈µ, qk − tkη
k − y0〉 → 0.

Note that qk − y0 ∈ RQ(y0) ⊂ TQ(y0), and (2.12) implies that the �rst term in the left-hand
side is nonnegative ∀ k. Furthermore, inequality 〈µ, ȳ〉 < 0 implies that the second term in
the left-hand side is nonnegative as well for all k large enough, and hence, tk → 0. The letter
implies that {qk} → y0. Thus, qk − tkη

k ∈ Q ∩ Bδ1(y0)− coneBδ2(ȳ) for all k large enough.
This proves the needed inclusion (2.9) with su�ciently small ε > 0 and δ > 0.

We are now ready to prove the main result of this section.

Theorem 2.1 Let Q be closed and convex, and let x0 ∈ D(σ0). Let F be continuous at
(σ0, x0) and Fr�echet-di�erentiable with respect to x near (σ0, x0), and let its derivative with
respect to x be continuous at (σ0, x0).

If the mapping F (σ0, ·) is regular at x0 in a direction ȳ ∈ Y then there exist a neighborhood
U of σ0 and ε > 0, δ > 0 and c > 0 such that the estimate (1.3) holds for all (σ, x) ∈ U×Bε(x0)
satisfying the inclusion

F (σ, x) ∈ Q− coneBδ(ȳ). (2.13)
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Proof. From the equivalent form (2.1) of the directional regularity condition it evidently
follows that there exists η̄ ∈ cone{ȳ} such that

η̄ ∈ int
(

F (σ0, x0) + im
∂F

∂x
(σ0, x0)−Q

)
. (2.14)

Note that if ȳ = 0 then necessarily η̄ = 0.
De�ne the multifunction F̄ : X → 2Y ,

F̄(ξ) = F (σ0, x0) +
∂F

∂x
(σ0, x0)ξ −Q.

According to (2.14), there exists ξ̄ ∈ X such that F̄(ξ̄) = η̄, and moreover, by the Robinson-
Ursescu stability theorem [23, 20] (see also [3, Theorem 2.83]) it follows that the multifunction
F̄ is metrically regular at (ξ̄, η̄).

Fix ε̄ > 0. For each mapping G : X → Y , de�ne the multifunction FG : X → 2Y ,

FG(ξ) = F (σ0, x0) + G(ξ)−Q.

Note that F ∂F
∂x

(σ0, x0) = F̄ , and hence, by [3, Theorem 2.84] it follows that there exist l̄ > 0,
δ > 0 and c̄ > 0 such that the estimate

dist(ξ̄, F−1
G (y)) ≤ c̄ dist(G(ξ̄)− y, Q− F (σ0, x0)) (2.15)

∀ y ∈ Bδ

(
η̄ − ∂F

∂x
(σ0, x0)ξ̄ + G(ξ̄)

)

holds for each G such that the di�erence mapping G(·)− ∂F
∂x (σ0, x0) is Lipschitz-continuous

on Bε̄(ξ̄) with modulus l ∈ (0, l̄).
It can be easily seen that there exists δ̃2 ∈ (0, δ/4] possessing the following property: if

η ∈ coneBδ̃2
(η̄) \ {0} then ‖‖η̄‖η/‖η‖ − η̄‖ ≤ δ/4. Put

γ =

{
‖η̄‖ if η̄ 6= 0,
δ
4 if η̄ = 0.

(2.16)

Set δ1 = min{δ/16, γ/4}, δ2 = ‖ȳ‖δ̃2/‖η̄‖ if η̄ 6= 0 (so that coneBδ2(ȳ) = coneBδ̃2
(η̄); if

η̄ = 0, δ2 > 0 can be taken arbitrarily). Fix (σ, x) ∈ Σ×X satisfying

F (σ, x) ∈ Q ∩Bδ1(F (σ0, x0))− coneBδ2(ȳ) (2.17)

and such that F (σ, x) 6∈ Q (otherwise estimate (1.3) holds trivially). Then there exists
q = q(σ, x) ∈ Q ∩Bδ1(F (σ0, x0)) such that

−(F (σ, x)− q) ∈ coneBδ̃2
(η̄),

and hence, according to (2.16), and to the choice of δ̃2, it holds that
∥∥∥∥

γ

‖F (σ, x)− q‖(F (σ, x)− q) + η̄

∥∥∥∥ ≤
δ

4
(2.18)
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(note that ‖F (σ, x)− q‖ cannot be equal to 0 since F (σ, x) 6∈ Q).
Set

t = t(σ, x, q) = min
{

16 dist(F (σ, x), Q)
δ

,
‖F (σ, x)− q‖

γ

}
. (2.19)

Note that t > 0 but t tends to 0 as (σ, x) tends to (σ0, x0). De�ne the mapping G : X → Y ,

G(ξ) = G(σ, x; ξ) =
1
t
(F (σ, x + tξ)− F (σ, x)), (2.20)

and the di�erence mapping Φ : X → Y ,

Φ(ξ) = Φ(σ, x; ξ) = G(ξ)− ∂F

∂x
(σ0, x0)ξ =

1
t

(
F (σ, x + tξ)− F (σ, x)− ∂F

∂x
(σ0, x0)tξ

)
.

(2.21)
By the mean value theorem we obtain that for (σ, x) close enough to (σ0, x0), and for each
ξ1, ξ2 ∈ X

‖Φ(ξ1)− Φ(ξ2)‖ ≤ sup
θ∈[0, 1]

∥∥∥∥
∂F

∂x
(σ, x + t(θξ1 + (1− θ)ξ2))− ∂F

∂x
(σ0, x0)

∥∥∥∥ ‖ξ1 − ξ2‖,

and hence, there exist a neighborhood U of σ0 and ε > 0 such that Φ is Lipschitz-continuous
on Bε̄(ξ̄) with modulus l ∈ (0, l̄) provided (σ, x) ∈ U × Bε(x0). Throughout the rest of the
proof we suppose that the latter inclusion holds. Then by choosing another (�smaller�) U and
by reducing ε > 0 (if necessary), we obtain

‖Φ(ξ̄)‖ ≤ sup
θ∈[0, 1]

∥∥∥∥
∂F

∂x
(σ, x + tθξ̄)− ∂F

∂x
(σ0, x0)

∥∥∥∥ ‖ξ̄‖ ≤
δ

2
. (2.22)

Set
θ = θ(σ, x, q) =

2‖F (σ, x)− q‖
γ

, (2.23)

ỹ = ỹ(σ, x, q) = θF (σ0, x0) + (1− θ)q. (2.24)
Note that, by the de�nition of δ1, θ ∈ (0, 1] provided U and ε > 0 are chosen appropriately.
Choose an element p = p(σ, x) ∈ Q such that

‖F (σ, x)− p‖ ≤ 2 dist(F (σ, x), Q), (2.25)

and set
τ = τ(σ, x, q) =

γt

‖F (σ, x)− q‖ (2.26)

y = y(σ, x, p, q) = −1
t
(τ(F (σ, x)− ỹ) + (1− τ)(F (σ, x)− p)). (2.27)

Note that τ ∈ (0, 1], and moreover, τ = 1 provided ‖F (σ, x)− q‖/γ ≤ 16 dist(F (σ, x), Q)/δ,
that is, when t = ‖F (σ, x) − q‖/γ (see (2.19)). Taking this into account, by (2.18), (2.19),
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(2.23)�(2.27), and by the de�nition of δ1, we derive that

‖y − η̄‖ =
∥∥∥∥
τ

t
(F (σ, x)− ỹ) +

1− τ

t
(F (σ, x)− p) + η̄

∥∥∥∥

≤
∥∥∥∥

γ

‖F (σ, x)− q‖(F (σ, x)− ỹ) + η̄

∥∥∥∥ + (1− τ)
‖F (σ, x)− p‖

t

≤
∥∥∥∥

γ

‖F (σ, x)− q‖(F (σ, x)− q) + η̄

∥∥∥∥ + θ
γ‖q − F (σ0, x0)‖
‖F (σ, x)− q‖ +

2δ dist(F (σ, x), Q)
16 dist(F (σ, x), Q)

≤ δ

4
+

δ

8
+

δ

8

=
δ

2
.

Thus, by the second equality in (2.21), and by (2.22), it holds that
∥∥∥∥y − η̄ +

∂F

∂x
(σ0, x0)ξ̄ −G(ξ̄)

∥∥∥∥ ≤ ‖y − η̄‖+ ‖Φ(ξ̄)‖

≤ δ

2
+

δ

2
≤ δ. (2.28)

Hence, the estimate (2.15) must be valid for y de�ned in (2.27) and for G de�ned in (2.20)
provided U and ε > 0 are chosen appropriately. This means that there exist ξ = ξ(σ, x, p, q) ∈
X and η = η(σ, x, p, q) ∈ Q such that

G(ξ) = y + η − F (σ0, x0) (2.29)
and

‖ξ‖ ≤ ‖ξ̄‖+ ‖ξ − ξ̄‖
≤ ‖ξ̄‖+ c̄dist(G(ξ̄)− y, Q− F (σ0, x0))
≤ ‖ξ̄‖+ c̄‖G(ξ̄)− y‖
≤ ‖ξ̄‖+ c̄

(∥∥∥∥
∂F

∂x
(σ0, x0)ξ̄ − η̄

∥∥∥∥ + δ

)
, (2.30)

where (2.28) and the inclusion 0 ∈ Q − F (σ0, x0) were taken into account. Note that the
right-hand side of the last relation is a constant independent of σ, x, p and q.

Employing (2.21), (2.24), (2.27) and (2.29), we have

F (σ, x + tξ) = tΦ(ξ) + F (σ, x) + t
∂F

∂x
(σ0, x0)ξ

= tΦ(ξ) + t
∂F

∂x
(σ0, x0)ξ

+τ(F (σ, x)− ỹ) + τ ỹ + (1− τ)(F (σ, x)− p) + (1− τ)p
= tG(ξ)− ty + τ ỹ + (1− τ)p
= t(η − F (σ0, x0)) + τ ỹ + (1− τ)p
= tη − tF (σ0, x0) + τθF (σ0, x0) + τ(1− θ)q + (1− τ)p
= tη + (τθ − t)F (σ0, x0) + τ(1− θ)q + (1− τ)p,
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where the right-hand side is a convex combination of η, F (σ0, x0), p and q provided U and
ε > 0 are chosen appropriately. However, all the elements η, F (σ0, x0), p and q belong to the
convex set Q. Hence,

F (σ, x + tξ) ∈ Q,

and moreover, by (2.19) and (2.30),

t‖ξ‖ ≤ c dist(F (σ, x), Q),

where c = 16(‖ξ̄‖+ c̄(‖∂F
∂x (σ0, x0)ξ̄ − η̄‖+ δ))/δ.

We thus proved that (1.3) holds for all (σ, x) ∈ U ×Bε(x0) satisfying (2.17). In order to
completes the proof it su�ces to refer to Proposition 2.2.

3 Directional Metric Regularity
Let (X, ρ) be a complete metric space, and Y be a normed linear space. As will be explained
below, the following de�nition is motivated by Theorem 2.1.

De�nition 3.1 The multifunction Ψ: X → 2Y is metrically regular at a point (x0, y0) ∈
graphΨ in a direction ȳ ∈ Y , at a rate c > 0, if there exist ε > 0 and δ > 0 such that the
estimate

dist(x, Ψ−1(y)) ≤ cdist(y, Ψ(x)) (3.1)
holds for all (x, y) ∈ Bε(x0)×Bε(y0) satisfying the inclusion

y ∈ Ψ(x) + coneBδ(ȳ). (3.2)

Evidently, metric regularity in a direction ȳ = 0 is equivalent to the usual metric regularity.
Moreover, if the latter holds, directional metric regularity holds in any direction ȳ ∈ Y ,
including ȳ = 0. At the same time, directional metric regularity can hold when the usual
metric regularity is violated; see Example 3.1 below.

Recall that the multifunction Ψ : X → 2Y is said to be lower (or inner) semicontinuous
at a point (x0, y0) ∈ graphΨ if for any sequence {xk} ⊂ X convergent to x0 there exists a
sequence {yk} ⊂ Y convergent to y0 such that yk ∈ Ψ(xk) ∀ k (see, e.g., [16, De�nition 1.63]).

The next theorem follows the pattern of [3, Theorem 2.84], [16, Theorem 4.25]; it says that
the property of directional metric regularity of Ψ in a given direction ȳ is stable subject to
small Lipschitzian single-valued perturbations of Ψ. For the usual notion of metric regularity,
this property was studied, e.g., in [9, 7, 8]. Yet another reference to be mentioned in relation
with this property is [6], where the importance of stability of regularity properties with respect
to perturbations is already completely clear.

Theorem 3.1 Let (x0, y0) ∈ graphΨ. Assume that the multifunction Ψ is closed, lower
semicontinuous at (x0, y0) and metrically regular at (x0, y0) in a direction ȳ ∈ Y , at a rate
c > 0. Let ε > 0 and δ > 0 be chosen according to De�nition 3.1, and set

α =

{
δ
‖ȳ‖ if ‖ȳ‖ ≥ δ,

+∞ if ‖ȳ‖ < δ,
β(α) =

{
2

1+α if α < +∞,

0 if α = +∞.
(3.3)
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Then for any mapping Φ : X → Y which is Lipschitz-continuous on Bε(x0) with modulus
l > 0 such that

c l < min{1, α/5}, (3.4)
the multifunction Ψ + Φ is metrically regular at (x0, y0 + Φ(x0)) in the direction ȳ, at a rate
c̃ = c(1− c l)−1(1 + β(α)).

In (3.3), the possibility of α = +∞ is needed only in order to cover the case of usual
metric regularity corresponding to ȳ = 0. In the latter case, Theorem 3.1 reduces to [16,
Theorem 4.25] but with an extraneous assumption of lower semicontinuity. It is possible that
this assumption can actually be removed in Theorem 3.1, though the authors did not manage
to avoid it.

Remark 3.1 As can be seen from the proof below, the assertion of Theorem 3.1 can be
replaced by a somewhat stronger one: Under the assumptions of this theorem, for each l > 0
satisfying (3.4) there exist ε̃ > 0 and δ̃ > 0 such that the estimate

dist(x, (Ψ + Φ)−1(y)) ≤ c̃ dist(y, Ψ(x) + Φ(x)) (3.5)

holds for any mapping Φ : X → Y which is Lipschitz-continuous on Bε(x0) with modulus l,
and for all (x, y) ∈ Bε̃(x0)×Bε̃(y0 + Φ(x0)) satisfying the inclusion

y ∈ Ψ(x) + Φ(x) + coneBδ̃(ȳ). (3.6)

That is, ε̃ and δ̃ do not depend on a speci�c Φ but only on ε, δ, c, ‖ȳ‖ and l.

Proof. Let ε > 0 and δ > 0 be chosen according to De�nition 3.1. Fix arbitrary ε̃ ∈ (0, ε],
δ̃ ∈ (0, δ) and ε̂ > 0 satisfying the following set of conditions:

ε̃ +
γ(ε̂)

l
(1− γ(ε̂))−1(1 + β(α))(ε̃ + lε̃ + ω(ε̃)) < ε, (3.7)

ε̃ + lε̃ +
(

γ(ε̂)(1− γ(ε̂))−1(1 + β(α)) +
β(α)

2

)
(ε̃ + lε̃ + ω(ε̃)) < ε, (3.8)

γ(ε̂) < min

{
1,

α(δ − δ̃)
5δ

}
, (3.9)

where ω(ε̃) = supx∈Bε̃(x0) dist(y0, Ψ(x)), γ(ε̂) = c l(1 + ε̂) (note that ω(ε̃) → 0 as ε̃ → 0
because of the lower semicontinuity Ψ at (x0, y0), and recall (3.4)).

Let (x, y) ∈ Bε̃(x0)×Bε̃(y0 + Φ(x0)) satisfying (3.6) be �xed. In order to prove estimate
(3.5) it su�ces to establish the existence of χ(x) ∈ (Ψ + Φ)−1(y) such that

ρ(x, χ(x)) ≤ c(1− c l)−1(1 + β(α)) dist(y, Ψ(x) + Φ(x)). (3.10)
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The needed point χ(x) will be de�ned by means of the auxiliary iterative process. For
that purpose set t = t(x, y) = dist(y, Ψ(x) + Φ(x)) and de�ne the sequence {τk} ⊂ R+ by
setting

τ1 =

{
δ−δ̃

(‖ȳ‖+δ)δ t if ‖ȳ‖ ≥ δ,

0 if ‖ȳ‖ < δ,
τk+1 =

2
5
τk, k = 1, 2, . . . .

According to (3.3),
τ1‖ȳ‖ ≤ β(α)

2
t. (3.11)

Note that by the de�nition of ω(ε̃)

t = dist(y − Φ(x0) + Φ(x0)− Φ(x), Ψ(x))
≤ ‖y − y0 − Φ(x0)‖+ ‖Φ(x)− Φ(x0)‖+ dist(y0, Ψ(x))
≤ ε̃ + lε̃ + ω(ε̃). (3.12)

We shall construct a sequence {xk} ⊂ X such that x1 = x and ∀ k = 1, 2, . . .

y − Φ(xk)− τkȳ ∈ Ψ(xk+1), (3.13)

ρ(xk+2, xk+1) ≤ γ(ε̂)ρ(xk+1, xk) +
γ(ε̂)

l
(τk − τk+1)‖ȳ‖, (3.14)

ρ(xk+1, x0) ≤ ε̃ +
γ(ε̂)

l
(1− γ(ε̂))−1(1 + β(α))(ε̃ + lε̃ + ω(ε̃)), (3.15)

and if ‖ȳ‖ ≥ δ then
‖Φ(xk+1)− Φ(xk)‖ ≤ δ(τk − τk+1). (3.16)

By (3.6) we obtain the existence of θ ≥ 0 and η ∈ Y such that ‖η‖ ≤ δ̃ and

y − Φ(x1)− θ(ȳ + η) ∈ Ψ(x1). (3.17)

Note that if θ = 0 then x = x1 ∈ (Ψ + Φ)−1(y), and we are done. Thus, let θ > 0.
Set

y1 = y − Φ(x1)− τ1ȳ, η0 = θ(ȳ + η), η1 = η0 − τ1ȳ.

By (3.8), (3.11) and (3.12) we then derive

‖y1 − y0‖ = ‖y1 + Φ(x0)− y0 − Φ(x0)‖
≤ ‖y − y0 − Φ(x0)‖+ ‖Φ(x0)− Φ(x1)‖+ τ1‖ȳ‖
≤ ε̃ + lε̃ +

β(α)
2

(ε̃ + lε̃ + ω(ε̃))

< ε. (3.18)

Furthermore,

‖η0‖ ≤ θ(‖ȳ‖+ δ̃)
< θ(‖ȳ‖+ δ),
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and hence,

θ >
‖η0‖
‖ȳ‖+ δ

≥ t

‖ȳ‖+ δ

≥ τ1, (3.19)

where it was taken into account that, by (3.17), y − η0 ∈ Ψ(x1) + Φ(x1), and hence, by the
de�nition of t, it holds that t ≤ ‖η0‖. From (3.19) (including the intermediate inequalities)
and the de�nition of τ1 it follows that

θ‖η‖
θ − τ1

≤ θδ̃

θ − δ−δ̃
(‖ȳ‖+δ)δ t

≤ θδ̃

θ − θ δ−δ̃
δ

= δ,

and hence, by (3.17),

η1 = (θ − τ1)ȳ + θη

= (θ − τ1)
(

ȳ +
θη

θ − τ1

)

∈ coneBδ(ȳ). (3.20)

Taking into account the equality y1 = y − Φ(x1) − θ(ȳ + η) + η1, we conclude by (3.17)
and (3.20) that

y1 ∈ Ψ(x1) + coneBδ(ȳ),

that is, (3.2) holds with (x, y) replaced by (x1, y1) ∈ Bε(x0)×Bε(y0) (see (3.18)). Thus, by
metric regularity of Ψ at a point (x0, y0) in a direction ȳ, there exists x2 ∈ X such that

y − Φ(x1)− τ1ȳ ∈ Ψ(x2), (3.21)

ρ(x2, x1) ≤ c(1 + ε̂) dist(y − Φ(x1)− τ1ȳ, Ψ(x1))
≤ c(1 + ε̂)(t + τ1‖ȳ‖)
≤ γ(ε̂)

l

(
1 +

β(α)
2

)
t, (3.22)

where the de�nition of t and (3.11) were taken into account. In particular, (3.13) holds for
k = 1.

Employing (3.7), (3.12), (3.22) we derive

ρ(x2, x0) ≤ ρ(x1, x0) + ρ(x2, x1)
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≤ ε̃ +
γ(ε̂)

l

(
1 +

β(α)
2

)
t

≤ ε̃ +
γ(ε̂)

l

(
1 +

β(α)
2

)
(ε̃ + lε̃ + ω(ε̃))

< ε, (3.23)

and in particular, (3.15) holds for k = 1.
Furthermore, if ‖ȳ‖ ≥ δ then by (3.3), (3.9), (3.22) and (3.23) we derive

‖Φ(x2)− Φ(x1)‖ ≤ γ(ε̂)
(

1 +
β(α)

2

)
t

<
α(δ − δ̃)

5δ

(
1 +

1
1 + α

)
t

=
α(δ − δ̃)(2 + α)

5(1 + α)δ
t

≤ 3α(δ − δ̃)
5(1 + α)δ

t

= δ(τ1 − τ2), (3.24)

that is, (3.16) holds for k = 1.
Set

q2 = y − Φ(x1)− τ1ȳ,

y2 = y − Φ(x2)− τ2ȳ, η2 = (τ1 − τ2)ȳ + Φ(x1)− Φ(x2).

Note that q2 ∈ Ψ(x2) by (3.21), and by (3.24) we conclude that η2 ∈ cone Bδ(ȳ) ((3.24) holds
only if ‖ȳ‖ ≥ δ, but otherwise, coneBδ(ȳ) = Y ).

By (3.8), (3.11) and (3.12), and by (3.15) (for k = 1) it follows that

‖y2 − y0‖ = ‖y − y0 − Φ(x0)‖+ ‖Φ(x2)− Φ(x0)‖+ τ2‖ȳ‖
≤ ε̃ + lε̃ + γ(ε̂)(1− γ(ε̂))−1(1 + β(α))(ε̃ + lε̃ + ω(ε̃))) +

β(α)
2

(ε̃ + lε̃ + ω(ε̃))

< ε. (3.25)

The inclusions q2 ∈ Ψ(x2) and η2 ∈ cone Bδ(ȳ) imply that

y2 = y − Φ(x1)− τ1ȳ + Φ(x1) + τ1ȳ − Φ(x2)− τ2ȳ

= q2 + η2

∈ Ψ(x2) + coneBδ(ȳ),

that is, (3.2) holds with (x, y) replaced by (x2, y2) ∈ Bε(x0) × Bε(y0) (see (3.23), (3.25)).
Thus, by metric regularity of Ψ at a point (x0, y0) in a direction ȳ, there exists x3 ∈ X such
that

y − Φ(x2)− τ2ȳ ∈ Ψ(x3), (3.26)
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ρ(x3, x2) ≤ c(1 + ε̂) dist(y − Φ(x2)− τ2ȳ, Ψ(x2))
≤ c(1 + ε̂)‖y − Φ(x2)− τ2ȳ − q2‖
≤ c(1 + ε̂)(‖Φ(x2)− Φ(x1)‖+ (τ1 − τ2)‖ȳ‖)
≤ γ(ε̂)ρ(x2, x1) +

γ(ε̂)
l

(τ1 − τ2)‖ȳ‖, (3.27)

where the de�nition of q2 was taken into account. In particular, (3.13) holds for k = 2, and
(3.14) holds for k = 1.

Employing (3.11), (3.22), (3.27) we derive

ρ(x3, x1) ≤ ρ(x2, x1) + ρ(x3, x2)

≤ (1 + γ(ε̂))ρ(x2, x1) +
γ(ε̂)

l
(τ1 − τ2)‖ȳ‖

≤ (1 + γ(ε̂))
(

ρ(x2, x1) +
γ(ε̂)

l
τ1‖ȳ‖

)

≤ γ(ε̂)
l

(1 + γ(ε̂))
((

1 +
β(α)

2

)
t + τ1‖ȳ‖

)

≤ γ(ε̂)
l

(1 + γ(ε̂))(1 + β(α))t,

and thus, by (3.7) and (3.12),

ρ(x3, x0) ≤ ρ(x1, x0) + ρ(x3, x1)

≤ ε̃ +
γ(ε̂)

l
(1 + γ(ε̂))(1 + β(α))t

≤ ε̃ +
γ(ε̂)

l
(1− γ(ε̂))−1(1 + β(α))(ε̃ + lε̃ + ω(ε̃))

< ε, (3.28)

where the evident inequality 1 + γ(ε̂) < (1− γ(ε̂))−1 was also employed. In particular, (3.15)
holds for k = 2.

Furthermore, if ‖ȳ‖ ≥ δ then by (3.3), (3.9), (3.24) and (3.28), and by the intermediate
inequalities in (3.27) we derive

‖Φ(x3)− Φ(x2)‖ ≤ lρ(x3, x2)
≤ γ(ε̂)(‖Φ(x2)− Φ(x1)‖+ (τ2 − τ1)‖ȳ‖)
≤ γ(ε̂)(δ + ‖ȳ‖)(τ1 − τ2)

<
α

5
(δ + ‖ȳ‖)5

2

(
1− 2

5

)
τ2

=
δ

2‖ȳ‖(δ + ‖ȳ‖)(τ2 − τ3)

≤ δ(τ2 − τ3),

that is, (3.16) holds for k = 2.
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Suppose now that for some s ≥ 3 we have already constructed points xk ∈ X, k = 1, . . . , s,
such that (3.13), (3.15), and (3.16) if ‖ȳ‖ ≥ δ, hold for each k = 1, . . . , s−1, and (3.14) holds
for each k = 1, . . . , s− 2. Set

qs = y − Φ(xs−1)− τs−1ȳ,

ys = y − Φ(xs)− τsȳ, ηs = (τs−1 − τs)ȳ + Φ(xs−1)− Φ(xs).

Note that qs ∈ Φ(xs) by (3.13) (with k = s− 1), and by (3.16) (with k = s− 1) we conclude
that ηs ∈ coneBδ(ȳ) ((3.16) holds only if ‖ȳ‖ ≥ δ, but otherwise, coneBδ(ȳ) = Y ).

By (3.8), (3.11) and (3.12), and by (3.15) (for k = s− 1) it follows that

‖ys − y0‖ = ‖y − y0 − Φ(x0)‖+ ‖Φ(xs)− Φ(x0)‖+ τs‖ȳ‖
≤ ε̃ + lε̃ + γ(ε̂)(1− γ(ε̂))−1(1 + β(α))(ε̃ + lε̃ + ω(ε̃))) +

β(α)
2

(ε̃ + lε̃ + ω(ε̃))

< ε. (3.29)

The inclusions qs ∈ Φ(xs) and ηs ∈ cone Bδ(ȳ) imply that

ys = y − Φ(xs−1)− τs−1ȳ + Φ(xs−1) + τs−1ȳ − Φ(xs)− τsȳ

= qs + ηs

∈ Ψ(xs) + coneBδ(ȳ),

that is, (3.2) holds with (x, y) replaced by (xs, ys) ∈ Bε(x0)×Bε(y0) (see (3.8), (3.15), (3.29)).
Thus, by metric regularity of Ψ at a point (x0, y0) in a direction ȳ, there exists xs+1 ∈ X
such that

y − Φ(xs)− τsȳ ∈ Ψ(xs+1),

ρ(xs+1, xs) ≤ c(1 + ε̂) dist(y − Φ(xs)− τsȳ, Ψ(xs))
≤ c(1 + ε̂)‖y − Φ(xs)− τsȳ − qs‖
≤ c(1 + ε̂)(‖Φ(xs)− Φ(xs−1)‖+ (τs−1 − τs)‖ȳ‖)
≤ γ(ε̂)ρ(xs, xs−1) +

γ(ε̂)
l

(τs−1 − τs)‖ȳ‖, (3.30)

where the de�nition of qs was taken into account. In particular, (3.13) holds for k = s, and
(3.14) holds for k = s− 1.

Employing (3.14) we derive that for each k = 1, . . . , s− 1

k∑

i=1

ρ(xi+2, xi+1) ≤
k∑

i=1

(
γ(ε̂)ρ(xi+1, xi) +

γ(ε̂)
l

(τi − τi+1)‖ȳ‖
)

≤ γ(ε̂)
k∑

i=1

ρ(xi+1, xi) +
γ(ε̂)

l
τ1‖ȳ‖.

It can be easily seen by induction that the latter property implies the estimate
s−1∑

k=1

ρ(xk+2, xk+1) ≤ γ(ε̂)(1− γ(ε̂))−1(ρ(x2, x1) + l−1τ1‖ȳ‖). (3.31)
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Hence, by (3.11), (3.22),

ρ(xs+1, x1) ≤ ρ(x2, x1) +
s−1∑

i=1

ρ(xi+2, xi+1)

≤
(
1 + γ(ε̂)(1− γ(ε̂))−1

)
ρ(x2, x1) +

γ(ε̂)
l

(1− γ(ε̂))−1τ1‖ȳ‖

≤ γ(ε̂)
l

(1− γ(ε̂))−1(1 + β(α))t, (3.32)

and thus, by (3.7) and (3.12),

ρ(xs+1, x0) ≤ ρ(x1, x0) + ρ(xs+1, x1)

≤ ε̃ +
γ(ε̂)

l
(1− γ(ε̂))−1(1 + β(α))t

≤ ε̃ +
γ(ε̂)

l
(1− γ(ε̂))−1(1 + β(α))(ε̃ + lε̃ + ω(ε̃))

< ε. (3.33)

In particular, (3.15) holds for k = s.
Finally, if ‖ȳ‖ ≥ δ then by (3.3), (3.9), (3.16) (with k = s − 1) and (3.33), and by the

intermediate inequalities in (3.30) we derive

‖Φ(xs+1)− Φ(xs)‖ ≤ lρ(xs+1, xs)
≤ γ(ε̂)(‖Φ(xs)− Φ(xs−1)‖+ (τs−1 − τs)‖ȳ‖)
≤ γ(ε̂)(δ + ‖ȳ‖)(τs−1 − τs)

<
α

5
(δ + ‖ȳ‖)5

2

(
1− 2

5

)
τs

=
δ

2‖ȳ‖(δ + ‖ȳ‖)(τs − τs+1)

≤ δ(τs − τs+1),

that is, (3.16) holds for k = s.
The sequence {xk} with the needed properties is thus constructed. Moreover, as was

shown above, (3.14) implies that (3.31) and (3.32) hold for each s = 2, 3, . . .. Clearly, (3.31)
implies that {xk} is a Cauchy sequence, and by completeness of the metric space (X, ρ), this
sequence converges to some element χ(x) ∈ Bε(x0), where the last inclusion follows from (3.7)
and (3.15). Since τk → 0 as k → ∞, by passing onto the limit in (3.13) we conclude that
χ(x) ∈ (Ψ + Φ)−1(y), where closedness Ψ and continuity of Φ on Bε(x0) where taken into
account. Finally, since ε̂ > 0 can be taken arbitrarily small, (3.32) implies (3.10).

The set cone Bδ(ȳ) in the right-hand side of (3.2) can be regarded as a conic neighborhood
of ȳ. Note that α de�ned in (3.3) is invariant with respect to the choice of speci�c ȳ and δ
de�ning the same conic neighborhood, and it is natural to refer to this quantity as the radius
of the conic neighborhood in question.
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We now turn our attention to the multifunctions of the form Ψ(x) = ΨF (x) = F (x) −
Q, where F : X → Y is a given mapping and Q ⊂ Y is a given set. Note that if F is
continuous at x0 then this multifunction is automatically lower semicuntinuous at (x0, y0)
for any y0 ∈ Ψ(x0). Being applied to such multifunction, estimate (3.1) takes the form (1.4),
while condition (3.2) takes the form

F (x)− y ∈ Q− coneBδ(ȳ). (3.34)

De�nition 3.1 applied to Ψ = ΨF and y0 = 0 takes the following form.

De�nition 3.2 The mapping F : X → Y is metrically regular at x0 ∈ F−1(Q) with respect
to Q in a direction ȳ ∈ Y , at a rate c > 0, if there exist ε > 0 and δ > 0 such that the
estimate (1.4) holds for all (x, y) ∈ Bε(x0)×Bε(0) satisfying the inclusion (3.34).

F (x)− y ∈ Q− coneBδ(ȳ). (3.35)

Throughout the rest of the paper let X and Y be Banach spaces. For a nonparametric
mapping F , directional regularity condition in a direction ȳ takes the form

0 ∈ int(F (x0) + imF ′(x0)− cone{ȳ} −Q), (3.36)

and if Q is closed and convex then according to Theorem 2.1 (applied to F (σ, x) = F (x)−σ,
σ = y), under the appropriate smoothness assumptions, the latter condition implies metric
regularity in a direction ȳ. The converse implication can be derived from Theorem 3.1, which
results in the following

Proposition 3.1 Let Q be closed and convex, and let x0 ∈ F−1(Q). Let F be Fr�echet-
di�erentiable near x0, and let its derivative be continuous at x0.

Then F is metrically regular at x0 with respect to Q in a direction ȳ ∈ Y if and only if it
is regular at x0 in this direction.

Proof. Let F be metrically regular at x0 with respect to Q in a direction ȳ ∈ Y , at a rate
c > 0. De�ne the mapping Φ : X → Y ,

Φ(x) = F (x0) + F ′(x0)(x− x0)− F (x),

then F + Φ is a linearization of F at x0. By the mean value theorem, for all x1, x2 ∈ X close
enough to x0 we obtain

‖Φ(x1)− Φ(x2)‖ = ‖F (x1)− F (x2)− F ′(x0)(x1 − x2)‖
≤ sup

θ∈[0, 1]
‖F ′(θx1 + (1− θ)x2)− F ′(x0)‖‖x1 − x2‖,

and hence, Φ is Lipschitz-continuous near x0 with modulus l, with l > 0 as small as needed.
Applying Theorem 3.1 to Ψ = ΨF , we conclude that the linearized mapping F +Φ is metrically
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regular at x0 with respect to Q in a direction ȳ ∈ Y , at some rate c̃ > 0 (note that ΨF + Φ =
ΨF+Φ). This means that there exist ε̃ > 0 and δ̃ > 0 such that the estimate

dist(x, x0 + (F ′(x0))−1(Q + y − F (x0))) ≤ c̃ dist(F (x0) + F ′(x0)(x− x0)− y, Q) (3.37)

holds for (x, y) ∈ Bε̃(x0)×Bε̃(0) satisfying the inclusion

F (x0) + F ′(x0)(x− x0)− y ∈ Q− coneBδ̃(ȳ). (3.38)

Take x = x0, y = −θη, where η ∈ Bδ̃(ȳ) and θ ≥ 0. Then (3.38) is evidently satis�ed, and
y ∈ Bε̃(0) for all θ > 0 small enough (speci�cally, for all θ ∈ (0, ε̃/(‖ȳ‖+ δ̃))). Hence, (3.37)
holds for chosen x and y, which implies that for all η ∈ Bδ̃(ȳ) and all θ > 0 small enough

(F ′(x0))−1(Q + θη − F (x0)) 6= ∅,

and hence, there exist ξ ∈ X and q ∈ Q such that

F ′(x0)ξ = q + θη − F (x0),

i.e.,
θη ∈ F (x0) + imF ′(x0)−Q.

It follows that
Bδ̃(ȳ) ⊂ imF ′(x0)−RQ(F (x0)).

It remains to employ Proposition 2.1 (see (2.2)).

As mentioned above, directional metric regularity can hold when the usual metric reg-
ularity is violated. Moreover, let, e.g., intQ 6= ∅ (which in particular covers the case of
�nitely many inequality constraints). It can be shown that in this case directional regular-
ity condition (1.5), and hence, directional metric regularity condition hold in any direction
ȳ ∈ − intRQ(F (σ0, x0)) 6= ∅.

Example 3.1 Let X = Y = R2, F (x) = (x1, x2
1 − x2

2), Q = R2
+. Robinson's CQ does

not hold at x0 = 0, and hence, the mapping F is not metrically regular at x0. Moreover,
estimate (1.4) does not hold even on the subspaces {x0} × Y and X × {0}. Indeed, if, e.g.,
y = (0, y2) with y2 < 0, it holds that dist(x0, F−1(Q − y)) = (−y2)1/2, and the estimate
(1.4) does not hold even for x = x0. Moreover, if, e.g., x = (0, x2) with x2 6= 0 then
dist(x, F−1(Q)) = |x2|/

√
2, while dist(F (x), Q) = x2

2, and the estimate (1.4) does not hold
even for y = 0.

At the same time, directional regularity condition (3.36) holds at x0 in any direction
ȳ ∈ R2 with ȳ2 < 0, and hence, F is metrically regular at x0 in each such direction.

To complete this section we note that Theorem 2.1 can actually be derived from a �uniform
version� of Theorem 3.1, following the line of the argument in [3, pp. 63, 64], justifying
Robinson's stability theorem.
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4 Applications to Sensitivity Theory
Let Σ be a normed linear space. As an application of Theorem 2.1, we next show how it
can be used in order to directly (that is, without employing any additional tools, with the
only exception for the mean value theorem) obtain some principal lemmas playing the crucial
role in sensitivity analysis under the more special directional regularity condition (1.6). We
emphasize that both results presented below are known: the di�erence is only in the proofs.
The �rst result is [3, Lemma 4.10].

Lemma 4.1 Let Q be closed and convex, and let x0 ∈ D(σ0). Let F possess the Lipschitz-
continuous derivative near (σ0, x0).

If (1.6) holds at x0 with respect to a direction d ∈ Σ, then there exist t̄ > 0, ε1 > 0,
ε2 > 0 and a > 0 possessing the following property: for any mappings ρ(·) : R+ → Σ and
x(·) : R+ → X such that ρ(t) = o(t) and the estimates

‖x(t)− x0‖ ≤ ε1t
1/2 (4.1)

and
dist(F (σ0 + td + ρ(t), x(t)), Q) ≤ ε2t (4.2)

hold for all t ≥ 0 small enough, the estimate

dist(x(t), D(σ0 + td + ρ(t))) ≤ a

(
1 +

‖x(t)− x0‖
t

)
dist(F (σ0 + td + ρ(t), x(t)), Q) (4.3)

holds ∀ t ∈ (0, t̄].

Proof. As was already mentioned in Section 1, (1.6) precisely coincides with (1.5) with
ȳ = −∂F

∂σ (σ0, x0)d. For this ȳ, de�ne ε > 0, δ > 0 and c > 0 according to Theorem 2.1. Let
l > 0 stand for the Lipschitz constant of F , and L > 0 stand for the Lipschitz constant for
the derivative of F on Bε(σ0) × Bε(x0) (ε can be reduced, if necessary). For each t > 0 put
σ(t) = σ0 + td + ρ(t). Set ε1 = (δ/6L)1/2, ε2 = δ/12, and choose t̄ > 0 such that ∀ t ∈ (0, t̄]

δt1/2 ≤ ε, ‖td + ρ(t)‖ ≤ ε, (4.4)

L

(
‖td + ρ(t)‖2

t
+ 2ε1

∥∥∥∥d +
ρ(t)
t

∥∥∥∥ t1/2

)
≤ δ

6
, (4.5)

∥∥∥∥
∂F

∂σ
(σ0, x0)

∥∥∥∥
‖ρ(t)‖

t
≤ δ

6
. (4.6)

For each t > 0 put
τ(t) =

12 dist(F (σ(t), x(t)), Q)
δt

, (4.7)

x̃(t) = τ(t)x0 + (1− τ(t))x(t), (4.8)

Φ1(t) = F (σ(t), x̃(t))− F (σ(t), x(t)) + τ(t)
∂F

∂x
(σ0, x0)(x(t)− x0), (4.9)
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Φ2(t) = F (σ(t), x(t))− F (σ0, x0)− ∂F

∂σ
(σ0, x0)(td + ρ(t))− ∂F

∂x
(σ0, x0)(x(t)− x0), (4.10)

choose an element p(t) ∈ Q such that

‖F (σ(t), x(t))− p(t)‖ ≤ 2 dist(F (σ(t), x(t)), Q), (4.11)

and set
q(t) = τ(t)F (σ0, x0) + (1− τ(t))p(t). (4.12)

Throughout the rest of the proof we assume that F (σ(t), x(t)) 6∈ Q (otherwise estimate (4.3)
holds trivially). Then according to (4.2), (4.7) and the de�nition of ε2 it holds that

0 < τ(t) =
12 dist(F (σ(t), x(t)), Q)

δt
≤ 12ε2

δ
= 1.

In particular, by (4.12), q(t) ∈ Q. Furthermore, by (4.2), (4.4) and (4.8) it holds that
σ(t) ∈ Bε(σ0), x̃(t) ∈ Bε(x0).

We next estimate ‖Φ1(t)‖ and ‖Φ2(t)‖ for t ∈ (0, t̄]. By (4.1), (4.5), (4.8), (4.9), by the
mean value theorem, and by the de�nition of ε1 we obtain

‖Φ1(t)‖ =
∥∥∥∥F (σ(t), x(t)− τ(t)(x(t)− x0))− F (σ(t), x(t))

−∂F

∂x
(σ0, x0)(−τ(t)(x(t)− x0))

∥∥∥∥

≤ sup
θ∈[0, 1]

∥∥∥∥
∂F

∂x
(σ(t), x(t)− θτ(t)(x(t)− x0))− ∂F

∂x
(σ0, x0)

∥∥∥∥ τ(t)‖x(t)− x0‖

≤ L

(
‖td + ρ(t)‖+ sup

θ∈[0, 1]
‖x(t)− θτ(t)(x(t)− x0)− x0‖

)
τ(t)‖x(t)− x0‖

≤ L

(
‖td + ρ(t)‖+ sup

θ∈[0, 1]
(1− θτ(t))‖x(t)− x0‖

)
τ(t)‖x(t)− x0‖

≤ L

(∥∥∥∥d +
ρ(t)
t

∥∥∥∥ t + ‖x(t)− x0‖
)

τ(t)‖x(t)− x0‖

≤ L

(∥∥∥∥d +
ρ(t)
t

∥∥∥∥ t + ε1t
1/2

)
ε1τ(t)t1/2

≤
(

Lε1

∥∥∥∥d +
ρ(t)
t

∥∥∥∥ t1/2 + Lε2
1

)
τ(t)t

≤
(

δ

6
+

δ

6

)
τ(t)t

=
δ

3
τ(t)t. (4.13)

Similarly, by (4.1), (4.5), (4.10), by the mean value theorem, and by the de�nition of ε1 we
obtain

‖Φ2(t)‖ ≤ sup
θ∈[0, 1]

‖F ′(σ0 + θ(td + ρ(t)), x0 + θ(x(t)− x0))
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−F ′(σ0, x0)‖(‖td + ρ(t)‖+ ‖x(t)− x0‖)
≤ L sup

θ∈[0, 1]
θ(‖td + ρ(t)‖+ ‖x(t)− x0‖)2

≤ L(‖td + ρ(t)‖2 + 2ε1‖td + ρ(t)‖t1/2 + ε2
1t)

=

(
L

(
‖td + ρ(t)‖2

t
+ 2ε1

∥∥∥∥d +
ρ(t)
t

∥∥∥∥ t1/2

)
+ Lε2

1

)
t

≤
(

δ

6
+

δ

6

)
t

=
δ

3
t. (4.14)

We are now in a position to show that for t ∈ (0, t̄]

F (σ(t), x̃(t))− q(t) ∈ coneBδ

(
∂F

∂σ
(σ0, x0)d

)
. (4.15)

(This will mean that (2.13) is satis�ed with σ = σ(t), x = x̃(t) and ȳ = −∂F
∂σ (σ0, x0)d.)

Indeed, put
y1(t) = F (σ(t), x(t))− p(t), y2(t) =

∂F

∂σ
(σ0, x0)ρ(t). (4.16)

Then according to (4.12), (4.9), (4.10) we have

F (σ(t), x̃(t))− q(t) = F (σ(t), x̃(t))− F (σ(t), x(t)) + F (σ(t), x(t))

+τ(t)
∂F

∂x
(σ0, x0)(x(t)− x0)− τ(t)

∂F

∂x
(σ0, x0)(x(t)− x0)

−τ(t)F (σ0, x0)− (1− τ(t))p(t)
= Φ1(t) + F (σ(t), x(t))− p(t)

−τ(t)
(

∂F

∂x
(σ0, x0)(x(t)− x0) + F (σ0, x0)− p(t)

)

= Φ1(t) + y1(t)

+τ(t)
(

Φ2(t)− F (σ(t), x(t)) + t
∂F

∂σ
(σ0, x0)d + y2(t) + p(t)

)

= τ(t)t

(
Φ1(t)
τ(t)t

+
y1(t)
τ(t)t

+
Φ2(t)

t
− y1(t)

t
+

y2(t)
t

+
∂F

∂σ
(σ0, x0)d

)

= τ(t)t

(
Φ1(t)
τ(t)t

+ (1− τ(t))
y1(t)
τ(t)t

+
Φ2(t)

t
+

y2(t)
t

+
∂F

∂σ
(σ0, x0)d

)
,

and hence, by (4.6), (4.7), (4.11), (4.13), (4.14), (4.16)
∥∥∥∥
F (σ(t), x̃(t))− q(t)

τ(t)t
− ∂F

∂σ
(σ0, x0)d

∥∥∥∥ ≤
δ

3
+

2δ dist(F (σ(t), x(t)), Q)
12 dist(F (σ(t), x(t))

+
δ

3
+

δ

6
= δ,

which proves (4.15).
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By the choice of ε > 0, δ > 0 and c > 0, the estimate (1.3) holds with σ = σ(t) and
x = x̃(t). Thus, taking into account (4.7), (4.8), we conclude that ∀ t ∈ (0, t̄]

dist(x(t), D(σ(t)) ≤ ‖x(t)− x̃(t)‖+ dist(x̃(t), D(σ(t))
≤ ‖x(t)− x̃(t)‖+ c dist(F (σ(t), x̃(t)), Q)
≤ ‖x(t)− x̃(t)‖

+c(‖F (σ(t), x(t))− F (σ(t), x̃(t))‖+ dist(F (σ(t), x(t)), Q))
≤ ‖x(t)− x̃(t)‖+ c(l‖x(t)− x̃(t)‖+ dist(F (σ(t), x(t)), Q))
≤ (1 + c l)‖x(t)− x0‖τ(t) + cdist(F (σ(t), x(t))

≤
(

c +
12(1 + c l)

δ

‖x(t)− x0‖
t

)
dist(F (σ(t), x(t)).

This implies (4.3) with a = max{c, 12(1 + c l)/δ}.

Note that the proof above actually speci�es all the constants appearing in the assertion
of Lemma 4.1.

The second result is [3, Lemma 4.109]. Our proof is an evident modi�cation of the proof
in [1, Lemma 6.2].

Lemma 4.2 Let Q be closed and convex, and let x0 ∈ D(σ0). Let F be Fr�echet-di�erentiable
at (σ0, x0) and Fr�echet-di�erentiable with respect to x near (σ0, x0), and let its derivative
with respect to x be continuous at (σ0, x0).

If (1.6) holds at x0 with respect to a direction d ∈ Σ, then there exists a > 0 possessing the
following property: for any mappings ρ(·) : R+ → Σ and x(·) : R+ → X such that ρ(t) = o(t),
x(t) → x0 as t → 0, and the estimate

dist(F (σ0 + td + ρ(t), x(t)), Q) = o(t) (4.17)

holds for t ≥ 0, and for any θ > 0, the estimate

dist(x(t), D(σ0 + (1 + θ)td + ρ((1 + θ)t))) ≤ aθt (4.18)

holds for all t > 0 small enough.

Proof. By the same argument as in the proof of Lemma 4.1 we can choose ε > 0, δ > 0 and
c > 0 such that the estimate (1.3) holds for all (σ, x) ∈ Bε(σ0)× Bε(σ0) satisfying inclusion
(2.13) with ȳ = −∂F

∂σ (σ0, x0)d. For each t > 0 put σ(t) = σ0 + td + ρ(t).
For a �xed θ > 0 and for t ≥ 0 we have

F (σ((1 + θ)t), x(t)) = F (σ(t), x(t)) + θt
∂F

∂σ
(σ0, x0)d + o(t). (4.19)

Select q(t) ∈ Q such that

‖F (σ(t), x(t))− q(t)‖ = dist(F (σ(t), x(t)), Q) + o(t).
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Then for t > 0 small enough σ(t) ∈ Bε(σ0), x(t) ∈ Bε(x0), and by (4.17) and (4.19) it holds
that

F (σ((1 + θ)t), x(t))− q(t) = θt
∂F

∂σ
(σ0, x0)d + o(t)

∈ coneBδ

(
∂F

∂σ
(σ0, x0)d

)
, (4.20)

i.e., inclusion (2.13) holds with σ = σ((1+ θ)t), x = x(t), and with ȳ = −∂F
∂σ (σ0, x0)d. Hence

by (1.3) and the equality in (4.20) we conclude that

dist(x(t), D(σ((1 + θ)t)) ≤ c dist(F (σ((1 + θ)t), Q)
≤ c‖F (σ((1 + θ)t), x(t))− q(t)‖
= c

∥∥∥∥
∂F

∂σ
(σ0, x0)d

∥∥∥∥ θt + o(t),

and the needed estimate (4.18) holds with any a > c‖∂F
∂σ (σ0, x0)d‖ for all t > 0 small enough.
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