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Abstract. Using Gualtieri’s ∂∂-lemma for generalized Kähler manifolds we
prove that if one of the generalized complex structures forming a generalized

Kähler pair has holomorphically trivial canonical bundle, then a certain dif-

ferential graded algebra associated to it is formal. As an application we prove
that no nilpotent Lie algebra has a generalized Kähler structure.

Introduction

The requirement that a compact manifold admits a Kähler structure has many
topological implications, in particular the manifold is formal in the sense of Sullivan
[9, 4]. We prove a formality result for their recently introduced relatives, generalized
Kähler manifolds [5].

In order to state our result we recall some of the theory on generalized com-
plex structures, as introduced by Hitchin [7] and developed by Gualtieri [5]. A
generalized complex structure is an orthogonal complex structure J on T ⊕ T ∗,
the sum of tangent and cotangent bundles of a manifold, integrable with respect
to the Courant bracket. The Courant bracket always restricts to a Lie bracket on
L, the i-eigenspace of J , endowing it with the structure of a Lie algebroid. As a
consequence Ω•(L∗), the space of sections of ∧•L∗, has a differential making it a
differential graded algebra. This DGA is also related to a decomposition of forms
on the manifold.

A generalized Kähler structure is a pair of commuting generalized complex struc-
tures which together determine a metric. Since each generalized complex structure
is related to a Lie algebroid, we have associated to a generalized Kähler structure
two differential graded algebras. These DGAs are also related to a bigrading of
differential forms and cohomology on the manifold. Developing a Hodge theory
for generalized Kähler manifolds and the bigrading of forms, Gualtieri proved the
equality of a number of Laplacians on differential forms associated to a generalized
Kähler structure [6]. As a consequence, he obtained ∂∂-lemma-like results for the
associated operators.

Using Gualtieri’s results and the relationship between the different differential
complexes related to a generalized Kähler manifold we prove that if one of the
generalized complex structures making up a generalized Kähler structure has holo-
morphically trivial canonical bundle, then the respective Lie algebroid is associated
to a formal DGA in the sense of Sullivan. As an application of this result we prove
that no generalized complex structure on a nilpotent Lie algebra can be completed
to a generalized Kähler pair.
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1. Differential graded algebras

In this section we give a lightening review formality for differential graded al-
gebras and recover the well known fact that the DGA associated to a nontrivial
nilpotent Lie algebra is not formal.

Definition. A differential graded algebra, or DGA for short, is an N graded vector
space A•, endowed with a product and a differential d satisfying:

(1) The product maps Ai ×Aj to Ai+j and is graded commutative:

a · b = (−1)ijb · a;

(2) The differential has degree 1, d : Ak −→ Ak+1, and squares to zero;
(3) The differential is a derivation: for a ∈ Ai and b ∈ Aj

d(a · b) = da · b+ (−1)ia · db.

The cohomology of a DGA is defined in the standard way and naturally inherits
a grading and a product, making it into a DGA on its own with d = 0. A morphism
of differential graded algebras is a map preserving the structure above, i.e., degree,
products and differentials. Any morphism of DGAs ϕ : A −→ B gives rise to
a morphism of cohomology ϕ∗ : H•(A) −→ H•(B). A morphism ϕ is a quasi-
isomorphism if the induced map in cohomology is an isomorphism.

Given a DGA, A, for which Hk(A) is finite dimensional for every k, one can
construct another differential graded algebra that captures all the information about
the differential and which is minimal in the following sense.

Definition. A DGA (M, d) is minimal if it is free as a DGA (i.e. polynomial in
even degree and skew symmetric in odd degree) and has generators e1, e2 . . . , en, . . .
such that

(1) The degree of the generators form a weakly increasing sequence of positive
numbers;

(2) There are finitely many generators in each degree;
(3) The differential satisfies dei ∈ ∧span{e1, . . . , ei−1}.

A minimal model for a differential graded algebra A is a minimal DGA,M, together
with a quasi-isomorphism ψ : M−→ A.

Since the cohomology of a DGA is also a DGA we can also construct its minimal
model. The minimal models for A and H•(A) are not the same in general.

Definition. A DGAA is formal if it has the same minimal model as its cohomology,
or equivalently, there is a quasi-isomorphism ψ : M −→ H•(A), where M is the
minimal model of A. A manifold M is formal if (Ω•(M), d) is formal.

Example 1.1. (Nilpotent Lie algebras) A typical example of nonformal DGA
can be obtained from a finite dimensional nilpotent Lie algebra g with nontriv-
ial bracket. The Lie bracket induces a differential d on ∧•g∗ making it into a DGA.
Furthermore, g∗ is filtered by g∗1 = ker d and

g∗i = {v ∈ g∗ : dv ∈ ∧2g∗i−1}.
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Nilpotency implies that g∗s = g∗ for some s. Let {e1, · · · , en} be a basis for g∗

compatible with this filtration. Then

dei ∈ ∧2span{e1, · · · , ei−1}.
showing that (∧•g∗, d) is minimal.

Since the bracket is nontrivial, den 6= 0 and hence one can see that e1∧· · ·∧en−1

is exact and e1 ∧ · · · ∧ en is a volume element and therefore represents a nontrivial
cohomology class. If (∧g∗, d) was formal, there would be a map ψ : (∧•g∗, d) −→
H•(g), but

0 6= ψ(e1 ∧ · · · ∧ en) = ψ(e1 ∧ · · · ∧ en−1) · ψ(en) = 0 · ψ(en) = 0.

So there is no such ψ and ∧•g∗ is not formal.

2. Generalized complex structures and Lie algebroids

In this section we recall the definition of generalized complex structures and their
relation to Lie algebroids, following [5].

Given a closed 3-form H on a manifold M , we define the Courant bracket of
sections of the sum T ⊕ T ∗ of the tangent and cotangent bundles by

[[X + ξ, Y + η]] = [X,Y ] + LXη − LY ξ − 1
2d(η(X)− ξ(Y )) + iY iXH.

The bundle T ⊕ T ∗ is also endowed with a natural symmetric pairing of signature
(n, n):

〈X + ξ, Y + η〉 =
1
2
(η(X) + ξ(Y )).

Definition. A generalized complex structure on a manifold with closed 3-form
(M,H) is a complex structure on the bundle T ⊕ T ∗ which preserves the natural
pairing and whose i-eigenspace is closed under the Courant bracket.

A generalized complex structure can be fully described in terms of its i-eigenspace
L, which is a maximal isotropic subspace of TC ⊕ T ∗C satisfying L ∩ L = {0}.

Two extreme examples of generalized complex structures, with H = 0, are given
by complex and symplectic structures: in a complex manifold we let L = T 0,1⊕T ∗1,0

and in a symplectic manifold we let L = {X − iω(X) : X ∈ TC}, where ω is the
symplectic form. What distinguishes these structures is their type which is the
dimension of the kernel of π : L−→TC. So, a complex structure on Mn has type n
at all points and symplectic structures have type zero at all points.

The Courant bracket does not satisfy the Jacobi identity. Instead we have the
relation for the Jacobiator

Jac (A,B,C) := [[[[A,B]], C]] + c.p. = 1
3d(〈[[A,B]], C〉+ c.p.),

where c.p. stands for cyclic permutations. However, the identity above also shows
that the Courant bracket induces a Lie bracket when restricted to sections of any
involutive isotropic space L. This Lie bracket together with the projection πT :
L −→ TM , makes L into a Lie algebroid and allows us to define a differential dL on
Ω•(L∗) = C∞(∧•L∗) making it into a DGA. If L is the i-eigenspace of a generalized
complex structure, then the natural pairing gives an isomorphism L∗ ∼= L and with
this identification (Ω•(L), dL) is a DGA.

If a generalized complex structure has type zero over M , i.e., is of symplectic
type, then π : L

∼=−→ TC is an isomorphism and the Courant bracket on C∞(L)
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is mapped to the Lie bracket on C∞(TC). Therefore, in this particular case,
(Ω•(L), dL) and (Ω•C(M), d) are isomorphic DGAs.

2.1. Decomposition of forms. A generalized complex structure can also be de-
scribed using differential forms. Recall that the exterior algebra ∧•T ∗ carries a
natural spin representation for the metric bundle T ⊕ T ∗; the Clifford action of
X + ξ ∈ T ⊕ T ∗ on ρ ∈ ∧•T ∗ is

(X + ξ) · ρ = iXρ+ ξ ∧ ρ.

The subspace L ⊂ TC ⊕ T ∗C annihilating a spinor ρ ∈ ∧•T ∗C is always isotropic. If L
is maximal isotropic, then ρ is called a pure spinor and it must have the following
algebraic form at every point:

(2.1) ρ = eB+iω ∧ Ω,

where B and ω are real 2-forms and Ω is a decomposable complex form. Pure
spinors annihilating the same space must be equal up to rescaling, hence a maximal
isotropic L ⊂ TC ⊕ T ∗C may be uniquely described by a line subbundle U ⊂ ∧•T ∗C .

For a complex manifold U = ∧n,0T ∗ and for a symplectic manifold U is generated
by the globally defined closed form eiω. In general we have the following definition.

Definition. Given a generalized complex structure J , the line subbundle U ⊂ ∧•T ∗C
annihilating its i-eigenspace is the canonical bundle of J .

Note that the condition L ∩ L = {0} at the fiber of E over p ∈ M is equivalent
to the requirement that

(2.2) Ω ∧ Ω ∧ ωn−k 6= 0

for a generator ρ = eB+iω ∧ Ω of U at p, where k = deg(Ω) and 2n = dim(M).
By letting ∧•L ⊂ Cliff (L ⊕ L) act on the canonical line bundle we obtain a

decomposition of the differential forms on M2n:

∧•T ∗C(M) = ⊕n
k=−nU

k, where Uk = ∧n−kL · ρ.

one can also describe the spaces Uk as the ik-eigenspaces of J acting on forms.
Letting Uk = C∞(Uk) and dH = d+H∧, Courant integrability of the generalized

complex structure is equivalent to

dH : Uk −→ Uk+1 ⊕ Uk−1,

which allows us to define operators ∂ : Uk −→ Uk+1 and ∂ : Uk −→ Uk−1 by
composing dH with the appropriate projections.

Given a local section ρ of the canonical bundle the operator ∂ is related to dL

by
∂(α · ρ) = (dLα) · ρ+ (−1)|α|dHρ,

where α ∈ Ω•(L) and |α| is the degree of α. In the particular case when (M,J )
has holomorphically trivial canonical bundle, i.e., there is a nonvanishing dH -closed
global section ρ of the canonical bundle, the above becomes

(2.3) ∂(α · ρ) = (dLα) · ρ

and hence ρ furnishes an isomorphism of differential complexes.
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3. Generalized Kähler manifolds

In this section we introduce generalized Kähler manifolds. For these manifolds
both Ω•C(M) and (Ω•(L), dL) admit a bigrading and, in certain conditions, some
differential operators Ω•C(M) correspond to differential operators on Ω•(L). This
correspondence was also used by Yi Li to study the moduli space of a generalized
Kähler structure [8] and is the key ingredient for our formality theorem.

Definition. A generalized Kähler structure on a manifold M2n is a pair of com-
muting generalized complex structures J 1, J 2 on M such that

〈J 1J 2v, v〉 > 0 for v ∈ T ⊕ T ∗\{0}.

Let Li be the i-eingenspace of J i. Since J 1 and J 2 communte, J 2 furnishes a
complex structure on L1 with i-eigenspace L1∩L2. Using the fact that the natural
pairing has signature (n, n) and that 〈J 1J 2·, ·〉 is positive definite one can show
dim(L1) = 2 dim(L1 ∩ L2). Since L2 is closed under the Courant bracket, we see
that L1 ∩ L2 is closed under the bracket in the Lie algebroid L1, and hence J 2|L1

is an integrable complex structure on L1. Using this complex structure we can
decompose

∧•L1 = ⊕p,q ∧p,q L1 and dL1 = ∂L1 + ∂L1 ,

As in a complex manifold, the operators ∂L1 and ∂L1 are derivations, in the sense
that they satisfy the Leibniz rule.

A generalized Kähler structure also gives a refinement of the deposition of forms
into the spaces Uk. Since J 1 and J 2 commute one immediately obtains that the
space of differential forms can be decomposed in terms of the eigenspaces of J 1 and
J 2: Up,q = Up

J 1
∩ Uq

J 2
. This allows us to decompose dH further in 4 components

dH : Up,q −→ Up+1,q+1 + Up+1,q−1 + Up−1,q+1 + Up−1,q−1.

In this case, the operator ∂ for the generalized complex structure J 1 corresponds
to the sum of the last two terms:

∂1 : Up,q −→ Up−1,q+1 + Up−1,q−1,

and we can define δ+ and δ− as the projections of ∂1 into each of the components

δ+ : Up,q −→ Up−1,q+1 δ− : Up,q −→ Up−1,q−1.

By studying the Hodge theory of a generalized Kähler manifold, Gualtieri proved
the following

Theorem 3.1. (Gualtieri [6]) δ+δ−-lemma. In a compact generalized Kähler
manifold

Im δ+ ∩Ker δ− = Im δ− ∩Ker δ+ = Im (δ+δ−)

If J 1 has holomorphically trivial canonical bundle, then the correspondence
between ∂1 and dL1 given in equation (2.3) also furnishes a correspondence between
the operators ∂L1 and ∂L1 in ∧•L and the operators δ+ and δ− in ∧•T ∗C . So, as a
consequence of Theorem 3.1, the operators ∂L1 and ∂L1 satisfy the ∂L1∂L1-lemma
and since they are derivations the same argument from [4] gives:

Theorem 3.2. If (M,J 1,J 2) is a compact generalized Kähler manifold and J 1

has holomophically trivial canonical bundle, then the DGA (Ω•(L1), dL1) is formal.
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In the case when J 1 is a symplectic structure, then not only does it have a holo-
morphically trivial canonical bundle, but (Ω•(L1), dL1) is isomorphic to (Ω•C(M), d).
Therefore we have:

Corollary 1. If (M,J 1,J 2) is a compact generalized Kähler manifold and J 1 is
a symplectic structure, then M is formal.

This corollary generalizes the original theorem of formality of Kähler manifolds
[4].

4. Nilpotent Lie algebras

In this section we use Theorem 3.2 to prove that no nilpotent Lie algebra admits
a generalized Kähler structure. Before we state the theorem we should stress that
a generalized complex structure on a Lie algebra g with closed 3-form H ∈ ∧3g∗

is just an integrable linear complex structure on (g ⊕ g∗, [[ , ]]), orthogonal with
respect to the natural pairing, where the Courant bracket is defined by

[[X + ξ, Y + η]] = [X,Y ] + LXη − LY ξ + iY iXH,

and is a Lie bracket in this situation.
We also recall that a complex structure on a Lie algebra g is called abelian if

its i-eigenspace, g1,0, is an abelian subalgebra of g ⊗ C [1, 3]. By analogy, we say
that a generalized complex structure on g is abelian if the corresponding complex
structure on g⊕ g∗ is abelian. Before we state our theorem on generalized Kähler
structures on nilpotent Lie algebras we need a little lemma:

Lemma 4.1. If a Lie algebra g admits an abelian generalized complex structure,
then g is abelian.

Proof. Let L be the i-eigenspce of an abelian generalized complex structure on g.
Since L is abelian, so is its projection over g ⊗ C. Further, if v ∈ π(L) ∩ π(L)
then v is a central element in gC. Indeed for such a v there is a ξ ∈ g∗C such that
J (v + ξ) ∈ g∗C so, for w ∈ gC

4[v, w] = 4π([[v + ξ, w]])

= π([[v + ξ + iJ (v + ξ) + v + ξ − iJ (v + ξ), w + iJw + w − iJw]])

= π([[v + ξ + iJ (v + ξ), w + iJw]] + [[v + ξ + iJ (v + ξ), w − iJw]]+

+ [[v + ξ − iJ (v + ξ), w + iJw]] + [[v + ξ − iJ (v + ξ), w − iJw]])

= π([[v + ξ + iJ (v + ξ), w − iJw]] + [[v + ξ − iJ (v + ξ), w + iJw]])

= π([[v + ξ − iJ (v + ξ), w − iJw]] + [[v + ξ + iJ (v + ξ), w + iJw]]) = 0,

where we have used that L and L are abelian in the fourth and in the last equalities
and in the fifth equality we used that J (v+ ξ) ∈ g∗C, hence the change of signs does
not affect the projection of the bracket onto gC.

If we let eB+iω ∧ Ω, with Ω = θ1 ∧ · · · ∧ θk, be a generator for the canonical
bundle of J , then π(L) ∩ π(L) is the annihilator of Ω ∧ Ω. Since θi ∈ L there are
∂j ∈ L such that 〈θi, ∂j〉 = δi

j and we can compute

θi([π(∂j), π(∂k)]) = dθi(π(∂j), π(∂k)) = 〈[[θi, ∂j ]], ∂k〉 = 0

since θi, ∂j ∈ L. Analogously we see that [π(∂j), π(∂k)] also annihilates θi and
hence [π(∂j), π(∂k)] ∈ π(L) ∩ π(L), hence g is either abelian or 2-step nilpotent.
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If g was 2-step nilpotent there would be an element ξ ∈ g∗ with dξ 6= 0. Since
the only nonvanishing brackets are of the form [π(∂i), π(∂j)] and ξ is real, we see
that there is a ∂i for which dξ(π(∂i), π(∂i)) = ξ([π(∂i), π(∂i)]) 6= 0. Since all the θi

are closed, we can further assume that ξ = J (v −B(v)), for some v ∈ g, therefore
v −B(v)− iξ ∈ L and

0 = 〈[[v −B(v)− iξ, ∂i]], ∂i〉 = −idξ(π(∂i), π(∂i)) + (H + dB)(v, π(∂i), π(∂i)).

Observe that the first term is real and nonzero while the second is purely imaginary,
hence the equation above can never hold and g is abelian. �

Theorem 4.1. If a nilpotent Lie algebra g admits a generalized Kähler structure,
then g is abelian.

Proof. According to [2], Theorem 3.1, every generalized complex structure on a
nilpotent Lie algebra g has holomorphically trivial canonical bundle. Further, for
any closed H ∈ ∧3g∗, g ⊕ g∗ with the Courant bracket is again a nilpotent Lie
algebra, hence the i-eigenspace, L, of any generalized complex structures is a nilpo-
tent Lie subalgebra of (g ⊕ g∗) ⊗ C. According to Lemma 4.1, if g has nontrivial
bracket, then L has a nontrivial bracket. Then, Example 1.1 shows that (∧•L, dL)
is not formal and hence, by Theorem 3.2, can not be part of a generalized Kähler
pair. �
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