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Abstract

In this paper, we propose variants of Forward-Backward splitting method for finding a zero of the sum
of two operators. A classical modification of Forward-Backward method was proposed by Tseng, which
is known to converge when the forward and the backward operators are monotone and with Lipschitz
continuity of the backward operator. The conceptual algorithm proposed here improves Tseng’s method
in some instances. The first and main part of our approach, contains an explicit Armijo-type search in
the spirit of the extragradient-like methods for variational inequalities. During the iteration process the
search performs only one calculation of the forward-backward operator, in each tentative of the step. This
achieves a considerable computational saving when the forward-backward operator is computationally
expensive. The second part of the scheme consists in special projection steps. The convergence analysis
of the proposed scheme is given assuming monotonicity on both operators, without Lipschitz continuity
assumption on the backward operator.
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1 Introduction

First of all, we introduce the notation. The inner product in Rn is denoted by 〈·, ·〉 and the norm induced
by the inner product by ‖ · ‖. For X a nonempty, convex and closed subset of Rn, we define the orthogonal
projection of x onto X by PX(x), as the unique point in X, such that ‖PX(x)− y‖ ≤ ‖x− y‖ for all y ∈ X.
Let NX(x) be the normal cone to X at x ∈ X, i.e., NX(x) = {d ∈ Rn : 〈d, x− y〉 ≥ 0 ∀y ∈ X}. Recall that
an operator T : Rn ⇒ Rn is monotone if, for all (x, u), (y, v) ∈ Gr(T ), we have 〈x− y, u− v〉 ≥ 0, and it is
maximal if T has no proper monotone extension in the graph inclusion sense.

In this paper, we present a modified method for solving monotone inclusion problems for the sum of two
operators. Given the monotone operators, A : dom(A) ⊆ Rn → Rn point-to-point and B : dom(B) ⊆ Rn ⇒
Rn point-to-set, the inclusion problem consists in:

Find x ∈ Rn such that 0 ∈ (A+B)(x). (1)

∗Federal University of Goiás, Goiânia, Brazil, e-mail: yunier@impa.br
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The solution set is denoted by S∗ := {x ∈ Rn : 0 ∈ (A + B)(x)}. This problem has recently received a lot
attention due to the fact that many nonlinear problems, arising within applied areas, are mathematically
modeled as nonlinear operator equations and/or inclusions, which are decomposed as the sum of two opera-
tors. We focus our attention in the called splitting method, which is an iterative method, for which each
iteration involves only the individual operators, A or B, but not the sum, A+B; see [8, 19, 9].

A classical splitting method for solving problem (1) is the so called Forward-Backward splitting method
as proposed in [15]. Assuming that dom(B) ⊆ dom(A), the scheme is given as follows:

xk+1 = (I + βkB)−1(I − βkA)(xk), (2)

where βk > 0 for all k. The iteration defined by (2) converges when the inverse of the forward mapping is
strongly monotone as well as over other undesired assumptions on the stepsize βk and the operator B; see,
for instance, [15] and [18]. An important and promising modification of Scheme (2) was presented by Tseng
in [19]. It consists in:

J(xk, βk) = (I + βkB)−1(I − βkA)(xk) (3)

xk+1 = PX
(
J(xk, βk)− βk

[
A(J(xk, βk))−A(xk)

])
, (4)

where X is a suitable nonempty, closed and convex set, belonging to dom(A). The stepsize βk is chosen to
be the largest β ∈ {σ, σθ, σθ2, · · · }, satisfying:

β
∥∥A(J(xk, β)

)
−A(xk)

∥∥ ≤ δ ∥∥J(xk, β)− xk
∥∥ , (5)

with θ, δ ∈ (0, 1) and σ > 0. Note that there exists various choices for the set X. If dom(B) is closed, then
the result of Minty in [16], implies that dom(B) is convex, hence we may choose X = dom(B); see [19].

The convergence of (3)-(5) was established assuming maximal monotonicity of A and B, as well as Lips-
chitz continuity of A. It is important to say that, in the above scheme, in order to compute βk satisfying (5),
the forward-backward operator (3) must be calculated, in each tentative of the step. From a computational
point of view, this represents a considerable drawback.

In order to overcome these two serious limitations a conceptual algorithm has been proposed, containing
three variants, which are denominated Algorithm 1, 2 and 3. We show the convergence to a solution of
problem (1), assuming only monotonicity of both operators however without demands Lipschitz continuity
of A. Our approach contains two parts. The first being a separating halfspace, containing the solution set of
the problem, is found. This procedure employs a new Armijo-type search which performs only one calculation
of the forward-backward operator instead Tseng’s algorithm. In the remaining part, the current point is
projected onto a suitable set. The main difference between the three proposed algorithms, is determined by
the way of the projection steps are carried out.

When B = NX , problem (1) may be written as 0 ∈ A(x) + NX(x), or equivalently 〈A(x), y − x〉 ≥ 0
for all y ∈ X. This problem is the well studied variational inequality problem with numerous applications
in optimization theory; see [11, 14]. An excellent survey of projection methods for variational inequality
problems can be found in [10]. In this setting the variants of the proposed conceptual algorithm are related
to the algorithms, presented in [12, 20, 3].

This work is organized as follows. The next section provides some preliminary results that will be used
in the remainder of this paper. The conceptual algorithm is presented in Section 3, where its three variants,
called Algorithm 1, 2 and 3, are proposed. Section 4 contains the convergence analysis of the algorithms.
Finally, Section 5 gives some concluding remarks.
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2 Preliminaries

In this section, we present some definitions and results needed for the convergence analysis of the proposed
methods. First, we state two well-known facts on orthogonal projections.

Proposition 2.1. Let X be any nonempty, closed and convex set in Rn, and PX the orthogonal projection
onto X. For all x, y ∈ Rn and all z ∈ X the following hold:

i) ‖PX(x)− PX(y)‖2 ≤ ‖x− y‖2 − ‖(PX(x)− x)−
(
PX(y)− y

)
‖2.

ii) 〈x− PX(x), z − PX(x)〉 ≤ 0.

iii) PX = (I +NX)−1.

Proof. See Proposition 2.3 in [2].

In the following we state some useful results on maximal monotone operators.

Lemma 2.1. Let T : dom(T ) ⊆ Rn ⇒ Rn be a maximal monotone operator. Then,

i) G(T ) is closed.

ii) T is bounded on bounded subsets of the interior of its domain.

Proof. i) See Proposition 4.2.1(ii) in [7].

ii) See Lemma 5(iii) in [4].

Proposition 2.2. Let T : dom(T ) ⊆ Rn ⇒ Rn be a point-to-set and maximal monotone operator. Given
β > 0 then the operator (I + β T )−1 : Rn → dom(T ) is single valued and maximal monotone.

Proof. See Theorem 4 in [17].

Proposition 2.3. Given β > 0 and S : dom(S) ⊆ Rn → Rn and T : dom(T ) ⊆ Rn ⇒ Rn two maximal
monotone operators, then

x = (I + βT )−1(I − βS)(x),

if and only if, 0 ∈ (S + T )(x).

Proof. See Proposition 3.13 in [8].

Now, we define the so called Fejér convergence.

Definition 2.1. Let S be a nonempty subset of Rn. A sequence {xk} ⊂ Rn is said to be Fejér convergent to
S, if and only if, for all x ∈ S there exists k0 ≥ 0, such that ‖xk+1 − x‖ ≤ ‖xk − x‖ for all k ≥ k0.

This definition was introduced in [5] and has been elaborated further in [13] and [1]. A useful result on
Fejér sequences is the following.

Proposition 2.4. If {xk} is Fejér convergent to S, then:

i) the sequence {xk} is bounded;

ii) the sequence {‖xk − x‖} is convergent for all x ∈ S;

iii) if a cluster point x∗ belongs to S, then the sequence {xk} converges to x∗.

Proof. See Theorem 1 in [6].
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3 The Conceptual Algorithm

Let A : Rn → Rn and B : Rn ⇒ Rn be two maximal monotone operators, with A point-to-point and B
point-to-set. Assume that dom(B) ⊆ dom(A). Choose any nonempty, closed and convex set, X ⊆ dom(B),
satisfyingX∩S∗ 6= ∅. Thus, from now on, the solution set, S∗, is nonempty. Also we assume that the operator
B satisfies, that for each bounded subset V of dom(B) there exists R > 0, such that B(x)∩B[0, R] 6= ∅, for
all x ∈ V . We emphasize that this assumption holds trivially if dom(B) = Rn or V ⊂ int(dom(B)) or B is
the normal cone in any subset of dom(B); see Lemma 2.1(ii).

Let {βk}∞k=0 be a sequence such that {βk} ⊆ [β̌, β̂] with 0 < β̌ ≤ β̂ < ∞, and be θ, δ ∈ (0, 1). The
algorithm is defined as follows:

Conceptual Algorithm

Initialization Step 1: Take
x0 ∈ X.

Iterative Step 1: Given xk and βk, compute the forward-backward operator at xk,

J(xk, βk) := (I + βkB)−1(I − βkA)(xk). (6)

Stop Criteria 1: If xk = J(xk, βk) stop.

Inner Loop: Otherwise, begin the inner loop over j.
Put j = 0 and chose any ukj ∈ B

(
θjJ(xk, βk) + (1− θj)xk

)
∩B[0, R]. If〈

A
(
θjJ(xk, βk) + (1− θj)xk

)
+ ukj , x

k − J(xk, βk)
〉
≥ δ

βk
‖xk − J(xk, βk)‖2, (7)

then j(k) = j and stop. Else, j = j + 1.

Iterative Step 2: Set
αk := θj(k), (8)

ūk = ukj(k), (9)

x̄k := αkJ(xk, βk) + (1− αk)xk (10)

and
xk+1 := F(xk). (11)

Stop Criteria 2: If xk+1 = xk then stop.

Now we consider three variants on this conceptual algorithm. The difference is given by the definition of
the procedure F in (11).

F1(xk) = PX
(
PH(x̄k,ūk)(x

k)
)
; (12)

F2(xk) = PX∩H(x̄k,ūk)(x
k); (13)

F3(xk) = PX∩H(x̄k,ūk)∩W (xk)(x
0); (14)

where
H(x, u) :=

{
y ∈ Rn : 〈A(x) + u, y − x〉 ≤ 0

}
(15)

and
W (x) :=

{
y ∈ Rn : 〈y − x, x0 − x〉 ≤ 0

}
. (16)

The variants of the conceptual algorithm given in (12), (13) and (14) are called Algorithm 1, 2 and 3,
respectively.
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4 Convergence Analysis

In this section we analyze the convergence of the algorithms presented in the previous section. First, we
present some general properties as well as prove the well-definition of the conceptual algorithm.

Lemma 4.1. For all (x, u) ∈ Gr(B), S∗ ⊆ H(x, u).

Proof. Take x∗ ∈ S∗. Using the definition of the solution, there exists v∗ ∈ B(x∗), such that 0 = A(x∗) +v∗.
By the monotonicity of A+B, we have

〈A(x) + u− (A(x∗) + v∗), x− x∗〉 ≥ 0,

for all (x, u) ∈ Gr(B). Hence,
〈A(x) + u, x∗ − x〉 ≤ 0

and by (15), x∗ ∈ H(x, u).

From now on, {xk} is the sequence generated by the conceptual algorithm.

Proposition 4.1. The conceptual algorithm is well-defined.

Proof. By Proposition 2.3, Stop Criteria 1 is well-defined. The proof of the well-definition of j(k) is by
contradiction. Assume that for all j ≥ 0 having chosen ukj ∈ B

(
θjJ(xk, βk) + (1− θj)xk

)
∩B[0, R],〈

A
(
θjJ(xk, βk) + (1− θj)xk

)
+ ukj , x

k − J(xk, βk)
〉
<

δ

βk
‖xk − J(xk, βk)‖2.

Since the sequence {ukj }∞j=0 is bounded, there exists a subsequence {uk`j}
∞
j=0 of {ukj }∞j=0, which converges to

an element uk belonging to B(xk) by maximality. Taking the limit over the subsequence {`j}, we get〈
βkA(xk) + βku

k, xk − J(xk, βk)
〉
≤ δ‖xk − J(xk, βk)‖2. (17)

It follows from (6) that
βkA(xk) = xk − J(xk, βk)− βkvk,

for some vk ∈ B(J(xk, βk)).
Now, the above equality together with (17), lead to

‖xk − J(xk, βk)‖2 ≤
〈
xk − J(xk, βk)− βkvk + βku

k, xk − J(xk, βk)
〉
≤ δ‖xk − J(xk, βk)‖2,

using the monotonicity of B for the first inequality. So,

(1− δ)‖xk − J(xk, βk)‖2 ≤ 0,

which contradicts Stop Criteria 1. Thus, the conceptual algorithm is well-defined.

Proposition 4.2. xk ∈ H(x̄k, ūk) for x̄k and ūk as in (10) and (9), respectively, if and only if, xk ∈ S∗.
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Proof. Since xk ∈ H(x̄k, ūk), 〈A(x̄k) + ūk, xk − x̄k〉 ≤ 0. Using the Armijo-type search, given in (7), and
(10), we obtain

0 ≥ 〈A(x̄k) + ūk, xk − x̄k〉 = αk〈A(x̄k) + ūk, xk − J(xk, βk)〉 ≥ αk
βk
δ‖xk − J(xk, βk)‖2 ≥ 0,

which implies that xk = J(xk, βk). So, by Proposition 2.3, xk ∈ S∗. Conversely, if xk ∈ S∗ using Lemma
4.1, xk ∈ H(x̄k, ūk).

From now on, denote Hk := H(x̄k, ūk) as (15) and Wk := W (xk) as (16), for x̄k and ūk as in (10) and (9).
Finally, a useful algebraic property on the sequence generated by the conceptual algorithm, which is a

direct consequence of the inner loop and (10).

Corollary 4.1. Let {xk} and {αk} be sequences generated by the conceptual algorithm, {βk}. With δ and

β̂ as in the algorithm. Then,

〈A(x̄k) + ūk, xk − x̄k〉 ≥ αkδ

β̂
‖xk − J(xk, βk)‖2 ≥ 0, (18)

for all k.

4.1 Convergence of Algorithm 1

In this subsection all results are referent to Algorithm 1, i.e., with Iterative Step 2 as

xk+1 = F1(xk) = PX
(
PHk

(xk)
)
.

Proposition 4.3. If Algorithm 1 stops, then xk ∈ S∗.

Proof. If Stop Criteria 2 is satisfied, xk+1 = PX
(
PHk

(xk)
)

= xk. Using Proposition 2.1(ii), we have

〈PHk
(xk)− xk, z − xk〉 ≤ 0, (19)

for all z ∈ X. Now using Proposition 2.1(ii),

〈PHk
(xk)− xk,PHk

(xk)− z〉 ≤ 0, (20)

for all z ∈ Hk. Since X ∩Hk 6= ∅ summing (19) and (20), with z ∈ X ∩Hk, we get

‖xk − PHk
(xk)‖2 = 0.

Hence, xk = PHk
(xk), implying that xk ∈ Hk and by Proposition 4.2, xk ∈ S∗.

From now on, assume that Algorithm 1 does not stop. Note that by Lemma 4.1 Hk is nonempty for all k.
Then, the projection step, given in (12), is well-defined, i.e., if Algorithm 1 does not stop, it generates an
infinite sequence {xk}.

Proposition 4.4. i) The sequence {xk} is Fejér convergente to S∗ ∩X.

ii) The sequence {xk} is bounded.
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iii) limk→∞〈A(x̄k) + ūk, xk − x̄k〉 = 0.

Proof.

(i) Take x∗ ∈ S∗ ∩X. Using (12), Proposition 2.1(i) and Lemma 4.1, we have

‖xk+1 − x∗‖2 = ‖PX(PHk
(xk))− PX(PHk

(x∗))‖2 ≤ ‖PHk
(xk)− PHk

(x∗)‖2

≤ ‖xk − x∗‖2 − ‖PHk
(xk)− xk‖2. (21)

So, ‖xk+1 − x∗‖ ≤ ‖xk − x∗‖.
(ii) Follows inmedately from item (i) and Proposition 1(i).

(iii) Take x∗ ∈ S∗ ∩X. Using (9) and

PHk
(xk) = xk −

〈
A(x̄k) + ūk, xk − x̄k

〉
‖A(x̄k) + ūk‖2

(
A(x̄k) + ūk

)
, (22)

combining with (21), yields

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 −

∥∥∥∥∥xk −
〈
A(x̄k) + ūk, xk − x̄k

〉
‖A(x̄k) + ūk‖2

(
A(x̄k) + ūk

)
− xk

∥∥∥∥∥
2

= ‖xk − x∗‖2 − (〈A(x̄k) + ūk, xk − x̄k〉)2

‖A(x̄k) + ūk‖2
.

Reordering the above inequality, we get

(〈A(x̄k) + ūk, xk − x̄k〉)2

‖A(x̄k) + ūk‖2
≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2. (23)

By Proposition 2.2 and the continuity of A, {J(xk, βk)} is bounded. Since {xk} and {βk} are bounded, {x̄k}
is bounded, implying the boundedness of {‖A(x̄k) + ūk‖}.
Using Proposition 2.4(ii), the right side of (23) goes to 0, when k goes to ∞, establishing the result.

Next we establish our main convergence result on Algorithm 1.

Theorem 4.1. The sequence {xk} converges to some element belonging to S∗ ∩X.

Proof. We claim that there exists a cluster point of {xk} belonging to S∗. The existence of the cluster points
follows from Proposition 4.4(ii). Let {xik} be a convergent subsequence of {xk}, which converges to x̃.
Using Proposition 4.4(iii) and taking limits in (18) over the subsequence {ik}, we have

0 = lim
k→∞

〈A(x̄ik) + ūik , xik − x̄ik〉 ≥ lim
k→∞

αikδ

β̂
‖xik − J(xik , βik)‖2 ≥ 0. (24)

Therefore,
lim
k→∞

αik‖xik − J(xik , βik)‖ = 0.

Now consider the two possibles cases.
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(a) First, assume that limk→∞ αik 6= 0, i.e., αik ≥ ᾱ for all k and some ᾱ > 0. In view of (24),

lim
k→∞

‖xik − J(xik , βik)‖ = 0. (25)

Taking a subsequence, if necessary, we may assume that limk→∞ βik = β̃ such that β̃ ≥ β̌ > 0 and since J
is continuous, by the continuity of A and (I + βkB)−1 and by Proposition 2.2, (25) becomes

x̃ = J(x̃, β̃),

which implies that x̃ ∈ S∗. Establishing the claim.

(b) On the other hand, if limk→∞ αik = 0. We have

lim
k→∞

αik
θ

= 0.

Define
yik :=

αik
θ
J(xik , βik) +

(
1− αik

θ

)
xik .

Then,
lim
k→∞

yik = x̃. (26)

Using the definition of j(k) and (8), yik does not satisfy (7) implying〈
A(yik) + uikj(ik)−1, x

ik − J(xik , βik)
〉
<

δ

βik
‖xik − J(xik , βik)‖2, (27)

for uikj(ik)−1 ∈ B(yik) and all k.

Redefining the subsequence {ik}, if necessary, we may assume that {βik} converges to some β̃ such that
β̃ ≥ β̌ > 0 and {uikj(ik)−1}

∞
k=0 converges to ũ. By the maximality of B, ũ belongs to B(x̃). Using the

continuity of J , {J(xik , βik)} converges to J(x̃, β̃). Using (26) and taking limit in (27) over the subsequence
{ik}, we have 〈

A(x̃) + ũ, x̃− J(x̃, β̃)
〉
≤ δ

β̃
‖x̃− J(x̃, β̃)‖2. (28)

Using (6) and multiplying by β̃ on both sides of (28), we get

〈x̃− J(x̃, β̃)− β̃ṽ + β̃ũ, x̃− J(x̃, β̃)〉 ≤ δ‖x̃− J(x̃, β̃)‖2,

where ṽ ∈ B(J(x̃, β̃)). Applying the monotonicity of B, we obtain

‖x̃− J(x̃, β̃)‖2 ≤ δ‖x̃− J(x̃, β̃)‖2,

implying that ‖x̃− J(x̃, β̃)‖ ≤ 0. Thus, x̃ = J(x̃, β̃) and hence, x̃ ∈ S∗.
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4.2 Convergence of Algorithm 2

In this subsection all results are referent to Algorithm 2, i.e., with Iterative Step 2 as

xk+1 = F2(xk) = PX∩Hk
(xk).

Proposition 4.5. If Algorithm 2 stops, then xk ∈ S∗.

Proof. If xk+1 = PX∩Hk
(xk) = xk then xk ∈ X ∩Hk and by Proposition 4.2, xk ∈ S∗ ∩X.

From now on, assume that Algorithm 2 does not stop.

Proposition 4.6. The sequence {xk} is Féjer convergent to S∗ ∩X. Moreover, it is bounded and

lim
k→∞

‖xk+1 − xk‖ = 0.

Proof. Take x∗ ∈ S∗ ∩X. By Lemma 4.1, x∗ ∈ Hk ∩X, for all k. Then

‖xk+1 − x∗‖2 − ‖xk − x∗‖2 + ‖xk+1 − xk‖2 = 2〈x∗ − xk+1, xk − xk+1〉 ≤ 0,

using Proposition 2.1(ii) and (13) in the last inequality,

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − ‖xk+1 − xk‖2. (29)

The above inequality implies that {xk} is Féjer convergent to S∗ ∩X. Hence by Proposition 2.4(i) and (ii),
{xk} is bounded and thus {‖xk − x∗‖} is a convergent sequence. Taking limits in (29), we get

lim
k→∞

‖xk+1 − xk‖ = 0.

The next proposition shows a relation between the projection steps in Algorithm 1 and 2. This fact
has a geometry interpretation, since the projection of Algorithm 2 is done over a small set, improving
the convergence of Algorithm 1. Note that this can be reduce the number of iterations, avoiding possible
zigzagging of Algorithm 1.

Proposition 4.7. Let {xk} the sequence generated by Algorithm 2. Then,

i) xk+1 = PX∩Hk
(PHk

(xk)).

ii) limk→∞〈A(x̄k) + ūk, xk − x̄k〉 = 0.

Proof. (i) Fix any y ∈ X ∩Hk. Since xk ∈ X but xk /∈ Hk by Proposition 4.2, there exists γ ∈ [0, 1], such
that x̃ = γxk + (1− γ)y ∈ X ∩ ∂Hk, where ∂Hk :=

{
x ∈ Rn : 〈A(x̄k) + ūk, x− x̄k〉 = 0

}
. Hence,

‖y − PHk
(xk)‖2 ≥ (1− γ)2‖y − PHk

(xk)‖2

= ‖x̃− γxk − (1− γ)PHk
(xk)‖2

= ‖x̃− PHk
(xk)‖2 + γ2‖xk − PHk

(xk)‖2 − 2γ〈x̃− PHk
(xk), xk − PHk

(xk)〉
≥ ‖x̃− PHk

(xk)‖2, (30)
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where the last inequality follows from Proposition 2.1(ii), applied withX = Hk, x = xk and z = x̃ ∈ Hk.
Furthermore, we have

‖x̃− PHk
(xk)‖2 = ‖x̃− xk‖2 − ‖xk − PHk

(xk)‖2

≥ ‖xk+1 − xk‖2 − ‖xk − PHk
(xk)‖2

= ‖xk+1 − PHk
(xk)‖2, (31)

where the first equality follows by PHk
(xk) = P∂Hk

(xk), x̃ ∈ ∂Hk and Pythagoras’s Theorem, using
the fact that x̃ ∈ X ∩ Hk and xk+1 = PX∩Hk

(xk) in the first inequality, and Pythagoras’s Theorem
again in the last equality. Combining (30) and (31), we obtain

‖y − PHk
(xk)‖ ≥ ‖xk+1 − PHk

(xk)‖,

for all y ∈ X ∩Hk. Hence, xk+1 = PX∩Hk
(PHk

(xk)).

(ii) Take x∗ ∈ X ∩ S∗. By item (i), (13) and Proposition 2.1(i), we have

‖xk+1 − x∗‖2 ≤ ‖PHk
(xk)− PHk

(x∗)‖2 = ‖PHk
(xk)− PHk

(x∗)‖2

≤ ‖xk − x∗‖2 − ‖PHk
(xk)− xk‖2.

The proof is similar to the proof of Proposition 4.4(iii).

Finally we present the convergence result for Algorithm 2.

Theorem 4.2. The sequence {xk} converges to some point belonging to S∗ ∩X.

Proof. Repeat the proof of Theorem 4.1.

4.3 Convergence of Algorithm 3

In this subsection all results are referent to Algorithm 3, i.e., with Iterative Step 2 as

xk+1 = F3(xk) = PX∩Hk∩Wk
(x0).

Proposition 4.8. If Algorithm 3 stops, then xk ∈ S∗ ∩X.

Proof. If Stop Criteria 2 is satisfied then, xk+1 = PX∩Hk∩Wk
(x0) = xk. So, xk ∈ X ∩Hk ∩Wk ⊂ X ∩Hk

and finally using Proposition 4.2, xk ∈ S∗ ∩X.

From now on we assume that Algorithm 3 does not stop. Observe that, in virtue of their definitions, Wk

and Hk are convex and closed halfspaces, for each k. Therefore X ∩Hk ∩Wk is a convex and closed set. So,
if X ∩Hk ∩Wk is nonempty, then the next iterate, xk+1, is well-defined. The following lemma guarantees
this fact.

Lemma 4.2. S∗ ∩X ⊂ Hk ∩Wk, for all k.
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Proof. We proceed by induction. By definition, S∗ ∩X 6= ∅. By Lemma 4.1, S∗ ∩X ⊂ Hk, for all k. For
k = 0, as W0 = Rn, S∗ ∩X ⊂ H0 ∩W0.

Assume that S∗ ∩X ⊂ H` ∩W`, for ` ≤ k. Henceforth, xk+1 = PX∩Hk∩Wk
(x0) is well-defined. Then, by

Lemma 4.1, we have

〈x∗ − xk+1 , x0 − xk+1〉 = 〈x∗ − PC∩Hk∩Wk
(x0) , x0 − PX∩Hk∩Wk

(x0)〉 ≤ 0, (32)

for all x∗ ∈ S∗ ∩X. The inequality follows by the induction hypothesis. Now, (32) implies that x∗ ∈ Wk+1

and hence, S∗ ∩X ⊂ Hk+1 ∩Wk+1.

The above lemma shows that the set X ∩Hk ∩Wk is nonempty and in consequence the projection step,
given in (14), is well-defined.

Corollary 4.2. Algorithm 3 is well-defined.

Proof. By Lemma 4.2 , S∗ ∩X ⊂ Hk ∩Wk, for all k. Then, given x0, the sequence {xk} is computable.
Before proving the convergence of the sequence, we study its boundedness.The next lemma shows that

the sequence remains in a ball determined by the initial point.

Lemma 4.3. The sequence {xk} is bounded. Furthermore,

{xk} ⊂ B
[

1

2
(x0 + x̄),

1

2
ρ

]
∩X,

where x̄ = PS∗∩X(x0) and ρ = dist(x0, S∗ ∩X).

Proof. S∗ ∩X ⊂ Hk ∩Wk follows from Lemma 4.2. Moreover, from (14), we obtain that

‖xk+1 − x0‖ ≤ ‖z − x0‖, (33)

for all k and all z ∈ S∗ ∩X. Henceforth, taking z = x̄ in (33),

‖xk+1 − x0‖ ≤ ‖x̄− x0‖ = ρ, (34)

for all k. Thus, {xk} is bounded. Define zk = xk − 1
2 (x0 + x̄) and z̄ = x̄ − 1

2 (x0 + x̄). It follows from the
fact x̄ ∈Wk+1, that

0 ≥ 2〈x̄− xk+1, x0 − xk+1〉

= 2

〈
z̄ +

1

2
(x0 + x̄)− zk+1 − 1

2
(x0 + x̄), z0 +

1

2
(x0 + x̄)− zk+1 − 1

2
(x0 + x̄)

〉
= 2

〈
z̄ − zk+1, z0 − zk+1

〉
=
〈
z̄ − zk+1,−z̄ − zk+1

〉
= ‖zk+1‖2 − ‖z̄‖2,

where we have used that z̄ = −z0 in the third equality. So,∥∥∥∥xk+1 − x0 + x̄

2

∥∥∥∥ ≤ ∥∥∥∥x̄− x0 + x̄

2

∥∥∥∥ =
ρ

2
,

for all k. Now, the result follows from the feasibility of {xk}, which, in turn, is a consequence of (14).

Now, we focus on the properties of the accumulation points.

11



Lemma 4.4. All accumulation points of {xk} belong to S∗ ∩X.

Proof. Since xk+1 ∈Wk,

0 ≥ 2〈xk+1 − xk, x0 − xk〉 = ‖xk+1 − xk‖2 − ‖xk+1 − x0‖2 + ‖xk − x0‖2.

Equivalently
0 ≤ ‖xk+1 − xk‖2 ≤ ‖xk+1 − x0‖2 − ‖xk − x0‖2,

establishing that the sequence {‖xk − x0‖} is monotone and nondecreasing. From Lemma 4.3, we get that
{‖xk − x0‖} is bounded, and thus, convergent. Therefore,

lim
k→∞

‖xk+1 − xk‖ = 0. (35)

Since xk+1 ∈ Hk, we get
〈A(x̄k) + ūk, xk+1 − x̄k〉 ≤ 0, (36)

with ūk and x̄k as (9) and (10).
Using (10) and (36), we have

〈A(x̄k) + ūk, xk+1 − xk〉+ αk
〈
A(x̄k) + ūk, xk − J(xk, βk)

〉
≤ 0.

Combining the above inequality with Corollary 4.1, we get

〈A(x̄k) + ūk, xk+1 − xk〉+
αkδ

β̂
‖xk − J(xk, βk)‖2 ≤ 0. (37)

Choosing a subsequence {ik} such that the subsequences {xik}, {βik} and {ūik} converge to x̃, β̃ and ũ
respectively. This is possible by the boundedness of {ūk}, by hypothesis on B, bounded of {xk} and {βk}.
Taking limits in (37), we have

lim
k→∞

αik‖xik − J(xik , βik)‖2 = 0. (38)

Now we consider two cases, limk→∞ αik = 0 or limk→∞ αik 6= 0.

a) limk→∞ αik 6= 0, i.e., xik ≥ α̃ for all k and some α̃ > 0. By (38),

lim
k→∞

‖xik − J(xik , βik)‖2 = 0.

By continuity of J , we have x̃ = J(x̃, β̃) and hence by Proposition 2.3, x̃ ∈ S∗.
b) limk→∞ αik = 0, then limk→∞

αik

θ = 0. It follows in the same, manner as in the proof of Theorem 4.1(b).

Finally, we are ready to prove the convergence of the sequence {xk} generated by Algorithm 3, to the solution
closest to x0.

Theorem 4.3. Define x̄ = PS∗∩X(x0). Then, {xk} converges to x̄.

Proof. By Lemma 4.3, {xk} ⊂ B
[

1
2 (x0 + x̄), 1

2ρ
]
∩X, so it is bounded. Let {xik} be a convergent subsequence

of {xk}, and let x̂ be its limit. Evidently x̂ ∈ B
[

1
2 (x0 + x̄), 1

2ρ
]
∩X. Furthermore, by Lemma 4.4, x̂ ∈ S∗∩X.

Then,

x̂ ∈ S∗ ∩X ∩B
[

1

2
(x0 + x̄),

1

2
ρ

]
= {x̄},

implying x̂ = x̄, i.e., x̄ is the unique limit point of {xk}. Hence, {xk} converges to x̄ ∈ S∗ ∩X.

12



5 Final Remarks

When B = NX problem (1) becomes the well-study variational inequality problem. In this case the proposed
algorithms ( 1, 2 and 3) are related with the algorithms in [12, 20, 3]; see Proposition 2.1(iii). In this section,
we present an example showing that there exist advantage to take, inside to the inner loop, a non-zero
element, ukj , belonging to NX in the application of Algorithm 1.

Example 5.1. Consider A : R2 → R2 defined as A(x, y) = (−y, x) and B : R2 ⇒ R2 as B = NC where C
is the ball centered in (0, 0) and radius 1, i.e.,

NC(x, y) =

{
0 , x2 + y2 < 1

R+(x, y) , x2 + y2 = 1.

Clearly, A and B are monotone and the unique solution of the problem (1) is x∗ = (0, 0). Set βk = 1 for all
k, δ = 1

2 and X = C. We begin the Algorithm 1 with x0 = (a, b) such that a2 + b2 = 1. Then,

J(x0) =

√
2

2

(
a+ b, b− a

)
.

Beginning the inner loop with j = 0, and takeu0
0 ∈ NC

(
J(x0)

)
, i.e,

u0
0 =

√
2 r

2

(
a+ b, b− a

)
,

where r ≥ 0. For all r ≤
√

2, J(x0) and u0
0 satisfies the Armijo condition in (7). Then, j(0) = 0, x̄0 = J(x0)

and

ū0
0 =

√
2 r

2

(
a+ b, b− a

)
.

Thus,

x1 = PC
(

(a, b)− 1 + (1−
√

2)r

2(r2 + 1)

(
a− b+ r(a+ b), a+ b+ r(b− a)

))
(39)

= (a, b)− 1 + (1−
√

2)r

2(r2 + 1)

(
a− b+ r(a+ b), a+ b+ r(b− a)

)
, (40)

for all 0 ≤ r ≤
√

2. Therefore,

D(r) = dist2(x∗;x1) = ‖x1‖2 =
3r2 − 2r + 1

2(r2 + 1)
,

for all 0 ≤ r ≤
√

2, which attains the unique minimum in r =
√

2 − 1. Concluding that it is better to take

u0
0 =

√
2−1√

2

(
a+ b, b− a

)
in order to obtain the next point, x1, nearest to the unique solution, x∗, of problem

(1).
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