FORMALITY IN GENERELIZED KÄHLER GEOMETRY

GIL R. CAVALCANTI

ABSTRACT. Using Gualtieri's $\partial \overline{\partial}$ -lemma for generalized Kähler manifolds we prove that if one of the generalized complex structures forming a generalized Kähler pair has holomorphically trivial canonical bundle, then a certain differential graded algebra associated to it is formal. As an application we prove that no nilpotent Lie algebra has a generalized Kähler structure.

Introduction

The requirement that a compact manifold admits a Kähler structure has many topological implications, in particular the manifold is formal in the sense of Sullivan [9, 4]. We prove a formality result for their recently introduced relatives, generalized Kähler manifolds [5].

In order to state our result we recall some of the theory on generalized complex structures, as introduced by Hitchin [7] and developed by Gualtieri [5]. A generalized complex structure is an orthogonal complex structure $\mathcal J$ on $T\oplus T^*$, the sum of tangent and cotangent bundles of a manifold, integrable with respect to the Courant bracket. The Courant bracket always restricts to a Lie bracket on L, the i-eigenspace of $\mathcal J$, endowing it with the structure of a Lie algebroid. As a consequence $\Omega^{\bullet}(L^*)$, the space of sections of $\wedge^{\bullet}L^*$, has a differential making it a differential graded algebra. This DGA is also related to a decomposition of forms on the manifold.

A generalized Kähler structure is a pair of commuting generalized complex structures which together determine a metric. Since each generalized complex structure is related to a Lie algebroid, we have associated to a generalized Kähler structure two differential graded algebras. These DGAs are also related to a bigrading of differential forms and cohomology on the manifold. Developing a Hodge theory for generalized Kähler manifolds and the bigrading of forms, Gualtieri proved the equality of a number of Laplacians on differential forms associated to a generalized Kähler structure [6]. As a consequence, he obtained $\partial \bar{\partial}$ -lemma-like results for the associated operators.

Using Gualtieri's results and the relationship between the different differential complexes related to a generalized Kähler manifold we prove that if one of the generalized complex structures making up a generalized Kähler structure has holomorphically trivial canonical bundle, then the respective Lie algebroid is associated to a formal DGA in the sense of Sullivan. As an application of this result we prove that no generalized complex structure on a nilpotent Lie algebra can be completed to a generalized Kähler pair.

I would like to thank Marco Gualtieri for his suggestions and inspired advice as well as Marisa Fernández, Nigel Hitchin and Simon Salamon for suggestions on the

first manuscript. I also thank IMPA for their hospitality while writing this paper. This research is supported by EPSRC.

1. Differential graded algebras

In this section we give a lightening review formality for differential graded algebras and recover the well known fact that the DGA associated to a nontrivial nilpotent Lie algebra is not formal.

Definition. A differential graded algebra, or DGA for short, is an \mathbb{N} graded vector space \mathcal{A}^{\bullet} , endowed with a product and a differential d satisfying:

(1) The product maps $A^i \times A^j$ to A^{i+j} and is graded commutative:

$$a \cdot b = (-1)^{ij} b \cdot a;$$

- (2) The differential has degree 1, $d: \mathcal{A}^k \longrightarrow \mathcal{A}^{k+1}$, and squares to zero;
- (3) The differential is a derivation: for $a \in \mathcal{A}^i$ and $b \in \mathcal{A}^j$

$$d(a \cdot b) = da \cdot b + (-1)^{i} a \cdot db.$$

The cohomology of a DGA is defined in the standard way and naturally inherits a grading and a product, making it into a DGA on its own with d=0. A morphism of differential graded algebras is a map preserving the structure above, i.e., degree, products and differentials. Any morphism of DGAs $\varphi: \mathcal{A} \longrightarrow \mathcal{B}$ gives rise to a morphism of cohomology $\varphi^*: H^{\bullet}(\mathcal{A}) \longrightarrow H^{\bullet}(\mathcal{B})$. A morphism φ is a quasi-isomorphism if the induced map in cohomology is an isomorphism.

Given a DGA, \mathcal{A} , for which $H^k(\mathcal{A})$ is finite dimensional for every k, one can construct another differential graded algebra that captures all the information about the differential and which is minimal in the following sense.

Definition. A DGA (\mathcal{M}, d) is *minimal* if it is free as a DGA (i.e. polynomial in even degree and skew symmetric in odd degree) and has generators $e_1, e_2, \ldots, e_n, \ldots$ such that

- (1) The degree of the generators form a weakly increasing sequence of positive numbers;
- (2) There are finitely many generators in each degree;
- (3) The differential satisfies $de_i \in \wedge \text{span}\{e_1, \dots, e_{i-1}\}$.

A minimal model for a differential graded algebra \mathcal{A} is a minimal DGA, \mathcal{M} , together with a quasi-isomorphism $\psi: \mathcal{M} \longrightarrow \mathcal{A}$.

Since the cohomology of a DGA is also a DGA we can also construct its minimal model. The minimal models for \mathcal{A} and $H^{\bullet}(\mathcal{A})$ are not the same in general.

Definition. A DGA \mathcal{A} is *formal* if it has the same minimal model as its cohomology, or equivalently, there is a quasi-isomorphism $\psi : \mathcal{M} \longrightarrow H^{\bullet}(\mathcal{A})$, where \mathcal{M} is the minimal model of \mathcal{A} . A manifold M is *formal* if $(\Omega^{\bullet}(M), d)$ is formal.

Example 1.1. (Nilpotent Lie algebras) A typical example of nonformal DGA can be obtained from a finite dimensional nilpotent Lie algebra \mathfrak{g} with nontrivial bracket. The Lie bracket induces a differential d on $\wedge^{\bullet}\mathfrak{g}^*$ making it into a DGA. Furthermore, \mathfrak{g}^* is filtered by $\mathfrak{g}_1^* = \ker d$ and

$$\mathfrak{g}_i^* = \{ v \in \mathfrak{g}^* : dv \in \wedge^2 \mathfrak{g}_{i-1}^* \}.$$

Nilpotency implies that $\mathfrak{g}_s^* = \mathfrak{g}^*$ for some s. Let $\{e^1, \dots, e^n\}$ be a basis for \mathfrak{g}^* compatible with this filtration. Then

$$de^i \in \wedge^2 \operatorname{span}\{e^1, \cdots, e^{i-1}\}.$$

showing that $(\wedge^{\bullet}\mathfrak{g}^*, d)$ is minimal.

Since the bracket is nontrivial, $de^n \neq 0$ and hence one can see that $e^1 \wedge \cdots \wedge e^{n-1}$ is exact and $e^1 \wedge \cdots \wedge e^n$ is a volume element and therefore represents a nontrivial cohomology class. If $(\wedge \mathfrak{g}^*, d)$ was formal, there would be a map $\psi : (\wedge^{\bullet} \mathfrak{g}^*, d) \longrightarrow H^{\bullet}(\mathfrak{g})$, but

$$0 \neq \psi(e^1 \wedge \dots \wedge e^n) = \psi(e^1 \wedge \dots \wedge e^{n-1}) \cdot \psi(e^n) = 0 \cdot \psi(e^n) = 0.$$

So there is no such ψ and $\wedge^{\bullet}\mathfrak{g}^*$ is not formal.

2. Generalized complex structures and Lie algebroids

In this section we recall the definition of generalized complex structures and their relation to Lie algebroids, following [5].

Given a closed 3-form H on a manifold M, we define the *Courant bracket* of sections of the sum $T \oplus T^*$ of the tangent and cotangent bundles by

$$[X + \xi, Y + \eta] = [X, Y] + \mathcal{L}_X \eta - \mathcal{L}_Y \xi - \frac{1}{2} d(\eta(X) - \xi(Y)) + i_Y i_X H.$$

The bundle $T \oplus T^*$ is also endowed with a natural symmetric pairing of signature (n,n):

$$\langle X + \xi, Y + \eta \rangle = \frac{1}{2} (\eta(X) + \xi(Y)).$$

Definition. A generalized complex structure on a manifold with closed 3-form (M, H) is a complex structure on the bundle $T \oplus T^*$ which preserves the natural pairing and whose *i*-eigenspace is closed under the Courant bracket.

A generalized complex structure can be fully described in terms of its *i*-eigenspace L, which is a maximal isotropic subspace of $T_{\mathbb{C}} \oplus T_{\mathbb{C}}^*$ satisfying $L \cap \overline{L} = \{0\}$.

Two extreme examples of generalized complex structures, with H=0, are given by complex and symplectic structures: in a complex manifold we let $L=T^{0,1}\oplus T^{*1,0}$ and in a symplectic manifold we let $L=\{X-i\omega(X):X\in T_{\mathbb{C}}\}$, where ω is the symplectic form. What distinguishes these structures is their type which is the dimension of the kernel of $\pi:L\longrightarrow T_{\mathbb{C}}$. So, a complex structure on M^n has type n at all points and symplectic structures have type zero at all points.

The Courant bracket does not satisfy the Jacobi identity. Instead we have the relation for the Jacobiator

$$\operatorname{Jac}(A, B, C) := [\![A, B]\!], C + c.p. = \frac{1}{3}d(\langle A, B]\!], C + c.p.),$$

where c.p. stands for cyclic permutations. However, the identity above also shows that the Courant bracket induces a Lie bracket when restricted to sections of any involutive isotropic space L. This Lie bracket together with the projection $\pi_T: L \longrightarrow TM$, makes L into a Lie algebroid and allows us to define a differential d_L on $\Omega^{\bullet}(L^*) = \mathbb{C}^{\infty}(\wedge^{\bullet}L^*)$ making it into a DGA. If L is the i-eigenspace of a generalized complex structure, then the natural pairing gives an isomorphism $L^* \cong \overline{L}$ and with this identification $(\Omega^{\bullet}(\overline{L}), d_L)$ is a DGA.

If a generalized complex structure has type zero over M, i.e., is of symplectic type, then $\pi:L\stackrel{\cong}{\longrightarrow} T_{\mathbb{C}}$ is an isomorphism and the Courant bracket on $C^{\infty}(L)$

is mapped to the Lie bracket on $C^{\infty}(T_{\mathbb{C}})$. Therefore, in this particular case, $(\Omega^{\bullet}(\overline{L}), d_L)$ and $(\Omega^{\bullet}_{\mathbb{C}}(M), d)$ are isomorphic DGAs.

2.1. Decomposition of forms. A generalized complex structure can also be described using differential forms. Recall that the exterior algebra $\wedge^{\bullet}T^*$ carries a natural spin representation for the metric bundle $T \oplus T^*$; the Clifford action of $X + \xi \in T \oplus T^*$ on $\rho \in \wedge^{\bullet} T^*$ is

$$(X + \xi) \cdot \rho = i_X \rho + \xi \wedge \rho.$$

The subspace $L \subset T_{\mathbb{C}} \oplus T_{\mathbb{C}}^*$ annihilating a spinor $\rho \in \wedge^{\bullet} T_{\mathbb{C}}^*$ is always isotropic. If Lis maximal isotropic, then ρ is called a *pure spinor* and it must have the following algebraic form at every point:

$$\rho = e^{B+i\omega} \wedge \Omega,$$

where B and ω are real 2-forms and Ω is a decomposable complex form. Pure spinors annihilating the same space must be equal up to rescaling, hence a maximal isotropic $L \subset T_{\mathbb{C}} \oplus T_{\mathbb{C}}^*$ may be uniquely described by a line subbundle $U \subset \wedge^{\bullet} T_{\mathbb{C}}^*$. For a complex manifold $U = \wedge^{n,0} T^*$ and for a symplectic manifold U is generated

by the globally defined closed form $e^{i\omega}$. In general we have the following definition.

Definition. Given a generalized complex structure \mathcal{J} , the line subbundle $U \subset \wedge^{\bullet}T^*_{\mathbb{C}}$ annihilating its *i*-eigenspace is the canonical bundle of \mathcal{J} .

Note that the condition $L \cap \overline{L} = \{0\}$ at the fiber of E over $p \in M$ is equivalent to the requirement that

$$(2.2) \Omega \wedge \overline{\Omega} \wedge \omega^{n-k} \neq 0$$

for a generator $\rho = e^{B+i\omega} \wedge \Omega$ of U at p, where $k = \deg(\Omega)$ and $2n = \dim(M)$.

By letting $\wedge^{\bullet}\overline{L} \subset \text{Cliff}(L \oplus \overline{L})$ act on the canonical line bundle we obtain a decomposition of the differential forms on M^{2n} :

$$\wedge^{\bullet} T^*_{\mathbb{C}}(M) = \bigoplus_{k=-n}^n U^k, \quad \text{where } U^k = \wedge^{n-k} \overline{L} \cdot \rho.$$

one can also describe the spaces U^k as the ik-eigenspaces of \mathcal{J} acting on forms.

Letting $\mathcal{U}^k = C^{\infty}(U^k)$ and $d_H = d + H \wedge$, Courant integrability of the generalized complex structure is equivalent to

$$d_H: \mathcal{U}^k \longrightarrow \mathcal{U}^{k+1} \oplus \mathcal{U}^{k-1},$$

which allows us to define operators $\partial:\mathcal{U}^k\longrightarrow\mathcal{U}^{k+1}$ and $\overline{\partial}:\mathcal{U}^k\longrightarrow\mathcal{U}^{k-1}$ by composing d_H with the appropriate projections.

Given a local section ρ of the canonical bundle the operator $\bar{\partial}$ is related to d_L by

$$\overline{\partial}(\alpha \cdot \rho) = (d_L \alpha) \cdot \rho + (-1)^{|\alpha|} d_H \rho,$$

where $\alpha \in \Omega^{\bullet}(\overline{L})$ and $|\alpha|$ is the degree of α . In the particular case when (M, \mathcal{J}) has holomorphically trivial canonical bundle, i.e., there is a nonvanishing d_H -closed global section ρ of the canonical bundle, the above becomes

$$(2.3) \overline{\partial}(\alpha \cdot \rho) = (d_L \alpha) \cdot \rho$$

and hence ρ furnishes an isomorphism of differential complexes.

3. Generalized Kähler manifolds

In this section we introduce generalized Kähler manifolds. For these manifolds both $\Omega^{\bullet}_{\mathbb{C}}(M)$ and $(\Omega^{\bullet}(\overline{L}), d_L)$ admit a bigrading and, in certain conditions, some differential operators $\Omega^{\bullet}_{\mathbb{C}}(M)$ correspond to differential operators on $\Omega^{\bullet}(\overline{L})$. This correspondence was also used by Yi Li to study the moduli space of a generalized Kähler structure [8] and is the key ingredient for our formality theorem.

Definition. A generalized Kähler structure on a manifold M^{2n} is a pair of commuting generalized complex structures \mathcal{J}_1 , \mathcal{J}_2 on M such that

$$\langle \mathcal{J}_1 \mathcal{J}_2 v, v \rangle > 0$$
 for $v \in T \oplus T^* \setminus \{0\}$.

Let L_i be the *i*-eingenspace of \mathcal{J}_i . Since \mathcal{J}_1 and \mathcal{J}_2 communte, \mathcal{J}_2 furnishes a complex structure on L_1 with *i*-eigenspace $L_1 \cap L_2$. Using the fact that the natural pairing has signature (n,n) and that $\langle \mathcal{J}_1 \mathcal{J}_2 \cdot, \cdot \rangle$ is positive definite one can show $\dim(L_1) = 2\dim(L_1 \cap L_2)$. Since L_2 is closed under the Courant bracket, we see that $L_1 \cap L_2$ is closed under the bracket in the Lie algebroid L_1 , and hence $\mathcal{J}_2|_{L_1}$ is an integrable complex structure on L_1 . Using this complex structure we can decompose

$$\wedge^{\bullet} \overline{L_1} = \bigoplus_{p,q} \wedge^{p,q} \overline{L_1} \quad \text{and} \quad d_{L_1} = \partial_{L_1} + \overline{\partial}_{L_1},$$

As in a complex manifold, the operators ∂_{L_1} and $\overline{\partial}_{L_1}$ are derivations, in the sense that they satisfy the Leibniz rule.

A generalized Kähler structure also gives a refinement of the deposition of forms into the spaces U^k . Since \mathcal{J}_1 and \mathcal{J}_2 commute one immediately obtains that the space of differential forms can be decomposed in terms of the eigenspaces of \mathcal{J}_1 and \mathcal{J}_2 : $U^{p,q} = U^p_{\mathcal{J}_1} \cap U^q_{\mathcal{J}_2}$. This allows us to decompose d_H further in 4 components

$$d_H: \mathcal{U}^{p,q} \longrightarrow \mathcal{U}^{p+1,q+1} + \mathcal{U}^{p+1,q-1} + \mathcal{U}^{p-1,q+1} + \mathcal{U}^{p-1,q-1}.$$

In this case, the operator $\overline{\partial}$ for the generalized complex structure \mathcal{J}_1 corresponds to the sum of the last two terms:

$$\overline{\partial}_1: \mathcal{U}^{p,q} \longrightarrow \mathcal{U}^{p-1,q+1} + \mathcal{U}^{p-1,q-1}$$

and we can define δ_+ and δ_- as the projections of $\bar{\partial}_1$ into each of the components

$$\delta_+: \mathcal{U}^{p,q} \longrightarrow \mathcal{U}^{p-1,q+1} \qquad \delta_-: \mathcal{U}^{p,q} \longrightarrow \mathcal{U}^{p-1,q-1}.$$

By studying the Hodge theory of a generalized Kähler manifold, Gualtieri proved the following $\,$

Theorem 3.1. (Gualtieri [6]) $\delta_+\delta_-$ -lemma. In a compact generalized Kähler manifold

$$\operatorname{Im} \delta_{+} \cap \operatorname{Ker} \delta_{-} = \operatorname{Im} \delta_{-} \cap \operatorname{Ker} \delta_{+} = \operatorname{Im} (\delta_{+} \delta_{-})$$

If \mathcal{J}_1 has holomorphically trivial canonical bundle, then the correspondence between $\overline{\partial}_1$ and d_{L_1} given in equation (2.3) also furnishes a correspondence between the operators ∂_{L_1} and $\overline{\partial}_{L_1}$ in $\wedge^{\bullet}\overline{L}$ and the operators δ_+ and δ_- in $\wedge^{\bullet}T^*_{\mathbb{C}}$. So, as a consequence of Theorem 3.1, the operators ∂_{L_1} and $\overline{\partial}_{L_1}$ satisfy the $\partial_{L_1}\overline{\partial}_{L_1}$ -lemma and since they are derivations the same argument from [4] gives:

Theorem 3.2. If $(M, \mathcal{J}_1, \mathcal{J}_2)$ is a compact generalized Kähler manifold and \mathcal{J}_1 has holomophically trivial canonical bundle, then the DGA $(\Omega^{\bullet}(\overline{L_1}), d_{L_1})$ is formal.

In the case when \mathcal{J}_1 is a symplectic structure, then not only does it have a holomorphically trivial canonical bundle, but $(\Omega^{\bullet}(\overline{L_1}), d_{L_1})$ is isomorphic to $(\Omega^{\bullet}_{\mathbb{C}}(M), d)$. Therefore we have:

Corollary 1. If $(M, \mathcal{J}_1, \mathcal{J}_2)$ is a compact generalized Kähler manifold and \mathcal{J}_1 is a symplectic structure, then M is formal.

This corollary generalizes the original theorem of formality of Kähler manifolds [4].

4. Nilpotent Lie algebras

In this section we use Theorem 3.2 to prove that no nilpotent Lie algebra admits a generalized Kähler structure. Before we state the theorem we should stress that a generalized complex structure on a Lie algebra \mathfrak{g} with closed 3-form $H \in \wedge^3 \mathfrak{g}^*$ is just an integrable linear complex structure on $(\mathfrak{g} \oplus \mathfrak{g}^*, [\![,]\!])$, orthogonal with respect to the natural pairing, where the Courant bracket is defined by

$$[X + \xi, Y + \eta] = [X, Y] + \mathcal{L}_X \eta - \mathcal{L}_Y \xi + i_Y i_X H,$$

and is a Lie bracket in this situation.

We also recall that a complex structure on a Lie algebra \mathfrak{g} is called *abelian* if its *i*-eigenspace, $\mathfrak{g}^{1,0}$, is an abelian subalgebra of $\mathfrak{g} \otimes \mathbb{C}$ [1, 3]. By analogy, we say that a generalized complex structure on \mathfrak{g} is *abelian* if the corresponding complex structure on $\mathfrak{g} \oplus \mathfrak{g}^*$ is abelian. Before we state our theorem on generalized Kähler structures on nilpotent Lie algebras we need a little lemma:

Lemma 4.1. If a Lie algebra $\mathfrak g$ admits an abelian generalized complex structure, then $\mathfrak g$ is abelian.

Proof. Let L be the i-eigenspee of an abelian generalized complex structure on \mathfrak{g} . Since L is abelian, so is its projection over $\mathfrak{g} \otimes \mathbb{C}$. Further, if $v \in \pi(L) \cap \pi(\overline{L})$ then v is a central element in $\mathfrak{g}_{\mathbb{C}}$. Indeed for such a v there is a $\xi \in \mathfrak{g}_{\mathbb{C}}^*$ such that $\mathcal{J}(v+\xi) \in \mathfrak{g}_{\mathbb{C}}^*$ so, for $w \in \mathfrak{g}_{\mathbb{C}}$

$$\begin{split} 4[v,w] &= 4\pi([\![v+\xi,w]\!]) \\ &= \pi([\![v+\xi+i\mathcal{J}(v+\xi)+v+\xi-i\mathcal{J}(v+\xi),w+i\mathcal{J}w+w-i\mathcal{J}w]\!]) \\ &= \pi([\![v+\xi+i\mathcal{J}(v+\xi),w+i\mathcal{J}w]\!] + [\![v+\xi+i\mathcal{J}(v+\xi),w-i\mathcal{J}w]\!] + \\ &+ [\![v+\xi-i\mathcal{J}(v+\xi),w+i\mathcal{J}w]\!] + [\![v+\xi-i\mathcal{J}(v+\xi),w-i\mathcal{J}w]\!]) \\ &= \pi([\![v+\xi+i\mathcal{J}(v+\xi),w-i\mathcal{J}w]\!] + [\![v+\xi-i\mathcal{J}(v+\xi),w+i\mathcal{J}w]\!]) \\ &= \pi([\![v+\xi-i\mathcal{J}(v+\xi),w-i\mathcal{J}w]\!] + [\![v+\xi+i\mathcal{J}(v+\xi),w+i\mathcal{J}w]\!]) = 0, \end{split}$$

where we have used that L and \overline{L} are abelian in the fourth and in the last equalities and in the fifth equality we used that $\mathcal{J}(v+\xi) \in \mathfrak{g}_{\mathbb{C}}^*$, hence the change of signs does not affect the projection of the bracket onto $\mathfrak{g}_{\mathbb{C}}$.

If we let $e^{B+i\omega} \wedge \Omega$, with $\Omega = \theta^1 \wedge \cdots \wedge \theta^k$, be a generator for the canonical bundle of \mathcal{J} , then $\pi(\underline{L}) \cap \pi(\overline{L})$ is the annihilator of $\Omega \wedge \overline{\Omega}$. Since $\theta^i \in L$ there are $\overline{\partial_j} \in \overline{L}$ such that $\langle \theta^i, \overline{\partial_j} \rangle = \delta^i_j$ and we can compute

$$\theta^i([\pi(\partial_i),\pi(\overline{\partial_k})]) = d\theta^i(\pi(\partial_i),\pi(\overline{\partial_k})) = \langle \llbracket \theta^i,\partial_i \rrbracket, \overline{\partial_k} \rangle = 0$$

since $\theta^i, \partial_j \in L$. Analogously we see that $[\pi(\partial_j), \pi(\overline{\partial_k})]$ also annihilates $\overline{\theta^i}$ and hence $[\pi(\partial_j), \pi(\overline{\partial_k})] \in \pi(L) \cap \pi(\overline{L})$, hence \mathfrak{g} is either abelian or 2-step nilpotent.

If \mathfrak{g} was 2-step nilpotent there would be an element $\xi \in \mathfrak{g}^*$ with $d\xi \neq 0$. Since the only nonvanishing brackets are of the form $[\pi(\partial_i), \pi(\overline{\partial}_j)]$ and ξ is real, we see that there is a ∂_i for which $d\xi(\pi(\partial_i), \pi(\overline{\partial}_i)) = \xi([\pi(\partial_i), \pi(\overline{\partial}_i)]) \neq 0$. Since all the θ^i are closed, we can further assume that $\xi = \mathcal{J}(v - B(v))$, for some $v \in \mathfrak{g}$, therefore $v - B(v) - i\xi \in L$ and

$$0 = \langle \llbracket v - B(v) - i\xi, \partial_i \rrbracket, \overline{\partial}_i \rangle = -id\xi(\pi(\partial_i), \pi(\overline{\partial}_i)) + (H + dB)(v, \pi(\partial_i), \pi(\overline{\partial}_i)).$$

Observe that the first term is real and nonzero while the second is purely imaginary, hence the equation above can never hold and \mathfrak{g} is abelian.

Theorem 4.1. If a nilpotent Lie algebra $\mathfrak g$ admits a generalized Kähler structure, then $\mathfrak g$ is abelian.

Proof. According to [2], Theorem 3.1, every generalized complex structure on a nilpotent Lie algebra \mathfrak{g} has holomorphically trivial canonical bundle. Further, for any closed $H \in \wedge^3 \mathfrak{g}^*$, $\mathfrak{g} \oplus \mathfrak{g}^*$ with the Courant bracket is again a nilpotent Lie algebra, hence the *i*-eigenspace, L, of any generalized complex structures is a nilpotent Lie subalgebra of $(\mathfrak{g} \oplus \mathfrak{g}^*) \otimes \mathbb{C}$. According to Lemma 4.1, if \mathfrak{g} has nontrivial bracket, then L has a nontrivial bracket. Then, Example 1.1 shows that $(\wedge^{\bullet} \overline{L}, d_L)$ is not formal and hence, by Theorem 3.2, can not be part of a generalized Kähler pair.

References

- M. L. Barberis, I. G. Dotti Miatello, and R. J. Miatello. On certain locally homogeneous Clifford manifolds. Ann. Global Anal. Geom., 13(3):289–301, 1995.
- [2] G. R. Cavalcanti and M. Gualtieri. Generalized complex structures on nilmanifolds. J. Symplectic Geom., 2(3):393-410, 2004.
- [3] L. A. Cordero, M. Fernández, and L. Ugarte. Abelian complex structures on 6-dimensional compact nilmanifolds. *Comment. Math. Univ. Carolin.*, 43(2):215–229, 2002.
- [4] P. Deligne, P. Griffiths, J. Morgan, and D. Sullivan. Real homotopy theory of Kähler manifolds. Invent. Math., 29:245–274, 1975.
- [5] M. Gualtieri. Generalized Complex Geometry. D.Phil. thesis, Oxford University, 2003. math.DG/0401221.
- [6] M. Gualtieri. Generalized geometry and the Hodge decomposition. math.DG/0409093, 2004.
- [7] N. Hitchin. Generalized Calabi-Yau manifolds. Quart. J. Math. Oxford, 54:281-308, 2003.
- [8] Y. Li. On deformations of generalized complex structures: the generalized calabi-yau case, 2005
- [9] D. Sullivan. Infinitesimal computations in topology. Inst. Hautes Études Sci. Publ. Math., 47:269–331, 1978.

MATHEMATICAL INSTITUTE, 24 - 29 St. GILES, OXFORD, OX1 3LB, UK E-mail address: gilrc@maths.ox.ac.uk