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Abstract

Vector optimization problems are a significant extension of scalar optimization, and have many real
life applications. We consider an extension of the projected subgradient method to convex vector op-
timization, which works directly with vector-valued functions, without using scalar-valued objectives.
We eliminate the scalarization approach, a popular strategy for solving vector optimization problems,
exploring strongly the structure of these kinds of problems. Under suitable assumptions, we show that
the sequence generated by the algorithm converges to a weakly efficient optimum point.
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mization.

Mathematical Subject Classification (2010): 90C29, 90C30.

1 Introduction

First we briefly describe our notation. Let C be a nonempty, closed and convex subset of Rn. The inner
product in Rn is denoted by ⟨·, ·⟩ and the norm determined by the inner product by ∥ · ∥. The closed ball
centered at x ∈ Rn with radius ρ will be denoted by B[x; ρ], i.e., B[x; ρ] := {y ∈ Rn : ∥y − x∥ ≤ ρ}.

Given a proper, closed, convex and pointed cone K in Rm, we consider the partial order “ ≼ ” defined as
x ≼ y (x ≺ y) if and only if y − x ∈ K (y − x ∈ int(K)). In similar way, we define the partial orders ≽ (≻).
Consider a function f : Rn → R

m. We are interested in the problem

min
K

f(x) (1)

s.t. x ∈ C, (2)

with the following meaning: a vector x∗ ∈ Rn is solution of Problem (1)-(2), which is called a weakly efficient
point, if and only if x∗ ∈ C and there does not exist x̂ ∈ C such that f(x̂) ≺ f(x∗), i.e. x∗ is a solution if
f(x)− f(x∗) /∈ −int(K) for all x ∈ C. We denote the solution set of our problem by S∗, i.e.

S∗ = {x∗ ∈ C : @ x̂ ∈ C such that f(x̂) ≺ f(x∗)} .

When m = 1 and K = R+, ≼ is the usual linear order in R and the problem will be called a scalar-valued
optimization problem.

The positive polar cone of K, denoted by K∗, is given by K∗ = {y ∈ Rm : yTx ≥ 0 ∀x ∈ K}. Our
algorithm makes use of a compact set G of normalized generators of K∗, i.e. G ⊂ K∗ is compact and
such that the cone generated by its convex hull is K∗. Such a G always exists; one can take for example
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G = {y ∈ K∗ : ∥y∥ = 1}, but in general it is possible to take much smaller sets; see [18, 17, 24]. In the
multiobjective case, K = Rm

+ , G can be taken as the canonical basis of Rm because (Rm
+ )∗ = Rm

+ . If K is a
polyhedral cone, then K∗ is also polyhedral, so G can be chosen as the finite set of its extreme rays.

This paper is part of a wider research program consisting of the extension of several iterative methods
for scalar-valued to multiobjective and vector-valued optimization; see [13, 15, 12, 11, 8, 6, 10]. We present
a similar extension for the case of the subgradient method for scalar-valued convex optimization.

The sequence generated by the subgradient method is, in general, nondecreasing in its functional values.
Due to the fact that Rm does not expose a total order, non-monotone methods, such as a subgradient
methods, encounters major difficulties in the convergence analysis. The technique developed in this paper
may be useful in other optimization problems, such as the variational inequality problems, equilibrium
problems, saddle points problems, and their variations.

It is important to mention that in almost all methods that which have been extended for the context
of the vector optimization, the monotony of the functional values plays an essential role in the convergence
analysis; see [13, 15, 12, 11, 6].
We assume that f : Rn → R

m is K-convex, i.e.,

f(λx+ (1− λ)y) ≼ λf(x) + (1− λ)f(y),

for all x, y ∈ Rn and all λ ∈ [0, 1]. Note that for y ∈ K∗\{0}, we have ϕy : Rn → R such that ϕy(x) = yT f(x)
is a convex scalar function, then v ∈ ∂ϕy(x) if and only if v ∈ Rn and ϕy(z) ≥ ϕy(x) + ⟨v, z − x⟩, for all
z ∈ Rn. It follows that exists U ∈ Rm×n with v = UT y and so

yT f(z) ≥ yT f(x) + ⟨v, z − x⟩ = yT f(x) + ⟨UT y, z − x⟩ = yT f(x) + yTU(z − x).

Since y is an arbitrary vector in K∗ \ {0}, we get

f(z) < f(x) + U(z − x), (3)

for all z, x ∈ Rn. So, we consider ∂f : Rn ⇒ R
m×n defined as

∂f(x) = {U ∈ Rm×n : f(z) < f(x) + U(z − x), ∀z ∈ Rn}.

In analogy with the scalar case, we will call this set the subdifferential and its elements the subgradients of
f at x.

If we consider K = Rm
+ and all functions fi are convex in the usual sense, then any matrix U ∈ Rm×n

with the property that its ith-line is a subgradient of fi at x, for i = 1, . . . ,m, belongs to ∂f(x). An excellent
survey of other concepts for subdifferentials of vector functions can be found in [25].

The outline of this article is as follows. In Section 2 we present the projected subgradient method for
vector optimization. In Section 3 we state some basic definitions and some preliminary materials. Finally,
Section 4 contains the convergence analysis of the algorithm.

2 A subgradient method for vector optimization

Our algorithm requires an exogenous sequence {βk} satisfying βk > 0,
∑∞

k=0 βk = ∞ and

∞∑
k=0

β2
k <∞. (4)

This selection rule has been considered several times for similar methods; see for example [28, 2, 1, 4].
The algorithm is defined as:
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Algorithm A

Initialization step: Take x0 ∈ C.

Iterative step: Given xk ∈ C, take Uk ∈ ∂f(xk) and compute

vk = arg min
w∈Ck

{
1

2
∥w∥2 + βk

ηk
max
y∈G

{
yTUkw

}}
, (5)

with Ck := C − xk, βk as (4) and
ηk := max

y∈G
{∥(Uk)T y∥}. (6)

If vk = 0 then stop, otherwise compute
xk+1 = xk + vk. (7)

We define the orthogonal projection of x onto C, denoted by PC(x), as the unique point in C, such that
∥PC(x) − y∥ ≤ ∥x − y∥ for all y ∈ C. Let us consider Algorithm A in the constrained scalar case, i.e.,
G = {1}. In this case Uk = uk ∈ ∂f(xk), and (5) becomes

vk = arg min
w∈Ck

{
1

2
∥w∥2 + βk

ηk
(uk)Tw

}
= arg min

w∈Ck

{
1

2
∥w∥2 + βk

ηk
(uk)Tw +

β2
k

2η2k
∥uk∥2

}
= arg min

w∈Ck

{
1

2
∥w +

βk
ηk

uk∥2
}

= PCk

(
−βk
ηk

uk
)
. (8)

Using (8) and (7), we have

xk+1 = PC

(
xk − βk

ηk
uk

)
.

This is the classical iteration of the Projected Subgradient Method; see [26, 27, 29, 2, 1]. The projected
subgradient method has been used widely in practical applications and given that it is a simple method, it
has several useful advantages. Primarily, it is easy to implement (especially for optimization problems with
relatively simple constraints). The method uses little storage and readily exploits any sparsity or separable
structure of ∂f or C. Furthermore, it is able to drop or add active constraints during the iterations. Thus,
the projected subgradient method has been strongly used for solving several special cases of the scalar
convex problem. Its extensions and some modifications were studied for the generalized convex case in
[20, 30, 5, 3, 21].

A popular strategy for solving vector optimization problems is the scalarization approach. The most
widely used scalarization technique is the weighting method. Basically, one minimizes a linear combination
of the objectives, where the vector of “weights” is not known a priori. This procedure may lead to unbounded
numerical problems, which therefore may lack minimizers; see [7, 14, 19, 24, 23]. Another disadvantage of
this approach is that the choice of the parameters is not known in advance, leaving the modeler and the
decision-maker with the burden of choosing them; see [6]. In our method we do not used scalarization, a
popular strategy for solving vector optimization problems, exploring strongly the structure of the vector
problem.

3 Preliminary

In this section, we present some definitions and results that are needed for the convergence analysis of
Algorithm A. The following two results are important for the proof of the convergence results, especially for
the proof of Theorem 1.
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Lemma 1. If f is K-convex and x ∈ Rn, then ∂f(x) is a nonempty convex compact set.

Proof. See Theorem 4.12 of [25].

Lemma 2. Let {xk} be a bounded sequence and f a K-convex function. Then, any sequence {Uk} with
Uk ∈ ∂f(xk) is bounded.

Proof. Since {xk} is bounded, we can define ρ as the radius of the closed ball centered at 0, which contains
the sequence {xk}, i.e., {xk} ⊂ B[0; ρ]. By Theorem 3.1 of [25] f is continuous. Then, there exists M > 0
such that ∥f(y)∥ < M for all y ∈ B[0; ρ+1]. Assume by contradiction that ∥Uk∥ > k. Hence, for k > 2M we
can take a sequence {yk} ⊂ B[0; 1] such that ∥Uk(yk)∥ ≥ ∥Uk∥ > k. Define zk := yk+xk and z̄k := −yk+xk,
which belong to B[0; ρ+ 1] and hence ∥f(zk)∥ < M and ∥f(z̄k)∥ < M for all k > 2M . Since Uk ∈ ∂f(xk),

f(z)− f(xk)− Uk(z − xk) ∈ K,

for all z ∈ Rn. Taking in the above inclusion z = zk and z = z̄k, we obtain

f(zk)− f(xk)− Uk(yk) ∈ K

and
f(z̄k)− f(xk) + Uk(yk) ∈ K,

respectively. Define

wk :=
f(zk)− f(xk)− Uk(yk)

∥f(zk)− f(xk)− Uk(yk)∥
and

w̄k :=
f(z̄k)− f(xk) + Uk(yk)

∥f(z̄k)− f(xk) + Uk(yk)∥
,

for k > 2M . Clearly, wk, w̄k ∈ K and ∥wk∥ = ∥w̄k∥ = 1. Without loss of generality, we may assume that
{wk}, {w̄k} converge to some unit vectors w, w̄, respectively. Then,

w, w̄ ∈ K, (9)

and
lim
k→∞

(wk + w̄k) = w + w̄. (10)

For all k > 2M ,

∥f(zk)− f(xk)− Uk(yk)∥ ≥ ∥Uk(yk)∥ − ∥f(zk)− f(xk)∥ ≥ k − (∥f(zk)∥+ ∥f(xk)∥) ≥ k − 2M, (11)

∥f(z̄k)− f(xk) + Uk(yk)∥
∥Uk∥

≥ ∥Uk(yk)∥
∥Uk∥

− ∥f(xk)− f(z̄k)∥
∥Uk(yk)∥

≥ 1− (∥f(xk)∥+ ∥f(z̄k)∥)
∥Uk(yk)∥

≥ k − 2M

k
, (12)
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and

∥wk + w̄k∥ =

∥∥∥∥ f(zk)− f(xk)− Uk(yk)

∥f(zk)− f(xk)− Uk(yk)∥
+

f(z̄k)− f(xk) + Uk(yk)

∥f(z̄k)− f(xk) + Uk(yk)∥

∥∥∥∥
≤

∥∥∥∥ f(zk)− f(xk)

∥f(zk)− f(xk)− Uk(yk)∥
+

f(z̄k)− f(xk)

∥f(z̄k)− f(xk) + Uk(yk)∥

∥∥∥∥
+∥Uk(yk)∥

∣∣∣∣ 1

∥f(z̄k)− f(xk) + Uk(yk)∥
− 1

∥f(zk)− f(xk)− Uk(yk)∥

∣∣∣∣
≤ 4M

k − 2M
+ ∥Uk(yk)∥

∣∣∣∣∥f(zk)− f(xk)− Uk(yk)∥ − ∥f(z̄k)− f(xk) + Uk(yk)∥
∥f(z̄k)− f(xk) + Uk(yk)∥∥f(zk)− f(xk)− Uk(yk)∥

∣∣∣∣
≤ 4M

k − 2M
+ ∥Uk(yk)∥ ∥f(zk)− 2f(xk) + f(z̄k)∥

∥f(z̄k)− f(xk) + Uk(yk)∥∥f(zk)− f(xk)− Uk(yk)∥

≤ 4M

k − 2M
+

4M(
1− 2M

k

)
(k − 2M)

,

using in the last inequality (11) and (12). Taking limits and using (10), we get w + w̄ = 0, which together
with (9) contradicting the pointedness of K.

Next we deal with the so called quasi-Fejér convergence and its properties.

Definition 1. Let S be a nonempty subset of Rn. A sequence {xk} is said to be quasi-Fejér convergent to
S if and only if for all x ∈ S, there exists k̄ and a summable sequence {δk} ⊂ R+ such that

∥xk+1 − x∥2 ≤ ∥xk − x∥2 + δk,

for all k ≥ k̄.

This definition originates in [9] and has been further elaborated in [16]. A useful result on quasi-Fejér
sequences is the following.

Lemma 3. If {xk} is quasi-Fejér convergent to S then, {xk} is bounded.

Proof. See Lemma 6 in [9].

The technical results in this section are similar to those presented in [13]. Given x ∈ dom(∂f), U ∈ ∂f(x),
w ∈ C − x and α, η > 0, we define the functions: θx : C − x→ R, by

θx(w) := max
y∈G

{
yTUw

}
;

ψx : C − x→ R, by

ψx(w) :=
1

2
∥w∥2 + α

η
θx(w) =

1

2
∥w∥2 +max

y∈G

{
yTUw

}
;

σ : C → R, by
σ(x) := min

w∈C−x
{ψx(w)};

and v : C → R
n, by

v(x) := arg min
w∈C−x

{ψx(w)} = arg min
w∈C−x

{
1

2
∥w∥2 + α

η
max
y∈G

{
yTUw

}}
.
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The function θx is well-defined because G is compact and it is convex because it is the maximum of linear
functions. Since ψx is strongly convex, we obtain that the functions σ and v are well-defined. Our algorithm
can be written using the above functions, taking α = βk, η = ηk, and U = Uk ∈ ∂f(xk), as

xk+1 = xk + v(xk),

with

v(xk) = arg min
w∈C−xk

{ψxk(w)} = arg min
w∈C−xk

{
1

2
∥w∥2 + βk

ηk
θxk(w)

}
= arg min

w∈C−xk

{
1

2
∥w∥2 + βk

ηk
max
y∈G

{
yTUkw

}}
.

4 Convergence analysis

We attempt to establish convergence of the generated sequence to a point in the solutions set. From now on
we denote by {xk} the sequence generated by our algorithm starting from some x0 ∈ C. First, we establish
the feasibility of {xk}.

Proposition 1. The sequences {xk} generated by Algorithm A belong to C.

Proof. By induction. The initial iterate x0 belongs to C by the Initialization step of Algorithm A. Assuming
xk ∈ C, since vk ∈ Ck = C − xk and using (7), we conclude that xk+1 belongs to C.

The next proposition establishes the validity of the stoping criterion.

Proposition 2. Let {xk} and {vk} be the sequences generated by Algorithm A. If vk = 0, then xk ∈ S∗.

Proof. Assume that xk ̸∈ S∗. Then, there exists z ∈ C such that f(z) ≺ f(xk). Take v = z − xk. It is true
that v ̸= 0. By the K-convexity of f , we have

f(z) < f(xk) + Ukv,

implying that Ukv ∈ −int(K), and therefore maxy∈G{yTUkv} < 0. Considering z(λ) = λz + (1− λ)xk, for
λ ∈ [0, 1], we get

∥vk∥2

2
+
βk
ηk

max
y∈G

{yTUkvk} ≤ ∥z(λ)− xk∥2

2
+
βk
ηk

max
y∈G

{
yTUk[z(λ)− xk]

}
= λ

[
λ
∥v∥2

2
+
βk
ηk

max
y∈G

{yTUkv}
]

for all λ ∈ [0, 1]. Then
∥vk∥2

2
+
βk
ηk

max
y∈G

{yTUkvk} < 0,

and henceforth vk ̸= 0.

We continue the convergence analysis with this auxiliary result.

Proposition 3. Let {xk} and {vk} be the sequences generated by Algorithm A and βk defined in (4). For
all k, ∥vk∥ ≤ βk and ∥xk+1 − xk∥ ≤ βk.
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Proof. In case of vk = 0, both assertions are trivially valid. So we assume that vk ̸= 0. The first order
optimality conditions for minw∈Ck

ψxk(w), where

ψxk(w) =
1

2
∥w∥2 + βk

ηk
max
y∈G

{yTUkw},

with βk and ηk defined in (4) and (6) respectively. In view of the convexity of ψxk these optimality conditions
are necessary and sufficient, implying the existence of uk ∈ ∂ψxk(vk) such that

⟨uk, z − vk⟩ ≥ 0 ∀z ∈ Ck. (13)

Since xk ∈ C, we obtain that 0 ∈ Ck, and therefore, taking z = 0 in (13), we have

⟨uk, vk⟩ ≤ 0. (14)

Using the formula for the subdifferential of a maximum of convex functions, and (5), there exists a positive
integer q(k) and yki ∈ G and λki > 0 with 1 ≤ i ≤ q(k) such that

q(k)∑
i=1

λki = 1, (15)

(yki )
TUkvk = max

y∈G
{yTUkvk} (1 ≤ i ≤ q(k)), (16)

and

uk = vk +
βk
ηk

q(k)∑
i=1

λki (U
k)T yki . (17)

In view of (14)-(17), we get

∥vk∥2 ≤ −βk
ηk

q(k)∑
i=1

λki (y
k
i )

TUkvk = −βk
ηk

max
y∈G

{yTUkvk}. (18)

Since ψxk(vk) = 1
2∥v

k∥2 + βk

ηk
maxy∈G{yTUkvk} ≤ ψxk(0) = 0, we have

βk
ηk

max
y∈G

{yTUkvk} ≤ −1

2
∥vk∥2 ≤ 0. (19)

Combining (18)-(19), we obtain

∥vk∥2 ≤ βk
ηk

|max
y∈G

{yTUkvk}| = βk
ηk

(ȳk)TUkvk, (20)

where ȳk ∈ G realizes maximum in the second term of (20). Now using the fact that ηk = maxy∈G{∥(Uk)T y∥}
and (20), we get

∥vk∥2 ≤ βk
ηk

|max
y∈G

{yTUkvk}| ≤ βk
ηk

∥(Uk)T ȳk∥∥vk∥ ≤ βk∥vk∥.

Since ∥vk∥ ≠ 0,
∥vk∥ ≤ βk. (21)

Finally, from (21) and (7), we get
∥xk+1 − xk∥ ≤ βk.
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The next result establishes a fundamental inequality.

Proposition 4. Let {xk} be the sequence generated by Algorithm A, βk and ηk defined in (4) and (6),
respectively. For all x ∈ C,

3β2
k + ∥x− xk∥2 − ∥x− xk+1∥2 ≥ 2

βk
ηk

min
y∈G

{(f(xk)− f(x))T y}.

Proof. Using (7) and Proposition 3, we get

β2
k + ∥x− xk∥2 − ∥x− xk+1∥2 ≥ ∥xk+1 − xk∥2 + ∥x− xk∥2 − ∥x− xk+1∥2

= 2⟨xk − xk+1, xk − x⟩ = 2⟨vk, x− xk⟩. (22)

By (17), vk = uk − βk

ηk

∑q(k)
i=1 λ

k
i (U

k)T yki , and by (13), ⟨uk, (x− xk)− vk⟩ ≥ 0, for all x ∈ C. Then

⟨vk, x− xk⟩ = ⟨uk, x− xk⟩+ βk
ηk

q(k)∑
i=1

λki ⟨(Uk)T yki , x
k − x⟩

≥ ⟨uk, vk⟩+ βk
ηk

q(k)∑
i=1

λki (y
k
i )

T (Uk)T (xk − x)

= ⟨vk, vk +
βk
ηk

q(k)∑
i=1

λki (U
k)T yki ⟩+

βk
ηk

q(k)∑
i=1

λki (y
k
i )

TUk(xk − x)

= ∥vk∥2 + βk
ηk

q(k)∑
i=1

λki (y
k
i )

TUkvk +
βk
ηk

q(k)∑
i=1

λki (y
k
i )

TUk(xk − x)

= ∥vk∥2 + βk
ηk

max
y∈G

{yTUkvk}+ βk
ηk

q(k)∑
i=1

λki (y
k
i )

TUk(xk − x)

≥ βk
ηk

(ȳk)TUvk +
βk
ηk

q(k)∑
i=1

λki (y
k
i )

TUk(xk − x), (23)

with ȳk as in the proof of Proposition 3. Now combining (22) and (23), we obtain

β2
k + ∥x− xk∥2 − ∥x− xk+1∥2 ≥ 2

βk
ηk

(ȳk)TUkvk + 2
βk
ηk

q(k)∑
i=1

λki (y
k
i )

TUk(xk − x). (24)

By (15), the definition of ηk, Proposition 3 and (19), we get from (24) that

β2
k + ∥x− xk∥2 − ∥x− xk+1∥2 ≥ −2

βk
ηk

∥(Uk)T ȳk∥∥vk∥+ 2
βk
ηk

q(k)∑
i=1

λki (y
k
i )

TUk(xk − x)

≥ −2βk∥vk∥+ 2
βk
ηk

q(k)∑
i=1

λki (y
k
i )

TUk(xk − x)

≥ −2β2
k + 2

βk
ηk

q(k)∑
i=1

λki (y
k
i )

TUk(xk − x). (25)

Using the gradient-like inequality for K-convex functions, given in (3), we get

Uk(xk − x) ≽ f(xk)− f(x).
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Since yki ∈ G ⊂ K∗, we get
(yki )

TUk(xk − x) ≥ (yki )
T (f(xk)− f(x)).

Using the above inequality in (25), we obtain

β2
k + ∥x− xk∥2 − ∥x− xk+1∥2 ≥ −2β2

k + 2
βk
ηk

q(k)∑
i=1

λki (y
k
i )

T (f(xk)− f(x))

≥ −2β2
k + 2

βk
ηk

min
y∈G

{(f(xk)− f(x))T y},

establishing the proposition.

Define the auxiliary set T as

T :=

{
x ∈ C : ∃k̄ such that min

y∈G
{(f(xk)− f(x))T y} ≥ 0, ∀ k ≥ k̄

}
.

From now on we assume that T is nonempty. The assumption that T ̸= ∅ was used in [13, 12, 6] for proving
the convergence in the smooth convex and quasi convex cases. This assumption has a relation with the
completeness of the image of f , namely that all non-increasing sequences in the image of f have a lower
bound. It is important to say that completeness is a standard assumption for ensuring existence of efficient
points [24].

Proposition 5. The sequence {xk} is bounded.

Proof. Take x ∈ T . By Proposition 4,

∥xk+1 − x∥2 ≤ ∥xk − x∥2 + 3β2
k,

for all k ≥ k̄. Using Definition 1, we conclude, in view of the fact that βk satisfies (4) that the sequence {xk}
is quasi-Fejér convergent to T . The result follows from Proposition 3.

Theorem 1. The sequences {xk} generated by Algorithm A has a cluster point, x∗, belonging to S∗.

Proof. Using Proposition 4, for each x ∈ C, we have that

2
βk
ηk

min
y∈G

{(f(xk)− f(x))T y} ≤ ∥xk − x∥2 − ∥xk+1 − x∥2 + 3β2
k, (26)

for all k. Since {xk} is bounded by Proposition 5 and then Uk is bounded in virtue that Lemma 2, establishing
that ηk ≤ ρ for all k. We define γk := γk(x) = miny∈G{(f(xk)− f(x))T y} and rewrite (26) as

2
βk
ρ
γk ≤ ∥xk − x∥2 − ∥xk+1 − x∥2 + 3β2

k. (27)

Summing (27), with k between 0 and m,

2

ρ

m∑
k=0

βkγk ≤
m∑

k=0

(
∥xk − x∥2 − ∥xk+1 − x∥2

)
+ 3

m∑
k=0

β2
k

= ∥x0 − x∥2 − ∥xm+1 − x∥2 + 3
m∑

k=0

β2
k

≤ ∥x0 − x∥2 + 3

∞∑
k=0

β2
k <∞. (28)
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Taking limits in (28), with m→ ∞, we get

∞∑
k=0

βkγk <∞. (29)

We claim that there exists a subsequence {γik} of γk such that limk→∞ γik ≤ 0. If the claim does not hold
then there exists σ > 0 and k ≥ k̃ such that

∑∞
k=k̃ βkγk ≥ σ

∑∞
k=k̃ βk for all k ≥ k̃, in contradiction with∑∞

k=k̃ βk = ∞. This establishes the claim.
Let x∗ be a cluster point of {xk} associated to the subsequence {xik}. Follows from Proposition 1 that

x∗ ∈ C. Suppose that x∗ /∈ S∗, so there exists x̂ ∈ C such that f(x̂) ≺ f(x∗), implying that

(f(x∗)− f(x̂))T y > 0, (30)

for all y ∈ G.
By compactness of G there exists a point ȳk realizing the minimum in G of (f(xk) − f(x̂))T y, and also

we can assume that {ȳik} converges to ȳ ∈ G. Then

0 ≥ lim
k→∞

{
min
y∈G

{(f(xik)− f(x̂))T y}
}

= lim
k→∞

{
(f(xik)− f(x̂))T ȳik

}
= lim

k→∞

{
(f(xik)− f(x̂))T (ȳik − ȳ) + (f(xik)− f(x̂))T ȳ

}
= lim

k→∞

{
(f(xik)− f(x̂))T ȳ

}
≥ (f(x∗)− f(x̂))T ȳ.

Summarizing, there exists a cluster point x∗ of {xk} such that

(f(x∗)− f(x̂))T ȳ ≤ 0, (31)

for some ȳ = ȳ(x̂) ∈ G. The above inequality contradicts (30), so x∗ belongs to S∗.

Finally, we prove that all cluster points of {xk} belong to S∗.

Theorem 2. All cluster points of {xk} solve Problem (1)-(2).

Proof. By using the proof of Theorem 1 is sufficient to show that all cluster points of γk = γk(x) :=
miny∈G{(f(xk)− f(x))T y} is nonpositive, for any x ∈ C.
First we prove that there exists ρ > 0 such that γk − γk+1 ≤ ρβk for all k.

γk − γk+1 = min
y∈G

{(f(xk)− f(x))T y} −min
y∈G

{(f(xk+1)− f(x))T y}

≤ min
y∈G

{(f(xk)− f(x))T y} −min
y∈G

{(f(xk+1)− f(xk))T y} −min
y∈G

{(f(xk)− f(x))T y}

= −min
y∈G

{(f(xk+1)− f(xk))T y} = max
y∈G

{(f(xk)− f(xk+1))T y}

≤ max
y∈G

{
(
Uk(xk − xk+1)

)T
y} ≤ max

y∈G
∥(Uk)T y∥∥xk − xk+1∥

≤ ρβk, (32)

where ρ is an upper bound of maxy∈G ∥(Uk)T y∥, which is finite in view of Lemma 2.
Next we claim that all cluster points of γk are nonpositive.
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From Theorem 1 there exists a subsequence γik of γk such that limk→∞ γik ≤ 0. If the claim does not
hold then there exists some δ > 0 and another subsequence γℓk of γk such that γℓk ≥ δ for all k. Thus, we
can construct a third subsequence γjk of γk, where the indices jk are chosen in the following way:

j0 := min
m≥0

{γm ≥ δ},

j2k+1 := min
m≥j2k

{γm ≤ δ/2},

j2k+2 := min
m≥j2k+1

{γm ≥ δ}.

The existence of the subsequences γik , γℓk of {xk} guarantees that the subsequence γjk of {xk} is well defined
for all k ≥ 0. Follows from the definition of jk that

γm ≥ δ/2 for j2k ≤ m ≤ j2k+1 − 1. (33)

In view of (29), we have

∞ >

∞∑
k=0

βkγk ≥
∞∑
k=0

j2k+1−1∑
m=j2k

βmγm ≥ δ/2

∞∑
k=0

j2k+1−1∑
m=j2k

βm

=
δ

2ρ

∞∑
k=0

j2k+1−1∑
m=j2k

ρβm ≥ δ

2ρ

∞∑
k=0

j2k+1−1∑
m=j2k

(γm − γm+1)

=
δ

2ρ

∞∑
k=0

(γj2k − γj2k+1
) ≥ δ

2ρ

∞∑
k=0

δ/2 = ∞,

using (32) in the third inequality and (33) in the last inequality. The above contradiction establishes the
claim. Thus, all cluster points of {xk} belong to S∗.

In vector optimization, the main goal is to reconstruct the set of solution. So, if the generated sequence
has many accumulation points, a clustering technique such asK-means; see [22], can be used to identify them.
Furthermore, we summarize in the following corollary the convergence sequence properties of Algorithm A,
which are direct consequences of Theorems 1 and 2.

Corollary 1. The sequence {xk} generated by Algorithm A is bounded, and all cluster points of {xk} belong
to S∗. If Problem (1)-(2) has a unique solution then the whole sequence {xk} converges to it.

In this paper, we do not study the subgradient algorithm for vector optimization for its practical value:
in our opinion, it is suitable for “real life” vector optimization problems, only when compared to the classical
subgradient method for scalar optimization problems. However, we start from the ideas of the classical
subgradient method, in an attempt to deal with more efficient methods; for instance ϵ-subgradient me-
thods, bundle methods and cutting-plane algorithms for vector optimization, expecting that it will be a first
step toward more efficient methods to be developed in the future. However, how to extend these efficient
procedures, remains an open question. We foresee further progress along this path in the future.
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[6] Bello Cruz, J.Y., Lucambio Pérez, L.R., Melo, J.G. Convergence of the projected gradient method for
quasiconvex multiobjective optimization. Nonlinear Analysis 74 (2011) 5268-5273.
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