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Abstract In some applications, the comparison between two elements may depend on the point leading
to the so called variable order structure. Optimality concepts may be extended to this more general frame-
work. In this paper, we extend the steepest descent-like method for smooth unconstrained vector optimiza-
tion problem under a variable ordering structure. Roughly speaking, we obtain that every accumulation
point of the generated sequence satisfies a necessary first order condition. We discuss the consequence of
this fact in the convex case.
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1 Introduction

Classical vector optimization finds minimizers of a vector function with respect to an order given by a
fixed cone, which is a pointed, convex and closed. However, it is not able to model situations in which
the set of points whose image is better, depends on the point.

This variable order structure is given by a set valued application whose image is a proper, pointed,
convex and closed cone, for all n- dimensional real vector. So, the problem of minimizing a vector function
F with respect to the set valued order is to find a point such that there does not exist another point with a
better (and different) value of the objective function.

This problem has been treated in [1] in the sense of finding a minimizer of the image of the objective
function with respect to an ordered structure depending on the point in the image. It is a particular case
of the problem described in [2], where the goal of the model is to find a minimum of a set.
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Important applications of optimization problems with variable order structure appear in medical diag-
nosis, portfolio optimization and location theory. These applications are discussed in [3–5], where this
structure is used for modelling the variability of the preference. For instance, in medical diagnosis when
obtaining information from images, the collected data are transformed into another set and, from it, diag-
nosis is done. For determining the best transformation given the original data and the desired pattern,
different measuring criteria can be used, leading to the optimization of a vector of functions.

The solution of this model using a classical weighting technique, leads to wrong results. Indeed,
solutions with large values at some objectives functions are obtained. However, if the set of weights
depends on the point, better results are reported; see [5].

Extensions of iterative methods for classical vector optimization models, to the variable order case
is a promising idea. Although many approaches such as proximal points, weighting techniques, Newton-
like and subgradient methods may be considered; see [6–13]. Due to its simplicity and the adaptability
to the structure of the vectorial problem, we will focus on the steepest descent algorithm. This approach
appeared in [12] for solving multicriteria models. It was extended in [13] for convex vectorial models
and, recently, in [14] the convergence for the quasiconvex case was obtained.

In this work, we will present a steepest descent-like algorithm for solving vector optimization pro-
blems with variable order. We obtain the properties of the limit points of the sequence generated by the
proposed algorithm. Then, under a convex like hypothesis, we guarantee that the sequence is bounded
and all its accumulation points are solutions of the problem.

This paper is organized as follows: After some preliminary results, we extend the concept of convexity
of a function to the variable ordered case and obtain some properties of this class of functions. Section
4 is devoted to the presentation of the algorithm and the continuity of the involved operators. Finally the
convergence of the steepest descent method is shown in Section 5.

2 Preliminaries

In this section we will present some previous results and definitions. We begin with some notations.
The inner product is denoted by ⟨·, ·⟩ and the norm by ∥ · ∥. The ball centered at x with radius r

is B(x,r) := {y : ∥y− x∥ ≤ r}. Given two sets A and B, we will consider, dist(A,B), as the Hausdorff
distance, i.e.

dist(A,B) := max
{

sup
a∈A

inf
b∈B

d(a,b), sup
b∈B

inf
a∈A

d(a,b)
}
.

bd(A) denotes the boundary of the set A and Ac, its complement.
The variable order structure in Rn is given by the set valued application K : Rn ⇒Rm, where K(x) is a

proper, pointed, convex and closed cone, for all x ∈Rn. For each x ∈Rn, the dual cone of K(x) is defined
as K∗(x) := {w ∈ Rm : ⟨w,y⟩ ≥ 0, for all y ∈ K(x)}. As usual, the graph of a set valued application K is
the set Gr(K) := {(x,y) ∈ Rn ×Rm : y ∈ K(x)}. We recall that the mapping K is closed iff Gr(K) is a
closed subset of Rn ×Rm. Given the variable order structure, the K- vector optimization problem is

K −minF(x). (1)

As in the case of classical vector optimization, related solution concepts such as weakly efficient and
stationary points can be extended. We assume that int(K(x∗)) ̸=∅, for all x ∈ Rn. The point x∗ is a weak
solution of Problem (1) iff for all x ∈ Rn, F(x)−F(x∗) /∈ −int(K(x∗)), Sw is the set of all weak solution
points. The set of all minimizers of Problem (1) is denoted by S∗. We want to point out, that this definition
corresponds with the concept of weak minimizers given in [2]. On the other hand, if F is a continuously
differentiable function the point x∗ is stationary, iff Im(∇F(x∗))∩−int(K(x∗)) = /0, here Ss denotes the
set of all stationary points.
A necessary optimality condition is given as follows:
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Proposition 2.1 Let x∗ be a weak solution of Problem (1). If F is a continuously differentiable function,
then x∗ is a stationary point.

Proof Since x∗ is a weak solution of Problem (1), F(x∗ +αd)−F(x∗) /∈ −int(K(x∗)), for all α > 0,
d ∈ Rn. So,

F(x∗+αd)−F(x∗) ∈ (−int(K(x∗)))c. (2)

The Taylor expansion of F at x∗, leads to

F(x∗+αd) = F(x∗)+α∇F(x∗)d +o(α).

Combining (2) with the above equation, we have

α∇F(x∗)d +o(α) ∈ (−int(K(x∗)))c.

Using that (−int(K(x∗)))c is a closed cone, and since α > 0, it follows that

∇F(x∗)d +
o(α)

α
∈ (−int(K(x∗)))c.

Taking limits as α goes to 0 and using the closedness of (−int(K(x∗)))c, we obtain:

∇F(x∗)d ∈ (−int(K(x∗)))c,

establishing that x∗ ∈ Ss. ⊓⊔
Next we deal with the so called quasi-Fejér convergence and its properties.

Definition 2.1 Let S be a nonempty subset of Rn. A sequence {xk} ⊂Rn is said to be quasi-Fejér conver-
gent to S, iff for all x ∈ S, there exists k̄ and a summable sequence {δk} ⊂ R+ such that

∥xk+1 − x∥2 ≤ ∥xk − x∥2 +δk,

for all k ≥ k̄.

This definition originates in [15] and has been further elaborated in [16]. A useful result on quasi-Fejér
sequences is the following.

Theorem 2.1 If {xk} is quasi-Fejér convergent to S then,

i) The sequence {xk} is bounded,
ii) if a cluster point of the sequence {xk} belongs to S, then the whole sequence {xk} converges.

Proof See Lemma 6 of [15] and Theorem 1 of [17]. ⊓⊔

3 K-convexity

Convexity is a very helpful concept in optimization. Convex functions fulfill nice properties such as
existence of directional derivative and subgradient.

For classical vector optimization problems, i.e. K(x) ≡ K, for all x, we recall that F is convex if for
all λ ∈ [0,1], x, x̄ ∈ Rn, it holds that

F(λx+(1−λ )x̄) ∈ λF(x)+(1−λ )F(x̄)−K;

see [18–20]. In the variable order framework, we extend the concept of convexity as follows.

Definition 3.1 We say that F is a K-convex function iff for all λ ∈ [0,1], x, x̄ ∈ Rn,

F(λx+(1−λ )x̄) ∈ λF(x)+(1−λ )F(x̄)−K(λx+(1−λ )x̄).
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The geometric variant of convexity is defined via the epigraph of the function F , denoted as
epi(F) := {(x,y) ∈ Rn ×Rm : F(x) ∈ y−K(x)}; see [18, 21]. In non-variable orders, the convexity of
epi(F) is equivalent to the convexity of F . However, as the next proposition shows, in the variable order
setting, this does not hold.

Proposition 3.1 Suppose that F is a K-convex function. Then, epi(F) is convex if and only if K(x) = K,
for all x ∈ Rn.

Proof Suppose that there exists z ∈ K(x1)\K(x2). Take the points

(x1,F(x1)+2αz)

and
(2x2 − x1,F(2x2 − x1)) ,

with α > 0. They belong to epi(F).
Take the following convex combination:

(x1,F(x1)+2αz)
2

+
(2x2 − x1,F(2x2 − x1))

2
=

(
x2,

F(x1)+F(2x2 − x1)

2
+αz

)
.

This point belongs to epi(F) if and only if

F(x2) =
F(x1)+F(2x2 − x1)

2
+αz− k(α),

where k(α) ∈ K(x2). By the K-convexity of F ,

F(x2) =
F(x1)+F(2x2 − x1)

2
− k1,

where k1 ∈ K(x2). So,
αz+ k1 = k(α). (3)

Since K(x2) is closed and convex, and z /∈ K(x2), {z} and K(x2) may be strictly separated in Rm by a
hyperplane, i.e. there exists some p ∈ Rm \{0} such that

pT k ≥ 0 > pT z, (4)

for all k ∈ K(x2). Therefore, after multiplying (3) by pT and using (4) with k = k(α) ∈ K(x2), we obtain
that

α pT z+ pT k1 = pT k(α)≥ 0.

Taking limits as α goes to ∞, the contradiction is established, since 0 ≤ α pT z+ pT k1 → −∞. Hence,
K(x)≡ K for all x ∈ Rn. ⊓⊔

In the following we present some analytical properties of K-convex functions. For the nondifferen-
tiable model, we generalize the classical assumptions given in the case of constant cones; see [21, 22].
Let us first present the definition of Daniell cone.

Definition 3.2 We say that a convex cone K is Daniell cone, iff for all sequence {xk} ⊂ Rn satisfying
{xk − xk+1} ⊂ K and for some x̂ ∈ Rn, {xk − x̂} ⊂ K , then lim

k→∞
xk = inf

k
{xk}.

Given the partial order structure induced by a cone K , the concept of infimum of a sequence can be
defined. Indeed, for a sequence {xk} and a cone K , the point x∗ is infk{xk} if xk − x∗ ∈ K , for all k and
there is not x such that x∗− x ∈ K and xk − x ∈ K , for all k. It is well known that every pointed, closed
and convex cone in a finite dimensional space is a Daniell cone; see [23].
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Proposition 3.2 Suppose that for each x̄ there exists ε > 0 such that ∪x∈B(x̄,ε)K(x)⊂ K , where K is a
Daniell cone. Then

F ′(x̄;x− x̄) = lim
t→0+

F(x̄+ td)−F(x̄)
t

,

i.e. the directional derivative of F at x̄ exists along d = (x− x̄).

Proof By the convexity of F , for all 0 < t1 < t2 < ε,

F(x̄+ t1d)− t1
t2

F(x̄+ t2d)− t2 − t1
t2

F(x̄) ∈ −K(x̄+ t1d).

Dividing by t1, we have that

F(x̄+ t1d)−F(x̄)
t1

− F(x̄+ t2d)−F(x̄)
t2

∈ −K(x̄+ t1d)⊂−K .

Similarly, as

F(x̄)− t1
t1 +1

F(x̄−d)− 1
t1 +1

F(x̄+ t1d) ∈ −K(x̄),

it holds that
F(x̄+ t1d)−F(x̄)

t1
+F(x̄−d)−F(x̄) ∈ K(x̄)⊂ K .

Since K is a Daniell cone, F(x̄+t1d)−F(x̄)
t1

has a limit as t1 goes to 0. Hence, the directional derivative
exists. ⊓⊔
Let us present the definition of subgradient.

Definition 3.3 We say that εx̄ ∈ Rm×n is a subgradient of F at x̄ iff for all x ∈ Rn,

F(x)−F(x̄) ∈ εx̄(x− x̄)+K(x̄).

Denote the set of all subgradients of F at x̄ as ∂F(x̄).

Proposition 3.3 If for all x ∈ Rn, ∂F(x) ̸= /0, then F is K-convex.

Proof Since ∂F(x) ̸= /0, there exists ελx1+(1−λ )x2 and k1,k2 ∈ K(λx1 +(1−λ )x2), such that

F(x2)−F(λx1 +(1−λ )x2) = λελx1+(1−λ )x2(x2 − x1)+ k1,

and
F(x1)−F(λx1 +(1−λ )x2) = (λ −1)ελx1+(1−λ )x2(x2 − x1)+ k2.

Multiplying the previous equalities by λ and (1−λ ) respectively, their addition leads to

λF(x1)+(1−λ )F(x2)−F(λx1 +(1−λ )x2) = λk2 +(1−λ )k1.

Since K(λx1 +(1−λ )x2) is convex, the result follows. ⊓⊔

From now on we assume that F is a continuously differentiable function. The existence of a subgra-
dient and the first order sufficient optimality can be obtained directly as follows.

Proposition 3.4 Let F be a K-convex function. If Gr(K) is closed, then for all x̄ ∈ Rn, ∇F(x̄) = ∂F(x̄).
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Proof First we show that ∇F(x̄) belongs to ∂F(x̄). Since F is a continuously differentiable function,
fixed x, we get

F(λ x̄+(1−λ )x) = F(x̄)+(1−λ )∇F(x̄)(x− x̄)+o((1−λ )∥x− x̄∥) .

By K-convexity

F(x̄)+(1−λ )∇F(x̄)(x− x̄)+o(1−λ ) ∈ λF(x̄)+(1−λ )F(x)−K(λ x̄+(1−λ )x).

So,
(1−λ )(F(x)−F(x̄)−∇F(x̄)(x− x̄))+o(1−λ ) ∈ K(λ x̄+(1−λ )x).

Since K is a cone, it follows that

F(x)−F(x̄)−∇F(x̄)(x− x̄)+
o(1−λ )
(1−λ )

∈ K(λ x̄+(1−λ )x).

By taking limits as λ goes to 1 and recalling that K is a closed map, it holds that

F(x)−F(x̄)−∇F(x̄)(x− x̄) ∈ K(x̄),

and hence, ∇F(x̄) ∈ ∂F(x̄).
Suppose that ε ∈ ∂F(x̄). Fixed d, we get that, for all λ > 0,

F(x̄+λd)−F(x̄) = λ∇F(x̄)d +o(λ ) ∈ λεd + k(λ ),

where k(λ ) ∈ K(x̄). Dividing by λ > 0, and taking limits as λ approaches 0 in the above inclusion, it
follows that [∇F(x̄)− ε]d ∈ K(x̄), since K(x̄) is a closed set. Repeating the same analysis for −d, we
obtain that −[∇F(x̄)− ε]d ∈ K(x̄).
Taking into account that K(x̄) is a pointed cone, [∇F(x̄)− ε]d = 0, this implies that

∇F(x̄) = ε.

⊓⊔
In classical smooth unconstrained vector optimization, the convexity of the function implies that sta-

tionary points are minimizers. Let us prove an analogous result.

Proposition 3.5 Let F be a K-convex function and K be a closed mapping such that int(K(x∗)) ̸= /0.
Then,

(i) the point x∗ is a weak solution of Problem (1) if and only if Im(∇F(x∗))∩−int(K(x∗)) = /0.
(ii) If Im(∇F(x∗))∩−K(x∗) = {0}, then x∗ is a minimizer.

Proof (i) The necessity was already shown in Proposition 2.1.
Conversely, suppose that Im(∇F(x∗))∩−int(K(x∗)) = /0 and that for some x,

F(x)−F(x∗) = k1 ∈ −int(K(x∗)).

As already shown
k2 = F(x)−F(x∗)−∇F(x∗)(x− x∗) ∈ K(x∗).

So, ∇F(x∗)(x− x∗) = k1 − k2. Recalling that K(x∗) is a convex cone, it follows that

∇F(x∗)(x− x∗) ∈ −int(K(x∗)),

contradicting the hypothesis.
(ii) Suppose that Im(∇F(x∗))∩−K(x∗) = {0} and for some x, F(x)−F(x∗) = k1 ∈ −K(x∗)\{0}. Since



A Steepest Descent-like Method for Variable Order Vector Optimization Problems 7

k2 = F(x)−F(x∗)−∇F(x∗)(x− x∗) ∈ K(x∗),

it holds that ∇F(x∗)(x− x∗) = k1 − k2. Again, due to the convexity of K(x∗),

∇F(x∗)(x− x∗) ∈ −K(x∗).

Henceforth, there exist k1 ∈ −K(x∗)\{0} and k2 ∈ K(x∗) such that

∇F(x∗)(x− x∗) = k1 − k2 ∈ −K(x∗).

Using that ∇F(x∗)(x−x∗)∩−K(x∗) = {0}, we have that k1 = k2 and, hence, k1 ∈−K(x∗)∩K(x∗). Since
K(x∗) is a pointed cone, it holds that k1 = k2 = 0, implying that x∗ belongs to S∗. ⊓⊔
Given basic properties of K-convex functions, we will now present the proposed algorithm.

4 A steepest Descent-like Method

This section is devoted to presenting a steepest descent-like algorithm for solving unconstrained smooth
problems with variable order. Some definitions, the algorithm and some basic properties of the involved
functions will be given.

Our algorithm makes use of the set valued mapping G : Rn ⇒Rm, which for each x, defines the set of
the normalized generators of K∗(x), i.e. G(x)⊆ K∗(x)∩bd (B(0,1)) is a compact set, such that the cone
generated by its convex hull is K∗(x). Although K∗(x)∩bd (B(0,1)) fulfills those properties, in general it
is possible to take smaller sets; see [21, 24, 25].
On the other hand, we consider function ϕ : Rn ×Rn → R,

ϕ(x,v) := max
y∈G(x)

yT ∇F(x)v,

and for each x ∈ Rn, the auxiliary problem

min
v∈Rn

{
∥v∥2

2
+βkϕ(x,v)

}
. (Pk)

Fixed the constants: σ ∈ (0,1), δ > 0 and βk ≥ δ > 0 for all k, the algorithm is defined as follows:

Algorithm A

Initialization: Take x0 ∈ Rn and β0.

Iterative step: Given xk and βk, compute vk, solution of (Pk).
If vk = 0, then stop. Otherwise compute

j(k) := min
{

j ∈ Z+ : F(xk)+σ2− j∇F(xk)vk −F(xk +2− jvk) ∈ K(xk)
}
. (5)

Set
xk+1 = xk + γkvk,

with γk = 2− j(k).

Remark 4.1 Compared with the methods proposed in [12, 13] for multicriteria and vector optimization
models respectively, Algorithm A is the natural extension of the steepest descent method proposed to the
variable order case.
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Due to the variability of the order, we use the auxiliary function ρ : Rn ×Rm → R, such that

ρ(x,w) := max
y∈G(x)

yT w.

Let us now present some properties of the functions ρ and ϕ .

Proposition 4.1 If int(K(x∗)) ̸= /0, for all x ∈ Rn, then for Algorithm A, the following statements hold:

(i) For each x ∈ Rn, ρ(x, ŵ)< 0 if and only if ŵ ∈ −int(K(x)).
(ii) The point x is not stationary if and only if there exists v ∈ Rn such that ϕ(x,v)< 0.

(iii) For each x ∈ Rn, Problem (Pk) has a unique solution, v(x).
(iv) Suppose that W ⊂ Rm is a bounded set. If for some L ≥ 0, dist(G(x1),G(x2)) ≤ L∥x1 − x2∥ for all

x1,x2 ∈ Rn, then ρ(x,w) is a Lipschitz function for all (x,w) ∈ Rn ×W.

Proof (i) If ρ(x, ŵ)< 0, then for all y ∈ G(x), it holds that yT ŵ < 0 and, hence, ŵ ∈ −K(x). As G(x) is
compact and ρ(x,w) is a continuous function of w, we get that ρ(x,w) < 0, for all w in a neighborhood
of ŵ. As a consequence, w ∈ −K(x). So, ŵ ∈ −int(K(x)).

Conversely, take ŵ ∈ −int(K(x)). Then, ŵ ∈ −K(x) and yT ŵ ≤ 0, for all y ∈ G(x). Thus, it follows
that ρ(x, ŵ)≤ 0. Consider y ∈ G(x), such that ρ(x, ŵ) = yT ŵ. If yT ŵ = 0, as 0 /∈ G(x), we obtain that,

ρ(x, ŵ+αy)≥ yT (ŵ+αy) = α∥y∥2 > 0, for all α > 0.

For α small enough ŵ+αy∈−K(x), which means that 0< ρ(x, ŵ+αy)≤ 0, establishing a contradiction.
(ii) Note that fixed x, ϕ(x,v) = ρ(x,∇F(x)v). So, the statement follows from the definition of stationarity
and (i).
(iii) From the definitions, it is easy to see that ϕ(x, ·) is a positive homogeneous and sublinear function.

So, ϕ(x, ·) is a convex function, and hence, ∥v∥2

2 +βkϕ(x,v) is a strongly convex function for βk positive.
As a consequence, Problem (Pk) has a unique minimizer.
(iv) Analogously ρ(x, ·) is a sublinear function and

ρ (x1,w2)−ρ (x1,w2 −w1)≤ ρ (x1,w1)≤ ρ (x1,w2)+ρ (x1,w1 −w2) . (6)

We will concentrate in the left inequality. It can be equivalently written as

ρ (x1,w2)−ρ (x2,w2)−ρ (x1,w2 −w1) ≤ ρ (x1,w1)−ρ (x2,w2) . (7)

By the Cauchy-Schwartz inequality,

−∥w∥ ≤ ρ(x,w)≤ ∥w∥. (8)

Thus, combining (7) and (8), we obtain that

ρ(x1,w2)−ρ(x2,w2)−∥w1 −w2∥ ≤ ρ(x1,w1)−ρ(x2,w2). (9)

Now we focus on the expression ρ(x1,w2)− ρ(x2,w2). As G(x2) is compact, there exists y2 ∈ G(x2),
satisfying

ρ(x2,w2) = yT
2 w2.

Taking into account that dist(G(x1),G(x2)) ≤ L∥x1 − x2∥, there exist z1 ∈ G(x1) and η1 ∈ B(0,1) such
that y2 = z1 +L∥x1 − x2∥η1.
Hence,

ρ(x1,w2)−ρ(x2,w2) = yT
1 w2 − yT

2 w2 =
(
yT

1 − zT
1 −ηT

1 L∥x1 − x2∥
)

w2.
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Recalling that z1 ∈ G(x1), and using the definition of ϕ , we get that

[yT
1 − zT

1 ]w2 ≥ 0.

So,

ρ(x1,w2)−ρ(x2,w2) ≥ −ηT
1 L∥x1 − x2∥w2 ≥−L∥x1 − x2∥∥w2∥. (10)

Note that as W is bounded, for some M > 0, ∥w∥ ≤ M for all w ∈W . Combining the inequalities (9) and
(10), and defining L̂ = LM, we obtain

ρ(x1,w1)−ρ(x2,w2)≥−L̂∥x1 − x2∥−∥w1 −w2∥. (11)

On the other hand, the right inequality of (6) leads to

ρ (x1,w1)−ρ (x2,w2)≤ ρ (x1,w2)−ρ (x2,w2)+ρ (x1,w1 −w2) .

Again, using (8), we obtain

ρ(x1,w1)−ρ(x2,w2) ≤ ρ(x1,w2)−ρ(x2,w2)+∥w1 −w2∥. (12)

Analogously, taking z2 ∈ G(x2) and η2 ∈ B(0,1) such that y1 = z2 +L∥x1 − x2∥η2

ρ(x1,w2)−ρ(x2,w2) = yT
1 w2 − yT

2 w2 =
(
ηT

2 L∥x1 − x2∥+ zT
2 − yT

2
)

w2

and
[zT

2 − yT
2 ]w2 ≤ 0.

So,

ρ(x1,w2)−ρ(x2,w2) ≤ ηT
2 L∥x1 − x2∥w2 ≤ L∥x1 − x2∥∥w2∥. (13)

Taking L̂ = LM, the combination of (12) and (13), implies

ρ(x1,w1)−ρ(x2,w2)≤ L̂∥x1 − x2∥+∥w1 −w2∥.

Together with (11), evidently it follows that

|ρ(x1,w1)−ρ(x2,w2)| ≤ L̂∥x1 − x2∥+∥w1 −w2∥. (14)

⊓⊔

Remark 4.2 As a consequence if ∇F is locally Lipschitz, then ϕ(x,v) is also locally Lipschitz and there-
fore, a continuous function.

Based on Proposition 4.1(iii), we define v(x) as the unique solution of problem (Pk), and y(x,v)∈G(x)

is such that y(x,v)T ∇F(x)v= ϕ(x,v). We will discuss the continuity of θβ (x) := ∥v(x)∥2

2 +βϕ(x,v(x)) with
β > 0.

Proposition 4.2 Consider x ∈ Rn and fix β > 0, then the following hold

(i) θβ (x)≤ 0 and x is a stationary point if and only if θβ (x) = 0.
(ii) ∥v(x)∥ ≤ 2β∥∇F(x)∥.

(iii) If G is a closed map, then θβ is an upper semicontinuous function.
(iv) If dist(G(x1),G(x2)) ≤ L∥x1 − x2∥ for some L > 0 and ∇F is locally Lipschitz, then θβ is lower

semicontinuous.
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Proof (i) As shown in Proposition 4.1(ii), x is a non stationary point if and only if for some v, ϕ(x,v)< 0.
Take λ ≥ 0. By the positive homogeneity of ϕ , ϕ(x,λv) = λϕ(x,v). So, θβ (x)≤ λ 2

2 +λβϕ(x,v) and for
λ small enough

θβ (x)≤
λ 2

2
+λβϕ(x,v)< 0.

If θβ (x)< 0, as β > 0, it holds that ϕ(x,v(x)) = θβ (x)−∥v∥
β < 0.

(ii) Since θβ (x) =
∥v(x)∥2

2 +βϕ(x,v(x)) and by (i), θβ (x)≤ 0. Moreover

∥v(x)∥2 ≤−2βϕ(x,v(x))≤ 2β∥∇F(x)v(x)∥ ≤ 2β∥∇F(x)∥∥v(x)∥,

by the Cauchy Schwartz inequality. Then,

∥v(x)∥ ≤ 2β∥∇F(x)∥,

which leads to the result.
(iii) We now prove the upper semi-continuity of θβ . Let {xk} be a sequence converging to x. Take x̂ such
that v(x) = x̂− x. Clearly,

θβ (x
k) ≤ ∥x̂− xk∥2

2
+βϕ(xk, x̂− xk)

=
∥x̂− xk∥2

2
+βy(xk, x̂− xk)T ∇F(xk)(x̂− xk). (15)

As y(xk, x̂−xk), is bounded there exists a convergent subsequence. Without loss of generality, we assume
that limk→∞ y(xk, x̂− xk) = y. Since G is closed, y ∈ G(x).
Taking limits in (15),

limsup
k→∞

θβ (x
k) ≤ limsup

k→∞

∥x̂− xk∥2

2
+βy(xk, x̂− xk)∇F(xk)(x̂− xk)

=
∥x̂− x∥2

2
+βy(x,v(x))∇F(x)(x̂− x)

≤ ∥x̂− x∥2

2
+βϕ(x, x̂− x) = θβ (x).

So, θβ is upper semi-continuous. (iv) Consider ϕ(x, x̂k − x)− ϕ(xk, x̂k − xk). As {xk} is a convergent
sequence and F is a smooth function, both sequences {xk} and {∇F(xk)} are also bounded. Moreover,
by (ii),

∥x̂k − xk∥ ≤ 2β∥∇F(xk)∥. (16)

Hence, {∇F(x)(x̂k − xk)} and {∇F(xk)(x̂k − xk)} are bounded. By Proposition 4.1 (iv), (14) holds for
x1 = x, x2 = xk, w1 = ∇F(x)(x̂k − xk) and w2 = ∇F(xk)(x̂k − xk). That is∣∣∣ρ (

x,∇F(x)(x̂k − xk)
)
−ρ

(
xk,∇F(xk)(x̂k − xk)

)∣∣∣ ≤ L∥x− xk∥∥∇F(x)(x̂k − xk)∥

+
∥∥∥(∇F(x)−∇F(xk)

)
(x̂k − xk)

∥∥∥
≤ L̂∥x− xk∥+∥∇F(x)−∇F(xk)∥∥(x̂k − xk)∥,

where L̂ = LM and ∥∇F(x)(x̂k − xk)∥ ≤ M.
Noting that
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ϕ(x, x̂k − x)−ϕ(xk, x̂k − xk) = ρ
(

x,∇F(x)(x̂k − x)
)
−ρ

(
xk,∇F(xk)(x̂k − xk)

)
,

and since ∇F(x) is locally Lipschitz, by (16) and Remark 4.2, it follows that∣∣∣ϕ(x, x̂k − x)−ϕ(xk, x̂k − xk)
∣∣∣≤ L̂∥x− xk∥.

In particular limk→∞ ϕ(x, x̂k − x)−ϕ(xk, x̂k − xk) = 0. Now consider θβ (x). It holds that

θβ (x) ≤ βϕ(x, x̂k − x)+
∥x̂k − x∥2

2

= θβ (x
k)+β

(
ϕ(x, x̂k − x)−ϕ(xk, x̂k − xk)

)
+

∥x̂k − x∥2 −∥x̂k − xk∥2

2

= θβ (x
k)+β

(
ϕ(x, x̂k − x)−ϕ(xk, x̂k − xk)

)
+

1
2

(
−2⟨x̂k,xk − x⟩+∥x∥2 −∥xk∥2

)
.

Taking limits, as k tends to ∞, it follows that

θβ (x)≤ liminf
k→∞

{
θβ (x

k)+β
(

ϕ(x, x̂k − x)−ϕ(xk, x̂k − xk)
)
−⟨x̂k,xk − x⟩+ ∥x∥2 −∥xk∥2

2

}
.

Since
lim
k→∞

ϕ(x, x̂k − x)−ϕ(xk, x̂k − xk) = 0,

and
lim
k→∞

−⟨x̂k,xk − x⟩+ 1
2

(
∥x∥2 −∥xk∥2

)
= 0,

we obtain that
θβ (x)≤ liminf

k→∞
θβ (x

k).

⊓⊔
Now we show that Algorithm A is well defined.

Proposition 4.3 Given xk, either there exists j(k) solution of (5) or vk = 0.

Proof If vk ̸= 0, then by Proposition 4.2(i), xk is not a stationary point and θβ (xk) < 0. In particular,
ϕ(xk,v(xk))< 0. As ϕ(xk,v(xk)) = ρ

(
xk,∇F(xk)v(xk)

)
, by Proposition 4.1 (i),

∇F(xk)v(xk) ∈ −int(K(xk)). (17)

Using the Taylor expansion of F at xk, we obtain

F(xk)+σ2− j∇F(xk)vk −F(xk +2− jvk) = (σ −1)2− j∇F(xk)vk +o(2− j).

As σ < 1 and K(xk) is a cone, by (17), it follows that

(σ −1)2− j∇F(xk)vk ∈ int(K(xk)).

Combining this fact and the previous equation, we get that for all j, sufficiently large,

(σ −1)2− j∇F(xk)vk +o(2− j) ∈ K(xk).

Hence, (5) has a solution. ⊓⊔
After discussing the continuity of the involved functions, we will now present the convergence results.
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5 Convergence of the Method

In this section we obtain the convergence of the Algorithm A, as presented in the previous section. First
we consider the general case and subsequently, the result is refined for K-convex functions. From now on
{xk} denotes the sequence generated by Algorithm A. We begin with the following lemma.

Lemma 5.1 Assume that

(i) ∪x∈RnK(x)⊂ K , where K is a Daniell cone.
(ii) The application G(x) is closed.

(iii) dist(G(x),G(x̄))≤ L∥x− x̄∥, for all x, x̄ ∈ Rn.

If x∗ is an accumulation point of {xk}, then limk→∞ F(xk) = F(x∗).

Proof Take limk→∞ xik = x∗ a subsequence of {xk}. By its definition it holds that

F(xk+1)−F(xk)−σγk∇F(xk)vk ∈ −K .

By Proposition 4.1 (i), implies that ρ
(
xik ,F(xk+1)−F(xk)−σγk∇(F(xk)vk)

)
≤ 0. However ρ is a

sublinear function, as shown in Proposition 4.1 (iv), so,

ρ
(

xk,F(xk+1)−F(xk)
)
≤ σγkρ

(
xk,∇F(xk)vk

)
. (18)

But ρ
(
xk,∇F(xk)vk

)
= ϕ(xk,vk) < 0. So, ρ

(
xk,F(xk+1)−F(xk)

)
< 0 and, again by Proposition

4.1(ii), this inequality is equivalent to

F(xk)−F(xk+1) ∈ int(K(xk)).

As ∪x∈Rn K(x)⊂ K , it holds that for all x, int(K(x))⊂ int(K ). So,

F(xk)−F(xk+1) ∈ int(K ).

or equivalently: F(xk) is a decreasing sequence with respect to the cone K .
Using that F is continuous,

lim
k→∞

F(xik) = F(x∗).

Particularly, F(x∗) is an accumulation point, so, due to K is a Daniell cone; see [26, 27], it follows that

lim
k→∞

F(xk) = F(x∗).

⊓⊔

Theorem 5.1 Suppose that

(i) ∪x∈RnK(x)⊂ K , where K is a Daniell cone.
(ii) The application G(x) is closed.

(iii) dist(G(x),G(x̂))≤ L∥x− x̂∥, for all x, x̂ ∈ Rn.
(iv) ∇F(x) is a locally Lipschitz function.

If βk is bounded, then all accumulation points of {xk} are stationary points of Problem (1).
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Proof Rewrite (18) as

ρ
(

xk,F(xk)
)
−ρ

(
xk,F(xk+1)

)
≥−σγkρ

(
xk,∇F(xk)v(xk)

)
≥ 0,

and consider the subsequences {xik} and {vik}, vik = v(xik). Then,

lim
k→∞

ρ
(
xik ,F(xik)

)
−ρ

(
xik ,F(xik+1)

)
≥−σ lim

k→∞
γik ρ

(
xik ,∇F(xik)vik

)
≥ 0.

By Proposition 4.1(iv), ρ is continuous. As already shown in Lemma 5.1, limk→∞ F(xk) = F(x∗). There-
fore,

lim
k→∞

ρ
(
xik ,F(xik)

)
−ρ

(
xik ,F(xik+1)

)
= ρ (x∗,F(x∗))−ρ (x∗,F(x∗)) = 0.

These facts imply that
0 ≥−σ lim

k→∞
γik ρ

(
xik ,∇F(xik)vik

)
≥ 0.

Hence,
lim
k→∞

γik ρ
(
xik ,∇F(xik)vik

)
= 0.

As γk ∈ (0,1) for all k, limsupk→∞ γik ≥ 0. Due to the boundedness of {βik}, and the convergence of
{xik}, recall that F is smooth, by Proposition 4.2(ii), {vik} is also bounded. Without loss of generality,
suppose that for the subsequence {ik} it holds that {xik}, {βik}, {vik} and {γik} converge to x∗, β ∗, v∗ and
to γ∗ = limsupk→∞ γik , respectively. We consider two cases γ∗ > 0 and γ∗ = 0.
Case 1: γ∗ > 0. Hence, limk→∞ ϕ(xik ,vik) = limk→∞ ρ

(
xik ,∇F(xik)v(xik)

)
= 0. Suppose that

θβ ∗(x∗) = ∥v(x∗)∥2/2+βϕ(x∗,v)<−ε < 0.

Due to the continuity of ϕ(·, ·), recall Remark 4.2, for k large enough ϕ(xik ,v(x∗))<−ε/2. On the other
hand, for k sufficiently large

∥vik∥2

2
+βik ϕ(xik ,vik)> βik ϕ(xik ,vik)>−ε/4. (19)

By definition of vik

∥v∥2

2
+βik ϕ(xik ,v)≥ ∥vik∥2

2
+βik ϕ(xik ,vik). (20)

Combining (19) and (20), we obtain:

∥v∥2

2
+βik ϕ(xik ,v)>−ε/4.

Taking limit as k goes to ∞, recalling that ϕ(xik ,v) is a continuous function, we obtain the following
contradiction

−ε >
∥v∥2

2
+β ∗ϕ(x,v)>−ε/4.

Therefore, we may conclude that θβ ∗(x∗)≥ 0 and hence, using Proposition 4.2, if limsupk→∞ γik > 0, x∗

is stationary.
Case 2: γ∗ = 0.
Using the previously defined convergent subsequences {xik}, {βik}, {vik}, {γik}, we get that

ϕ
(
xik ,∇F(xik)vik

)
≤ θ(xik)< 0.
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Taking limits:

ϕ(x∗,∇F(x∗)v∗)≤ θ(x∗)≤ 0.

Fix q ∈ N. Then, for k sufficiently large

F(xik +2−qvik) /∈ F(xik)+
σ∇F(xik)

2q −K(xik),

as there exists ŷik ∈ G(xik) such that

⟨
F(xik +2−qvik)−F(xik)− σ∇F(xik)

2q , ŷik

⟩
> 0,

it holds that

ρ
(

xik ,F(xik +2−qvik)−F(xik)− σ∇F(xik)

2q

)
≥ 0.

Taking limits as k tends to ∞, and recalling that ρ is a continuous function, then

ρ
(

x∗,F(x∗+2−qv∗)−F(x∗)− σ∇F(x∗)v∗

2q

)
≥ 0.

But ρ is a positive homogeneous function, so,

ρ
(

x∗,F(x∗+2−qv∗)−F(x∗)
2−q −σ∇F(x∗)v∗

)
≥ 0.

Taking limits as q tends to ∞, we obtain

ρ (x∗,(1−σ)∇F(x∗)v∗)≥ 0.

Finally as ρ (x∗,∇F(x∗)v∗)≤ 0, it holds

ρ (x∗,∇F(x∗)v∗) = 0.

and by Proposition 4.1(ii), this is equivalent to say that x∗ ∈ Ss. ⊓⊔
This result needs the existence of an accumulation point. Based on quasi-Féjer theory, we prove this

in the convex case.
Define βk =

αk
ξk

, where αk ≥ 0, ∑∞
k=1 α2

k < ∞ and ξk = maxy∈G(xk) ∥yT ∇F(xk)∥. We begin with a result

that provides an upper bound on ∥xk+1 − xk∥2 −∥xk − x∥2.

Lemma 5.2 Take x ∈ Rn. If F is a K-convex function and K a closed map, then

∥xk+1 − x∥2 ≤ ∥xk − x∥2 +β
ℓk

∑
i=1

λ k
i [y

k
i ]

T [F(x)−F(xk)]+ γ2
k α2

k ,

for some yk
i ∈ G(xk) and λ k

i ≥ 0, i = 1, . . . , ℓk, such that ∑ℓk
i=1 λ k

i = 1.
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Proof First note that
∥xk+1 − x∥2 −∥xk − x∥2 = 2γk⟨vk,xk − x⟩+ γ2

k ∥vk∥2. (21)

But vk is a solution of

min
v∈Rn

∥v∥2

2
+βkρ

(
xk,∇F(xk)v

)
,

and, as already shown in Proposition 4.1 (iii), the objective function of this problem is convex. Hence,

0 = vT +βk

ℓk

∑
i=1

λ k
i [y

k
i ]

T ∇F(xk),

for some λ k
i ≥ 0 and some yk

i ∈ G(xk), such that ∑ℓk
i=1 λ k

i = 1 and

[yk
i ]

T ∇F(xk)vk = ρ
(

xk,∇F(xk)v
)
.

Substituting in (21), it follows that

∥xk+1 − x∥2 −∥xk − x∥2 = 2βkγk

ℓk

∑
i=1

λ k
i [y

k
i ]

T ∇F(xk)(x− xk)+ γ2
k ∥vk∥2. (22)

As F is a K-convex function, by Proposition 3.4, F(x)−F(xk)−∇F(xk)(x− xk) ∈ K(xk). Moreover,

[yk
i ]

T
(

F(x)−F(xk)
)
≥ [yk

i ]
T ∇F(xk)(x− xk),

since yk
i ∈ G(xk), for i = 1, . . . , ℓk.

Combining the previous equation with (22) and taking into account that 0 < γk < 1, we get

∥xk+1 − x∥2 −∥xk − x∥2 ≤ βk

ℓk

∑
i=1

λ k
i [y

k
i ]

T [F(x)−F(xk)]+ γ2
k ∥v(xk)∥2. (23)

On the other hand, as v(xk) is a minimizer of the function ∥v∥2

2 +βkρ
(
xk,∇F(xk)v

)
,

∥v(xk)∥2

2
+βkρ

(
xk,∇F(xk)v(xk)

)
≤ 0.

Thus,

∥v(xk)∥2 ≤ −2βk[yk
i ]

T ∇F(xk)vk

≤ 2
αk

ξk
max

y∈G(xk)
∥yT ∇F(xk)∥∥vk∥= 2αk∥v(xk)∥.

Combining (23) and the previous inequality, it follows that

∥xk+1 − xk∥2 −∥xk − x∥2 ≤ βk

j

∑
i=1

λ k
i [y

k
i ]

T [F(x)−F(xk)]+ γ2
k α2

k .

⊓⊔
Now we prove the existence of accumulation points of the sequence generated by Algorithm A for

K-convex functions. First we define the set T = {x ∈ Rn : F(xk)−F(x) ∈ K(xk), ∀k} is nonempty. We
assume that T ̸= /0. This hypothesis is closely related to the completeness of Im(F(x)), and, as reported in
[21], the completeness of Im(F(x)) ensures the existence of efficient points. Indeed, this is because T ̸= /0
is assumed in order to prove the convergence of several methods for solving classical vector optimization
problems; see [12–14, 19, 20, 28].
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Theorem 5.2 Let F be a K-convex function and T ̸= /0. Assume that

(i) ∪x∈RnK(x)⊂ K , where K is a Daniell cone.
(ii) The mapping G(x) is closed.

(iii) dist(G(x),G(x̂))≤ L∥x− x̂∥, for all x, x̂ ∈ Rn.
(iv) ∇F(x) is a locally Lipschitz function.

Then there exists x∗ such that limk→∞ xik = x∗ and all accumulation points of {xk} are weak solutions of
Problem (1).

Proof Suppose that x ∈ T . Then by Lemma 5.2, we obtain

∥xk+1 − x∥2 ≤ ∥xk − x∥2 +β
ℓk

∑
i=1

λ k
i [y

k
i ]

T [F(x)−F(xk)]+ γ2
k α2

k ,

where λ k
i ≥ 0, ∑ℓk

i=1 λ k
i = 1, yk

i ∈ G(xk), i = 1, . . . , ℓk and

[yk
i ]

T ∇F(xk)vk = ρ
(

xk,∇F(xk)v
)
= max

y∈G(xk)
{yT ∇F(xk)v(xk)}.

Since x ∈ T , it follows that [F(xk)−F(x)] ∈ K(xk) and

[yk
i ]

T [F(x)−F(xk)]≤ 0.

Therefore,
∥xk+1 − x∥2 ≤ ∥xk − x∥2 + γ2

k α2
k .

As γk ≤ 1 and ∑∞
k=1 α2

k < ∞, {xk} is a quasi- Féjer sequence with respect to T , and, by Theorem 2.1(i), xk

is bounded. So, it has an accumulation point, which will be denoted as x∗.
By Theorem 5.1, x∗ is a stationary point and limk→∞ F(xk) = F(x∗). Hence, using Proposition 3.5, x∗

is a weak solution of (1). ⊓⊔

Remark 5.1 In order to prove the convergence of the whole sequence using Theorem 2.1 (ii), we need to
show that there exists an accumulation point of {xk} belonging to T . The main difficulty is that, due to the
variability of the cones, we can only guarantee F(x∗)−F(x) ∈ −bd(K(x∗)), for all x ∈ T . However, in
vector optimization, the main goal is to reconstruct the set of solution. So, if {xk} has many accumulation
points, a clustering technique such as K-means; see [29], can be used to identify them.

6 Concluding Remarks

As there exist many applications of variable ordering structure optimization models, it is important to
have efficient solution algorithms. As far as we know, the proposed algorithm is a first attempt to apply
a continuous descent algorithm to the resolution of this kind of problems. We recall that our proposal
extends the steepest descent method, which is one of the oldest, classical and most basic schemes for
solving optimization problems. Despite its computational shortcomings, it sets the foundations of future
more efficient algorithms, like projected gradient, Newton-like, proximal method, and so on, which have
been extended only for vector optimization problems with non-variable order structure; see [6, 7, 19, 20].
The use of these approaches to variable ordering structures is a field of future research. The proposed
algorithm is a starting point for the implementation of more complex solution procedures to this more
general setting.
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