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Abstract

Let f : M → M be a diffeomorphism defined on a compact boundaryless d-
dimensional manifold M , d ≥ 2. C. Morales has proposed the notion of measure
expansiveness. In this note we show that diffeomorphisms in a residual subset far
from homoclinic tangencies are measure expansive. We also show that surface diffeo-
morphisms presenting homoclinic tangencies can be C1-approximated by non-measure
expansive diffeomorphisms.
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1 Introduction

The notion of expansiveness was introduced by Utz in the middle of the twentieth century,
see [Ut]. Roughly speaking a system is expansive if two orbits cannot remain close to each
other under the action of the system. This notion is very important in the context of the
theory of Dynamical Systems. For instance, it is responsible for many chaotic properties
for homeomorphisms defined on compact spaces, see for instance [Hi], [Le], [Ft], [Vi] for
more on this. There is an extensive literature concerning expansive systems and a classical
result establishes that every hyperbolic f -invariant subset Λ ⊂M is expansive.

As pointed out by Morales [Mo], in light of the rich consequences of expansiveness in
the dynamics of a system, it is natural to consider another notions of expansiveness. In
this same paper he introduced a notion generalizing the usual concept of expansiveness.

In this paper we prove that there is a residual subset G of Diff1(M)\{HT } such that
if f ∈ G then f is µ-expansive (see Definition 2.7). Here HT is the subset of Diff1(M)
presenting a homoclinic tangency (see Definition 2.8).

Moreover we also show that surface diffeomorphisms presenting homoclinic tangencies
associated to hyperbolic periodic points can be C1-approximated by non measure-expansive
diffeomorphisms.

2 Preliminary results and statement of the main result

Let us start with the different definitions of expansiveness we shall deal with. To this end
we define for x ∈ X, where (X, d) is a compact metric space, the set

Γε(x, f) ≡ {y ∈ X /d(fn(x), fn(y)) ≤ ε, n ∈ ZZ} . (1)

We simply write Γε(x) instead of Γε(x, f) when it is understood which f we refer to.

2.1 Expansiveness and robust expansiveness.

Definition 2.1. Let f : X → X be a homeomorphism defined on a compact metric space
(X, d). We say that f is an expansive homeomorphism if there is α > 0 such that Γα(x) =
{x} for all x ∈ X. Equivalently, given x, y ∈ X, x 6= y, there is n ∈ ZZ such that
dist(fn(x), fn(y)) > α.

For f a diffeomorphism one is interested in the relation between a given property in
the underlying dynamics and its influence on the dynamics on the infinitesimal level, i.
e., in the dynamics of the tangent map Df : TM → TM . Usually one cannot expect
that a sole notion on the underlying dynamics can guarantee any interesting feature on the
infinitesimal level. Hence we ask for a robust property valid in a whole neighborhood of
f ∈ Diffr(M), r ≥ 1.
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Definition 2.2. A compact f -invariant subset Λ is Cr-robustly expansive, r ≥ 1, if and
only if there exists a Cr-neighbourhood U(f) of f such that for all g ∈ U(f), there exists a
continuation of Λg, such that g|Λg is expansive.

We prove at [PPV, PPSV, SV] that when Λ = H(p, f) is a robustly C1-expansive
homoclinic class associated to a hyperbolic periodic point p then H(p, f) is hyperbolic (see
Subsection 2.3).

2.2 Entropy expansiveness and robust entropy expansiveness.

Another notion of expansiveness introduced by Bowen at [Bo] is that of an entropy expansive
homeomorphism f : M →M , or h-expansive homemorphism for short.

Let K be a compact invariant subset of M and dist : M ×M → IR+ a distance in
M compatible with its Riemannian structure. For E,F ⊂ K, n ∈ IN and δ > 0 we
say that E (n, δ)-spans F with respect to f if for each y ∈ F there is x ∈ E such that
dist(f j(x), f j(y)) ≤ δ for all j = 0, . . . , n− 1. Let rn(δ, F ) denote the minimum cardinality
of a set that (n, δ)-spans F . Since K is compact rn(δ, F ) <∞. We define

h(f, F, δ) ≡ lim sup
n→∞

1

n
log(rn(δ, F ))

and the topological entropy of f restricted to F as

h(f, F ) ≡ lim
δ→0

h(f, F, δ) .

The last limit exists since h(f, F, δ) increases as δ decreases to zero.

Definition 2.3. We say that f/K is entropy-expansive or h-expansive for short, if and
only if there exists ε > 0 such that

h∗f (ε) ≡ sup
x∈K

h(f,Γε(x)) = 0 .

As for the case of expansiveness we may define a notion of robust h-expansiveness.

Definition 2.4. If f : M → M is a Cr-diffeomorphism , r ≥ 1, and K ⊂ M is compact
invariant, we say that f/K is robustly C1-entropy expansive if there is a C1-neighborhood
U of f and an open set U ⊃ K such that if g ∈ U then there is Kg ⊂ U such that g/Kg is
entropy expansive. We say that Kg is a continuation of K (not necessarily unique).

We prove at [PaVi, PaVi2, DFPV] that if K is a homoclinic class H(p, f) associated to
a hyperbolic periodic point p then it is robustly h-expansive if and only if it admits a finest
dominated splitting

TH(p)M = E ⊕ F1 ⊕ · · · ⊕ Fk ⊕G
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with Fj one dimensional sub-bundles, E uniformly contracting and G uniformly expanding.
Other class of robust entropy expansive diffeomorphims is that of Morse-Smale diffeo-

morphisms. Indeed, all of them have topological entropy zero in a robust way.

2.3 Domination, partial hyperbolicity, hyperbolicity.

Recall the notion of a dominated splitting for a compact f -invariant subset Λ ⊂ M of a
diffeomorphism f : M →M . It can be seen as a weak form of hyperbolicity.

Definition 2.5. We say that a compact f -invariant set Λ ⊂M admits a dominated splitting
if the tangent bundle TΛM has a continuous Df -invariant splitting E ⊕ F and there exist
C > 0, 0 < λ < 1, such that

‖Dfn|E(x)‖ · ‖Df−n|F (fn(x))‖ ≤ Cλn ∀x ∈ Λ, n ≥ 0.

When the dominated splitting can be written as a sum

TΛM = E1 ⊕ · · · ⊕ Ej ⊕ Ej+1 ⊕ · · · ⊕ Ek (2)

we say that this sum is dominated if for all j the sum

(E1 ⊕ · · · ⊕ Ej)⊕ (Ej+1 ⊕ · · · ⊕ Ek)

is dominated.

If we cannot decompose in a non-trivial way any sub-bundle Ej appearing at equation
(2) we say that it is the finest dominated splitting.

Next we define partial hyperbolicity and hyperbolicity.

Definition 2.6. We say that a compact f -invariant set Λ ⊂M is partially hyperbolic if the
tangent bundle TΛM has a dominated splitting Es⊕F⊕Eu and there exist C > 0, 0 < λ < 1,
such that for all vectors v ∈ Es we have ‖Dfn(v)‖ ≤ Cλn‖v‖ for all n ≥ 0 and for all
vectors v ∈ Eu we have ‖Df−n(v)‖ ≤ Cλn‖v‖ for all n ≥ 0. Vectors in F are less expanded
than vectors in Eu and less contracted than vectors in Es (this follows from domination).

Remark 2.1. In case that the central sub-bundle F is trivial, we say that Λ is hyperbolic.

2.4 Measure expansiveness.

Next we introduce the notion of measure expansiveness given by Morales.

Definition 2.7 (see [Mo]). Let f : X → X be a homeomorphism defined on a compact
metric space (X, d) and µ a non-atomic probability measure defined on X (not necessarily
f -invariant). We say that f is a µ-expansive homeomorphism if there is α > 0 such that
µ(Γα(x)) = 0 for all x ∈ X. Here Γα(x) is the set defined at equation (1).
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We will show that C1 generically diffeomorphisms far away from homoclinic tangencies
are measure expansive. To that end we recall the definition of homoclinic tangencies.

Definition 2.8. A diffeomorphism f : M → M exhibits a homoclinic tangency if there
is a hyperbolic periodic orbit O whose invariant manifolds W s(O) and W u(O) have a non
transverse intersection.

We set HT for the subset of Diff1M constituted of diffeomorphisms presenting a homo-
clinic tangency. Given a subset A of Diff1M we use the notation A for the closure of A in
Diff1M .

The main results in this paper are the following theorems:

Theorem A. Let f : M →M be a C1-diffeomorphism defined on a compact manifold M .
There is a G residual subset of Diff1M\HT such that for any Borel probability measure µ
(invariant by f or not) we have that there is δ > 0 such that µ(Γδ(x)) = 0 for all x ∈ M .
In particular f is µ-expansive.

Theorem B. Let f : M → M be a C1-diffeomorphism defined on a compact surface M
having a homoclinic tangency associated to a hyperbolic periodic orbit O. Then there is an
arbitrarily small C1-perturbation of f giving a diffeomorphism F : M → M which is not
measure-expansive.

3 Proof of Theorem A.

We start stating some results proved elsewhere that will be used in the proof.

Let X = Diff1(M)\HT . The following result is Theorem 1.1 of [CSY]

Theorem 3.1. The diffeomorphisms f in a dense Gδ subset G ⊂ Diff1(M)\HT has the
following properties.

1. Any aperiodic class C is partially hyperbolic with a one-dimensional cen- tral bundle.
Moreover, the Lyapunov exponent along Ec of any invariant measure supported on C
is zero.

2. Any homoclinic class H(p) has a partially hyperbolic structure

TCM = Es ⊕ Ec1 ⊕ · · · ⊕ Eck ⊕ Eu , .

Moreover the minimal stable dimension of the periodic orbits of H(p) is dim(Es) or
dim(Es) + 1. Similarly the maximal stable dimension of the periodic orbits of H(p)
is dim(Es) + k or dim(Es) + k− 1. For every i, 1 ≤ i ≤ k there exist periodic points
in H(p) whose Lyapunov exponent along Eci is arbitrarily close to 0. In particular if
f ∈ G then f is partially hyperbolic.
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For x ∈ Λ and i ∈ {1, ..., k} let us denote

Ecs,i(x) := Es(x)⊕ Ec1(x)⊕ · · · ⊕ Eci (x); Ecu,i(x) := Eci (x)⊕ · · · ⊕ Eck(x)⊕ Eu(x). (3)

We also let Ecs,0 = Es and Ecu,k+1 = Eu and write s = dim(Es) and u = dim(Eu).

Let us recall the properties of fake central manifolds Ŵ cs due to Burns and Wilkinson,
[BW], see also [DFPV].

Proposition 3.2. Let f : M → M be a C1 diffeomorphism and Λ a compact f -invariant
set with a partially hyperbolic splitting,

TΛM = Es ⊕ Ec1 ⊕ · · · ⊕ Eck ⊕ Eu.

Let Ecs,i and Ecu,i be as in equation (3) and consider their extensions Ẽcs,i and Ẽcu,i to a
small neighborhood of Λ.

Then for any ε > 0 there exist constants R > r > r1 > 0 such that, for every p ∈ Λ,
the neighborhood B(p, r) is foliated by foliations Ŵ u(p), Ŵ s(p), Ŵ cs,i(p), and Ŵ cu,i(p),
i ∈ {1, ..., k}, such that for each β ∈ {u, s, (cs, i), (cu, i)} the following properties hold:

(i) Almost tangency of the invariant distributions. For each q ∈ B(p, r), the leaf Ŵ β
p (q)

is C1, and the tangent space TqŴ
β
p (q) lies in a cone of radius ε about Ẽβ(q).

(ii) Coherence. Ŵ s
p subfoliates Ŵ cs,i

p and Ŵ u
p subfoliates Ŵ cu,i

p for each i ∈ {1, ..., k}.

(iii) Local invariance. For each q ∈ B(p, r1) we have

f(Ŵ β
p (q, r1)) ⊂ Ŵ β

f(p)(f(q)) and f−1(Ŵ β
p (q, r1)) ⊂ Ŵ β

f−1(p)
(f−1(q)),

here Ŵ β
p (q, r1) is the connected component of Ŵ β

p (q) ∩B(q, r1) containing q.

(iv) Uniquencess. Ŵ s
p (p) = W s(p, r) and Ŵ u

p (p) = W u(p, r).

Proof. See [BW, Section 3].

Given j ∈ {1, . . . , k}, using Proposition 3.2, we consider a small r and the submanifold

W̃ cs,j(x) =
⋃

z∈γj(x)

Ŵ cs,j−1
x (z, r). (4)

This submanifold has dimension s + j and is transverse to Ŵ cu,j+1
x (z) for all z close to x.

Note that W̃ cs,1(x) is foliated by stable manifolds (recall that Ŵ cs,0
x (z) ⊂W s(z)).

The next two lemmas follow straightforwardly from the fact that the angles between
unitary vectors in the cone fields C(Ecs,j) and C(Ecu,j+1) are uniformly bounded away from
zero.
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Lemma 3.3. There is κ > 0 such that for every j ∈ {1, . . . , k} and every δ > 0 small
enough the following property holds:

For every x ∈ Λ, every y ∈ Bδ(x), every local submanifolds N(x) of dimension s + j
tangent to the conefield C(Ecs,j) containing x and M(y) of dimension (k − j) + u tangent
to the conefield C(Ecu,j+1) containing y one has that N(x) ∩M(y) is contained Bκ δ(x).

Lemma 3.4. There is κ > 0 such that for every j ∈ {1, . . . , k} and every δ > 0 small
enough the following property holds:

Take any x ∈ Λ and the local manifold W̃ cs,j(x) in (4). For every y ∈ Bδ(x)∩ W̃ cs,j(x)

one has that γj(x) ∩ Ŵ cs,j−1
x (y) is contained in Bκ δ(x).

As a consequence of Theorem 3.1 and Lemmas 3.3 and 3.4 we have

Theorem 3.5. Let µ be a Borel probability measure defined on M and let f ∈ G where G
is as in Theorem 3.1. Then there is δ > 0 such that µ(Γδ(x)) = 0 for all x ∈M .

Proof. Let µ be a Borel probability measure of M and choose x ∈ Ω(f). Then there is either
an aperiodic class or a homoclinic class H in ω(x). In any case H is partially hyperbolic,
since we are assuming that f ∈ G.

Let THM = Es⊕Ec1⊕· · ·⊕Eck⊕Eu , with Es uniformly contracting and Eu uniformly
expanding. Assume θ > 1 is the minimum rate of expansion of Eu for z ∈ Λ. Let c > 0
such that (1 − c)θ > 1 and find δ > 0 less or equal than that of Lemmas 3.3 and 3.4 and
also less than r/2 where r > 0 is given by Proposition 3.2, such that if

dist(x, y) ≤ (κ+ 1)δ then 1− c ≤
‖Df |Eu(y)‖
‖Df |Eu(x)‖

≤ 1 + c .

For this choice of δ it holds that µ(Γδ(x)) = 0. For, if y ∈ Γδ(x) then letting yu be the

projection of y into Ŵ u(x) along W̃ cs,k(y) if it were the case that dist(x, yu) > 0 then
setting θ′ = (1− c)θ then we get for n ≥ 1

dist(fn(x), fn(yu)) ≥ (θ′)ndist(x, yu) .

Since θ′ > 1 eventually dist(fn(x), fn(yu) > κδ and hence, by Lemmas 3.3 and 3.4 we
obtain dist(fn(x), fn(y) > δ contradicting the fact that y ∈ Γδ(x).

Thus Γδ(x) is contained in Ŵ cs,k(x). By backward iteration we also get that Γδ(x) ⊂
Ŵ cu,0(x).

This implies that µ(Γδ(x)) = 0 finishing the proof for x ∈ Ω(x).
Assume now that x is any point in M . Then by forward iteration we find N > 0

such that fn(x) ∈ B(ω(x), r/4) where r > 0 is as in Proposition 3.2. Since ω(x) ⊂ Ω(f)
we have that there is either an aperiodic class or a homoclinic class H which is partially
hyperbolic such that ω(x) ⊂ H and therefore fn(x) ∈ B(H, r/4) for n ≥ N . The result
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follows as in the case x ∈ Ω(f). Similarly by backward iteration we find N ′ > 0 such that
f−n(x) ∈ B(α(x), r/4) for n ≥ N ′.

We may conclude, using similar estimations as in the case x ∈ Ω(f), that µ(Γδ(x)) = 0.

Theorem A is an immediate consequence of Theorem 3.5 .

Remark 3.6. For the validity of Theorem 3.5 it is enough to have that Es is uniformly
contracting for the α- limit of x or Eu is uniformly expanding for the ω-limit of x.

4 Surface diffeomorphisms in HT .

In the remaining of the paper M is a compact boundaryless surface.
Let f : M →M be a diffeomorphism and assume that f exibits a homoclinic tangency

associated to a hyperbolic periodic point p of f .

4.1 Horseshoes with positive Lebesgue measure.

It is proved at [Bo2] that there is a C1 horseshoe with positive Lebesgue measure. In
[RY] it is constructed a such a horseshoe fattening up an invariant horseshoe Λ to have
positive Lebesgue measure as Bowen did. They obtain this fatted horseshoe modifying a
diffeomorphism f defined in a square B = [0, 1] × [0, 1] so that f |B gives a linear evenly
spaced full shift on 2 symbols, see [RY, §1]. The perturbed diffeomorphism is C1 close
to the original one, [RY, §3 and §4]. After that they embed Λ in a C1 diffeomorphism F
defined on a surface [RY, §5]. Although this construction is made to embed the horseshoe
on a C1-Anosov diffeomorphism, the same can be done for any diffeomorphism.

Remark 4.1. Perhaps it is worthwhile to note that it is crucial that we are working in
the C1-topology. Bowen, [Bo1], proved that C2 diffeomorphisms have no horseshoes with
positive volume.

4.2 Proof of Theorem B.

We now make use of the construction in [RY] to prove that arbitrarily near a diffeomorphism
exhibiting a homoclinic tangency there is one which is not measure-expansive.

We start establishing some auxiliary lemmas proved elsewhere.

Lemma 4.2. Given a C1 diffeomorphism f : M → M with a homoclinic tangency associ-
ated to a hyperbolic periodic point p there is a C1 near diffeomrphism f1 presenting a flat
homoclinic tangency, i. e., there is a small arc J contained in W s(p, f1) ∩W u(p, f1).

Proof. See [PaVi2, Proposition 2.6].
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Lemma 4.3. Given a C1 diffeomorphism f1 : M → M with a flat homoclinic tangency
associated to a hyperbolic periodic point p there is a C1 near diffeomorphism f2 presenting
a sequence of horseshoes Λ̂n such that for all k ∈ ZZ: diam(fk(Λ̂n) < rn with rn → 0 when
n→∞.

Proof. The proof is essentially the same as that of [PaVi2, Subsection 2.2].

Proposition 4.4. Let f2 : M → M as in the thesis of Lemma 4.3. There is a C1-
diffeomorphism F : M → M arbitrarily near f2 presenting a sequence of horseshoes Λn
such that the Lebesgue measure µ(Λn) > 0 and diam(Λn) < 2rn, where rn is as in Lemma
4.3.

Proof. We profit from the construction made in [RY]. In fact we do not need to take care
for the perturbed diffeomorphism to be Anosov, as is the case in [RY]. Hence, in our case,
to fit the construction in the global picture of the perturbations is easier than at [RY, §5].
Since the support of the perturbation needed to fatten the horseshoe Λ̂n is contained in a
box Bn ⊃ Λ̂n such that limn→∞ diam(Bn) = 0 (see [RY, §3]), it can be taken disjoint from
the support of the previous perturbations needed to fatten Λ̂j for j = 1, . . . , n− 1 (see [RY,
§2 and §4]). From this it follows that F is C1- close to f2 and has the desired sequence of
horseshoes Λn with positive Lebesgue measure.

Moreover, the construction of Λn gives that the diameter of Λn is about the same of
that of Λ̂n, so that we can assure that diam(Λn) < 2rn from diam(Λ̂n) < rn.

As a consequence we have

Theorem 4.5. Let M be a smooth compact surface. Given a C1-diffeomorphism f : M →
M exhibiting a homoclinic tangency associated to a hyperbolic periodic point p, it is C1-
approximated by a diffeomorphism F : M →M such that F is not measure expansive with
respect to any absolutely continuous invariant measure respect to Lebesgue.

Proof. Let F : M →M be the C1 diffeomorphism constructed as in Proposition 4.4 above.
Then for every horseshoe Λn associated to F there is a hyperbolic periodic point pn ∈ Λn
such that µ(Γ2rn(pn) ≥ µ(Λn)) > 0 where µ � Leb and f∗µ = µ . Since rn → 0 when
n→∞ the proof follows.

Theorem 4.5 gives the proof of Theorem B.
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