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RIGIDITY OF BRILLOUIN ZONES

F.H. KWAKKEL, M. MARTENS and M.M. PEIXOTO

Abstract

In general, topological characteristics of manifolds do not determine the geometry. However,
starting in the 1960’s, examples have been discovered for which such characteristics do determine
the geometry. The manifolds can not be deformed without changing the characteristic. The Mostow
rigidity theorems are examples of this phenomenon. The universality observed in one-dimensional
dynamics also leads to rigidity results.

The classical Brillouin zones were introduced by Brillouin in the quantum study of wave
propagation in crystals. Here we will not go into the physical meaning but interpret the Brillouin
zones as characteristics of two-dimensional flat tori. The main results will be rigidity theorems
related to Brillouin zones, focal decompositions and torus puzzles.

1. Introduction and Definitions

In general, topological characteristics of manifolds do not determine the geometry.
However, starting in the 1960’s, examples have been discovered for which such
characteristics do determine the geometry. The manifolds can not be deformed
without changing the characteristic. One speaks of rigidity. The prototype rigidity
theorem is due to Mostow [1].

Theorem 1.1 (Mostow rigidity theorem). Suppose M and N are closed man-
ifolds of constant sectional curvature −1 with the dimension of M is at least 3. If
π1(M) ∼= π1(N), then M and N are isometric.

The classical Brillouin zones were introduced by Brillouin in the quantum study
of wave propagation in crystals. Here we will not go into the physical meaning
but interpret the Brillouin zones as characteristics of two-dimensional flat tori. The
main results will be rigidity theorems in the context of flat tori.

For completeness we will recall the definitions concerning Brillouin zones. A
lattice Λ is a discrete subgroup of R2 generated by two linearly independent vectors
ω1, ω2 ∈ R2, i.e.

Λ = {nω1 +mω2 | n,m ∈ Z} = ω1Z⊕ ω2Z. (1.1)

We define two elements x, y ∈ R2 to be equivalent, x ∼ y, if and only if x−y ∈ Λ.
The flat 2-torus TΛ = R2/Λ is the quotient space of R2 under the equivalence ∼. Let
π : R2 −→ TΛ be the canonical projection and let d(x, y) = |x− y| be the standard
Euclidean metric on R2. Locally π is an isometry and induces the covering metric
d̃ on the torus.
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Definition 1 (Brillouin line). A Brillouin line Lg ⊂ R2 is defined as the
perpendicular bisector of the line connecting the origin 0 and g ∈ Λ, i.e.

Lg = {x | g ∈ Λ and |x| = |x− g|}

For 0 ∈ Λ, we define L0 = {0}.

Definition 2. Let MΛ ⊂ R2 be the set of all Brillouin lines relative to the
lattice Λ, i.e.

MΛ =
⋃
g∈Λ∗

Lg, (1.2)

where Λ∗ = Λ− {0}.

Let `x be the open line segment connecting the origin 0 and x and let ¯̀
x be the

closure of `x also containing 0 and x.

Definition 3. Let ι, χ, µ : R2 → N be the indices defined by

ι(x) = # {g ∈ Λ | Lg ∩ `x 6= ∅} (1.3)
χ(x) = #

{
g ∈ Λ | Lg ∩ ¯̀

x 6= ∅
}

(1.4)
µ(x) = # {g ∈ Λ | Lg 3 x} (1.5)

where # means the cardinality of the set. The index µ(x) is referred to as the
multiplicity of x.

It follows that χ(x) = ι(x) + µ(x) + 1.

Definition 4 (Brillouin zone). The n-th Brillouin zone relative to a lattice Λ
is the set

Bn = {x ∈ R2 | ι(x) ≤ n and χ(x) ≥ n+ 1}. (1.6)

Remark 1. In [4], G.A. Jones gives three different definitions of Brillouin zones,
in Rn. Our definition can be equivalently formulated in terms of positive definite
quadratic forms. This point of view is adopted in [2] and [7].

In [8] we find an abstract approach to Brillouin zones defined on quite general
metric spaces. For physicists the most important Brillouin zone is the first zone,
called the Wigner-Seitz cell. The first zone also appears in other mathematical
pursuits and then it is called Dirichlet region in the study of Fuchsian groups, or
Voronoi cell in the study of packing.

Notation. Although the Brillouin zones Bn and the torus T are defined relative
to a lattice Λ, we omit the subscripts referring to the lattice. The results will hold
for any (but fixed) lattice Λ, unless explicitly stated otherwise.

The Brillouin lines and zones are related to arithmetic properties of the geodesic
flow on the given flat torus. This relation is explored in [2], [7]. Let us briefly
recall this discussion. Consider the tangent plane at 0 = π(0) ∈ T. The function
σ : R2 → R2 defined by

σ(x) = #{y ∈ R2 | π(y) = π(x), |y| = |x|} (1.7)
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Figure 1. The first 9 Brillouin zones relative to Z2. The consecutive zones are
alternately shaded and unshaded.

was introduced to count the number of closed geodesics of the same length starting
at 0. The focal decomposition is the stratification of the tangent plane at 0 ∈ T
defined by this function. The stratification consist of the following strata. The two-
dimensional strata, also called subzones, are the connected components of σ = 1,
the one-dimensional strata are the components of σ = 2 and the points are the
connected components of σ ≥ 3. Observe that, in the case of a flat torus, the focal
decomposition is independent of the base point 0 ∈ T. According to the results
in [2], the focal decomposition is characterized by the Brillouin lines. This is also
expressed by our lemma 2.2 which states

σ(x) = µ(x) + 1, for all x ∈ R2. (1.8)

We will identify MΛ with the corresponding focal decomposition.
The topology of the focal decomposition MΛ contains information about the

geometry of the underlying torus. The first rigidity theorem we prove here is that
it actually uniquely determines the geometry of the torus. We say that the focal
decompositions associated to two flat tori are equivalent if there exists a homeo-
morphism between the corresponding tangent planes that maps the decomposition
associated to the one torus onto the decomposition of the other.

Theorem. The focal decompositions of two tori are equivalent if and only if
the tori are conformally equivalent.

This result, proved in section 4, is inspired by Mostow’s rigidity theorem. An
important ingredient in the proof of this theorem is the asymptotic shape of Bril-
louin zones which, independent of the lattice, is a circle. This was shown by Jones in
[4]. Using a result from analytic number theory [5], theorem 3.2 gives more precise
bounds on the distance of Bn from the origin.
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A classical result by Bieberbach [3], states that each zone Bn is a fundamental
domain for the projection π. That is, each Brillouin zone gives rise to a tiling of
the torus, which we call the corresponding torus puzzle of the nth generation.

Again, the topology of the torus puzzles contains information on the geometry of
the torus. We define an equivalence relation between torus puzzles, which in addition
to requiring the puzzles to be homeomorphic, involves a fixed-point condition.
The second rigidity result characterizes the torus in terms of these puzzles. The
combinatorial properties of the torus puzzles obtained in section 2 play a crucial
role in the proof of the following result, proved in section 5.

Theorem. Given two tori corresponding to lattices in general position. For
every generation the two torus puzzles are equivalent if and only if the tori are
conformally equivalent.

The classical result of Bieberbach stating that Brillouin zones are fundamental
domains can be extended in the context of higher dimensional flat tori. See for the
definitions and results [4]. The method for proving this theorem does not have a
strict two dimensional character. Although the proof of higher dimensional versions
of for example lemma 4.2 and lemma 4.3 need some special care we state

Conjecture 1. The focal decomposition of two n-tori are equivalent if and
only if the tori are isometric.

The study on the boundary of Brillouin zones presented here relies strongly on
two dimensional arguments. The boundaries in higher dimensions might be much
more complex. Nevertheless, we state

Conjecture 2. Two n-tori are isometric if and only if for every generation the
two torus puzzles are topologically equivalent.

2. Torus Puzzles

We start with studying the topological properties of Bn and we show that the
projection of every Bn tiles the torus. Such a tiling of the torus is called a torus
puzzle. Our special interest lies in determining what combinatorial information
about the set MΛ is encoded in these torus puzzles.

Lemma 2.1. Let x ∈ R2, then

ι(x) = #
{
y ∈ R2 | π(y) = π(x) and |y| < |x|

}
. (2.1)

Proof. Let x ∈ R2 with index ι(x). We let D1 = D(0, |x|), be the open disc with
center 0 and radius |x| and similarly D2 = D(x, |x|), see figure 2.
We show that for g ∈ Λ the following are equivalent:
1) `x ∩ Lg 6= Ø,
2) g ∈ Λ ∩D2,
3) yg = x− g ∈ D1.
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Figure 2. Proof of lemma 2.1

1) ⇔ 2). Suppose `x ∩ Lg 6= Ø for some g ∈ Λ. Let `x ∩ Lg = {xg}, then |xg| < |x|.
Let Cg be the circle centered at 1

2xg and radius ρg = 1
2 |xg|. Let lg be the line

segment connecting the origin O and g and let zg = 1
2g. Since Lg is perpendicular

to lg, zg ∈ lg ∩ Cg. Since |xg| < |x| and ρg <
1
2 |x|, by congruence, g ∈ D2 ∩ Λ.

Reading the previous arguments backwards yields the other direction.
2) ⇔ 3). By symmetry, α ∈ D2 if and only if x− α ∈ D1.

Hence, there is a one-to-one correspondence between the set of points{
y ∈ R2 | π(y) = π(x) and |y| < |x|

}
and the set of Brillouin lines Lg such that `x ∩Lg 6= Ø and this proves the lemma.

Definition 5. For x ∈ R2, let

O(x) =
{
y ∈ R2 | π(x) = π(y), |x| = |y|

}
. (2.2)

and σ : R2 → N, σ(x) = #O(x).

Lemma 2.2. Let x ∈ Bn and v = π(x). Then σ(x) = µ(x) + 1 and ι, σ, χ and µ
are constant on O(x). Moreover,

π−1(v) ∩Bn = O(x). (2.3)

Proof. In the notation of the proof of lemma 2.1, let Ci = ∂Di for i = 1, 2. If
x ∈ Lg, then g ∈ C2 and yg = x− g ∈ C1. Hence yg ∈ O(x). Moreover, if Lg 6= Lg′ ,
i.e. g 6= g′, then yg 6= yg′ . Conversely, every y ∈ O(x) gives rise to a Lg such that
x ∈ Lg; because π(x) = π(y), x − y = g for some g ∈ Λ and it is easily seen that
x ∈ Lg. So σ(x) equals the number of points yg plus x itself, hence σ(x) = µ(x)+1.

Since σ(x) = σ(y) for all y ∈ O(x), µ is constant on O(x). From lemma 2.1 it is
easy to see that ι (and hence χ) is constant on O(x).
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To prove (2.3), first note that |x′| = |x| for all x′ ∈ π−1(v)∩Bn. Suppose otherwise
that x, x′ ∈ π−1(v) ∩ Bn but |x| 6= |x′|, say |x| > |x′|. Then, by lemma 2.1 and
the fact that σ(x′) = µ(x′) + 1 we get ι(x) ≥ µ(x′) + 1 + ι(x′) = χ(x′) ≥ n + 1,
a contradiction. Hence, π−1(v) ∩Bn ⊂ O(x). Furthermore, the indices ι and χ are
constant on O(x), it follows that y ∈ Bn for all y ∈ O(x). We finished the proof of
equation (2.3).

Remark 2. In general there are no explicit formulas for σ(x). However, in the
case when Λ = Z2 Gauss obtained an explicit formula for σ(g) with g ∈ Λ in terms
of the prime decomposition of |g|2. This result is as follows. Let N ∈ N with prime
factorization

N = 2α
k∏
i=1

pβi

i

l∏
j=1

q
γj

j ,

where pi ≡ 1 mod 4 and qj ≡ 3 mod 4. Denote R(N) be the number of solutions
in Z2 of n2 +m2 = N . If all γj are even, which is the case for N = |g|2 for g ∈ Z2,
then R(N) = 4

∏k
i=1(1 + βi). See for instance [6, p.166] for this result. Thus we

have σ(g) = R(|g|2).

Lemma 2.3. Bn is closed.

Proof. Let x ∈ Bcn, the complement of Bn. Then either ι(x) ≥ n+1 or χ(x) ≤ n.
The latter is equivalent to ι(x) + σ(x) = ι(x) + µ(x) + 1 = χ(x) ≤ n. In both
cases, because π−1(v) with v = π(x) is discrete, there exists an open neighborhood
around x for which ι(x) ≥ n+ 1 or ι(x) + σ(x) ≤ n respectively, which shows that
the complement of Bn is open and hence Bn is closed.

Lemma 2.4. Let x ∈ Bn, then x ∈ Int(Bn) if and only if µ(x) = 0. Conse-
quently,

MΛ =
⋃
g∈Λ

Lg =
⋃
n∈N

∂Bn. (2.4)

Proof. If µ(x) = 0, then ι(x) = n. Therefore, there exists a small neighbourhood
around x such that ι(y) = n and µ(y) = 0. Thus y ∈ Bn for all y in this
neighbourhood, so x ∈ Int(Bn).

Conversely, let µ(x) ≥ 1. If ι(x) ≤ n − 1 then consider the point y = (1 − ε)x
with 0 < ε < 1. Observe, χ(y) ≤ ι(x) + 1 ≤ n. Hence, y ∈ Bcn and thus x ∈ ∂Bn.
If ι(x) = n then consider the point y = (1 + ε)x with ε > 0. Observe, ι(y) ≤
ι(x) + µ(x) ≥ n+ 1. Hence, y ∈ Bcn and thus x ∈ ∂Bn.

If x ∈ Int(Bn), then ι(x) = n and χ(x) = n + 1. This yields that the zones tile
R2 in the sense that⋃

n∈N
Bn = R2 and Int(Bn) ∩ Int(Bm) = Ø if n 6= m. (2.5)



RIGIDITY OF BRILLOUIN ZONES 7

Definition 6. Define

∂−n = Bn ∩Bn−1 and ∂+
n = Bn ∩Bn+1. (2.6)

If x ∈ ∂Bn, then either ι(x) ≤ n−1 and χ(x) ≥ n+1 or ι(x) = n and χ(x) ≥ n+2,
corresponding to x ∈ Bn ∩Bn−1 and x ∈ Bn ∩Bn+1 respectively. It follows that

∂Bn = ∂−n ∪ ∂+
n (2.7)

We denote ∂n = ∂−n ∪ ∂+
n and (2.4) rewrites as

MΛ =
⋃
n∈N

∂n =
⋃
n∈N

∂+
n , (2.8)

since ∂+
n = ∂−n+1 and ∂−0 = Ø.

Topological properties of Brillouin zones are given in the next proposition, which
was proved in [4].

Proposition 2.5 (Jones). For every Brillouin zone Bn, the following holds:
(i) Bn is compact,
(ii) Bn is path-connected,
(iii) ∂±n is homeomorphic to the circle S1.

Although Bn is connected, the interior of Bn is in general not connected. Let
{bjn}j∈Jn

be the set of connected components of Int(Bn), then⋃
j∈Jn

bjn = Int(Bn). (2.9)

The set Bjn = bjn ∪ ∂bjn is called a subzone† and we have

Bn =
⋃
j∈Jn

Bjn. (2.10)

Lemma 2.6. Bn is a finite union of convex polygons.

Proof. Because Λ is discrete only finitely many Brillouin lines can meet Bn
because Bn is bounded. This yields that every Bn consists of finitely many subzones
and that the boundary of a subzone is comprised of finitely many edges, so every
subzone is a polygon.

To prove convexity, notice that every Brillouin line Lg divides R2 into two half
planes Hi

g, i = 1, 2. Since MΛ =
⋃
g∈Λ∗

Lg =
⋃
n∈N ∂n, every subzone is the

intersection of finitely many convex half planes and thus convex.

A point x ∈ MΛ is called a vertex if µ(x) ≥ 2. The connected components of
{x ∈MΛ | µ(x) = 1} are the edges of MΛ.

Let Pn =
⋃
j∈Jn

Pjn with Pjn = π(Bjn). Moreover, let ∂±Pn = π(∂±n ) and ∂Pn =
π(∂n).

†Subzones are also referred to as Landsberg subzones.
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We define ẽ ⊂ T to be an edge if e ⊂ MΛ is an edge and ẽ = π(e). Similarly, we
say a region P̃ ⊂ T is a convex polygon on the torus, if P ⊂ R2 is a convex polygon
and π(P ) = P̃ and π injective on Int(P ).

Let {Pi}i∈I be a finite family of polygons on R2 and v ∈ T such that v ∈ P̃i =
π(Pi) for all i ∈ I. Then v is called a vertex if π−1(v) ∩ Pi is a vertex of Pi for
every i ∈ I. We call an edge ẽ ⊂ ∂Pn a plus edge if ẽ ⊂ ∂+Pn and a minus edge if
ẽ ⊂ ∂−Pn.

Definition 7 (Torus Puzzle). A torus puzzle is a finite family of convex poly-
gons, {P j}j∈Jn

with P j ⊂ T, such that
(i) the union of the polygons covers the torus,
(ii) if i 6= j, then the intersection P i∩P j is either empty, or a single vertex of both

P i and P j or a single edge of both.

When the polygons are all triangles, the notion of a torus puzzle coincides with
that of a triangulation.

Theorem 2.7. Every Pn is a torus puzzle.

Proof. By lemma 2.1, {Bjn}j∈Jn
is a finite family of convex polygons on R2,

hence {Pjn}j∈Jn
is a finite family of convex polygons on T. To show that π : Bn → T

is surjective, let v ∈ T and consider π−1(v). Because Λ is discrete, π−1(v) is discrete.
Hence, there exists an x ∈ π−1(v) such that

#
{
y ∈ R2 | π(y) = π(x) and |y| < |x|

}
≤ n

and
#

{
y ∈ R2 | π(y) = π(x) and |y| ≤ |x|

}
≥ n+ 1.

We have shown this to be equivalent to ι(x) ≤ n and χ(x) ≥ n+ 1, hence x ∈ Bn.
This shows that {Pjn}j∈Jn

satisfies property (i) of definition 7.
To prove Pn satisfies part (ii), π : Int(Bn) → T is injective since π−1(v) ∩ Bn =

O(x) and σ(x) = 1 if and only if x ∈ Int(Bn). This shows that Int(Pin)∩Int(Pjn) = Ø
if i 6= j for i, j ∈ Jn. Let x ∈ ∂n and π(x) = v. A point x ∈ ∂n is a vertex if and
only if µ(x) ≥ 2. By lemma 2.2, for all points y ∈ O(x), µ(y) = µ(x) and these are
exactly all the points in ∂n that are mapped to v, hence v is a vertex. Conversely,
if x is not a vertex then µ(x) = 1 and µ(y) = 1 for the other y ∈ O(x) so y is not
a vertex and this proves {Pjn}j∈Jn

satisfies part (ii) of definition 7.

It particular, this shows that Bn is a fundamental domain for Λ. That is, Bn is
closed by proposition 2.5 (i) and, moreover,⋃

g∈Λ

gBn = π−1(π(Bn)) = π−1(Pn) = R2

and
Int(gBn) ∩ Int(g′Bn) = Ø if g 6= g′.

The first equality follows from surjectivity of π : Bn → T and the second by
injectivity of π : Int(Bn) → T. This result was first shown by Bieberbach in [3] and
later by Jones in [4]. It also follows that
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Corollary 2.8. The measure of Bn, n ∈ N, equals the area of the torus T.

Figure 3. The first 8 puzzles Pn relative to Z2. The left and middle pictures are the
minus and plus boundaries ∂−Pn and ∂+Pn respectively and the right pictures the

puzzles Pn.

Let x ∈ ∂−n ∩ ∂+
n , or equivalently, x ∈ Bn−1 ∩Bn ∩Bn+1. Then ι(x) ≤ n− 1 and

χ(x) ≥ n+ 2. Hence, µ(x) ≥ 2. Every x ∈ ∂−n ∩ ∂+
n is a vertex.

Definition 8. Let

In = {x ∈ R2 | x ∈ ∂−n ∩ ∂+
n }, (2.11)
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the set of intermediate vertices of ∂n and let γ±n = ∂±n −In. The vertices of γ±n are
called plus and minus vertices respectively, see figure 4.

Since the union of In and γ±n is ∂n, every vertex of ∂n is either a plus, minus or
intermediate vertex.

Figure 4. An intermediate vertex (left) and a plus/minus vertex (right) of ∂n.

Lemma 2.9. Let x ∈ ∂n a vertex. If x is a plus, minus or intermediate vertex,
then y is plus, minus or intermediate vertex respectively for all y ∈ O(x).

Proof. For x ∈ In we have ι(x) ≤ n − 1 and χ(x) ≥ n + 2. If x ∈ γ+
n , then

x ∈ Bn∩Bn+1 but x /∈ Bn−1. Hence ι(x) = n . For a vertex we must have µ(x) ≥ 2.
Thus a vertex in γ+

n satisfies ι(x) = n and χ(x) ≥ n+ 3. Similarly, if x ∈ γ−n , then
ι(x) ≤ n− 1 and χ(x) = n+ 1.

Since these conditions are mutually exclusive, and, by lemma 2.2, ι(x) = ι(y) and
χ(x) = χ(y) for all y ∈ O(x), the result follows.

Definition 9. Let v be a vertex of Pn, then v is a vertex of type I if all edges
incident to v are plus edges and v is a vertex of type II if all edges incident to v
are minus edges. Finally, a vertex v is a vertex of type III, if the edges incident to
v are alternately plus and minus edges.

Definition 10. Let x ∈ ∂n and v = π(x) ∈ ∂Pn. We define µ̃(v) to be the
number of edges that are locally incident to v. If x lies on the interior of an edge,
we define µ̃(v) = 1.

By locally in definition 10 we mean the number of edges incident to a vertex in
a small neighborhood, since an edge can have its vertices identified on the torus,
see for instance the puzzles P1,P6 and P7 relative to Z2 in Figure 3.

If we set Ĩn = π(In), then

Lemma 2.10.

∂−Pn ∩ ∂+Pn = Ĩn (2.12)

Proof. We need to show that π(γ−n ) ∩ π(γ+
n ) = Ø. Let v ∈ T and x ∈ γ+

n such
that π(x) = v. Since π−1(v)∩Bn = O(x) by lemma 2.2 and y ∈ γ±n for all y ∈ O(x)
if x ∈ γ±n by the proof of lemma 2.9, we have π(γ−n )∩ π(γ+

n ) = Ø and hence (2.12).
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The following proposition relates the combinatorial properties of Bn to that of
the torus puzzles Pn on the torus T.

Proposition 2.11. Let x ∈ ∂n be a vertex and v = π(x). If x is a plus, minus
or intermediate vertex, then v is of type I, II or III respectively and

µ̃(v) = µ(x) + 1 if v is of type I or II, (i)
µ̃(v) = 2µ(x) + 2 if v is of type III. (ii)

Proof. By lemma 2.9, if x is a plus or minus or intermediate vertex, then all
vertices in O(x) are plus or minus vertices respectively. If x is a plus or minus
vertex, it is clear that the corresponding vertex v is of type I or II respectively.
So consider the case where O(x) consists of all intermediate vertices. For every
subzone Bjn sharing the intermediate vertex y ∈ O(x), the two edges contained in
∂Bjn incident to y consists of one edge contained in ∂−n and one edge contained in
∂+
n , cf. figure 4. Hence, for every Pjn that shares the common vertex v, there is one

minus edge and one plus edge incident to v. By lemma 2.10, ∂−Pn ∩ ∂+Pn = Ĩn,
so the minus edge incident to v of one subzone Pin is identified to the minus edge
incident to v of the neighbouring subzone Pjn for certain i, j ∈ Jn. Similarly, plus
edges are mapped to plus edges, thus the edges incident to v are alternately plus
and minus edges, so v is of type III.

To prove the second statement, note that if v is of type I or II, then to every
vertex y ∈ O(x) there are exactly two plus or minus edges of ∂Bjn for of some
j ∈ Jn incident to y. Exactly 2σ(x) = 2(µ(x) + 1) plus or minus edges are mapped
to T and are incident to v. For any edge ẽ ⊂ ∂−Pn, π−1(ẽ) ∩ ∂−n = e ∪ e′ for
certain edges e, e′ ⊂ ∂−n by theorem 2.7 and this yields that µ̃(v) = σ(x) = µ(x)+1
which proves (i). If v is of type III, then incident to every vertex y ∈ O(x) are
exactly two plus edges and two minus edges of ∂n. By similar reasoning, we have
that µ̃(v) = 2σ(x) = 2µ(x) + 2 and proves (ii).

The statement of the previous proposition is illustrated by figure 1 and figure 5,
which shows the puzzle P4 relative to Z2.

Figure 5.

Definition 11. A lattice Λ is in general position if the Brillouin lines of MΛ

intersect at most pairwise: µ(x) ≤ 2 for all x ∈ R2.
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Almost all lattices are in general position, in the sense that the set of lattices in
general position has full measure in the set of all lattices. However, lattices not in
general position are also dense in this set, see [4].

Example 1. Consider the following family of lattices

Λ(ρ, θ) = (1, 0)Z⊕ ρ(cos θ, sin θ)Z,

with θ ∈ (0, π) and ρ > 0 rational. First consider the case where ρ = 1. It is clear
that L(2,0) intersects (1, 0). An easy computation shows that both lines Lg1 en Lg2
intersect (1, 0), where g1, g2 ∈ Λ(1, θ),

g1(θ) = (1 + cos θ, sin θ) and g2(θ) = (1− cos θ,− sin θ).

Hence, the lattices Λ(1, θ) with θ ∈ (0, π) are not in general position. Now write
ρ = p

q with p, q ∈ N coprime. Clearly, qΛ(ρ, θ) = (q, 0)Z⊕ p(cos θ, sin θ)Z ⊂ Λ(ρ, θ).
Let τ be the least common multiple of p and q. Then τg1, τg2 ∈ qΛ(ρ, θ) ⊂ Λ(ρ, θ)
and L(2τ,0), Lτg1 and Lτg2 intersect (τ, 0). Hence, the lattices Λ(ρ, θ) with θ ∈ (0, π)
and ρ > 0 rational are not in general position. This is a dense and uncountable
family in the set of all lattices.

We can write Λ = BZ2 with B ∈ GL(2,R). This matrix B gives rise to a (positive
definite) quadratic form induced by the positive definite matrix BtB. The Brillouin
lines relative to the Euclidean metric and the lattice Λ = BZ2 are identical to the
Brillouin lines relative to the lattice Z2 with the metric induced by the matrix BtB.

An interesting result, proved by Kupka, Peixoto and Pugh in [9], is the following
relation between the coefficients of a quadratic form and the notion of general
position.

Theorem 2.12. If the coefficients a, b, c of the positive definite quadratic form
Q are rationally independent, then no three of its Brillouin lines meet at a common
point.

It is understood that the Brillouin lines in theorem 2.12 are the Brillouin lines
relative to the metric induced by the quadratic form Q.

So if B =
(
a b
c d

)
∈ GL(2,R), then MΛ with Λ = BZ2 is in general position

if the coefficients a2 + c2, ab + cd and b2 + d2 are rationally independent. It is not
known whether the converse of theorem 2.12 holds.

Definition 12. Two puzzles Pn and P ′
n are homeomorphic if there exists a

homeomorphism hn : T → T′ such that hn(∂Pn) = ∂P ′
n.

Proposition 2.13. Let Λ be in general position and Λ′ not in general position.
Then there exists an n ∈ N such that Pn and P ′

n are not homeomorphic.

Proof. By assumption, µ(x) = 2 for every vertex x ∈MΛ, hence µ̃(u) = 2+1 = 3
or 2(2+1) = 6 for u = π(x) of type I/II or III respectively, for every vertex u of every
Pn by proposition 2.11. On the other hand, there exists at least two (antipodal)
vertices y ∈ MΛ′ for which µ(y) ≥ 3. For a certain n, y ∈ ∂′n is an intermediate
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vertex. Thus µ̃(v) ≥ 2(3 + 1) = 8 for v = π′(y) ∈ P ′
n. Hence, these puzzles can not

be homeomorphic.

Hence, arbitrarily close to a given lattice, there exists a lattice such that the torus
puzzles of the associated tori are not pairwise homeomorphic.

3. Asymptotic Behavior of Bn

We study the behavior of Bn for n→∞. More precisely, we derive bounds on the
distance of Bn from the origin and show that Bn is contained in a circular annu-
lus with decreasing modulus. Consequently, Bn always becomes circular shaped,
independent of the underlying lattice.

If we let G be the set of all lattices in R2, then we define two lattices Λ,Λ′ ∈ G
to be conformally equivalent, Λ ∼ Λ′, if there exists a conformal matrix A,

A = λ

(
cos θ − sin θ
sin θ cos θ

)
, (3.1)

where λ > 0 and θ ∈ [0, π), such that Λ′ = A(Λ). We denote G = G/ ∼.

Remark 3. Note that A is orientation preserving and that A(Lg) = LA(g).
Hence

A (MΛ) = MA(Λ). (3.2)

Every lattice Λ ∈ G can be represented as Λ = B(Z2) where

B =
(

1 α
0 β

)
(3.3)

with (α, β) ∈ H = (−∞,∞)× (0,∞) ⊂ R2, the upper half plane. In other words, a
lattice in G has the form

Λ = (1, 0)Z⊕ (α, β)Z.

By modular symmetry, this representation is not unique. That is, if two lattices
Λ,Λ′ are generated by the vectors (ω1, ω2) and (ω′1, ω

′
2) then Λ = Λ′ if and only if(

a b
c d

) (
ω1

ω2

)
=

(
ω′1
ω′2

)
,

with
(
a b
c d

)
∈ SL(2,Z). For Λ,Λ′ ∈ G, we have Λ = Λ′ if the associated matrix

has the form
(

1 0
n 1

)
with n ∈ Z. Hence, the points (α + n, β) ∈ H for n ∈ Z all

represent the same lattice.

If x ∈ Int(Bn), then ι(x) = n and by lemma 2.1,

ι(x) = #
{
y ∈ R2 | π(y) = π(x) and |y| < |x|

}
= n,

which we proved to be equivalent to

# {g | g ∈ Λ ∩D(x, |x|)} = n. (3.4)

The following (classical) result is essential in this respect, the proof of which can
be found in [5].
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Theorem 3.1 (Van der Corput). LetD be a region bounded by a convex simple
closed curve, piecewise twice differentiable, with radius of curvature bounded above
by R. The discrepancy ∆ of D, the difference between the number of integer points
in D and the area of D, satisfies

∆ = O(R2/3) (3.5)

Theorem 3.1 gives rise to the following bounds on the distance of a point x ∈ Bn
from the origin.

Theorem 3.2. Let Λ = B(Z2) where B =
(

1 α
0 β

)
, (α, β) ∈ H. Then there

exists a constant KΛ > 0 depending only on the lattice Λ such that for x ∈ Bn and
n ≥ 1,

|x| ∈

[(
βn

π

)1/2

− KΛ

n1/6
,

(
βn

π

)1/2

+
KΛ

n1/6

]
. (3.6)

Proof. First let x ∈ Int(Bn). Since det(B) = β 6= 0, B is invertible. Let Cx =
∂D(x, |x|), then Ex := B−1(Cx) is an ellipse and the region bounded by this ellipse
satisfies the requirements of theorem 3.1. The radius of curvature of an ellipse with
major and minor axes given by a and b respectively is bounded from above by
R = a2

b . Let Rx denote the upper bound on the radius of curvature of Ex and let
tn(x) = (πβ )1/2|x|. The (semi)axes of Ex are proportional to |x| and hence to tn(x),
thus Rx is proportional to tn(x) where the constant of proportionality depends only
on the lattice Λ and

|B−1(D(x, |x|))| = det(B−1)π|x|2 =
π

β
|x|2 = tn(x)2. (3.7)

From equation (3.4), it follows that

#
{
g | g ∈ Z2 ∩B−1(D(x, |x|))

}
= n, (3.8)

so by theorem 3.1 and (3.7)

n = |B−1(D(x, |x|))|+O(tn(x)2/3) = tn(x)2 +O(tn(x)2/3). (3.9)

Put tn(x) =
√
n (1 + zn(x)), with zn(x) the error term. Since tn(x) > 0, 1+zn(x) >

0 and by (3.9),

|n− n (1 + zn(x))
2 | ≤ CΛ(

√
n (1 + zn(x)))2/3, (3.10)

for some constant CΛ > 0 depending only on the lattice Λ. Then (3.10) for n ≥ 1,
after some manipulation, reads

|zn(x)| ≤
CΛ

n2/3

(1 + zn(x))2/3

zn(x) + 2
. (3.11)

For zn ∈ (−1,∞), 0 < (1+zn)2/3

zn+2 ≤ 22/3

3 , so (3.11) reduces to |zn(x)| ≤ C′
Λ

n2/3 , where
C ′

Λ = 22/3

3 CΛ yielding

|zn(x)|
√
n ≤ C ′

Λ

n2/3

√
n =

C ′
Λ

n1/6
. (3.12)

Since tn(x) = (πβ )1/2|x| the result follows for all x ∈ Int(Bn) with KΛ = (βπ )1/2C ′
Λ.

Letting x approach ∂n, we see that these bounds are in fact valid for all x ∈ Bn.
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Remark 4. Note that det(B) = β is independent of the representation of the
lattice, so the statement of theorem 3.2 is well-defined.

4. Rigidity of MΛ

Here we prove our main result that the focal decomposition MΛ is rigid in the
sense that MΛ and MΛ′ are homeomorphic if and only if Λ and Λ′ are conformally
equivalent.

Definition 13. We define MΛ 'MΛ′ , if there exists an orientation preserving
homeomorphism

ϕ : R2 −→ R2 such that ϕ(MΛ) = MΛ′ . (4.1)

Notation. In order to distinguish between the Brillouin zones relative to Λ
and Λ′, we denote these Bn and B′

n respectively.

Theorem 4.1 (rigidity theorem). MΛ ' MΛ′ if and only if Λ and Λ′ are
conformally equivalent.

For the proof of theorem 4.1, we need the following lemmas.

Lemma 4.2. Let ϕ be as in definition 13. Then ϕ induces a bijection ψ : Λ∗ →
Λ′
∗, defined by

ϕ(Lg) = Lψ(g) = Lg′ . (4.2)

Proof. Because ϕ is a homeomorphism, µ(x) = µ(x′) where x, x′ ∈ R2, ϕ(x) =
x′. In particular, ϕ maps vertices to vertices. Consider a vertex x that is the
intersection point of m Brillouin lines Lgi

, gi ∈ Λ for i = 1, ...,m, so µ(x) = m.
If ϕ(x) = x′, then x′ is the intersection point of n Brillouin lines Lg′j , g

′
j ∈ Λ′,

j = 1, ...,m. Let g = gi for some i = 1, ...,m. The plane minus Lg divides R2 into
two connected half-planes H1

g and H2
g , i.e. R2\Lg = H1

g ∪ H2
g . Locally, there are

exactly m−1 edges e1k incident to x such that e1k ⊂ H1
g and m−1 edges e2k incident

to x with e2k ⊂ H2
g . Hence, ϕ(H1

g ) contains m − 1 edges ẽ1k = ϕ(e1k) incident to x′

and ϕ(H2
g ) contains m − 1 edges ẽ2k = ϕ(e2k) incident to x′. So locally the image

ϕ(Lg) goes across x′ as a straight line segment. Since this holds for every vertex,
ϕ(Lg) ⊆ Lg′ for some g′ = g′j ∈ Λ′

∗. The same arguments show that ϕ−1(Lg′) ⊆ Lg,
thus ϕ(Lg) = Lg′ .

Since ϕ is a homeomorphism, it is seen that the map ψ : Λ∗ → Λ′
∗ defined by

(4.2) is a bijection and this concludes the proof.

Lemma 4.3. Given ϕ as in definition 13. There exists a uniform N ∈ N such
that, if x ∈ Int(Bn), i.e. ι(x) = n, then n−N ≤ ι(x′) ≤ n+N

Proof. Let x ∈ Int(Bn), then ι(x) = n, i.e. there are n lines Lg such that
Lg ∩ `x 6= Ø. Let x′ = ϕ(x). By lemma 4.2, ϕ(Lg) = Lg′ , with g ∈ Λ∗ and g′ ∈ Λ′

∗.
Let γ = ϕ(`x), then γ is a continuous curve between ϕ(0) and x′. Every Lgi

, gi ∈ Λ∗,
i = 1, ..., n has exactly one point of intersection with `x and is transversal to `x.
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Hence there are exactly n Brillouin lines Lg′j , g
′
j ∈ Λ′

∗, j = 1, ..., n which have
exactly one point of intersection with γ. Moreover, because Lgi

are transversal to
`x for all i = 1, ..., n, Lg′j are transversal to γ for all j = 1, ..., n.

Let D be the disc D(O,R) with R = |ϕ(0)| <∞. The curve γ can have (multiple)
intersection points with `x′ and γ meets `x′ at the point x′, see figure 6.

Figure 6. Proof of lemma 4.3.

Suppose γ has intersection points with `x′ and let a, b be two consecutive intersec-
tion points. Let S be the Jordan domain enclosed by `x′ and γ between a and b. If a
Brillouin line Lg′1 , g

′
1 ∈ Λ′

∗, enters S by crossing γ, then it has to leave S through `x′ ,
since Lg′1 has only one point of intersection with γ. Suppose however that a line Lg2
intersects `x, but that the image Lg′2 does not intersect `x′ . In this case, the line Lg′2
has to escape through the disc D. But because at most finitely many Brillouin lines
can meet any bounded subset of R2, the number of Brillouin lines that can escape
through the disc D is uniformly bounded by a certain N ∈ N. Conversely, there are
lines that could intersect with `x′ , but not with γ. Again, since ι(ϕ(0)) ≤ N , this
number of lines is uniformly bounded by N . Hence ι(x′) = n + ι(ϕ(0)) ≤ n + N .
Hence, if ι(x) = n and ϕ(x) = x′, then n−N ≤ ι(x′) ≤ n+N .

Let Bg be the bundle of Brillouin lines consisting of all Brillouin lines parallel to
Lg. The Brillouin lines in a bundle are parallel, so by lemma 4.2 and injectivity of
ϕ, we see that bundles are mapped to bundles,

ϕ(Bg) = Bg′ where g′ = ψ(g). (4.3)

We call an element g that is the generator of the subgroup formed by all lattice
points on the line through 0 and g the generator of the bundle Bg.

Lemma 4.4. Let ϕ be as in definition 13, then there exists a linear Q and a
bounded δ : R2 → R2 such that

ϕ(x) = Q(x) + δ(x),

for all x ∈ R2.

Proof. We will show that there exists a tiling of the plane by a parallelogram
which is mapped by ϕ to a tiling of the plane by a second parallelogram. This will
give us an affine map x 7→ Q(x) + c which also preserves this tiling. Because the
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parallelogram in the image space of ϕ has a bounded diameter K0 we get

|ϕ(x)− (Q(x) + c)| ≤ K0,

thus |δ(x)| ≤ |c|+K0 := K.
Let g ∈ Λ be the generator of the bundle

Bg = {Lkg | k ∈ Z \ {0}}

and ϕ(Bg) = Bg′ where g′ ∈ Λ′ is the generator. Assume

ϕ(Lg) = Lkg′ ,

say with k > 0. Define

Bϕg = {L(1+j(k+1))g | j ∈ Z} ⊂ Bg
and

Bϕg′ = {L(k+j(k+1))g′ | j ∈ Z} ⊂ Bg′ .

Notice,
ϕ(L(1+j(k+1))g) = L(k+j(k+1))g′ ,

for j ∈ Z. Furthermore, the bundle Bg (and Bg′) does not consist of equally
spaced lines. Namely, the strip between Lg and L−g is twice as wide as the other
strips. However, the collections Bϕg and Bϕg′ do consist of equally spaced lines.

Now choose g1, g2 ∈ Λ independently. Then the collections Bϕg1 and Bϕg2 define a
tiling of the plane by parallelograms. Even so the collections Bϕg′1 and Bϕg′2 . This tiling
is preserved by ϕ which now can be approximated by an affine map as described
above.

Proof of theorem 4.1. The if part easily follows, because if Λ′ = A(Λ) with A
conformal, then A(MΛ) = MΛ′ , hence MΛ 'MΛ′ with ϕ = A.

To prove the only if part, by lemma 4.4, the linear part |Q(x)| → ∞ for |x| → ∞.
Since δ(x) is bounded, |δ(x)|

|Q(x)| → 0 for |x| → ∞. Thus for |x| → ∞, the behaviour of
ϕ is completely determined by Q. By theorem 3.2, Bn converges to a large circle,
for n → ∞. This implies in turn, by lemma 4.3, that ϕ(Bn) converges to a large
circle for n → ∞. Hence Q maps circles to circles. The only possible non-singular
linear map that maps circles is to circles is a rotation or reflection combined with
dilatation. A reflection reverses orientation, and ϕ is orientation preserving if and
only if Q is orientation preserving. So Q cannot be a reflection. Hence, Q is a
combination of a rotation and dilatation, that is, Q is conformal.

We show that ϕ(MΛ) = Q(MΛ) by showing that ϕ(Bg) = Q(Bg) for every bundle.
Given Bg, there exists a conformal map A = λR(θ) with λ 6= 0 and R(θ) a rotation,
such that ϕ(Bg) = A(Q(Bg)). We claim that θ = 0 ( mod 2π) and λ = 1, i.e.
A = Id. First suppose that θ 6= 0. Then Q(Lg) and ϕ(Lg) with Lg ∈ Bg are
non-parallel lines in R2 and hence |ϕ(x) − Q(x)| is unbounded for x ∈ Lg. This
contradicts the fact that δ is bounded, see lemma 4.4.

To show that λ = 1, consider the points xk = 1
2gk ∈ Lgk, k ∈ Z∗. By what we

just showed we have that λQ(g) = g′. Hence,

Q(xk) =
1
2
k

λ
g′.
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The Brillouin lines in a bundle are mapped by ϕ in a bijective and order preserving
manner to the image bundle Bg′ . We may assume that there exists m ∈ Z such that
ϕ(xk) ∈ Lg′(k+m) for k ≥ 1. Now the bound on δ we found in lemma 4.4 gives the
following estimate for all k ≥ 1.

K ≥ |ϕ(xk)−Q(xk)|

≥ |1
2
(k +m)g′ − 1

2
k

λ
g′|

=
1
2
|k(1− 1

λ
) +m| · |g′|.

(4.4)

This is only possible if λ = 1.
Hence A = Id and it follows that

ϕ(MΛ) = Q(MΛ) = MQ(Λ) = MΛ′ .

Thus Λ′ = Q(Λ) and this proves the theorem.

5. Rigidity of Torus Puzzles

Next we study the rigidity of torus puzzles. We define an equivalence relation on
torus puzzles and show that, for almost all lattices, the torus puzzles relative to two
lattices are pairwise equivalent if and only if the lattices are conformally equivalent.
We use the rigidity of MΛ to prove this result.

Let τ : R2 → R2, τ(x) = −x be the antipodal map. By symmetry, τ(MΛ) = MΛ.
Let τ̃ : T → T be the map that satisfies π ◦ τ = τ̃ ◦π. Let Λ = (1, 0)Z⊕ (α, β)Z ∈ G.
Denote symbolically the points 0, 1, 2, 3 ∈ T defined by i = π(xi), i = 0, 1, 2, 3 with

x0 = (0, 0), x1 =
1
2
(1, 0), x2 =

1
2
(α+ 1, β), x3 =

1
2
(α, β). (5.1)

A straightforward computation shows that the points 0, 1, 2, 3 are the only fixed
points of τ̃ .

Example 2. Figure 7 depicts P1 for Λ = (1, 0)Z⊕( 1
4 ,

3
4 )Z. The associated fixed

points 0, 1, 2, 3 discussed above are indicated with dots.

Figure 7. Puzzle P1 of Example 2.

Remark 5. The points 0 and 1 are independent of the representation of the
lattice, but the the points 2 and 3 are not. If (α, β) represents Λ, then so does
(α+ n, β) with n ∈ Z. The points 2 and 3 flip according to n being even or odd.
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Lemma 5.1. Let Λ be in general position, then 0, 1 ∈ ∂Pn but the points are
not vertices, for all n ≥ 1. In addition

0 ∈ ∂−Pn and 1 ∈ ∂+Pn if n is even, (i)
0 ∈ ∂+Pn and 1 ∈ ∂−Pn if n is odd. (ii)

Proof. Let x ∈ π−1(0) or π−1(1). Because 0 and 1 are the fixed points of τ̃ ,
σ(x) is always even. This yields that σ(x) = 2. Because if σ(x) > 2, i.e. σ(x) ≥ 4,
then µ(x) ≥ 3, contradicting the assumption that Λ is in general position. Hence,
µ(x) = 1, these points always lie on the interior of an edge of MΛ. For each n ≥ 0
we have 0, 1 ∈ ∂Pn.

We have that ∂−P0 = {0}. Since 1 6= 0 and 1 ∈ ∂P0, 1 ∈ ∂+P0. For n = 1, we
have that 0 ∈ ∂+P1 and 1 ∈ ∂−P1 = ∂+P0.

The properties (i) and (ii) for the point 0 ∈ ∂Pn follows inductively. Namely,
0 ∈ ∂+P1 and the fact ∂+Pn = ∂−Pn+1 imply that 0 lies alternately on the plus
and minus boundary. Similarly, one obtains both properties for the point 1 ∈ ∂Pn.

Definition 14 Equivalence of Puzzles. Let Λ,Λ′ ∈ G. Two puzzles Pn,P ′
n

are equivalent, Pn ∼ P ′
n, if there exists an orientation preserving homeomorphism

hn : T −→ T′ such that
a) hn(∂Pn) = ∂P ′

n and
b) hn(0) = 0′ and hn(1) = 1′.

Comparing P1 relative to Λ = (1, 0)Z ⊕ ( 1
4 ,

3
4 )Z and P1 relative to Λ = Z2, cf.

figure 3, it is clear that these two puzzles are not equivalent (or even homeomorphic).

Theorem 5.2. Let Λ,Λ′ ∈ G in general position, then Λ = Λ′ if and only if
Pn ∼ P ′

n for all n ∈ N.

The proof of theorem 5.2 will be preceded by the following two lemmas.

Notation. In what follows, if a map on R2 or T has the property that it maps
plus/minus or intermediate vertices (for a map on R2) or vertices of type I, II, or
III (for a map on T) to vertices of the same type, we say for short that the map
preserves the types of vertices.

Lemma 5.3. Let Λ,Λ′ in general position and Pn ∼ P ′
n, then

hn(∂±Pn) = ∂±P ′
n. (5.2)

Moreover, hn preserves the types of vertices.

Proof. We will only discuss the proof for ∂+Pn. The proof for the other bound-
ary part is similar. Consider the following situation. Let e1, e2 ⊂ ∂+Pn be plus
edges with ∂e1 = {u, v} and ∂e2 = {v, v2} and hn(e1) ⊂ ∂+P ′

n. Then

hn(e2) ⊂ ∂+P ′
n. (5.3)
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The proof of equation (5.3) will deal with two cases. The first when the vertex v of
e1 is of type I. Then µ̃(v) = 3. Hence, µ̃(v′) = 3. Because, v′ ∈ ∂+P ′

n we see that
also v′ is of type I (otherwise µ̃(v′) = 6). This means that every edge attached to
v′ is a plus edge: hn(e2) ⊂ ∂+P ′

n.
The second case to consider is when v is of type III. Then µ̃(v) = 6. Hence,

µ̃(v′) = 6. Because, v′ ∈ ∂+P ′
n we see that also v′ is of type III (otherwise µ̃(v′) = 3).

The edges attached to a type III vertex are alternately plus and minus. Because e1
and hn(e1) are plus edges we see that hn maps all plus edges attached to v to plus
edges attached to v′ (and similarly, the minus edges are mapped to minus edges).
This finishes the proof of equation (5.3).

The next step is to find a pair of plus edges e and e′ = hn(e) to which we can
apply the result stated in equation (5.3). If n is odd, then the edge e through 0
on T and e′ through 0′ on T′ are plus edges. This follows from lemma 5.1. Since
hn(0) = 0′, we have hn(e) = e′. If n is even we use the point 1 ∈ ∂+Pn and the fact
that hn(1) = 1′ ∈ ∂+P ′

n.
Because ∂+

n is path-connected (it is homeomorph to S1), ∂+Pn is path-connected.
Taking a path through ∂+Pn, traversing every plus edge at least once (possibly some
edges more than once), the above arguments show that hn(∂+Pn) ⊆ ∂+P ′

n. Simi-
larly, we can apply these arguments to the inverse of hn and obtain h−1

n (∂+P ′
n) ⊆

∂+Pn. We proved hn(∂+Pn) = ∂+P ′
n.

Lemma 5.4. Let Λ,Λ′ ∈ G in general position and Pn ∼ P ′
n. Then there exist

an orientation preserving homeomorphism ϕn : Bn → B′
n such that

Bn B′
n

Pn P ′
n

ϕn

hn

π π′

-

-
? ?

Moreover, ϕn(∂±n ) = ∂′
±
n and ϕn preserves the types of vertices.

Proof. Write Bn =
⋃
j∈Jn

Bjn and B′
n =

⋃
j′∈J′

n
Bj

′

n . Since Pn ∼ P ′
n, we

have |Jn| = |J ′n|. Let hjn = hn|Int(Pjn) with hjn(Int(Pjn)) = Int(P ′
n
j′). Since the

projections of the form π : Int(Bn) → T \ ∂Pn are homeomoprhisms, the map

ϕjn : Int(Bjn) → Int(B′
n
j′), x 7→ π′

−1 (
hjn(π(x))

)
∩ Int(B′

n
j′)

is also a homeomorphism. We can extend ϕjn uniquely to a homeomorphism on the
boundary ∂Bjn, which we denote again ϕjn. The extension ϕjn : Bjn → B′j′

n is a
homeomorphism for every j ∈ Jn. Moreover, it commutes: π′ ◦ ϕjn = hn ◦ π.

Let Bj1n ∩Bj2n = {x} ∈ In. We will prove that

ϕj1n (x) = ϕj2n (x).

Let v = π(x). There are two lines through x, µ(x) = 2. These lines determine two
opposite sectors which locally coincide with Bj1n and Bj2n respectively. Furthermore,
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π−1(v)∩Bn consists of three points. Hence, there are three lines crossing v. More-
over, opposite sectors at v coincide locally with π(Bj1n ) and π(Bj2n ). To summarize,
Bj1n ∩ Bj2n = {x} if and only if π(Bj1n ) and π(Bj2n ) coincide locally with opposite
sectors at v = π(x).

The map hn is a homeomorphism. This means it will map opposite sectors at a
type III vertex to opposite sectors of the image type III vertex. We proved that if
Bj1n ∩Bj2n = {x} then

ϕj1n (Bj1n ) ∩ ϕj2n (Bj2n ) = {ϕj1n (x)} = {ϕj2n (x)}

This allows us to define a homeomorphism ϕn : Bn → Bn by ϕn|Bjn = ϕjn, which
is orientation preserving since hn is orientation preserving.

Proof of theorem 5.2. If Pn ∼ P ′
n for all n ∈ N, then lemma 5.4 gives us

a sequence of orientation preserving homeomorphisms {ϕn}n∈N, ϕn : Bn → B′
n,

satisfying the properties as stated in the lemma. Since ∂+
n = ∂−n+1,

ϕn(∂+
n ) = ϕn+1(∂+

n ). (5.4)

We may assume that hn is piecewise linear on ∂Pn, i.e. linear on every edge of
∂Pn, for all n ∈ N. This makes the maps ϕn piecewise linear on ∂n for all n ∈ N.
Assume that n is even, the case where n is odd is identical. Then 0 ∈ ∂+Pn and
{±g} = π−1(0) ∩ ∂n and {±g′} = π−1(0′) ∩ ∂′n for certain g ∈ Λ∗ and g′ ∈ Λ′

∗.
Since τ(Bn) = Bn, τ̃(Pn) = Pn. Hence, if hn satisfies definition 14, then so does

h̃n = hn ◦ τ̃ . The map ϕ̃n = ϕn ◦ τ is the homeomorphism that commutes with
the diagram of lemma 5.4 when one replaces hn by h̃n, so we may assume that if
ϕn(g) = g′, then ϕn+1(g) = g′. Combining this with piecewise linearity of ϕn on
∂n for all n ∈ N and (5.4) we have that

ϕn|∂+
n = ϕn+1|∂+

n . (5.5)

This holds for all n ≥ 1. In fact, it also holds when n = 0, because ∂−0 = ∅ thus ∂0 =
∂+
0 = ∂−1 . Hence, the homeomorphisms {ϕn}n∈N glue to a global homeomorphism
ϕ : R2 → R2, with the property that ϕ(MΛ) = MΛ′ , since MΛ =

⋃
n∈N ∂n =⋃

n∈N ∂
+
n . Hence MΛ 'MΛ′ . Since Λ,Λ′ ∈ G, Λ = Λ′ by theorem 4.1.

References

1. G. D. Mostow, ‘Quasi-Conformal Mappings in n-space and the Rigidity of the Hyperbolic
Space Forms’, Publ. Math. IHES 34, (1968), 53-104.

2. M.M.Peixoto and I. Kupka, ‘On the Enumerative Geometry of Geodesics’, From Topology
to Computation-Proceedings of the Smalefest, Springer-Verlag, (1993), 243-253.
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