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Abstract

In this paper, we propose an infeasible interior proximal method for
solving variational inequality problems with maximal monotone oper-
ators and linear constraints. The interior proximal method proposed
by Auslender, Teboulle and Ben-Tiba [3] is a proximal method using a
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distance-like barrier function and it has a global convergence property
under mild assumptions. However this method is applicable only to
problems whose feasible region has nonempty interior. The algorithm
proposed in this paper is applicable to problems whose feasible region
may have empty interior. Moreover, a new kind of inexact scheme is
used. We present a full convergence analysis for our algorithm.
Key words. maximal monotone operators, outer approximation al-
gorithm, interior point method, global convergence.

AMS subject classifications.

1 Introduction
sec:1

Let C ⊂ IRn be a closed and convex set, and T : IRn ⇒ IRn be a maxi-
mal monotone point-to-set operator. We consider the variational inequality
problem associated with T and C: Find x such that there exists v ∈ T (x)
satisfying

〈v, y − x〉 ≥ 0, for all y ∈ C. (1.1) e1

This problem will be denoted by V IP (T, C). In the particular case in which
T is the subdifferential of f : IRn → IR∪ {∞}, where f is proper, convex and
lower semicontinuous, (1.1) reduces to the constrained convex optimization
problem: Find x such that

f(x) ≤ f(y), for all y ∈ C. (1.2) e2

We will be concerned in this work with C a polyhedral set on IRn defined by

C := {x ∈ IRn| Ax ≤ b}, (1.3) c2

where A is an m× n real matrix, b ∈ IRm and m ≥ n. Well-known methods
for solving V IP (T, C) are the so-called generalized proximal schemes, which
involve a regularization term that incorporates the constraint set C in such
a way that all the subproblems have solutions in the interior of C. For this
reason, these methods are also called interior proximal methods. Examples
of these regularizing functionals are the Bregman distances (see, e.g. [1, 8,
12, 13, 19, 24]), ϕ-divergences ([25, 5, 14, 17, 18, 26, 27]) and log-quadratic
regularizations ([3, 4]). Being interior point methods, it is a basic assumption
that the topological interior of C is nonempty. Otherwise, the iterates are
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not well-defined. However, a set C as above may usually have empty interior.
In order to solve problem (1.2) for an arbitrary set C 6= ∅ of the kind given
in (1.3), Yamasita et al.[28] devised an interior-point scheme in which the
subproblems deal with a constraint set Ck given by

Ck := {x ∈ IRn| Ax ≤ b + δk}, (1.4) ck

where the vectors δk have positive coordinates and are such that
∑∞

1 ‖δk‖ <
∞. So, if C 6= ∅, it holds C ⊂ intCk and hence a regularizing functional
Dk can be associated to the set Ck. More precisely, the subproblems find an
approximate solution xk ∈ intCk of the inclusion

0 ∈ λk∂εk
f(xk) +∇1Dk(x

k, xk−1),

where λk > 0 and ∂εf is the ε-subdifferential of f [6] and Dk is the regu-
larization functional proposed by Auslender, Teboulle and Ben-Tiba [3, 4].
Yamasita et al. allow an error ek in the inclusion above, and they prove con-
vergence under summability assumptions on the “error” sequences {εk}, {ek}
and {δk}. We want to extend the above scheme to the more general problem
(1.1), so we are concerned with iterations of the kind: Find an approximate
solution xk ∈ int Ck of

0 ∈ λkT
εk(xk) +∇1Dk(x

k, xk−1),

where λk > 0 and T ε is an enlargement of the operator T [10, 9]. In our
scheme, we will require no summability assumption on the parameters {εk}
and {ek} (the latter sequence controlling the error in the inclusion above).
Instead, we define a criterium which can be checked at each iteration. How-
ever, we still need here the summability assumptions on {δk} for obtaining
convergence results. Our relative error analysis is inspired in the one given
by Burachik and Svaiter in [11], which yields a more pratical framework. Ad-
ditionally, for the proposed algorithm we establish global convergence with
assumptions weaker than those used in [28].

The paper is organized as follows. In Section 2 we give some basic defini-
tions and properties of the family of regularizations, as well as some known
results on monotone operators. In the same section, the extension T ε is re-
viewed, together with its elementary features. In Section 3, we describe the
algorithm, prove its well-definedness and give its inexact version. We finish
this section with the convergence proof.
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2 Basic assumptions and properties
sec:basic

A point-to-set valued map T : IRn ⇒ IRn is an operator which associates with
each point x ∈ IRn a set (possibly empty) T (x) ⊂ IRn. The domain and the
graph of a point-to-set valued map T are defined as:

Dom T := {x ∈ IRn| T (x) 6= ∅},

G(T ) := {(x, v) ∈ IRn × IRn| x ∈ Dom T, v ∈ T (x)}.

A point-to-set operator T is said to be monotone if

〈u− v, x− y〉 ≥ 0, ∀ u ∈ T (x), v ∈ T (y).

A monotone operator T is said to be maximal when its graph is not properly
contained in the graph of any other monotone operator. The well-known
result below has been proved in [23, Theorem 1]. Denote by ir A the relative
interior of the set A.

pro:2.2 Proposition 2.1 Let T1, T2 maximal monotone operators. If ir D(T1) ∩
ir D(T2) 6= ∅, then T1 + T2 is maximal monotone.

The theorem bellow is an essential tool for our analysis. We denote by
f∞ the asymptotic function [2, Definition 2.5.1] associated with the function
f : IRn → IR ∪ {+∞}.

teo:A Theorem 2.2 ([3, Proposition 3.1]) Let f : IRn → IR ∪ {+∞} be a closed
proper convex function with dom(f) open. Assume that f is differentiable on
dom(f) and such that f∞(d) = +∞ ∀ d 6= 0. Let A be an m × n matrix
with m ≥ n and rank = n, b̃ ∈ IRm with (b̃−A(IRn)) ∩ dom(f) 6= ∅, and set
h(x) := f(b̃− Ax). Let T̃ : IRn ⇒ IRn be a maximal monotone operator such
that D(T̃ ) ∩ dom(h) 6= ∅ and set

U(x) :=

{
T̃ (x) +∇h(x) if x ∈ D(T̃ ) ∩D(∇h),
∅ otherwise.

Then ∇h(x) is onto. Moreover, there exists x solution of equation

0 ∈ U(x),

which is unique if f is strictly convex on its domain.
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We describe below the family of regularizations we will use. From now
on, the function ϕ: IR+ → (−∞,∞] is given by

ϕ(t) := µh(t) + (ν/2)(t− 1)2, (2.1)

where h is a closed and proper convex function satisfying the following ad-
ditional properties:

(1) h is twice continuously differentiable on int(dom h) = (0, +∞),

(2) h is strictly convex on its domain,

(3) limt→0+ h
′
(t) = −∞,

(4) h(1) = h
′
(1) = 0 and h

′′
(1) > 0, and

(5) for t > 0

h
′′
(1)

(
1− 1

t

)
≤ h

′
(t) ≤ h

′′
(1)(t− 1). (2.2) re

Items (1) − (4) and (1) − (5) were used in [4] to define, respectively, the
families Φ and Φ2. The positive parameters µ, ν shall verify the following
inequality

ν > µh
′′
(1) > 0. (2.3) ni

Note that conditions above imply

µh
′′
(1)

(
1− 1

t

)
+ ν(t− 1) ≤ ϕ

′
(t) < νh

′′
(1)(t− 1), (2.4) des varphi

therefore lim
t→∞

ϕ
′
(t) = +∞.

The generalized distance induced by ϕ, is denoted by dϕ(x, y) and defined
as:

dϕ(x, y) :=
N∑

i=1

y2
i ϕ(xi/yi), (2.5) dfi

for x, y ∈ IRn
++ := {z ∈ IRn | zi > 0 ∀ i = 1, . . . , n}. Since lim

t→∞
ϕ

′
(t) = +∞

follows that [dϕ(·, yk−1)]∞(d) = +∞, ∀ d 6= 0 and denoting by ∇1 the
gradient with respect to the first variable, it holds that
[∇1dϕ(x, y)]i = yiϕ

′(xi/yi) for all i = 1, . . . , n.
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The following lemma has a crucial role in the convergence analysis. Its
first part has been established in [3]. Define

θ := ν + ρµ, τ := ν − ρµ and ρ := h
′′
(1). (2.6) tau

le:cru Lemma 2.3 For all w, z ∈ IRn
++ and v ∈ IRn

+ := {z ∈ IRn | zi ≥ 0 ∀ i =
1, . . . , n}, it holds that

(i) 〈∇1dϕ(w, z), w − v〉 ≥ θ
2
(‖w − v‖2 − ‖z − v‖2) + τ

2
‖w − z‖2;

(ii) 〈v,∇1dϕ(w, z)〉 ≤ θ‖v‖‖w − z‖.

Proof. For part (i), see [3, Lemma 3.4]. We proceed to prove (ii). Since
ϕ(t) = µh(t)+ ν

2
(t−1)2, we have that ϕ′(t) = µh′(t)+ ν(t−1). By (2.2) and

(2.3) we get ϕ′(t) ≤ (ν + ρµ)(t − 1). Letting t = wi

zi
and multiplying both

sides by vizi yield

viziϕ
′(

wi

zi

) ≤ θvizi(
wi

zi

− 1),

for all i = 1, . . . , n. Therefore,

〈v,∇1dϕ(w, z)〉 ≤ θ〈v, w − z〉.

Using the Cauchy-Schwartz inequality in the expression above, we get (ii).

The result below is known as Hoffman’s lemma[15].

le:ho Lemma 2.4 Let C = {x ∈ IRn| Ax ≤ b} and Ck = {x ∈ IRn| Ax ≤ b + δk}
where A is matrix m× n with m ≥ n and b, δk ∈ IRm. Given xk ∈ Ck there
exists a constant α > 0 such that

dist(xk, C) := inf
y∈C

‖y − xk‖ = ‖pk − xk‖ ≤ α‖δk‖

where pk is projection of xk in C.

We recall next two technical results on nonnegative sequences of real
numbers. The first one was taken from [21] and the second from [20].

le:se Lemma 2.5 Let {σk} and {βk} be nonnegative sequences of real numbers
satisfying:

(i) σk+1 ≤ σk + βk;
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(ii)
∑∞

k=1 βk < ∞.

Then the sequence {σk} converges.

le:se1 Lemma 2.6 Let {λk} be a sequence of positive numbers, and {ak} be a se-
quence of real numbers. Let σk :=

∑k
j=1 λj and bk := σk

−1
∑k

j=1 λjaj. If
σk →∞, then

(i) lim infk→∞ak ≤ lim infk→∞bk ≤ lim supk→∞bk ≤ lim supk→∞ak;

(ii) If limk→∞ak = a < ∞, then limk→∞bk = a.

In our analysis, we will relax the inclusion vk ∈ T (xk), by means of an
ε-extension of the operator T [9]: Given T a monotone operator, define

T ε(x) := {v ∈ IRN | 〈v − w, x− y〉 ≥ −ε ∀y ∈ IRN , w ∈ T (y)}. (2.7) teps:def

This extension has many useful properties, similar to the ε-subdifferential of
a proper closed convex function f . Indeed, when T = ∂f , we have (see [9])

∂εf(x) ⊆ T ε(x).

For an arbitrary maximal monotone operator T , the relation

T 0(x) = T (x)

holds trivially. Furthermore, for ε′ ≥ ε ≥ 0, we have

T ε(x) ⊂ T ε′
(x).

In particular, for each ε ≥ 0,

T (x) ⊂ T ε(x).

3 The Algorithm
sec:alg

In this section, we propose an infeasible interior proximal method for the
solution of V IP (T, C) (1.1). To state formally our algorithm, we consider

Ck = {x ∈ IRn| Ax ≤ b + δk} where δk ∈ IRm
++ and

∞∑
k=1

‖δk‖ < ∞,
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which is considered a perturbation of the original the constraint set C. More-
over, if C 6= ∅, then C ⊂ intCk 6= ∅ for all k. Since δk → 0 as k → ∞,
the sequence {Ck} converges to the set C. Now, if ai denotes the row i of
the matrix A, for each x ∈ Ck we consider yk(x) = (yk

1(x), yk
2(x), ..., yk

m(x))T ,
where yk

i (x) = bi + δk
i − 〈ai, x〉 with i = 1, 2, ..., n. Therefore, we have the

function Dk : intCk × intCk → IR defined by

Dk(x, z) = dϕ(yk(x), yk(z)). (3.1)

¿From the definition of dϕ, for each xk ∈ intCk, xk−1 ∈ intCk−1, we have

∇1Dk(x
k, xk−1) = −AT∇1dϕ

(
yk(xk), yk−1(xk−1)

)
. (3.2) gradDk

In the method proposed in [28] for the convex optimization problem (1.2)
with C defined as in (1.3), the exact algorithm of the iteration k is given by:
For λk > 0, δk > 0 and (xk−1, yk−1) ∈ intCk−1 × IRm

++, find (x, y) ∈ intCk ×
IRm

++ and u ∈ IRn such that
u ∈ ∂f(x),
λku +∇1Dk(x, xk−1) = 0,
y − (b− Ax) = δk,

where y ∈ IRm
++ can be seen as a slack variable associated to x ∈ intCk.

The corresponding inexact iteration is given by:
ũ ∈ ∂εk

f(x̃),
λkũ +∇1Dk(x̃, xk−1) = ek,
ỹ − (b− Ax̃) = δk.

(3.3) yama

Following this approach, the exact version of our algorithm is obtained
replacing ∂f by an arbitrary maximal monotone operator T . Namely, given
λk > 0, δk > 0 and (xk−1, yk−1) ∈ intCk−1×IRm

++, find (x, y) ∈ intCk×IRm
++

and u ∈ IRn such that
u ∈ T (x),
λku +∇1Dk(x, xk−1) = 0,
y − (b− Ax) = δk.

(3.4) eq:6.1a

It is important to guarantee the existence of (xk, yk) ∈ intCk× IRm
++ satisfy-

ing (3.4). In fact, the next proposition shows that there exists a unique pair
(xk, yk) ∈ intCk×IRm

++ satisfying (3.4) under the following two assumptions:
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(H1) ir C ∩ ir D(T ) 6= ∅;

(H2) rank(A)=n (and therefore, A injective).

Proposition 3.1 Suppose that (H1) and (H2) hold. For every λk > 0, δk >
0 and (xk−1, yk−1) ∈ intCk × IRm

++, there exists a unique pair (xk, yk) ∈
intCk × IRm

++ satisfying (3.4).pro:5.1

Proof. Define the operator T̃ k(x) := T (x) + NCk(x) + λk
−1∇h(x), where

h := Dk(·, xk−1). We will prove that we are in the conditions of Theorem

2.2 for T̃ := T + NCk , f(·) := dϕ(·, yk−1) and b̃ := b + δk. Indeed, the
operator T + NCk is maximal monotone by (H1) and the fact that C ⊆
Ck (we are using here Proposition 2.1(ii)). The function dϕ(·, yk−1) is by
definition convex, proper and differentiable on its (open) domain IRm

++ and
[dϕ(·, yk−1)]∞(d) = +∞, ∀ d 6= 0.

By (H2), A has maximal rank. We claim that (b+δk−A(IRn))∩dom(dϕ) 6=
∅. Indeed, fix x ∈ C. It holds that

b + δk − Ax ≥ δk > 0, (3.5) ult

and therefore b + δk − Ax ∈ IRn
++ = dom(dϕ)(·, yk−1).

The only hypothesis that remains to be checked is: D(T̃ ) ∩ dom(h) 6= ∅,
where dom(h) = int Ck. Indeed, by (H1) and by definition of the Ck we get

∅ 6= C ∩D(T ) ⊂ intCk ∩D(T ) ⊂ D(T̃ ).

Hence ∅ 6= C ∩D(T ) ⊂ D(T̃ ) ∩ intCk = D(T̃ ) ∩ dom(h). So the hypotheses
of Theorem 2.2 are satisfied and therefore there exists x∗ a solution of the
equation

0 ∈ T (x) + NCk(x) + λk
−1∇1Dk(x, xk−1). (3.6) zero

This solution is unique, because dϕ(·, yk−1) is strictly convex on its do-
main.

In this way, there exists uk ∈ T (xk), vk ∈ NCk(xk) and zk = ∇1Dk(x
k, xk−1) =

∇1dϕ(b + δk − A(xk), yk−1), such that

0 = uk + vk + zk. (3.7) zero1

Making b+δk−Axk =: yk we have that yk is also unique. Since yk ∈ IRm
++,

it holds that xk ∈ intCk, thus vk = 0. Hence by (3.7) there exists a unique
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pair (xk, yk) ∈ intCk × IRm
++ satisfying

uk ∈ T (xk),
uk + λ−1∇1Dk(x

k, xk−1) = 0,
yk − (b− Axk) = δk,

which completes the proof.

To deal with approximations, we will relax the inclusion and the equation
of the exact system (3.4) in a way similar to (3.3):

ũ ∈ T εk(x̃),
λkũ +∇1Dk(x̃, xk−1) = ek,
ỹ − (b− Ax̃) = δk,

(3.8) eq:6.2

where T ε is the enlargement of T given in (2.7).
In the exact solution, we have εk = 0 and ek = 0. An approximate

solution should have εk and ek “small ”.
Our aim is to use a relative error criteria as the one used in [11] to control

the size of εk and ek. The intuitive idea is to perform an extragradient step
from xk−1 to x, using the direction ũ (see (3.9)), and then check whether the
“error terms” of the iteration, given by εk + 〈ũ, x̃− x〉 and ‖ỹ− y‖ are small
enough with respect to the previous step.

def:reg Definition 3.2 . Let σ ∈ [0, 1) and γ > 0. We say that (x̃, ỹ, ũ, εk) in (3.8)
is an approximated solution of system (3.4) with tolerance σ and γ if for
(x, y) such that {

λkũ +∇1Dk(x, xk−1) = 0,
y − (b− Ax) = δk.

(3.9) eq:6.3

is holds that
λk(εk + 〈ũ, x̃− x〉) ≤ σ

τ

2
‖y − yk−1‖2, (3.10) eq:6.4

‖ỹ − y‖ ≤ γ‖y − yk−1‖. (3.11) eq:6.5

ob:6.1 Remark 3.3 .

(i) Since the domain of dϕ(·, yk−1) is IRm
++, for x̃, ũ, εk and x as in Definition

3.2, it holds that
x̃, x ∈ intCk.
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(ii) If (x, y, u) verifies (3.4), then (x, y, u, 0) is an approximated solution of
system (3.4) with tolerance σ, γ for any σ ∈ [0, 1) and γ > 0. It is clear
that in this case ek = 0. Conversely, if (x̃, ỹ, ũ, εk) is an approximated
solution of system (3.4) with tolerance σ = 0 and γ > 0 arbitrary, then
we must have εk = 0 and (x̃, ỹ, ũ) satisfying (3.4). Indeed, since γ > 0
is arbitrary, we get y = ỹ. Using the fact that A is one-to-one, we get
x = x̃. From the fact that σ = 0, we conclude that εk = 0.

(iii) If (H1) and (H2) hold, by Proposition 3.1 the system (3.8) with ek = 0
and εk = 0 has a solution. By (ii), this solution generates an approxi-
mated solution.

We describe below formally our algorithm, which we call Extragradient
Algorithm.
Extragradient Algorithm-EA
Initialize: Take λ > 0, σ ∈ [0, 1), γ > 0, x0 ∈ IRn and y0 ∈ IRm

++ such that
δ0 := y0 − (b− Ax0) ∈ IRm

++.
Iteration: For k=1,2,...,
Step 1. Take λk with λ ≤ λk and 0 < δk < δk−1. Find (x̃k, ỹk, ũk, εk) an
approximated solution of system (3.4) with tolerance σ, γ.
Step 2. Compute (xk, yk) such that{

λkũ
k +∇1Dk(x

k, xk−1) = 0,
yk − (b− Axk) = δk.

(3.12)

Step 3. Set k := k + 1, and return to Step 1.
alg.3

3.1 Convergence analysis
sec:conv

In this section, we prove convergence of the Algorithm above. From now
on {xk}, {x̃k}, {ỹk}, {yk}, {ũk}, {εk}, {λk} and {δk} are sequences generated
by EA with approximating criteria (3.10)-(3.11). The main result we shall
prove is that the sequence {xk} converges to a solution of V IP (T, C).

The next proposition is essential for the convergence analysis, to show
this we need the following further assumptions

(H3) The solution set S of V IP (T,C) is nonempty.
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pro:con1 Proposition 3.4 . Suppose that (H3) holds and let x ∈ S and u ∈ T (x).
Define y := b− Ax. Then, for k = 1, 2, ...,

‖yk − y‖2 ≤ ‖yk−1 − y‖2 − τ
θ
(1− σ)‖yk − yk−1‖2

+2‖δk‖ ‖yk − yk−1‖+ α 2
θ
λk‖u‖ ‖δk‖,

(3.13) eq:con

where θ, τ are as in (2.6) and α is as in Lemma 2.4

Proof. Fix k > 0 and take ũk ∈ T εk(x̃k). For all (x, u) ∈ G(T ) we have that

λk〈x− x̃k, u− ũk〉 ≥ −λkεk.

Therefore,

λk〈x− x̃k, u〉 ≥ λk〈x− x̃k, ũk〉 − λkεk

= λk〈x− xk, ũk〉+ λk〈xk − x̃k, ũk〉 − λkεk.
(3.14)

Using (3.9) and (3.10) in the inequality above, we get

λk〈x− x̃k, u〉 ≥ 〈x− xk,−∇1Dk(x
k, xk−1)〉 − σ

τ

2
‖yk − yk−1‖2. (3.15) eq:6.6

Now, using (3.2) we have

〈x− xk,−∇1Dk(x
k, xk−1)〉 = 〈x− xk, AT∇1dϕ(yk, yk−1)〉

= 〈A(x− xk),∇1dϕ(yk, yk−1)〉
= 〈yk − y,∇1dϕ(yk, yk−1)〉 − 〈δk,∇1dϕ(yk, yk−1)〉,

where y = b− Ax. Combining the equality above with (3.15), we get

λk〈x−x̃k, u〉 ≥ 〈yk−y,∇1dϕ(yk, yk−1)〉−〈δk,∇1dϕ(yk, yk−1)〉−σ
τ

2
‖yk−yk−1‖2.

Applying Lemma 2.3 in this inequality yields

λk〈x−x̃k, u〉 ≥ θ

2
(‖yk−y‖2−‖yk−1−y‖2)+

τ

2
(1−σ)‖yk−yk−1‖2−θ‖δk‖ ‖yk−yk−1‖.

(3.16) eq:5.2

The inequality above is valid in particular for (x, u) := (x, u) with x ∈ S
and y such that y = b− Ax. Therefore,

λk〈x−x̃k, u〉 ≥ θ

2
(‖yk−y‖2−‖yk−1−y‖2)+

τ

2
(1−σ)‖yk−yk−1‖2−θ‖δk‖ ‖yk−yk−1‖.

(3.17) eq:5.3
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On the other hand, for x ∈ S, there exists u ∈ T (x) such that

〈x− x, u〉 ≤ 0 ∀ x ∈ C.

Let pk be the projection of x̃k onto C. Since pk ∈ C, we have that

〈x− pk, u〉 ≤ 0,

and therefore
〈x− x̃k, u〉 ≤ 〈pk − x̃k, u〉.

Using the Cauchy-Schwarz inequality and multiplying by λk > 0, we get

λk〈x− x̃k, u〉 ≤ λk‖u‖‖x̃k − pk‖.

By Lemma 2.4 we conclude that

λk〈x− x̃k, u〉 ≤ λkα‖u‖‖δk‖, (3.18) eq:5.4

for some α > 0. Combining (3.17) and (3.18), we get (3.13).

The next corollary guarantees boundedness of the sequence {yk − yk−1}.

cor:lim Corollary 3.5 Suppose that (H3) holds, then the sequence {‖yk − yk−1‖} is
bounded.

Proof. Assume the sequence {‖yk − yk−1‖} is unbounded. Then there is
a subsequence {‖yk − yk−1‖}k∈K such that ‖yk − yk−1‖ → ∞ for k ∈ K,
whereas the complementary subsequence {‖yk − yk−1‖}k/∈K is bounded (note
that this complementary subsequence could be finite or even empty). From
(3.13), we have

‖yk−yk−1‖
[τ

θ
(1− σ)‖yk − yk−1‖ − 2‖δk‖

]
≤ ‖yk−1−y‖2−‖yk−y‖2+α

2

θ
λk‖u‖‖δk‖.

(3.19) eq:con2

Summing the inequalities (3.13) over k = 1, 2, ..., n gives∑
k = 1, ..., n

k /∈ K

‖yk − yk−1‖
[
τ

θ
(1− σ)‖yk − yk−1‖ − 1

2
‖δk‖

]
+
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∑
k = 1, ..., n

k ∈ K

‖yk − yk−1‖
[
τ

θ
(1− σ)‖yk − yk−1‖ − 1

2
‖δk‖

]
≤

‖y0 − y‖2 − ‖yn − y‖2 + α
τ

θ
λ‖u‖

n∑
k=1

‖‖δk‖ ≤ ‖y0 − y‖2 + α
τ

θ
λ‖u‖

n∑
k=1

‖‖δk‖.

Setting

an =
∑

k = 1, ..., n
k /∈ K

‖yk − yk−1‖
[
τ

θ
(1− σ)‖yk − yk−1‖ − 1

2
‖δk‖

]
,

bn =
∑

k = 1, ..., n
k ∈ K

‖yk − yk−1‖
[
τ

θ
(1− σ)‖yk − yk−1‖ − 1

2
‖δk‖

]

and

cn = ‖y0 − y‖2 + α
τ

θ
λ‖u‖

n∑
k=1

‖δk‖,

it follows from the
∑n

k=1 ‖δk‖ < ∞ that lim
n→∞

cn < ∞. We will show that

{an} is bounded below and lim
n→∞

bn = ∞, which is a contradiction and this

will complete the proof. Since, {‖yk − yk−1‖}k/∈K is bounded, there is L such
that ‖yk − yk−1‖ ≤ L for all k /∈ K, then

−1

2
L‖δk‖ ≤ −1

2
‖yk−yk−1‖ ‖δk‖ ≤ τ

θ
(1−σ)‖yk−yk−1‖2− 1

2
‖yk−yk−1‖ ‖δk‖,

summing the inequalities, we have −1

2
L

∑
k = 1, ..., n

k /∈ K

‖δk‖ ≤ an, it follows

that the sequence {an} is bounded below because
∑n

k=1 ‖δk‖ < ∞.
Since in K the sequence {‖yk−yk−1‖} is unbounded and {‖δk‖} converges

to zero, there exists an k0 ∈ K such that

τ

θ
(1− σ)‖yk − yk−1‖ − 1

2
‖δk‖ ≥ L > 0,

14



therefore,

∞ = L

∞∑
k > k0

k ∈ K

‖yk−yk−1‖ ≤
∞∑

k > k0

k ∈ K

‖yk−yk−1‖
[
τ

θ
(1− σ)‖yk − yk−1‖ − 1

2
‖δk‖

]
,

it follows that lim
n→∞

bn = ∞.

cor:4.1 Corollary 3.6 Suppose that (H3) holds. Then, for x, u, y as in Proposition
3.4, it holds that

(i) {‖yk − y‖} converges (and hence {yk} is bounded);

(ii) limk ‖yk − yk−1‖ = 0;

(iii) {‖A(xk − x)‖} converges (hence {‖xk − x‖} converges and {xk} is
bounded);

(iv) limk ‖x̃k − xk‖ = 0;

(v) {x̃k} is bounded.

Proof. (i) From (3.13) we have that

‖yk − y‖2 ≤ ‖yk−1 − y‖2 + 2‖δk‖‖yk − yk−1‖+ α
2

θ
λk‖u‖‖δk‖ ∀ k. (3.20) eq:5.b

Define

σk+1 := ‖yk − y‖2 and βk := 2‖δk‖‖yk − yk−1‖+ α
2

θ
λk‖u‖‖δk‖.

Since {‖yk − yk−1‖} is bounded by Corollary 3.5 and
∑∞

k=1 ‖δk‖ < ∞, then∑∞
k=1 ‖βk‖ < ∞. Therefore the sequences {σk} and {βk} are in the condi-

tions of Lemma 2.5. This implies that {‖yk − y‖} converges and therefore
{yk} is bounded.
(ii) It follows from (i) and Proposition 3.4 that

∞∑
k=1

‖yk − yk−1‖2 < ∞,
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therefore limk ‖yk − yk−1‖ = 0
(iii) Since yk − y = A(x− xk) + δk, we get that

‖yk − y‖ − ‖δk‖ ≤ ‖A(x− xk)‖ ≤ ‖yk − y‖+ ‖δk‖.

Being {‖yk − y‖} convergent and {‖δk‖} convergent to zero, we conclude
from the expression above that {‖A(x − xk)‖} is also convergent. By (H2),
the function u −→ ‖u‖A := ‖Au‖ is a norm in IRn, and then it follows that
{‖xk − x‖} converges and therefore {xk} is bounded.
(iv) From (ii) and (3.11), it follows that limk→∞ ‖ỹk − yk‖ = 0. Therefore
limk→∞ ‖A(x̃k − xk)‖ = 0. Again, the assumptions on A imply that
limk→∞ ‖x̃k − xk‖ = 0.
(v) Follows from (iii) and (iv).

We will show below that the sequence {xk} converges to a solution of
V IP (T,C). Denote byAcc(zk) the set of accumulation points of the sequence
{zk}.

teo:6.1 Theorem 3.7 . Suppose that (H1)-(H3) hold. Then {xk} converges to an
element of S.

Proof. By Corollary 3.6 (iii) and (iv) then Acc(x̃k) = Acc(xk) 6= ∅. We
prove first that every element ofAcc(x̃k) = Acc(xk) is a solution of V IP (T,C).
Indeed, by (3.16), for all (x, u) ∈ G(T ) it holds

〈x− x̃k, u〉 ≥ (λk)
−1[ θ

2
(‖yk − y‖2 − ‖yk−1 − y‖2)

+(1− σ) τ
2
‖yk − yk−1‖2 − θ‖δk‖ ‖yk − yk−1‖]. (3.21) eq:5.6

Using Corollary 3.6 (ii) and (iii), we have that {xk} and {yk} are bounded
and limk ‖yk − yk−1‖ = 0. These facts, together with the identity

‖yk − y‖2 − ‖yk−1 − y‖2 = ‖yk − yk−1‖2 + 2〈yk − yk−1, yk−1 − y〉,

yield
lim
k→∞

‖yk − y‖2 − ‖yk−1 − y‖2 = 0.

Let {x̃kj} ⊆ {x̃k} be a subsequence converging to x∗, we have that

〈x− x∗, u〉 = lim
j
〈x− x̃kj , u〉 ≥ lim inf

k
〈x− x̃k, u〉. (3.22) jj
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Using the above inequality and the fact that λk ≥ λ > 0, we obtain the
following expression by taking limits for k →∞ in (3.21):

〈x− x∗, u〉 ≥ 0 ∀ (x, u) ∈ G(T ). (3.23) eq:5.7

By definition, ykj = b + δkj − Axkj with ykj > 0. We know that {ykj}
converges to y∗ = b − Ax∗, with y∗ ≥ 0. Therefore Ax∗ ≤ b. Equivalently,
x∗ ∈ C. By definition of NC , we have

〈x− x∗, w〉 ≥ 0 ∀ (x, w) ∈ G(NC). (3.24) eq:5.7a

Combining (3.23) and (3.24), we conclude that

〈x− x∗, u + w〉 ≥ 0 ∀ (x, u + w) ∈ G(T + NC).

By (H1) and Proposition 2.1, T +NC is maximal monotone. Then the above
inequality implies that 0 ∈ (T + NC)(x∗), i.e, x∗ ∈ S. Recall that x∗ is
also an accumulation point of {xk}. Using Corollary 3.6(iii), we have that
the sequence {‖x∗ − xk‖} is convergent. Since it has a subsequence that
converges to zero , the whole sequence {‖x∗ − xk‖} must converge to zero.
This completes the proof.
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