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Abstract

Consider the variable inequality problem, that is to find a solution of the inclusion given by the sum of
a function and a point-to-cone application. This problem can be seen as a generalization of the classical
system inequality problem taking a variable order structure. Exploiting this special structure, we propose
variants of the subgradient algorithm for solving a system of variable inequalities. Their convergence is
analyzed under convex-like conditions.
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1 Introduction

Given F : Rn → Rm and C a non-empty subset of Rn, consider the problem of finding x ∈ C such that the
following inequalities are satisfied

F (x) ≤ 0,

or equivalently that
0 ∈ F (x) + Rm+ .

This problem can be generalized as follows

find x ∈ C such that 0 ∈ F (x) +K, (1)

where K ⊂ Rm is a cone.
Suppose that K is a closed, convex and pointed cone in Rm. A partial order �, induced in Rm by K, is

defined as ȳ � y if and only if y− ȳ ∈ K. Then Problem (1) can be formulated as the K-inequalities problem

find x ∈ C such that F (x) �K 0. (2)

∗The authors were partially supported by Project CAPES-MES-CUBA 226/2012 “Modelos de Otimização e Aplicações”.
The first and the third author were also supported by Project PRONEX-CNPq-FAPERJ and Project PROCAD-nf-
UFG/UnB/IMPA.
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If the function F is convex with respect to the partial order given by K, i.e. for all x̄, x ∈ Rn and
α ∈ [0, 1], F (αx̄ + (1 − α)x) �K αF (x̄) + (1 − α)F (x), then Problem (2) is called K-convex inequalities
problem; see [19, 34, 21].

The variable case considers the set valued application K : Rm ⇒ R
m, where K(y) is a pointed, convex

and closed cone, for all y ∈ Rm. Then the variable version of (1) can be reformulated as finding a point
x ∈ C such that that

0 ∈ F (x) +K(F (x)). (3)

This problem is an inclusion model, which has been studied in many papers; see for instance [41, 12]. In this
case, the set valued application K(F (x)) has a special structure, which will be strongly exploited. Based on
the variable order structures given by z �K(z) y if and only if y− z ∈ K(z), Problem (3) is equivalent to the
K-inequality problem

find x ∈ C such that F (x) �K(F (x)) 0. (4)

The solution set of this problem is denoted by S∗.
In this paper we propose a subgradient approach for solving Problem (4), which combines a subgradient

iteration with a simple projection step, onto the intersection of C with suitable halfspaces containing S∗.
For the proposed conceptual algorithm we present two variants called Algorithm R, based on Robinson’s
subgradient algorithm given in [37], and Algorithm S, which corresponds to a special modification of the
subgradient algorithm for scalar problems exposed in [4]. Their main difference lies in how the projection
is done. For the convergence of the algorithm, we assume that S∗ 6= ∅ and that function F is convex with
respect to the variable order structure defined by K(F (x)). That is, F is K-convex if for all x̄, x ∈ Rn and
α ∈ [0, 1],

F (αx̄+ (1− α)x) �K(F (αx̄+(1−α)x)) αF (x̄) + (1− α)F (x̄).

In this case we say that Problem (4) is a K-convex inequality problem, where K is understood as a set
valued function.

Note that if K is a constant application, Problem (4) corresponds with (1), This model has been already
studied in [37]. Moreover, if K is the Pareto cone, i.e., K = R

m
+ , it is equivalent to the convex feasibility

problem, which has been well-studied and has many applications in optimization theory, approximation
theory, image reconstruction and so on; see [36, 40, 11].

The paper is organized as follows. First we outline the main definitions and preliminary results. In
Section 3 some analytical results for K-convex functions are shown. Section 4 is devoted to the presentation
of the algorithms and finally in section 5 their convergence is shown.

2 Preliminaries

In this section, we present some definitions and results, which are needed in the convergence analysis. Next
we deal with the so called Fejér convergence and its properties. We begin with some classical notations.

The inner product in Rn is denoted by 〈·, ·〉, the norm, determined by this inner product, by ‖ · ‖ and
B[x, ρ] is the closed ball centered at x ∈ Rn with radio ρ, i.e., B[x, ρ] = {y ∈ Rn : ‖y−x‖ ≤ ρ}. A set valued
application K : Rm ⇒ R

m is closed iff gr(K) = {(x, y) : F (x) = y} is a closed set.
The set C will be a closed and convex subset of Rn. For an element x ∈ Rn, we define the orthogonal

projection of x onto C, PC(x), as the unique point in C, such that ‖PC(x) − y‖ ≤ ‖x − y‖ for all y ∈ C.
Next proposition shows two well known facts of the orthogonal projections, which will be used throughout
the paper.

Proposition 1. For all x, y ∈ Rn and all z ∈ C,

i) 〈x− PC(x), z − PC(x)〉 ≤ 0.

ii) ‖PC(x)− PC(y)‖2 ≤ ‖x− y‖2 − ‖(PC(x)− x)− (PC(y)− y)‖2.
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Proof. See Proposition 1.1.9 of [7].
Now we present the Fejér convergence.

Definition 1. Let S be a nonempty subset of Rn. A sequence {xk} is said to be Fejér convergent to S, if
and only if for all x ∈ S, there exists k̄ such that ‖xk+1 − x‖ ≤ ‖xk − x‖ for all k ≥ k̄.

This definition was introduced in [10] and has been further elaborated in [30]. A useful result on Fejér
sequences is the following.

Theorem 1. If {xk} is Fejér convergent to S then,

i) The sequence {xk} is bounded,

ii) if a cluster point of the sequence {xk} belongs to S, then the whole sequence {xk} converges.

Proof. See Theorem 2.16 of [2].

3 On convexity

Convexity is a very helpful concept in optimization. Convex functions satisfy nice properties such as existence
of directional derivative and subgradient. In this section we will study the fulfillment of these properties in
the variable order case.

We begin with the analysis of the epigraph. In the variable order case the epigraph of F is defined as

epi(F ) = {(x, y) ∈ Rn ×Rm : F (x) ∈ y −K(F (x))}.

In non-variable orders, the convexity of epi(F ) is equivalent to the convexity of F ; see [33]. However, as it is
shown in the next proposition, in the variable order setting, this important characterization does not hold.

Proposition 2. Suppose that F is a K-convex function. Then, epi(F ) is convex if and only if K(F (x)) = K,
for all x ∈ Rn.

Proof. Suppose that for some x, x̂ ∈ Rn such that F (x) 6= F (x̂), there exists z ∈ K(F (x)) \K(F (x̂)). Take
the points (x, F (x) + 2αz) and (2x̂− x, F (2x̂− x)), with α > 0. They belong to epi(F ).
Consider the following convex combination:

(x, F (x) + 2αz)

2
+

(2x̂− x, F (2x̂− x))

2
=

(
x̂,
F (x) + F (2x̂− x)

2
+ αz

)
.

This point belongs to epi(F ) if and only if

F (x̂) =
F (x) + F (2x̂− x)

2
+ αz − k(α),

where k(α) ∈ K(F (x̂)). By the K-convexity of F ,

F (x̂) =
F (x) + F (2x̂− x)

2
− k1,

where k1 ∈ K(F (x̂)). So,
αz + k1 = k(α). (5)

Since K(F (x̂)) is closed and convex, and z /∈ K(F (x̂)), {z} and K(F (x̂)) may be strictly separated in
R
m by a hyperplane, i.e. there exists some p ∈ Rm \ {0} such that

pT k ≥ 0 > pT z, (6)
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for all k ∈ K(F (x̂)). Therefore, after multiplying (5) by pT and using (6) with

k = k(α) ∈ K(F (x̂)),

we obtain that

αpT z + pT k1 = pT k(α) ≥ 0.

Taking limits as α goes to ∞, the contradiction is established, since

0 ≤ αpT z + pT k1 → −∞.

Hence, K(F (x)) ≡ K for all x ∈ Rn.
In the following we present some analytical properties of K-convex functions. For the non-differentiable

model, we generalize the classical assumptions given in the case of constant cones; see [13, 33]. Let us first
present the definition of Daniell cone, for more details; see [35].

Definition 2. Given a cone K we say that {yk} is a K-non increasing sequence if yk − yk+1 ∈ K for
k = 1, 2, . . ..
We say that infk{yk} = y∗, if yk − y∗ ∈ K, for all k ∈ N and there is not y ∈ y∗ + K \ {0} such that
yk − y ∈ K.
A cone K is Daniell, if for all non-increasing sequence {yk} such that for some ŷ, {yk − ŷ} ⊂ K, then
lim
k→∞

yk = inf
k
{yk}.

In our framework, it is well known every pointed, closed and convex cone is a Daniell cone; see [31].

Lemma 1. Suppose that there exists K a Daniell cone such that K(F (x)) ⊂ K for all x in a neighborhood
of x∗. If F is a K-convex function, then F is locally Lipschitz around x∗.

Proof. If F is K convex, then F is K-convex in the non-variable sense. By Theorem 3.1 of [34], F is locally
Lipschitz.

Proposition 3. Suppose that for each x̄ there exists ε > 0 such that ∪x∈B[x̄,ε]K(F (x)) ⊂ K, where K is a
Daniell cone. Then, the directional derivative of F at x̄ exists along d = (x− x̄), i.e.

F ′(x̄;x− x̄) = lim
t→0+

F (x̄+ td)− F (x̄)

t
.

Proof. By the convexity of F ,

F (x̄+ t1d)− t1
t2
F (x̄+ t2d)−

(
t2 − t1
t2

)
F (x̄) ∈ −K(F (x̄+ t1d)),

for all 0 < t1 < t2 < ε. Dividing by t1, we have that

F (x̄+ t1d)− F (x̄)

t1
− F (x̄+ t2d)− F (x̄)

t2
∈ −K(F (x̄+ t1d)) ⊂ −K.

Hence,
F (x̄+ t1d)− F (x̄)

t1
is a non-increasing function. Similarly, as

F (x̄)− t1
t1 + 1

F (x̄− d)− 1

t1 + 1
F (x̄+ t1d) ∈ −K(F (x̄)),

it holds that
F (x̄+ t1d)− F (x̄)

t1
− F (x̄− d)− F (x̄) ∈ K(F (x̄)) ⊂ K.
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Since K is a Daniell cone,
F (x̄+ t1d)− F (x̄)

t1
has a limit as t1 goes to 0. Hence, the directional derivative

exists.
Let us present the definition of subgradient.

Definition 3. We say that εx̄ is a subgradient of F at x̄ if for all x ∈ Rn,

F (x)− F (x̄) ∈ εx̄(x− x̄) +K(F (x̄)).

The set of all subgradients of F at x̄ is denoted as ∂F (x̄).

Proposition 4. If for all x ∈ Rn, ∂F (x) 6= ∅, then F is K-convex.

Proof. As ∂F (x) 6= ∅, there exists εαx1+(1−α)x2
and k1, k2 ∈ K(F (αx1 + (1− α)x2)), such that

F (x2)− F (αx1 + (1− α)x2) = αεαx1+(1−α)x2
(x2 − x1) + k1,

and
F (x1)− F (αx1 + (1− α)x2) = (α− 1)εαx1+(1−α)x2

(x2 − x1) + k2.

Multiplying the previous equalities by (1− α) and α respectively, their addition leads to

αF (x1) + (1− α)F (x2)− F (αx1 + (1− α)x2) = αk2 + (1− α)k1.

Since K(F (αx1 + (1− α)x2)) is convex, the result follows.

Proposition 5. If K is a closed application, then ∂F is closed.

Proof. Assume that {xk} and {Ak} ⊂ ∂F (xk) are sequences such that limk→∞ xk = x∗ and limk→∞Ak = A.
For every x, one has

F (x)− F (xk)−Ak(y − xk) ∈ K(F (xk)).

Taking k going to ∞, as limk→∞ F (xk) = F (x∗) and K is a closed mapping, we get that

F (x)− F (x∗)−A(x− x∗) ∈ K(F (x∗)).

Hence, A ∈ ∂F (x∗), establishing that ∂F (x∗) is closed.

Proposition 6. Let F be a K-convex function. If gr(K) is closed, then for all x̄ ∈ Rn, where F is
differentiable, ∇F (x̄) = ∂F (x̄).

Proof. First we show that ∇F (x̄) belongs to ∂F (x̄). Since F is a differentiable function, fixed x̄, we get

F (αx+ (1− α)x̄) = F (x̄) + α∇F (x̄)(x− x̄) + o (α‖x− x̄‖) .

By K-convexity

F (x̄) + α∇F (x̄)(x− x̄) + o (α‖x− x̄‖) ∈ αF (x) + (1− α)F (x̄)−K(F (αx+ (1− α)x̄)).

So,

α

(
F (x)− F (x̄)−∇F (x̄)(x− x̄) +

o(α)

α

)
∈ K(F (αx+ (1− α)x̄)).

As K is a cone, it follows that

F (x)− F (x̄)−∇F (x̄)(x− x̄) +
o(α)

α
∈ K(F (αx+ (1− α)x̄)).
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By taking limits as α goes to 0 and recalling that F is a continuous function and K is a closed application,
by Lemma 1 it holds that

F (x)− F (x̄)−∇F (x̄)(x− x̄) ∈ K(F (x̄)),

and hence, ∇F (x̄) ∈ ∂F (x̄).
Suppose that ε ∈ ∂F (x̄). Fixed d ∈ Rn, we get that, for all α > 0,

F (x̄+ αd)− F (x̄) = α∇F (x̄)d+ o(α) ∈ αεd+ k(α),

where k(α) ∈ K(F (x̄)). Dividing by α > 0, and taking limits as α approaches 0, it follows that

[∇F (x̄)− ε]d ∈ K(F (x̄)),

recall that K(F (x̄)) is a closed set. Repeating the same analysis for −d, we obtain that

−[∇F (x̄)− ε]d ∈ K(F (x̄)).

Taking into account that K(F (x̄)) is a pointed cone, [∇F (x̄)− ε]d = 0. As the previous equality is valid for
all d ∈ Rn,

∇F (x̄) = ε,

establishing the desire equality.

Theorem 2. Suppose that there exists K a Daniell cone such that K(F (x)) ⊂ K for all x in a neighborhood
of x∗. If F is K-convex and K is a closed application, then ∂F (x∗) 6= ∅.

Proof. By Lemma 1, F is a locally Lipschitz continuous function. By Rademacher’s Theorem, for all x∗, F
is differentiable almost everywhere on some neighborhood of x∗. Moreover, due to the boundedness of ∇F
whenever exists, there exists a sequence xk convergent to x∗ such that A = limk→∞∇F (xk). By Proposition
6, it holds that ∇F (xk) = ∂F (xk). By Proposition 5, A ∈ ∂F (x∗), hence ∂F (x∗) 6= ∅.

Remark 1. Given x∗ and V a bounded neighborhood of x∗, under the assumptions of the previous Lemma,
the set ∂F (x) is uniformly bounded in V . Indeed as F is K-convex, locally around x∗, F will be also K-
convex. Now, as the domain of F is a finite dimensional space, the fact follows directly after [34, Theorem
4.12(ii)].

4 The algorithms

In this part we will consider two variants of subgradient method for solving Problem (4). The algorithms
generate a sequence of projections on special sets. From now on we assume that the following assumptions
hold.

Assumptions

(A1) The subgradients of F are locally bounded.

(A2) F is K-convex.

(A3) K is a closed application.

(A4) For all x∗ ∈ S∗ and x ∈ C.
K(F (x∗)) ⊆ K(F (x)),
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We emphasize that Hypothesis (A1) is a typical assumption for proving the convergence of the subgradient-
scalar methods in infinite dimension setting; see [4, 1, 36, 29, 3]. As stated in [34], for the scalar and vector
framework, this assumption holds trivially in finite-dimensional spaces. A sufficient condition can be found
in Remark 1.
The existence of subgradient is guaranteed under (A2)-(A3).

Assumption (A4) implies that there exists a cone K such that K(F (x)) ≡ K for all x ∈ S∗. In this case
Problem (4) is equivalent to the non-variable inequality problem

find x ∈ C such that F (x) �K 0.

However, as K is not known, this equivalence is not useful from a practical viewpoint. Next example shows
a function and an order structure fulfilling (4).

Remark 2. Given Problem (4) with C = R, K(y) = {(r, θ), r ≥ 0, θ ∈ [0, θ(y)]} and F : R → R
2,

F (x) = (x2, x). Here

θ(y) =


π

2
, if y1 = 0,

3π

4
− arctan(y2

2/y
2
1)

2
, otherwise.

Evidently
R+ × {0} ⊂ K(y) ⊂ R+ ×R.

Moreover, F (x) ∈ −K(F (x)) if and only if x = 0. Therefore, S∗ = {0} and due to

θ(y) ≥ π

2
= K(0),

Asumption (A4) holds.
As x2 is convex

F (αx̄+ (1− α)x)− αF (x̄)− (1− α)F (x) ∈ −R+ × {0} ⊂ −K(F (x)).

Hence, F is K-convex. Moreover, the continuity of θ implies that K is a closed application.
Now we will present the conceptual algorithm.

Conceptual Algorithm

Initialization step. Take x0 ∈ C, and set k = 0.

Iterative step. Given xk, Uk ∈ ∂F (xk). Compute

xk+1 := F(xk, Uk). (7)

If xk+1 = xk then stop.

We consider two variants of it. As they are based on the algorithms proposed in [37, 5], the extensions are
called Algorithms R and S respectively. The main difference is given by the definition of the function F ,
which is defined as follows

FR(xk, Uk) = PC∩H(xk,Uk)(x
k)); (8)

FS(xk, Uk) = PC∩W (xk)∩H(xk,Uk)(x
0); (9)
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where
H(x, U) = {z ∈ Rn : F (x) + 〈U, z − x〉 ∈ −K(F (x))} (10)

and
W (x) =

{
z ∈ Rn : 〈z − x, x0 − x〉 ≤ 0

}
. (11)

Before we start with the formal analysis of the convergence properties of the algorithm, we make the following
remark on the complexity of the projection steps.

Remark 3. As H(xk, Uk) and W (xk) are halfspaces, the projections defined in (8) and (9) does not entail
any significant additional computational cost over the computation of the projection onto C itself. Actually,
if C is described by nonlinear constrains, the projections onto these smaller sets may be easier than onto the
feasible set; see [3].

5 Convergence Analysis

In this part we will prove the convergence of the algorithms. We will divide this section in three subsections.
First we study the properties of the solution set S∗. The convergence of the variants will be discussed
separately in the last two parts.

5.1 Properties of the solution set

Proposition 7. The set S∗ is closed and convex.

Proof. Take x̂, x̄ ∈ S∗. Then, it holds that

F (αx̂+ (1− α)x̄) ∈ αF (x̂) + (1− α)F (x̄)−K(F (αx̂+ (1− α)x̄)),

for all α ∈ [0, 1]. As F (x̂) �K(F (x̂)) 0 and F (x̄) �K(F (x̄)) 0, it follows from (A4) that

K(F (x̂)) = K(F (x̄)) ⊂ K(F (αx̂+ (1− α)x̄)).

Hence,
F (αx̂+ (1− α)x̄) ∈ −K(F (αx̂+ (1− α)x̄)),

and therefore αx̂+ (1− α)x̄ ∈ S∗.
For the closeness, consider any sequence {x̄k} ⊂ S∗ convergent to x̂. As F is a continuous function; see

Lemma 1, limk→∞ F (x̄k) = F (x̂) and taking into account that F (x̄k) ∈ −K(F (x̄k)) and the closeness of K
leads to F (x̂) ∈ −K(F (x̂)). So, x̂ ∈ S∗.
We assume that S∗ is a nonempty set.

Lemma 2. For all x /∈ S∗ and U ∈ ∂F (x), it holds that S∗ ⊂ H(x, U) .

Proof. Take x̂ ∈ S∗. Then, F (x̂) ∈ −K(F (z)) and by the K convexity of F ,

F (x) + 〈U, x̂− x〉 − F (x̂) ∈ −K(F (x)),

for all x ∈ Rn and all U ∈ ∂F (x). Hence, using the above inclusion and (4), we get that

F (x) + 〈U, x̂− x〉 ∈ −K(F (x))−K(F (x̂)) ⊆ −K(F (x)),

for all x /∈ S∗. So, x̂ ∈ H(x, U).

Lemma 3. If x ∈ H(x, U) ∩ C for some U ∈ ∂F (x), then x ∈ S∗.
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Proof. Suppose that x ∈ H(x, U) ∩ C for some U ∈ ∂F (x), then x ∈ C and

F (x) ∈ −K(F (x)),

i.e. x ∈ S∗.
The above lemma shows that the stop criterion of the conceptual algorithm is well defined. The following

proposition gives the validity of the stopping criterion.

Proposition 8. If Algorithm R, respectively Algorithm S, stops at iteration k, then, xk ∈ S∗.

Proof. For Algorithm S if xk+1 = xk, it follows from (8) that xk ∈ Hk(xk, Uk)∩C. In the case of Algorithm
R, xk+1 = xk and (9), lead to xk ∈ W k(xk) ∩ Hk(xk, Uk) ∩ C ⊂ Hk(xk, Uk) ∩ C. So, in both cases, by
Lemma 3, xk ∈ S∗.

5.2 Convergence of Algorithm R

Proposition 9. The sequence generated by Algorithm R is Féjer convergent to S∗. Moreover, it is bounded
and

lim
k→∞

‖xk+1 − xk‖ = 0. (12)

Proof. Take x̂ ∈ S∗. By Lemma 2, x̂ ∈ H(xk, Uk), for all k ∈ N. Then

‖xk+1 − x̂‖2 − ‖xk − x̂‖2 + ‖xk+1 − xk‖2 = 2〈x̂− xk+1, xk − xk+1〉 ≤ 0,

using Proposition 1(i) and (8) in the last inequality. So,

‖xk+1 − x̂‖2 ≤ ‖xk − x̂‖2 − ‖xk+1 − xk‖2. (13)

The above inequality implies that {xk} is Féjer convergent to S∗ and hence {xk} is bounded. Also, we get

0 ≤ ‖xk+1 − x̂‖2 ≤ ‖xk − x̂‖2.

So, {‖xk − x̂‖2} is a convergent sequence. Therefore, using (13), we get that

lim
k→∞

‖xk+1 − xk‖ = 0.

Theorem 3. The sequence generated by Algorithm R converges to some point in S∗.

Proof. By Proposition 9, {xk} is bounded. So, using (A1), {Uk} is bounded, i.e. there exists L ≥ 0 such
that

‖Uk‖ ≤ L, (14)

for all k.
Fix k ∈ N. As K(F (xk)) is a closed convex cone, it is clear that y ∈ Rm can be uniquely written as

y = y+ + y−,

with y+ ∈ K∗(F (xk)), y− ∈ −K(F (x)) and 〈y+, y−〉 = 0. For y = F (xk), consider F (xk)+ and F (xk)−.
Now

‖F (xk)+‖2 = 〈F (xk)+, F (xk)+ + F (xk)−〉 = 〈F (xk)+, F (xk)〉 (15)

= 〈F (xk)+, F (xk) + Uk(xk+1 − xk)− 〈F (xk)+, U
k(xk+1 − xk)〉. (16)
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But F (xk)+ ∈ K∗(F (xk)), so 〈F (xk)+, F (xk) + Uk(xk+1 − xk)〉 ≤ 0, and therefore

‖F (xk)+‖2 ≤ −〈F (xk)+, U
k(xk+1 − xk)〉.

Applying the Cauchy Schwartz inequality and recalling (14), it follows that

‖F (xk)+‖2 ≤ L‖F (xk)+‖‖xk+1 − xk‖.

As xk /∈ S∗, F (xk)+ 6= 0. So, dividing by ‖F (xk)+‖, we obtain

‖F (xk)+‖ ≤ L‖xk+1 − xk‖. (17)

Recalling (12), it follows that
lim
k→∞

‖F (xk)+‖ = 0. (18)

Now consider a convergent subsequence {xjk} of {xk}. Denote x̂ as its limit. It follows from (18) that
F (x̂)+ = 0. Henceforth, F (x̂) = F (x̂)−. Moreover as

lim
k→∞

F (xjk)− = lim
k→∞

F (xjk)− lim
k→∞

F (xjk)+,

we get that
lim
k→∞

F (xjk)− = F (x∗).

As F (xjk)− ∈ −K(F (xjk)) and (A3) is fulfilled,

F (x∗) ∈ −K(F (x∗)),

i.e. x∗ ∈ S∗. Therefore the accumulation points of {xk} belong to S∗. Finally, by the Féjer convergence,
the sequence converge to a point in S∗.

5.3 Convergence of Algorithm S

Observe that, in virtue of their definitions, Wk := W (xk) and Hk := H(xk, Uk) for some
Uk ∈ ∂F (xk) are convex and closed sets, for each k. Therefore C ∩ Hk ∩ Wk is a convex and closed
set, for each k = 0, 1, . . . ,. So, if C ∩Hk ∩Wk is nonempty then, the next iterate, xk+1, is well-defined. Next
lemma guarantees this fact.

Lemma 4. For all k = 0, 1, . . . ,, it holds that S∗ ⊂ C ∩Hk ∩Wk.

Proof. We proceed by induction. By definition, S∗ ⊂ C. By Lemma 2, S∗ ⊂ C ∩Hk, for all k. For k = 0,
as W0 = Rm, S∗ ⊂ C ∩H0 ∩W0.

Assume that S∗ ⊂ C ∩H` ∩W`, for ` ≤ k. Henceforth, xk+1 = PC∩Hk∩Wk
(x0) is well defined. Then, by

Lemma 2, for all x∗ ∈ S∗, we get that

〈x∗ − xk+1 , x0 − xk+1〉 = 〈x∗ − PC∩Hk∩Wk
(x0) , x0 − PC∩Hk∩Wk

(x0)〉 ≤ 0, (19)

using the induction hypothesis. The inequality (19) implies that x∗ ∈ Wk+1 and hence, S∗ is a subset of
C ∩Hk+1 ∩Wk+1.

Corollary 1. Algorithm S is well-defined.

Proof. By the previous lemma, S∗ ⊂ C ∩Hk ∩Wk, for k = 0, 1, . . . ,. As S∗ 6= ∅, then, given x0, the sequence
{xk} is computable.

Before proving the convergence of the sequence, we will study its boundness. Next Lemma shows that
the sequence remains in a ball determined by the initial point.
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Lemma 5. The sequence {xk} is bounded. Furthermore,

{xk} ⊂ B
[

1

2
(x0 + x∗),

1

2
ρ

]
, k = 0, 1, . . . , (20)

where x∗ = PS∗(x0) and ρ = dist(x0, S∗).

Proof. Lemma 4 says that S∗ ⊂ C ∩Wk ∩Hk for k = 0, 1, . . ., and by definition of xk+1; see (7), it is true
that

‖xk+1 − x0‖ ≤ ‖z − x0‖, (21)

for k = 0, 1, . . . , and all z ∈ S∗. Henceforth, taking in (21) z = x∗,

‖xk+1 − x0‖ ≤ ‖x∗ − x0‖ = ρ, (22)

for all k. Hence, {xk} is bounded. Without loss of generality, take zk = xk − 1
2 (x0 + x∗) and z∗ =

x∗ − 1
2 (x0 + x∗). It follows from the fact x∗ ∈Wk+1 that

0 ≥ 2〈x∗ − xk+1, x0 − xk+1〉

= 2

〈
z∗ +

1

2
(x0 + x∗)− zk+1 − 1

2
(x0 + x∗), z0 +

1

2
(x0 + x∗)− zk+1 − 1

2
(x0 + x∗)

〉
= 2

〈
z∗ − zk+1, z0 − zk+1

〉
=
〈
z∗ − zk+1,−z∗ − zk+1

〉
= ‖zk+1‖2 − ‖z∗‖2,

using in the third equality that z∗ = −z0. So,∥∥∥∥xk+1 − x0 + x∗

2

∥∥∥∥ ≤ ∥∥∥∥x∗ − x0 + x∗

2

∥∥∥∥ =
ρ

2
. (23)

Now we will focus on the properties of the accumulation points.

Lemma 6. All accumulation points of {xk} are elements of S∗.

Proof. Since xk+1 ∈Wk,

0 ≥ 2〈xk+1 − xk, x0 − xk〉 = ‖xk+1 − xk‖2 − ‖xk+1 − x0‖2 + ‖xk − x0‖2.

Equivalently
0 ≤ ‖xk+1 − xk‖2 ≤ ‖xk+1 − x0‖2 − ‖xk − x0‖2,

establishing that {‖xk−x0‖} is a monotone nondecreasing sequence. It follows from Lemma 5 that {‖xk−x0‖}
is bounded and thus, it is a convergent sequence. Therefore,

lim
k→∞

‖xk+1 − xk‖ = 0. (24)

Let x̄ be an accumulation point of {xk} and {xjk} be a convergent subsequence to x̄. Since xk+1 belongs to
Hk, we have that

F (xjk) + U jk
(
xjk+1 − xjk

)
�K(F (xk)) 0. (25)

By Remark 1, {U jk} is bounded. So, {U jk(xjk+1 − xjk)} converges to zero. By taking limits in (25) and
recalling that K is closed application, we obtain that

lim
k→∞

F (xjk) + U jk
(
xjk+1 − xjk

)
= F (x̄) ∈ −K(F (x̄)). (26)

Finally, we are ready to prove the convergence of the sequence {xk} generated by Algorithm S to the solution
which lies closest to x0.
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Theorem 4. Define x∗ = PS∗(x0). Then {xk} converges to x∗.

Proof. By Lemma 5, {xk} ⊂ B
[

1
2 (x0 + x∗), 1

2ρ
]

is bounded. Let {xjk} be a convergent subsequence of {xk},
and let x̂ be its limit. Evidently x̂ ∈ B

[
1
2 (x0 + x∗), 1

2ρ
]
. Furthermore, by Lemma 6, x̂ ∈ S∗. As

S∗ ∩B
[

1

2
(x0 + x∗),

1

2
ρ

]
= {x∗},

recall that S∗ is a convex and closed set, we conclude that x∗ is the unique limit point of {xk}. Hence {xjk}
converges to x∗ ∈ S∗.

Final remarks

In this paper we have presented two algorithms for finding a solution of the K-convex variable inequalities
problem. Using the same hypotheses, their convergence is shown. At Algorithm S the projection step
involves more specifications than Algorithm R. However, the sequence generated by the first one, has better
properties. In fact it converges to a solution of the problem, which lies closest to the starting point. We
emphasize, that this last special feature is interesting and it is useful in specific applications, such as image
reconstruction [20, 27, 38]. The main drawback of extending these algorithms to the infinite dimensional
spaces is that the existence of the subgradient has not been shown in the variable order case.
As studied in [15], variable order can be considered in two ways,

y �1
K ȳ if and only if ȳ − y ∈ K(y)

or
y �2

K ȳ if and only if ȳ − y ∈ K(ȳ).

Problem (4) corresponds with the inequality defined by �1
K . If the order is given by �2

K , the inequality
problem becomes

find x ∈ C such that F (x) �K(0) 0.

As the cone K(0) is fixed, the previous model is a non-variable K-inequality problem and it can be solved
by the solution algorithm proposed in [37].
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[8] Bolintinéanu, S.: Approximate efficiency and scalar stationarity in unbounded nonsmooth convex vector
optimization problems. J. Optim. Theory Appl. 106, 265-296 (2000)

[9] Bonnel, H., Iusem, A.N., Svaiter, B.F.: Proximal methods in vector optimization. SIAM J. Optim. 15,
953-970 (2005)

[10] Browder, F.E.: Convergence theorems for sequences of nonlinear operators in Banach spaces. Math. Z.
100, 201-225 (1967)

[11] Censor, Y, Herman, G.T.: Block-iterative algorithms with underrelaxed Bregman projections. SIAM J.
Optim. 13 283-297 (2002)

[12] Combettes, P. L., Pesquet, J-C.: Primal-Dual Splitting Algorithm for Solving Inclusions with Mixtures
of Composite, Lipschitzian, and Parallel-Sum Type Monotone Operators. Set-Valued Var. Anal. 20,
307-330 (2012).

[13] Chen, G.Y., Johannes Jahn.: Optimality conditions for set-valued optimization problems. Math. Meth.
Oper. Res. 48, 187-200 (1998)

[14] Eichfelder, G., Duc Ha, T. X.: Optimality conditions for vector optimization problems with variable
ordering structures. Optimization, DOI: 10.1080/02331934.2011.575939 (2011)

[15] Eichfelder, G.: Optimal elements in vector optimization with variable ordering structure. J. Optim.
Theory Appl. 151, 217-240 (2011)

[16] Engau, A.: Variable preference modeling with ideal-symmetric convex cones, J. Global Optim. 42, 295-
311 (2008)

[17] Fliege, J., Graña Drummond, L.M., Svaiter, B.F.: Newton’s method for multiobjective optimization.
SIAM J. Optim. 20, 602-626 (2009) Math. Program. 111, 201-216 (2008)

[18] Fliege, J., Svaiter, B.F.: Steepest descent methods for multicriteria optimization. Math. Methods Oper.
Res. 51, 479-494 (2000)

[19] Fukuda, E.H., Graña Drummond, L.M.: On the convergence of the projected gradient method for vector
optimization. Optimization 60, 1009-1021 (2011)

[20] Gordon, R., Herman, G.T.: Reconstruction of pictures from their projections. Comm. ACM 14, 759-768
(1971)

[21] Graña Drummond, L.M., Iusem, A.N.: A projected gradient method for vector optimization problems.
Comput. Optim. Appl. 28, 5-30 (2004)

[22] Graña Drummond, L.M., Maculan, N., Svaiter, B.F.: On the choice of parameters for the weighting
method in vector optimization. Math. Program. 111, 201-216 (2008)

[23] Graña Drummond, L.M., Svaiter, B.F.: A steepest descent method for vector optimization. J. Comput.
Appl. Math. 175, 395-414 (2005)

[24] Jahn, J.: Vector optimization - Theory, applications and extensions. Springer, Berlin (2004)

[25] Jahn, J.: Mathematical vector optimization in Partially Ordered Linear Spaces. Verlag Peter D. Lang,
Frankfurt (1986)

13



[26] Jahn, J.: Scalarization in vector optimization. Math. Program. 29, 203-218 (1984)

[27] Hudson, H.M., Larkin, R.S.: Accelerated image reconstruction using ordered subsets of projection data.
IEEE Trans. Med. Imag. 13, 601-609 (1994)

[28] Isac, G., Tammer, C.: Application of a vector-valued Ekeland-type variational principle for deriving
optimality conditions. In: Nonlinear Analysis and Variational Problems: In Honor of George Isac,
Springer Optimization and Appications 35 343-365 (2010)

[29] Iusem, A.N., Sosa, W.: Iterative algorithms for equilibrium problems. Optimization 52, 301-316 (2003)

[30] Iusem, A.N., Svaiter, B.F., Teboulle, M.: Entropy-like proximal methods in convex programming. Math.
Oper. Res. 19, 790-814 (1994)

[31] Luc, D. T.: Pareto Optimality, Game Theory And Equilibria. In Pareto Optimality, Springer Optimiza-
tion and its Applications 17, 481-515 (2008)

[32] Luc, D.T.: Scalarization of vector optimization problems. J. Optim. Theory Appl. 55, 85-102 (1987)

[33] Luc, D.T.: Theory of vector optimization. Lecture Notes in Economics and Mathematical Systems 319,
Springer, Berlin (1989)

[34] Luc, D.T., Tan, N.X., Tinh, P.N.: Convex vector functions and their subdifferential. Acta Math.
Vietnam. 23, 107-127 (1998)

[35] Peressini, A.L.: Ordered Topological Vector Space. Harper and Row, (1967)

[36] Polyak, B.T.: Minimization of unsmooth functionals. U.S.S.R. Comput. Math. and Math. Phys. 9,
14-29 (1969)

[37] Robinson, S. M.: A subgradient algorithm for solving K-convex inequalities. Optimization and opera-
tions research. Lecture Notes in Economics and Mathematical Systems , Springer, Berlin 117, 237-245
(1976)

[38] Rockmore, A.J., Macovski, A.: A maximum likelihood approach to transmission image reconstruction
from projections. IEEE Trans. Nucl. Sci. 24, 1929-1935 (1977)

[39] Solodov, M.V., Svaiter, B.F.: Forcing strong convergence of proximal point iterations in a Hilbert space.
Mathematical Programming 87 189-202 (2000)

[40] Von Neumann, J.: Functional Operators, vol. 2: The Geometry of Orthogonal Spaces. Princeton Uni-
versity Press, Princeton (1950)

[41] Verma, Ram U.: Hybrid inexact proximal point algorithms based on RMM frameworks with applications
to variational inclusion problems. J. Appl. Math. Comput. 39, 345-365 (2012)

14


