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ABSTRACT. We give a complete topological classification for germs of one-
parameter families of one-dimensional diffeomorphisms without small divisors.
In the non-trivial cases the topological invariants are given by some functions
attached to the fixed points set plus the analytic class of the element of the
family corresponding to the special parameter. The proof is based on the
structure of the limits of orbits when we approach the special parameter.
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Introduction

In this paper we give a complete topological classification for germs of one-
parameter families of one-dimensional diffeomorphisms without small divisors. More
precisely, we study germs of diffeomorphism in (C2,0) of the form

o(z,y) = (xzop,y)

The curve Fizyp C C? of fixed points of ¢ is given by z o ¢ — x = 0. We associate
Pzo.y0) € Diff (C,0) to every point (xo,y0) € Fizy; it is the germ defined by o),—,,
in a neighborhood of x = xy. There are two kind of phenomena which can produce
a complicated dynamical behavior for a diffeomorphism .

Presence of small divisors. We say that ¢ has small divisors if there exist j € Z
and P € Fizpl) such that (&pg)/@aﬁ)(P) € S! and (8@53)/837)(P) is not a Bruno
number [Bru71], [Bru72|. Then the dynamics of wg) is very chaotic if wg) is not
linearizable [Yoc95], [PM97).

Evolution of the dynamics. In absence of small divisors the dynamics of ¢},
admits a simple description. It depends in some sense continuously on s for s # 0,
but it can change dramatically for different values of the parameter s.

There are some works identifying regular zones in the parameter space, i.e.
zones where the dynamics of ¢|,—, converges regularly to the dynamics of ¢j,—¢
when s — 0 (see |[Ris99] for the case where j1g0(070) is an irrational rotation or

[DES] for the case j'¢(,0) = Id). But so far there was no description of the zones
in the parameter space where the dynamical behavior does not commute with the
limit. There was also no information about the dependence of the dynamics of
@|y=s With respect to s (s # 0) except in the topologically trivial case. Here we
provide a description of these phenomena in the absence of small divisors.

A diffeomorphism ¢ without small divisors will be called (NSD) diffeomor-
phism. The (NSD) character implies that we are in one of the following cases:

e ¢ is analytically conjugated to (A(y)z,y) for some A € C{y}.
o jlo = (\z,y) for aroot A € S! of the unit.
o jlo = (2 + py,y) for some u € C.

We will deal with the latter scenarios since the first one is trivial. For jl¢ = (Az,y)
and \? = 1 we can relate the dynamics of ¢ with the dynamics of (). Then we can
suppose jlo = (z+uy,y) for some p € C up to replace ¢ with an iterate. Thus, from
now on (NSD) will mean (NSD)-+unipotent. In the one-variable case the topological
|[Lea97], [CamT78|, [Shc82| formal and analytical classifications [Eca82], [Vor81],
[IMRA83] of unipotent diffeomorphisms are well-known (see [Lor99] for an excellent
survey on these topics).

We are interested on giving a complete characterization of whether or not two
(NSD) diffeomorphisms have the same dynamical behavior, or in other words when

vii



viii INTRODUCTION

they are conjugated by a homeomorphism defined in a neighborhood of 0 in C2.
Such a conjugating homeomorphism can be wild; for instance in general it is not of
the form (o1(x,y),02(y)). Since we want to describe the evolution of the dynamics
of ¢|,—, we impose two natural conditions. Let ¢1, @2 be (NSD) diffeomorphisms
conjugated by a germ of homeomorphism o; we say that o is special if

e yoo =y.

® O|Fizg;\(y=0) = 1d.
If such a special conjugation exists we denote ¢ 2z 2. We denote the topological
and the analytic conjugations by P and X respectively.

If we have ¢ L o for (NSD) diffeomorphisms ¢q and g then Fizg, = Fizgs.
This equation has two be understood as a relation between analytic sets with not
necessarily reduced structure; for instance we have Fiz(x +22,y) # Fiz(z +23,y).

Let ¢ be a (NSD) diffeomorphism. We denote by m(y) the unique non-negative
number such that y™ divides z oy —z but y™*! does not divide z oy —x. Consider
the decomposition x o p —x = y™f"" ... f," in irreducible factors. We define
N(p) = ?:1 v(fj(z,0)). Then for every sufficiently small neighborhood U of
(0,0) and yo # 0 in a neighborhood of 0 we obtain N = §(Fize N U N [y = yol).
The couple (N, m) is a topological invariant.

Let ¢ be a (NSD) diffeomorphism. Consider an irreducible component ~ #
[y = 0] of Fizep. We define Res}, : v\ {(0,0)} — C as the function associating to
P the residue of the diffeomorphism ¢p. The function Res], is holomorphic. Our
main theorem in this paper is:

MAIN THEOREM. Let 1, @2 be two (NSD) diffeomorphisms with same invari-
ant (N,m). We have
e If N=0 or (N,m) = (1,0) then o1 L py & Fizg, = Fizps,.
e For the remaining cases 1 < @o if and only if
— Fixpr = Fixps.
— y™(Res), — Res),,) extends continuously by 0 to (0,0) for all irre-
ducible component v # [y = 0] of Fize;.
— ¥1,(0,0) o $2,(0,0) -
Moreover if (N, m) # (1,0) then oy,—q is complex analytic for every special germ
of homeomorphism o conjugating 1 and @s.

Suppose m = 0 throughout this paragraph. The condition ¢ (g,0) L ©2,(0,0)

is much stronger than ¢y (g,0) =2 ©2,(0,0) for N > 1 since the analytic classes con-
tained in a topological class are parameterized by a functional invariant. Suppose
©1 < pq; we have

,m) | situation in y = existence of irregular zones
N : — 0 : fi 1
to:
N=1,m=0]| 91,0, ~ ¥2,(0,0) NO
ana
N>1,m=0] 100 ~ $2(00 YES

The rigidity provided by the main theorem is attached to the existence of irregular
zones in the parameter space. Our work unveils a new phenomenon whose existence
is based on the structure of the limits of orbits in the irregular zones.

Let us say a word about the proof of the main theorem. We study at first the
real flow of a vector field X = f0/0x such that exp(X) is a convergent normal form
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of a (NSD) diffeomorphism ¢. We use techniques analogous to those in [DES]| to
study Re(X). In fact we classify topologically all the vector fields Re(X) where
X € H(C?,0) and exp(X) is a (NSD) diffeomorphism. The same techniques can
be used to classify the real flows of all the vector fields of the form X = f0/0x for
any f € C{z,y}. Anyway, we do not do it for simplicity and because it is of no
utility to study the (NSD) diffeomorphisms.






CHAPTER 1

Outline of the Paper

A germ of diffeomorphism ¢ = (z + py + h.o.t.,y) € Diff (C?,0) has no small
divisors if and only if 9(x o ¢)/0x = 1 by restriction to Fizep. This condition
has an algebraic translation. Let y™f;"" ... f,” (m > 0) be the decomposition of
x o ¢ — x in irreducible factors. Then ¢ is (NSD) if and only if n; > 2 for all
1 < j < p. This condition can be checked out on any f = y™fi'* ... fp* € C{z,y}
such that f(0,0) = 0. Therefore, we can speak of germs of (NSD) functions. A
germ X € H(C20) is a (NSD) vector field if exp(X) is a (NSD) diffeomorphism or
in a equivalent way if X can be expressed in the form f0/9z for some (NSD) germ
of function.

Every germ of (NSD) diffeomorphism ¢ is the exponential exp(lf( ) of a unique
formal vector field X = f0/0x where f € C[[z,y]] and

exp( tX (Z t" Xn Z t" Xn )

for t € C. By definition X°(g) = g and X7t1(g) = X (X (g ) for j = 0. We just
wrote down the Taylor formula for the formal vector field tX. We have that X is
of the form @ f0/0x where 4 € Cl[x,y]] is a unit and f = x oy —x. The vector field
X is transversally formal along f = 0.

PROPOSITION 1.1. Let ¢ = exp(af0/0x) be a (NSD) diffeomorphism. For all
k € N there exists ux, € C{z,y} such that @ — uy € (f*).

We say that X = ufd/0x € H(CZ%0) is a convergent normal form of ¢ if
@ —u € (f?). The diffeomorphism ¢ is formally conjugated to exp(X). Our
approach consists in comparing the dynamics of ¢ and exp(X). The first step of
this program is describing the dynamical behavior of Re(X) for a (NSD) vector
field X. That is the purpose of chapters 2/ through 5.

We fix domains U, = [|z]| < €] and U. s = B(0,¢) x B(0,d). We will always
suppose that SingX N (eS* x B(0,§)) C [y = 0]. We want to study the vector field
§(X,90,€) = Re(X)|B(0,6)x{yo} for a specific yo. Afterwards, we are interested on
the evolution of the dynamics of £(X, yo, €) with respect to yo. Let us focus on the
first task.

For P € SingX we can define Xp € H(C, 0); the definition is analogous to the
definition of ¢ p for P € Fizp. The (NSD) character implies that X p is nilpotent for
all P € SingX. The dynamics of Re(Y') and exp(Y') for a nilpotent Y = a(2)9/9z
is well-known. There exists a fundamental system {V,, }, . of open neighborhoods
of 0 such that V,, \ {0} is the union of v(a(z)) — 1 basins of attraction of z = 0 for
Re(Y) and v(a(z)) —1 basins of attraction of z = 0 for Re(—Y") [Lea97], [CamT8|.
As a consequence the real parts of nilpotent vector fields in H(C, 0) have an open

1



2 1. OUTLINE OF THE PAPER

character since the set of points whose « limit is z = 0 is an open set (ditto for the
w limit). The nilpotent character of the singular points also implies

PROPOSITION 1.2. Let X be a (NSD) vector field. For all yo € B(0,8) the
vector field (X, yo, €) satisfies the Rolle property.

In other words a trajectory of £( X, yg, €) never intersects a connected transversal
for two different times. In particular for any positive trajectory v : [0,¢) — Ues N
[y = yo] of Re(X) the following dichotomy holds:

e c € R" and limy_.y(t) € U, 5.

e ¢ =00 and w(y) € SingX N[y = yol-
Roughly speaking the trajectories of Re(X) are attracted either by the boundary
of U, s or by the singular points.

The dynamics of Re(X)|,—y, in the neighborhood of every point (29, yo) € OUc s
where Re(X)|y—,, is transversal to €St x {yo} is locally a product. Since nilpotent
singular points have an open character then the unstable trajectories of £(X, yo, €)
are contained in trajectories of Re(X )|§(0,e)x (o} passing through points where
Re(X) and OU. s are tangent. The unstable trajectories are also called critical
trajectories.

PROPOSITION 1.3. Let X be a (NSD) vector field. For all yo € B(0,9) the
critical trajectories of £(X, yo, €) determine £(X, yo, €) up to topological equivalence.

Next we focus on the evolution of the dynamics of Re(X)|,—,, with respect
to y = yo. In chapter [3l we divide U, s in a union of "basic” sets. There are two
kind of basic sets, namely ”exterior” and ”compact-like” ones. Let yo € B(0,9);
the dynamics of £(X,y, €) restricted to an exterior set is locally a product in the
neighborhood of yg. Such a property is no longer true for a ”compact-like” basic
set; anyway since it is somehow compact the dynamics of the restriction of Re(X)
to a ”compact-like” basic set is bound to be non-chaotic. The decomposition in
basic sets is used throughout this paper to find uniform patterns of regularity for
the orbits of Re(X) (or ¢ for (NSD) diffeomorphisms) in U, s \ [y = 0].

We are interested in the evolution of the dynamics of £(X,y,€) with respect
to y. In chapter |4 we study the set UN% of instability of the dynamics. By
definition yo € B(0,6) \ UN% if there exists a neighborhood V of yo in C and a

homeomorphism o : B(0,¢) x V — B(0,¢) x V such that
® Ojy—y, = Id.
® 0),—; is a topological equivalence between §(X,yo,€) and {(X, s, €) for all
seV.

We denote by T, C 0U.s the set of points where Re(X) is tangent to 90U s.
The unstable trajectories of £(X,yo,€) are the ones contained in trajectories of
Re(X )|§(o,e)>< {yo} Passing through points of T. Thus, the following proposition is
natural.

PROPOSITION 1.4. Let X be a (NSD) vector field. Then yo € UNY if and only
if there exists a trajectory v of Re(X)\E(o,e)x{yg} such that §(yNTS) > 1.

The connected components of UN§ are called T-sets since they connect tangent
points. We describe the nature of UN¥.

PROPOSITION 1.5. Let X be a germ of (NSD) vector field. There are finitely
many T-sets. Moreover, every T-set is a semi-analytic curve.
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Chapters 2] through [4 allow to describe the behavior of Re(X) restricted to
Ucs. The downside is that the information that we obtain depends not only on
the germ X € H(C?,0) but also on the domain U,. The sets UN§ and UN§ are
different if € # ¢/. We would like to have a domain independent tool to study the
dynamics. We accomplish this goal by studying the L-limits. In the remainder of
the introduction we suppose m = 0, i.e. [y = 0] ¢ SingX since the notations and
definitions are simpler. It is the generic case among (NSD) objects. Anyway, the
propositions are enounced in complete generality.

We denote by Fg(XH_[P] the positive trajectory of Re(X)y passing through

P. Analogously we define Fg(x)} [P ] and finally we define FU [Pl = g(X) LIPIU
FgU(X) +[P]. The positive L-limit L 5.0, Of a point z¢ € B(0, e) along a semi-analytic

curve 3 is the subset of B(0,€)\ {0} such that z; € L;’;O if there exists (zn, yn) —
(21,0) such that

o y, € fforallneN.
e For all n > 0 we have (z,,y,) € 1"‘;‘;)61" [%0, yn] for all n >> 0.

o (21,0) & DL o, 0]

In other words, the L-limit LE + , 1s the accumulation set of the positive trajectories

Fg(X)’)Jr(xo, y) when y € 8 and y — 0 deprived of the trajectory passing through
(z0,0).

PROPOSITION 1.6. A L-limit is a limit.

We prove this by finding a continuous S : S U {0} — C? satisfying that for all

1 > 0 there exists k(n) > 0 such that S(s) € F|T|<)Ei"(m0, s) for all s € B(0, k(n))NS.

We also require S(0) = (z1,0). The L-limit would behave like an accumulation set
and not like a limit if we would drop the hypothesis on the semi-analyticity of (.

The connected components of Le'g are naturally ordered by the time of the
flow Re(X); moreover, there are only finitely many. We claimed that the L-limit
does not depend on the domain of definition (and then on ¢) and that is not exactly
true. The L-limit depends on € but

PROPOSITION 1.7. Let X be a (NSD) vector field. Consider a L-limit L;:D £ ().
Then, the first component of L;’;O does not depend on the domain of definition of
X.

For € > 0 and d(¢) > 0 small enough we define
N =N(X) =#(SingX N[y = yo))
for yo € B(0,6)\{0}. The number N does not depend on yq since SingX NOU, 5 C
[y = 0]. We have

PROPOSITION 1.8. Let X be a germ of (NSD) vector field. Then there exists a
non-empty L-limit if and only if N > 1.

The existence of a non-empty L-limit LEB’;O implies that the limit of the positive
trajectories of Re(X) passing through (zo,y) (y € §) is not the positive trajectory
of Re(X) passing through (z0,0). Somehow "limy, .o Re(X)jy—y,” is richer than
Re(X)jy=o- Let m = v, (X (z)); we have
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PROPOSITION 1.9. Let X be a germ of (NSD) vector field. Then
ylolglo Re(X) = Xjy—0

ly=y0
for (N,m) # (1,0). Otherwise lim,,_,o Re(X) = Re(X)|y—o-

The formula lim,, .o Re(X)|y—,, = X|y—o means that the complex flow of X
at y = 0 is generated by the real flow of X, when yo — 0. Proposition 1.9 is
based in the following result:

PROPOSITION 1.10. Let X be a (NSD) vector field with a non-empty LE:;O.

There exist x1 € L;’;O, a neighborhood V of 0 in R and a continuous family of semi-
analytic curves {5(s)}sev such that 5(0) = 5 and UsevL;’(t,) 2, 18 @ neighborhood
Of (xla 0)

In particular the previous proposition implies that for a germ of homeomor-
phism o conjugating two (NSD) vector fields and defined in U, 5 the value of o(x¢, 0)
determines the value of o(z,0) for 2 in the neighborhood of x;. The proof of this
kind of results relies in the fact that we can calculate the time T'(y) spent by Re(X)
to go from (xo,y) (y € B) to the neighborhood of (x1,y) for z; € LE’;O. Roughly
speaking T is the restriction of a meromorphic function 7

s — —2mi Z Resx (P)
PeE(s)

ly=y0o

=Yo0

where E(s) C SingX N[y = s] is a set depending on the connected component of
L;;U containing x1. Moreover E(s) depends continuously on s. The functions Res
are the usual residue functions. More precisely, for a nilpotent Y € H(C, 0) there
exists a unique form w € Q(C,0) such that w(Y) = 1; we define Resy (0) as the
residue at 0 of w and then Resx (P) = Resx,(P) for all P € SingX \ [y = 0].

We are interested on determining whether or not the real flows of germs of
(NSD) vector fields X;, X5 are topologically conjugated. Our approach is based
on studying the evolution of the dynamical behavior of Re(X),—,, with respect
to yo and in particular the evolution of the dynamics of Re(Xp) with respect to
P € SingX. Then, it is natural to assume that the topological conjugations satisfy:

e yoo =y.

® I|Singx\[y=0] = Id.
Such mappings will be called special. A special mapping has a certain degree of
regularity, that is not always the case for conjugations. For instance, a general germ
of homeomorphism conjugating real (NSD) flows does not preserve the fibration
y = cte.

Let X1, X2 be (NSD) vector fields. If Re(X;) and Re(X32) are conjugated by
a special germ of homeomorphism then they both belong to some set

Hy ={ufd/0x : v e C{z,y} is a unit}
where f satisfies the (NSD) conditions. As a consequence we restrict our study to
the sets H .
Let x; € L;J;O and suppose that Re(X;) and Re(X32) are topologically con-

jugated by a special 0. We already pointed out the existence of a real function
T(y) ~ —2mi Y pepy) Resx, (P) such that

lim exp(T(y)X1)(xo,y) = (21,0).
y€B,y—0
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Moreover, we have

yeim exp(T'(y)X2) (o (0, y)) = o(21,0)

since o conjugates Re(X;) and Re(X3). Because of this last equation we will see
that T'(y) ~ =271}~ pe () Resx, (P). Therefore, we obtain 3_ pe () Resx, (P) ~
> pen(y) Resx,(P), i.e. the residue functions attached to X; and X, are related.
The ideas in this discussion will lead us to prove the sufficient condition in the next
theorem:

THEOREM 1.1. Let X, Xy be elements of Hy for some f € C{x,y} satisfy-
ing the (NSD) conditions. Suppose (N,m) # (1,0).Then Re(X1) and Re(X2) are
topologically conjugated by a special mapping if and only if

lim 4™ (Resx, (S(y)) — Resx,(S(y))) =0

for all continuous section S : (0,8) x R — [f = 0] such that S(r,0) belongs to
SingX N [y = re®] for all (r,0) € (0,6) x R. Moreover, every special conjugation
is analytic by restriction to y = 0.

The analyticity of the special topological conjugation by restriction to y = 0 is
a consequence of proposition [1.9. For the dynamically simple case (N, m) = (1,0)
we have

PROPOSITION 1.11. Let X1, Xy be elements of Hy for some f € C{z,y} sat-
isfying the (NSD) conditions. Suppose (N,m) = (1,0). Then Re(X;) and Re(X32)
are topologically conjugated by a special mapping.

We explain briefly how we can prove proposition [1.11/ and the necessary con-
dition in theorem [1.1. To conjugate Re(X;) and Re(X2) we replace Img(X1)
with h(z,y)Img(X1) where h : Ues \ [f = 0] — RT is a continuous function
such that (Re(X1))(h) = 0 and ¢y < |h(z,y)| < Cp for some ¢y, Cy > 0 and all
('T’ay) € Ue,ﬁ \ [f = 0}

Let yo € B(0,9). Consider a loop « : [0,1] — [y = yo| such that y ~ 1 € Z ~
71 ([y = yo]\{P}) for some P € [f = 0]y = o] and 7 ~ 0 € Z ~ m1([y = 4]\ {Q})
for al @ € ([f = 0]NJy = yo]) \ {P}. Let 1)1 be a complex function in the
neighborhood of v(0) in y = yo such that

Re(X1)(¢1) =1 and (hImg(X1))(¢1) =i.

Such a function v, exists since [Re(X7), hImg(X;)] = 0; moreover we can extend
it continuously along . If p, is germ of the extension of ¥ at (1) = v(0) then
DPy¥1 — 91 is a constant function. We denote by X/ the complex vector field such
that Re(X{) = Re(X1) and I'mg(X1) = hImg(X1). We have

5 (1 07(1) — 1 07(0)).

We can choose h to obtain Resx; = Resx, in SingX \ [y = 0]. Now, we can apply
the method of the path to conjugate the complex vector fields X{ and X,. We
obtain a special germ of homeomorphism ¢ such that

Resx;(P) = Resx; ,(P) =

ooexp(tX]) =exp(tX2) oo

for t € C and then
ooexp(tXy) =exp(tXs)oo
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for ¢ € R. The choice of h and X] is based on the dynamical properties of Re(X7).
The real goal of this work is classifying the dynamics of germs of (NSD) diffeo-
morphisms. We define

Dy ={(z+uf,y):uec C{x,y}is a unit};
this is the analogue of Hy for (NSD) diffeomorphisms. We have

THEOREM 1.2. Let ¢ be a (NSD) diffeomorphism and let X be one of its con-
vergent normal forms. For all 1 > 0 there exists U 5 such that

99 (P) € exp(B(0, ) X) (exp(j.X)(P))
for all j € Z and P such that {exp(0X)(P),...,exp(jX)(P)} C U.ys.

As a consequence of last theorem the dynamics of a (NSD) diffeomorphism is
a slight deformation of the dynamics of the exponential of its normal form. The
main ingredient of the proof of theorem [1.2 is the division of U, s in exterior and
compact-like sets that we develop in chapter [3.

The similarity between a (NSD) diffeomorphism ¢ and a normal form X implies
that there is an analogue of the L-limit phenomenon for (NSD) diffeomorphisms and
N > 1. We obtain points z¢ € B(0,¢) \ {0}, semi-analytic curves § and sequences
{yn} C B and {T(y,)} C Z such that

o lim, o0 ¥n = 0 and lim,, o0 T'(yn) = 00
o 3lim, o0 exp(T(yn) X) (20, yn) and Ilim,, o0 T @) (29, 9,)

o lim, o0 exp(T(yn)X) (%0, yn) is in the first component of L;’:O.

Moreover, in this context we have
PROPOSITION 1.12. There exists a neighborhood V of 0 in R and a continuous
family of semi-analytic curves {B(s)}sev (8(0) = B) such that for all (x1,0) in a

neighborhood of lim,, o TWn) (20, y,,) there exist so € V' and sequences {y0} C
B(s0) and {T(y2)} C Z satisfying

lim 40 =0 and lim ¢<T<93>>(x0,y2) = (z1,0).

n—oo n—oo

The value of a topological conjugation o at (x¢,0) determines oj,—q in the
neighborhood of lim,, s ¢T®) (x4, y,). We obtain

PROPOSITION 1.13. Let ¢1,92 € Dy be (NSD) diffeomorphisms. Suppose
(N,m) # (1,0). Let o be a germ of special homeomorphism conjugating 1 and
2. Then o),—q is complex analytic.

We take profit of the previous proposition and the similarity between (NSD)
diffeomorphisms and normal forms to obtain the sufficient condition in next theorem

THEOREM 1.3. Let ¢1,¢2 € Dy be (NSD) diffeomorphisms. Let X; be a con-
vergent normal form for p; (j € {1,2}). Suppose (N, m) # (1,0). Then
e 1 and po are conjugated by a special homeomorphism
if and only if both following conditions are satisfied
e Re(Xy) is conjugated to Re(Xs) by a special homeomorphism.

® ©11y—0 15 analytically conjugated to pajy—g-

We also have
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PROPOSITION 1.14. Let ¢1,p2 € Dy be (NSD) diffeomorphisms. Suppose
(N,m) = (1,0). Then w1 and po are topologically conjugated by a special map-
ping.

Theorem [1.3] and proposition [1.14] are equivalent to the Main Theorem for
(N,m) # (1,0) and (N, m) = (1,0) respectively. To prove the necessary condition
in theorem [1.3/ and proposition [1.14/ we embed ¢ in a complex flow which is not in
general analytic. That is equivalent to exhibit a special homeomorphism conjugat-
ing the exponential exp(X) of the normal form and ¢. Then, we just define

p(P) = o(exp(tX) (e (P)))

for t € C. Unfortunately, theorem [1.3 implies that such a o does not exist if ¢,—¢
is not the exponential of a nilpotent element in H(C, 0). As a consequence instead
of germs of homeomorphism we will consider tg-sp (tangential-special) mappings o.
By definition o is a tg-sp mapping if there exist V and V' neighborhoods of (0,0)
such that

e o is a homeomorphism defined in (V'\ [y = 0]) U {(0,0)}.

e o(=1) is a homeomorphism defined in (V' \ [y = 0]) U {(0,0)}.

e 0(0,0) = (0,0) and y o 0 = y and os—q)\[y—0] = Id.
We explain now how to build a tg-sp mapping conjugating the normal form exp(X)
and a (NSD) ¢. A possible approach to embed ¢ in a complex flow is by using
transversals. Let Tr be a 3-dimensional transversal to Re(X). We suppose that

Tr N[y = yo] when non-empty is contained in a trajectory of I'mg(X) for all
yo € B(0,9). We define the function A such that

p(P) = exp((1+ A(P))X)(P)
for all P in a neighborhood of (0,0). Now we can define
40 (P) = exp(all + A(exp(ibX)(P))]X ) (exp(ibX ) (P))

for a € [0,1] and exp(ibX)(P) € Tr. To define ¢(*+®) for a € R we consider
c € [0,1] such that a — ¢ € Z; we define

so(a-‘y-ib) — (p(a—c) ° (p(c—i-ib).

Now we build a mapping o7, conjugating exp(X) and ¢; we define or,.(exp(aX)(P))
(@ (P) for a € R and P € Tr. This mapping is not C* because the complex
flow ¢ is not C> for Re(t) € Z but only continuous. Anyway we can change
slightly the definition to obtain a C'*° flow. We have to face another problem;
let yo € B(0,0), there is no in general a connected 1-dimensional transversal to
Re(X)|y=y, intersecting all the trajectories of Re(X). Therefore, we have to in-
terpolate conjugations obtained by considering different transversals. For both the
construction of o, and the interpolation of different o7, and op,» we use dynam-
ical properties of Re(X). Then, to make this construction to depend continuously
on y we have to work in the neighborhood of parameters yo such that Re(X),—s
is topologically equivalent to a product in the neighborhood of s = yo. We are in
that situation for yo ¢ UN%. If yo € UN§ \ {0} we change slightly U, 5 in order
to have yo ¢ UNx with respect to the new domain. Hence, for all yo ¢ UN§ N {0}
there exists a neighborhood V,, such that we can build a C* mapping o, defined
in (Ues Ny € Vy,)) \ [f = 0] and conjugating exp(X) and . The mapping oy, is
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obtained by interpolating conjugations or,. Moreover, we can extend oy, continu-
ously to f = 0 by defining o, |s—o = Id. For (N,m) = (1,0) we have 0 ¢ UN% and
then oy is a special germ of homeomorphism conjugating exp(X) and ¢. Otherwise
we have to interpolate some conjugations o, to obtain a conjugation ¢ defined in
Ues\ [y = 0]. Again, we can extend ¢ continuously to f = 0 by defining o|y—o = Id.
The mapping ¢ turns out to be tangential-special. We obtain

PROPOSITION 1.15. Let ¢ be a (NSD) diffeomorphism with normal form X.
There exists a tg-sp mapping o conjugating exp(X) and ¢. Moreover o can be
chosen to be a germ of homeomorphism if N <1 orm > 0.

Now proposition[1.1Tlimplies proposition1.14. Analogously theorem 1.1/implies
the necessary condition in theorem 1.3 for N < 1 or m > 0.

The remaining case in theorem [1.3'is N > 1 and m = 0. Since ¢y),—¢ is
analytically conjugated to ¢g,—¢ We can suppose ¢1,—g = @2;y—0 Up to replace
@o with A1) oy o h for some special h € Diff (C?,0). Hence, we can choose
the convergent normal forms to satisfy Xi,—g = Xpy—0 too. As a consequence
there exists a special homeomorphism ox conjugating Re(X;) and Re(X3) such
that ox |,—o = Id. Consider a tg-sp mapping o; conjugating exp(X;) and ¢; for
j € {1,2}. The mapping

O =0900x ooﬁ_l)
is a tg-sp mapping conjugating ¢ and ,. The last part of the paper is devoted
to prove that there is a choice of o1 and o9 such that o is a special germ of
homeomorphism. We define the function A% such that

o (P) = exp((j + A5 (P)Xi)(P)
for (j,k) € Z x {1,2} and {exp(0Xy)(P),...,exp(jXk)(P)} C Ueys.

LEmMA 1.1. We have |Aj1 - A?| < L(y) for all j € Z where L = o(1) is
independent of j € Z.

The lemma claims that the orbits of 1 and @9 are very similar, even outside
of y = 0, since the ”distance” tends to 0 uniformly on the orbits. This fact allows
to choose o1 and o3 in a way such that o,—q = Id and 0‘(;:1()) = Id are continuous
extensions of o and o(~1) respectively.



CHAPTER 2

Flower Type Vector Fields

2.1. Definition and basic properties

Consider a real analytic vector field ¢ defined over an open subset V of R2. Let
P € V be a singular point of £; there is a "flower type” singularity at P if for all
neighborhood U of P there exist two non-empty open sets Uy, U_ C U such that
e U, UU_ U{P} is a neighborhood of P.
e U, is positively invariant by £ and the w limit w(Q) of any @ € Uy is
equal to {P}.
e U_ is negatively invariant by £ and o(U_) = {P}.
Throughout this section we will consider a real analytic vector field { defined in a
neighborhood of . Such a vector field is of flower type if
(1) Sing€nN oD =
(2) There are only flower type singularities.

REMARK 2.1.1. The only relevant property is the second one; property (1) can
be skipped by enlarging the domain of definition.

Let V be a set where £ is defined. We define I‘g [Q] the trajectory of £ in V
passing through @. On top of that we define the positive and negative trajectories
I'Y,[Q] and TY _[Q] obtained by restraining T'Y [Q] for positive and negative times
respectively. We can define the mapping wy associating to each @) € V the w limit
of the trajectory Fg [Q] of & passing through @ in V. We can define the mapping
ay in an analogous way.

We say that a set S C D is positively invariant if for every open neighborhood
B of D we have

UQeng+ [Q] cAS.

We can define a negatively invariant domain in an analogous way.

REMARK 2.1.2. Let U be any neighborhood of a singular point P € D and
consider a point Q € D\ U. Since the singularity at P is of flower type we have

T [QIN Uy VU-U{P}) =T¢,[QINU.
As a consequence we have
o Ifwp(Q) contains a singular point P then wp(Q) = {P}.
° wﬁl(P) is an open set for all P € Sing€.
e By Poincaré-Bendizon’s theorem the only values for wp(Q) are
(1) wp(Q) = oo; by definition this happens when F?’JF[Q] reaches D for
a finite time.
(2) wp(Q) = {P} for some P € Sing€.
(3) wp(@) is a cycle.
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Next property on the a and w limits is not restricted to the flower type setting.

REMARK 2.1.3. Let vy be a cycle of a C' vector field X defined in a neighborhood
of v in R%. There is an open set U containing v such that either w(Q) or a(Q) is
a cycle for all Q € U. This property is based on Poincaré-Bendixon’s arguments.

2.1.1. The Rolle property. We say that vector field £ satisfies the dynamical
Rolle property if there is no connected transversal I such that Fﬂg [Q] cuts I for two
different values of time. Our definition implies that any vector field having cycles
can not hold the Rolle condition. Anyway, the definition coincides with the usual
one if all the cycles are isolated.

LEMMA 2.1.1. Let £ be a flower type vector field and let P € Singé. Then
(@,w) (P, P)\{P} #0.

ProoF. Let U = D. Consider an open connected neighborhood V' of P con-
tained in Uy UU_ U {P}. Since wp(U;) = {P} then Uy NV # ; in an analogous
way we have U_ NV # (). We obtain

VAP = (U nVIN{PH U ([U-NV]\{P}).
The set V' \ {P} is connected; as a consequence there exists a point
Q€ (UL NU)\{P} C (a,w) (P P)\ {P}.
O

ProOPOSITION 2.1.1. Let £ be a flower type vector field. Then £ satisfies the
dynamical Rolle property.

PROOF. Suppose the proposition is not true. Let v(t) C D be a trajectory
of € and let I C D be a connected transversal to £ such that v(t9),v(t1) € T for
different ¢y and ¢;. We can suppose without lack of generality that ~(tg,t1) does
not intersect I.

We denote by ST the segment of transversal in between «(tp) and ~(¢1). The
union of the sets {y(¢)/to <t < t1} and ST is a simple curve 3. We denote by
U the bounded region limited by  and contained in D. By replacing & with —¢ if
necessary we suppose that & points towards U at the points in ST. If v is a cycle
then ST = () and the last condition is empty.

The region U is positively invariant. We claim that U N Sing€ is not empty.
Let @ be any point in U, then wp(Q) is either a singular point P € D or a cycle
C. In the latter case the cycle is in the boundary of a bounded region containing a
singular point P. We consider the set

A, =1{QeT\ Singé / ap(Q) C U,
The set (U \ Sing€) \ A4 _ is equal to UQegTI‘?+[Q], hence it is an open set. We
also define
A, ={Q € Ay _ s.t. ap(Q) and wp(Q) are points} ,
B, ={Q € Ay _ s.t. either ap(Q) or wp(Q) is a cycle}.
The set A, is open in U because of the flower nature of the equilibrium points. The

set B, is also open in U\ Singé, it is a consequence of the remark 2.1.3. Therefore,
we can express U \ Singé as a disjoint union of open sets, more precisely

U\ Singé = (A, U B,) U[(U \ Sing) \ A4 ,—].
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FIGURE 1.

Since (a,w)ﬂgl(P, P) is contained in A, then A, U B,, is not empty (lemma 2.1.1)).
Moreover [(U \ Sing€) \ A4 _] contains the curve 3 and then it is not empty. But
U \ Sing€ is connected, we obtain a contradiction. O

COROLLARY 2.1.1. There are no cycles.

REMARK 2.1.4. The curve 0D is not invariant by £. This result can be obtained
by applying the corollary2.1.1to &' = (z/(1 +n),y/(1 +n)),§ for somen > 0 small
enough.

2.1.2. Critical trajectories. Let ) € 0D be a point where & is tangent to
OD. The point @ is a conver tangent point if for some 7 > 0 and every open
neighborhood U of D we have

L¢[Q](=n,m) N (U\D) = 0.

In other words F?7 Q] # {Q} and F?)JF[Q] # {Q}. The behavior of all the trajec-
tories in a neighborhood of a point M of 0D is the same except if M is a convex
tangent point (see picture 2). The point @ is a concave tangent point if there exist
an open neighborhood U of D and some 7 > 0 such that

I [Ql(—n,n)ND =0.

If @ is neither convex nor concave then it is by definition an inflexion tangent
point. We define the set Tg 4+ C OD as the set of tangent convex points whereas
TEL C JD is the set of tangent concave points. We define the set of tangent points
TED = Tg+ U Tg’_; we dismiss the inflexion points.

For any convex tangent point () we can define the critical trajectories passing
through Q. The positive critical trajectory passing through a convex tangent point
P is the set

D
re2 Q).

It is equal to F?’i{Q}[Q] Uwpuioy (@) if wpugoy(Q) € Singé, otherwise it is a curve

joining @ and a point in JD whose interior is contained in . To define the negative
critical trajectories just replace + with —. We denote by ’H? the union of the critical
trajectories; it is a closed set.
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convex concave

inflexion

Fi1GURE 2. Convex, concave, inflexion points

LEMMA 2.1.2. The mapping
(e, w)p : D\ [H U Sing€] — (Sing¢ U {oo}) x (Singé U {oc})
is locally constant. In particular, it is constant by restriction to any connected

component of D'\ [Hﬂg U Singg].

PRrOOF. We will prove that wp is locally constant; the proof for oy is analogous.
Let Q € D\ [H{ U Singg]. If wp(Q) € Singé then wy'(Q) is a neighborhood of
Q. If wp(Q) = oo then the closure of I‘?JQ] contains a unique point ()’ such
that Q' € OD. Since Q ¢ Hﬂg then £ is either transversal to dD at Q' or Q' is an
inflexion point. As a consequence F?7 [0D)] is a neighborhood of Q. Since F?7 [OD]
is contained in wy ! (c0) then wp is locally constant. O

Let C be a connected component of D\ [H? U Singé€] such that wp(C) = oo.
Consider the mapping

endz' : C - oD

Q — F]g_,'_[Q}ﬂaD.

The mapping endg' is continuous. Hence, the set endZ(C’) is connected and then it
is an open arc. Moreover endZ(C’) does not contain neither tangent convex points
nor concave tangent points. If wp(C) # oo then we define endZ(C’) = 0. In an
analogous way we can define end, for the components contained in ay, H(o0).

LEMMA 2.1.3. Let C be a connected component of D\ [H? U Singé] contained

in (a,w)Hgl(oo,oo). Then
oC'\ [endgr(C) Uend, (C)]
has two connected components.

ProoF. We consider the boundary points A; and As of endZ(C). We define

v =T2_[4]nT
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for j € {0,1}. The sets 77 and 75 are connected. We have

oC'\ [endgr(C) Uend, (C) U Singé] = v U7z.
We choose Q € endg’(C). We have 7; # 2 because they are in different connected
components of D\ Fg_ [Q]. O

The previous lemma characterizes the dynamics for the components in (o, w)p ! (00, 00)
(see picture [3). Next we focus on the components in ag'(Sing¢) U wy ! (Sing€).

end™*
A, A,

end”

FIGure 3. Component of (cuw)ﬁl(oqoo)

LEMMA 2.1.4. Let P € Singé. For every neighborhood U of P we have that
8((a,w)ﬂ_)1(P, P)N(U\{P}) # 0. Moreover wy'(P) does not contain a neighbor-
hood of P.

PROOF. Let B any open neighborhood of D contained in the domain of de-
finition of . We define D = (a,w)&l(P, P). By lemma [2.1.1] we obtain that
D\ Singé # 0. We have

D\ Sing€ #D\ Sing€
because dD is contained in the closure of ay'(c0) U wy'(00). We choose a point
Q in 9D N (D \ Singt). Since Q € D the trajectory TF[Q)] is contained in D
and there exists Q" € TZ[Q] N ID. We have that ap(T'f_[Q']) = P; hence there
exists My € TZ_[Q'] N (U \ {P}). Then we have My € D N (U \ {P}) # 0.
Moreover, for all neighborhood U of P the set wy ' (P) does not contain U because
wD(MU) = OQ. O

COROLLARY 2.1.2.
Sing¢ C H¢
PROOF. Let P € Sing€. Suppose P & H?. We deduce that (o, w) is constant
in some pointed neighborhood of P. But then wﬂgl(P) contains a neighborhood of

P, that is a contradiction. ([

LEMMA 2.1.5. The mapping w is constant over any positively invariant domain
D C D and w(D) is a singleton contained in OD. In particular D does not contain
any equilibrium point.
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PROOF. The mapping wp : D \ Singé — D N Singé is locally constant since
the singular set is composed by flower points. As a consequence wp(D \ Sing¢)
contains a unique point P € D. If the point P belongs to D then D C wﬂgl(P),
that contradicts lemma 2.1.4l O

LEMMA 2.1.6. Let C be a connected component of D\ Hﬂg contained in the set

(a,w)ﬂgl(Singé“ x {o0}). Then OC \ (endg(C’) U Sing€) has two connected compo-
nents.

PrOOF. Consider the same notations than in lemma 2.1.3. Let P = ap(C).

We have
oC'\ (endg(C) U Sing&) = y1 Us.

Since 71 and -2 are connected it is enough to prove that v # 5. Suppose y1 = 72;
we choose an open neighborhood V' C D of P such that V'\ (71 U {P}) and V are
connected. Since [V \ (y1 U{P}H]NC # 0 and [V \ (11 U{P})]NIC = 0 then
V\ (11 U{P}) C C. Therefore, we have (ap,wp)[V \ (11 U{P})] = (P,0). If V
is a small neighborhood of P we also obtain that aﬂgl(P) contains V' N (y1 U {P})
and then the whole V; that contradicts lemma 2.1.4. O

For C C («, w)ﬂgl (Sing& x {oo}) the picture [l is a faithful representation of the
dynamics. We describe next the dynamics in the connected components of I\ Hﬂg

end™*

A, A,

FIGURE 4. Component of (a,w)ﬂ_))l(P, 00)

contained in (a,w)]l—)l(Singf x Sing€).

LEMMA 2.1.7. Let P,Q € Sing&. Suppose that (a,w)ﬁl(P, Q)#£ 0 and P # Q.
Then 8((a,w)151(P, Q)) is a closed simple curve of the form v = v Uy U{P}U{Q}
where vy, and vy are different trajectories of & in D. Moreover (a,w)ﬁl(P, Q) is the
bounded component of R? \ 7.

PROOF. Let D = (a,w)ﬂgl(P,Q). Since (a,w)ﬂgl(R P) # 0 by lemma 2.1.4
then there exists Ay in [0D ND]\ Sing¢. We define v, = F?[Al]. Since v; C 0D
there exists a convex tangent point Q1 € vy; N ID.

We claim that D # v, U{P} U{Q}. Otherwise we proceed as in lemma [2.1.6
to obtain that aﬂgl(P) is a neighborhood of P; that is impossible by lemma [2.1.4.
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There exists Ay in (D ND) \ (11 U{P} U{Q}). We define vy, = F?[Ag]. There
exists at least a convex tangent point Q2 € vo N ID.

The curve v = 1 Uy U{P}U{Q} is a simple closed curve defining a bounded
region B. The region B is invariant by £, hence a and w are constant on B. Since
ag(y1 Uy2) = {P} and wg(y1 Uv2) = {Q} then B C D. We have that B ~ D
because of Jordan’s curve theorem. We can choose a curve I[0,1] C D such that
I[0,1] is transversal to &, 1(0) = @1 and I(1) = Q2. Since P and @ are in different
connected components of D\ I[0,1] then D = B. O

The dynamics in (a,w)p Y(P,Q) (P # Q) is represented in picture 5.

y, (@.o) (PQ)

FIGURE 5. (o, w); (P, Q) for P # Q

LEMMA 2.1.8. Let P € Singé and let C be a connected component of the set
(a,w)ﬂgl(P, P)\ {P}. Then 0C is a simple closed curve {P} U~" where ~' is a
trajectory of & in D. Moreover, C is the bounded component of R?\ ({P} U~’).

PROOF. By lemma [2.1.4 there exists Q € (0C ND) \ Singé. Let v’ = F?[Q].
We have (a,w)5(7’) = (P, P), as a consequence v = v U {P} is a simple closed
curve. Let B be the bounded component of R? \ 7. By lemma 2.1.5 we have
(a,w)(B) € OB x OB and then (a,w)(B) = (P,P). Since v/ N dD # () then
v is a union of critical trajectories. Therefore B is a connected component of
D\ [H? U Sing€]. For a small neighborhood V of @ the set V'\ C' is contained in

ap ' (00) Uwy ! (c0); we obtain that C' = B. O

Last lemma is not enough to describe the dynamics in C. We need a little bit
more.

LEMMA 2.1.9. In the setting of the previous lemma let M,Q € C\ {P}. There
exists a continuous mapping F : [0,1] x [0,1] — C such that
F({0} x [0.1)) = F({1} x [0.1]) = P
F((0,1) x [0,1]) € C\ {P} and F,1)x[0,1] is injective
F((0,1) x {t}) is a trajectory of & in' D for all t € [0,1]
F((0,1) x {0}) = TZ[M] and F((0,1) x {1}) = T2[@)
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PRrROOF. It is enough to prove the lemma for @) in a small neighborhood of M
since C \ {P} is connected. Let I(t) C C (t € [0,1]) be a transversal to £ passing
through M. We define F(s,t) = F]? [I(t)](s). We claim that F' is continuous at the
points of type (0o,t) and (—o0,t). For instance, for a point (oo,tp) we consider
any neighborhood U of P such that F(0,t9) ¢ U. By remark 2.1.2 there exists
so > 0 such that F(so,t9) € Us. Therefore F(s,t) € Uy for all s > sg and all ¢ in
a neighborhood of t;. We deduce that F' is continuous. We parameterize [—oo, o0]
by the interval [0, 1]; in this way we can consider F' as defined over [0, 1] x [0,1]. O

FIGURE 6. Dynamics in a component C' of (a,w)ﬂgl(P, P)

Because of the last lemma the picture 6 represents the dynamics in C for
“1
C C (vw)y (P,P).

2.1.3. Tangent singular diagram. Let £ and &’ be flower type vector fields;
we say that H? ~ Hg if there exists an oriented homeomorphism h : D — D such

that h(HY) = HE.

We enumerate the points Tg, Tg, . TENT(O_l,
The set of indexes is Z/(N7Z). The order is induced by turning in S! in counter
clock wise sense. The enumeration is unique up to a translation j — j+ C for some
C € Z/(NrZ). We also enumerate the points Sfl, ey Sé in Sing&. We consider a

list Lﬂg of sets of types

TévT(g) = T}, contained in T%D’.

,a+1

{Sg. 7¢y, {Tg, 1}, {1
The set {C’a,Dg} (C,D € {T,S}) belongs to Lﬂg if there is a critical trajectory
either from C¢ to D? or from D} to C¢. The set {Tg’aH,Té’} belongs to L if
either the negative or the positive critical trajectory passing through Té’ contains a
point in the open arc (Tg, Té”'l) C dD. It is clear that every point Té’ belongs to
at least one couple in L?; we also have that every Sg is contained in a couple of L?

because of corollary [2.1.2l
By definition Lﬂg ~ Lﬂg, if
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o Nr(§) = Nr(¢') and §(Singg) = 4(Singg’)
o There exist ¢c € Z/(jZ) and 0 € Syginge such that
— {Sg. T e L% & {sg(“),T€+C} € Lg,
T g ]
a,a a+c,a+c c
— {1 1) € LY < {T TTY e L)
We define T C’? = [L]g’]. We have

LEMMmA 2.1.10.
HE ~He < 1C2 = IC

PROOF. Implication (=). Suppose h : D — D is an oriented homeomorphism
conjugating Hﬂg and H?,. The homeomorphism h preserves the critical trajectories;
as a consequence h also preserves the convex tangent points and the singular points
(corollary [2.1.2)).

We will denote (ag,we), and (cer,we), the (o, w) mappings for £ and & re-
spectively. A concave tangent point @ is in the closure of a unique component C'%
of D\'HP contained in (o, w)ﬁgl(oo, 00). Let C be a connected component of ]D)\H?
such that (ag,we)p(C) = (00,00). The set of tangent concave points in C coincides
with endg' (C)Nend, (C). We define l¢(C) as the number of connected components
of 0C N'D. The number of tangent concave points in C is equal to 2 — le(C).
Since I¢(C) = I (h(C)) then the number of tangent concave points in C' and h(C')
are the same. Therefore, there exists a bijection ¢ from Tg_ onto Tg_ such that

Q) € h(C’?) for all @ € TP _. Consider the mapping 6 : H UT,_ — HJ UT, _
such that 9|Hu§ = h\HE and GITE, = 1. Thus 0 conjugates L]Ig and L?/.

Implication («<). Let 7 — j + ¢ and o the permutations conjugating L? and
Lﬂg,. We define h(T¢) = Tg‘ﬁ+C and h(Sg) = Sg(b) for all @ in Z/(N7pZ) and 1 <
b < #Sing€. We can extend h to the union of the critical trajectories. Consider a
connected component C' of D\ 'Hﬂg. We denote by A(C) the connected component
of D\ H]?, such that

h(OC \ [end{ (C) Uend; (C)] = ON(C) \ [end} (A(C)) U endg (A(C))-

The mapping A induces a bijection from the connected components of D\ Hﬂg onto
the connected components of D\ H]]g,. It is enough to prove that we can extend h
to C such that

h:C — X\C)

is a homeomorphism. It is straightforward since C' ~ D and C ~ D. (]

By definition, two flower type vector fields £ and £’ are topologically equivalent
if there exists an oriented homeomorphism h : D — D such that h maps orbits of £
in orbits of £’

PROPOSITION 2.1.2.
top

g ~Y

PRrROOF. The implication (=) is obvious. o
Implication («). We use again the notations in lemma 2.1.10. Let h: D — D

an oriented homeomorphism such that h('H?) = Hﬂg,. By lemma 2.1.10 we can

D D
é-/ <:>H£ NH&/
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suppose that h(Tg]D)L) = Tg,- Let 6 be the mapping defined in ’H? U TEL U {0}
such that 6 = h in Hﬂg u Tg_ and 0(co0) = 0.
Let C be any connected component of D \ Hﬂg. It is enough to prove that 6

can be extended to a topological equivalence from C onto A\(C'). We described the
dynamics in both C' and A(C) and proved to be the same; that is a consequence of

0({aep(0),we p(C)}) = {ag p(A(C)), wer p(AC))}

and lemmas 2.1.3, 2.1.6, 2.1.7, 2.1.8 and 2.1.9. Therefore, it is straightforward to
extend 6 to C. We obtain an oriented homeomorphism 6 : D — D, it is a topological
equivalence by construction. |

2.1.4. The singular graph. We can associate an oriented graph g? to &.
The vertexes of the graph are the points in Sing€. There is an edge P — () going
from P € Sing¢ to Q € Singé (P # Q) if (ogw)]l;l(P, Q) # 0.

For an oriented graph G we define N'G the non-oriented graph obtained from
G by removing orientation of the edges.

LEMMA 2.1.11. The graphs Q? and /\/'Q? are both acyclic.

PROOF. Consider and edge P — . The points P and @ belong to different
connected components of D\ (a,w)ﬂgl(P, Q) (proof of lemma 2.1.7). As a conse-
quence the edge P — @ can not be contained in a cycle neither for Q? nor for

NG 0

We will say that P,Q € Sing¢ are separated by € if there exists M € D\ Singé
such that P and @ are in different connected components of D \ Fﬂg [M]. Clearly P
and () can not be separated if they belong to the same connected component of g?.

It is a sharper idea to deal with separation of connected components of g? instead
of separation of singular points.

We define the set of critical tangent cords TC’]? as the union of all the critical
trajectories in L]g not containing singular points.

PROPOSITION 2.1.3. Two different connected components of g? are always sep-
arated by &. More precisely, they are separated by a critical tangent cord.

PRrROOF. It is enough to prove that no connected component of D\ TC]? con-
tains more than one connected component of g?. Suppose it is false. Let C be a
connected component of D\ TC’]? containing [ > 1 connected components Gy, ...,
G, of the graph Q?. For 1 < j <1 we denote by Sing(G;) the set of singular points
(also vertexes) of G;. We define

V= [aﬁl(Sing(Gj)) U wDTI(Smg(Gj))] \ Singé

forall 1 <j <I. Theset V; C C (1 <j<I)is open since § is a flower type vector
field, moreover it is not empty by lemma 2.1.1. For all 1 < j < k < [ we have
V; NVj = 0, otherwise the restriction of g? to Sing(G;) U Sing(Gy) is a connected
graph. We define the set ES C C'\ Sing€ such that Q € ES if (o, w)(Q) = (00, 00)
and the two points in F? [Q]NOD are not convex tangent points. The set ES is open
and it satisfies ESNV; =0 for all 1 <j <I. Let M € (C'\ Singé)\ (V1 U...UW);
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since Singé N C = Ui<;j<Sing(G;) then (o, w)p(M) = (00,00). The point M
belongs to ES because otherwise M € TC? C R?\ C. As a consequence

C\Singﬁleu(VQU...UVZUES)

is a disjoint union of non-empty open sets. Since C'\ Sing¢ is connected we obtain
a contradiction. O

We consider that two different critical tangent cords are equivalent if they
induce the same partition in the singular points. Let TC]?,N a subset of TC’]?
containing one element for each equivalence class.

Let G be a connected component of g?. Then Sing(G) is contained in a unique
connected component C' of D\ Upercz 1 - We define Z(G) the set of elements of
TC’]RN contained in C. We denote by (Ef’l,Ef];’Q) the partition of the singular
points induced by a n € Z(G); we choose Ef’l to satisfy Sing(G) C Ef’l.

LEMMA 2.1.12. Let G be a connected component of g?. Forn,n' in 2(G) such
that n # 1’ we have that ES*? N ES’Q = {.

PRrOOF. Since n’ N D and Sing(G) are in the same connected component of
D\ 7 then Ef,’:’z C Ef’l and we are done. O

ProrosITION 2.1.4. Lﬂg determines completely NQ?,

Proor. For {Tg, Té’} € L]? we denote by 3%" the critical trajectory joining T¢
and Tgb. For {P,T¢'} € Lﬂg’ and P € Sing& we denote by 5% the critical trajectory
joining P and T¢. Let P,@Q € Sing¢ such that P # Q. We claim that P < Q

belongs to N Q? if there exists k > 1 and a sequence
{P,Tgl} , {Tg‘“,TgQ} Y e {Tg’“’l,Tg’“} , {Tg’“,Q}
contained in Lﬂg such that P and @ are in the same connected component of D\
p%%+1 for all 1 < j < k. -
Suppose P — @ belongs to g?. Consider a trajectory 7, of £ in D contained in

the boundary of (a,w)ﬂgl(P, Q). By the proof of lemma 2.1.7 the curve {P}U~; U
{Q} is a union of critical trajectories. Therefore, there exist k > 1 and a sequence

{P,Tgl} , {Tgl,Tg"’} ) e {Tg’“’l,Tg’“} , {TE‘“&Q}
contained in Lﬂg. Moreover P and @ belong to the same connected component of
D\ g%+ for 1 < j < k, otherwise (oqw)H;l(P,Q) = (. The proof for Q@ — P in
Q? is analogous.

Suppose we have a sequence satisfying the aforementioned properties but (P «
Q)¢N QE’. Then P and @ are in different connected components of g?, otherwise

NGZ has a cycle for & = (x/(14n),y/(1+n)),£ and n > 0 small enough. By
proposition 2.1.3| there exists M € D\ Singé such that F]]g [M] separates P and Q.
We claim that

(B3 \ {P}) Ur<jcr B4+ U (B3 \ {Q}) = T2 [M].

The right hand side term separates P and () and then the intersection of both terms
is not empty; since both sides are trajectories then they are equal. Hence Fﬂg [M]
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coincides with 4%%+1 for some 1 < j < k; that is a contradiction since I‘?[M ]
separates P and Q. O

2.2. Families of vector fields without small divisors

We will define throughout this section the objects that we are going to study.
We will consider families of flower type vector fields. The flower singularities we
will deal with are parabolic.

2.2.1. Parabolic germs of vector fields. Let Y € H(C,0) such that vy >
2. The vector field Y can be expressed in the form

0
Oox
where a,, # 0. We define the set ©~(Y) C S! of vy — 1 roots of |a,, |/a,, . We
define ©1(Y) = (™)/(v =)@~ (Y)). The set ©(Y) is composed by the directions
contained in (a,, 2"¥)/x € RT, in other words [(ay, 2"Y)/z € RT] = 7 (Y)R™.
We expect a repulsive behavior in the neighborhood of the directions in ©~(Y)
and an attractive one in the neighborhood of [(a,, z*¥)/z € R™] = ©T(Y)RT. We
define O(Y) = ©7(Y)U O~ (Y). The set O(Y) is ordered in a natural way; for
every | € O(Y) there exists a next one NE(I) = le(™)/(~1) and a previous one
PR(l) = le=(m/v =1 Moreover, if I € ©F(Y) then NE(I) and PR(I) belong to
O~ (Y) whereas if | € © (V) then NE(l) and PR(l) belong to ©1(Y).

Let 7 : (R* U{0}) x S* — R? be the mapping defined by 7(r,\) = rA. This
is the real blow-up of the origin in R?. We say that a set £ C R? adheres to a
direction A if (0, A) € #=1(E \ {0}). Consider a vector field £ and a point Q & Singé
such that w(@Q) is a point. We define l¢ 1 [Q)] the set of directions at w(Q)) such that
I'¢c 1+ [Q] adheres at. In an analogous way we define l¢ _[Q)].

Y = (ay, 2" + auy+1x”y+1 +...)

PROPOSITION 2.2.1. (Leau [Lea97|, see also [CamT8]) Let Y € H(C,0). Sup-
pose that vy > 2. For any neighborhood V of O there exists a family of open
non-empty connected subsets {Vi}t;cqyy of V '\ {0} such that

(1) w = (Uieov)V1) U{0} is a neighborhood of 0.

(2) Forl e ©T(Y) the domain V; is positively invariant by Re(Y'), moreover
wre(v) (V1) = {0}.

(3) Forle © (Y) the domain V, is negatively invariant by Re(Y), moreover
age(y) (V1) = {0}.

(4) Forle ©%(Y) and Q €V, we have lg’e(y),+[Q] ={l}.

(5) Forle ©~(Y) and Q € V; we have lge(y)’f[Q] = {I}.

(6) Let Q € W\ {0}; if Wre(v),w(Q) = {0} then
Loy 2 Q1 N (Uieor ) Vi) # 0.

(7) Let Q@ € W\A{0}; if aperv),w(Q) = {0} then
Loy [Q1 N (Uieo- Vi) # 0.

(8) VinVi #0 if and only if k € {NE(l), PR(l)}.
In particular 0 is a flower type singular point for Re(Y).
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REMARK 2.2.1. Consider Y = (ay, (y)"" + ayy+1(y)z"Y ™ +...)0/0x where
ayy (0) # 0. There exists a family of open connected sets {Vi},cq such that {Vi N [y = yol},cq
satisfies the conditions in proposition 2.2.1| for all yy in some neighborhood of 0.

2.2.2. Holomorphic families. We will consider germs of vector field of the
form X = f0/0x. We will agk f for fulfilling the no small divisors (NSD) conditions:
e f(0,0)=0and f#0
e The decomposition f}"* ... f,?y™ of f in irreducible factors satisfies that
m>0andn; >2foralll<j<p.
The first condition implies that f = 0 is an analytic curve whereas the second one
guarantees the absence of small divisors.
We define the sets
Ue={(z,y) : |z| <e}and U5 = {(z,y) : |z| <eand |y| <d}.
Our results will be valid for € > 0 and § > 0 small enough. Many times it will be
implicit that the results are true up to shrink the domain.

Let U, s a domain such that f is defined in a neighborhood of U 5. We also
request that [f; = 0] \ Sing(f; = 0) is connected in Ucs and [([z] = €) x (Jy| <
HIN[f; =01=0forall 1 <j<p We define {(X,yo,€) as the restriction of the
real analytic vector field Re(X) to [y = yo] N [z < €] for yo € B(0,6). If € or yy are
implicit we just write £(X, yg) or £(X) for shortness.

Let P = (zo,y0) € SingX such that [y = yo] ¢ SingX. We denote by vx(P)
the order of the vector field X|,—,, at x = x¢. Our conditions imply that vx (P) > 2
for all P € SingX. As a consequence

COROLLARY 2.2.1. Let yg € B(0,6). If yg # 0 then the vector field £(X, yo, €)
is a flower type vector field. Moreover, if m = 0 then £(X,0,€) is also a flower type
vector field.

We can describe the nature of (a, cu)_l(P7 P) for P € Sing&(X, yo, €).

LEMMA 2.2.1. Let P € Sing&(X, yo,€) for a flower type vector field £(X, yo,€).
Then (o, w)” (P, P)\ {P} has exactly 2(vx (P) — 1) connected components.

PrOOF. We denote P = (z9,yo). Consider the partition {V;},_o associated to
& =&(X,yo,€) at P (proposition [2.2.1). We choose a point z; in V; for all | € ©;
we consider ¢ < min(minee |z; — zo|,€ — xg). For I € ©4 let 4, be the unique

xo\<e’(P)' By
replacing w with o we define ~; for I € ©_. The set [|x — x| < €] \ Ujcoy has
2(vx(P) — 1) connected components; we denote by A; (I € ©) the one adhering to
the closed arc in (r, \) € {0} x St going from [ to NE(I) in counter clock-wise sense.
Let {Wi},co be a partition associated to £ at P and whose sets are contained in
|z —x0| < €. By construction A; "W}, # 0 if and only if k € {l, NE(l)}. Therefore
AN (Wi UWyg@)) is a neighborhood of 0 in A;. As a consequence we obtain that
AINWiNWy gy # 0 because otherwise (A;NW;)U(A;NWy k() induces a partition
in non-empty disjoint open sets of every sufficiently small connected neighborhood

of 0 in A;. We choose Q; € AiN Wi N Wiygq-

Let [ € ©; we define C; the component of (a,w)ﬁikd (P, P)\ {P} containing
Q. By conditions (4) and (6) (resp. (5) and (7)) in proposition 2.2.1 the mapping
I (resp. I_) is locally constant in C;. Therefore, we have

Gl u Gl = (1, NE@)}.

connected component of I‘lgfe[xl] N[z — x| < €] contained in W§7|1m7
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Moreover, the component C; adheres to the directions in the closed arc going from
[ to NE(l) in counter clock-wise sense by construction of @;. We deduce that
C,#Cpifl,l' c©andl#1.

Suppose there is a connected component C of («, w)ﬁKe] (P, P)\{P} such that
C # C; for all | € ©. On the one hand C adheres to at least two directions I’ € ©_
and ” € ©4 at P. On the other hand C' is contained in a connected component of
[[z] < €]\ [UicoCl] and then C adheres at most to a direction at P. We obtain a
contradiction. (]



CHAPTER 3

A Clockwork Orange

Let X = f0/0x be a (NSD) vector field. We want to split U, in several pieces
where the dynamics of Re(X) is simple. We define the number N = SingX NU. N
[y = yo] for a generic yg € B(0,4). For N = 0 the dynamics is simple. Since there
are no singular points then

—1
(Ue Ny = s]) = (@e(x(0).5.0» We(X (1).5.6)) 15 < (00, )

for all s € B(0,9) \ {0}. As a consequence U, N [y = s] is the only component of
[lz| < €\ Hlle;&) 5 and its boundary contains no critical trajectories. Therefore,

we obtain ﬁTglf)‘:(f\) s, = 2. The dynamics is represented in picturel. The tricky

FIGURE 1. Dynamics of £(X(A), s,¢) for N =0
dynamics is attached to the case N > 0.

3.1. The tangent set

Since our approach is based in study Re(X) in a fixed domain U, s then it is
natural to study the set where Re(X) and OU, are tangent.

We define the sets T (s) = Tg‘?}lé;e) and T = Usep(0,6)Tx (5). The set T (0)
is not defined if [y = 0] C SingX. Let f" ... f,"y™ be the decomposition in
irreducible factors of f. We denote v(f]'" ... fy"(x,0)) by #(X). We define the
vector field X(\) = A(f/y™)0/dz for A € St.

PROPOSITION 3.1.1. Let X = f0/0x be a (NSD) vector field. There exists
€0 > 0 such that if € <o then 4T\ (s) = 2|(X) — 1| for all s in a neighborhood
of 0 and all X € S*.

23
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PRrOOF. The points in T, are those in U where 20/0x and X(A) are or-

thogonal, i.e.
. Re (Af.(xyﬁy)) =0
TX(A) = { zy

|z| = e.

We denote 7(X) by v. We have (f/y™)(z,0) = a, 2" +a, 12" +. .. where a,, # 0.
We define
A U xSt — St

(F/ey™)(P)
(BA) = Apraymyey

We define arg§ = In(A%)/7; it is well defined up to a multiple of 27. If € > 0
is small enough then Ax((x,0), ) is a locally injective |v — 1] to 1 function for
all \g € S'. We identify oU, with S! x (C,0). The derivative of args ((x,0),\)
with respect to arg(x) is then well-defined and it tends uniformly to » — 1 when
¢ — 0. The derivative of argS ((x,n), \) with respect to arg(x) tends uniformly to
the derivative of args ((x,0),A) when n — 0. Therefore, there exists ¢g > 0 such
that for all € < €g, all A\g € S and |yo| < do(€) the mapping A ((z,yo0), No) is [v —1]
to 1.
Since

T)E(()\) (yO) = {(xayO) : A;((($7y0)aA) € {—Z,Z}}
then ]iTj(()\)(yo) =2|v — 1| for all € < ¢y, A € St and |yo| < o(e). O

COROLLARY 3.1.1. Let X = f0/0x be a (NSD) vector field. If p > 1 all the
points in T)E((A) are convex, otherwise they are all concave.

PROOF. A tangent point is convex (resp. concave) if the function arg$ is
locally increasing (resp. decreasing) with respect to arg(z). By choosing € and ¢
small enough we make the derivative of args with respect to arg(z) sufficiently
close to 7(X) — 1. Hence, the tangent points are convex if p > 1 since the (NSD)
conditions imply 7(X) > 2. If p = 0 then 7(X) = 0 and all the tangent points are
concave. (|

REMARK 3.1.1. If m = 0 then X = X (1), otherwise the trajectories of Re(X)
and Re(X (y™/|y|™)) coincide. Therefore, the statements in proposition 3.1.1 and
corollary3.1.1) are valid outside of y™ = 0 when we replace X (\) with X.

Let m : (RT U{0}) x S' — R? be the real blow-up of the origin. We can lift
7(r,\) = rA to the universal covering of (RT U {0}) x S! to obtain a mapping
7 : R x R — R? such that 7(r,0) = re'.

PROPOSITION 3.1.2. The set T is the union of 2|0(X) — 1| real analytic sets
TS (r,0), ..., T;(’Qlu(x)_ll(rﬁ) defined in [0,r0] x R for some ro > 0.

PrOOF. Consider a local chart = €e®® of the manifold |z| = ¢. The mappings
A& (r, ¢, 0,A) and argS (1, ¢, 0, \) are real analytic. We choose

A=y lyl" = e,

As a consequence we can consider A and arg$, as real analytic functions of (r, ¢, 9).
Moreover, the choice of A implies that

T% = (M%) H{—i,i}.
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We can make darg, /0(¢ sufficiently close to #(X) — 1 if r << 1. As a consequence
we can suppose [dargs/9C](r,¢,0) # 0 for all (r,¢,0) in (R>(,0) x R x R. The
thesis of the lemma is now a consequence of the implicit function theorem. (]

REMARK 3.1.2. If [y = 0] ¢ SingX then T)e(’j (y) is a real analytic function for
1 <j <2/p(X)—1|. The proof is almost the same than the proof of proposition
3.1.2; the difference being that since A = 1 is a function of y then args can be
consider as a function of ((,y).

3.2. Exterior dynamics

3.2.1. Existence of the integral of the time form. This paper is based on
a basic fact: the dynamics of the real part of a (NSD) vector field can be described
both qualitatively and quantitatively. The qualitative study can be enriched with
quantitative estimates provided by the analysis of the integrals of the time form of
the (NSD) vector field.

Let Y be a holomorphic vector field Y defined over a 1 dimensional analytic
variety. We can associate to Y a unique meromorphic 1-form wy such that wy (Y') =
1; this is the time form. At any P € SingY the 1-form wy has attached a residue
Resy (P). An integral ¢y of the time form wy is a multi-valued function defined
outside SingY and such that

Y(iby) =1 & ¢y = /wy(z)dz.
As a consequence we have
Py oexp(tY) =9y +tforallt € C

where the last equality is defined.

We can associate to X = f0/0x a 1-form wy in the relative cohomology of the
vector field 9/dz. The expression of wx in coordinates (z,y) is equal to (1/f)dx.
We denote by ¥x an integral of wx for every fiber y = yy in a neighborhood
of yo = 0. For any P € SingX we denote by Resx(P) the residue of the form
(wx)y—y(p) at P-

REMARK 3.2.1. For any component 3 # (y = 0) of f =0 the function Resx is
holomorphic in 3\ {(0,0)}. On the other hand, in general the function (Resx) 4

is not continuous at (0,0). Let X = a%(x — y)*0/8z. For (0,y) € [z = 0]\ {(0,0)}
we have Resx (0,y) = 2/y> whereas Resx (0,0) = 0.

We denote by Res’y. the restriction of Resx to 5\{(0,0)}. Consider fI'* ... fy7y™
the decomposition of f in irreducible factors. The number
N; =4(lf; = 0N [y = wo))
does not depend on yq for yg in a small pointed neighborhood of 0. We define the
ramification
R = (l‘,le"'Np).
Then foR =0 has N = Z§:1 Nj; irreducible components s1, ..., Ky different
than y = 0. These curves are smooth and transversal to d/dx, hence they can be
parameterized by y. We denote Resgj* x by Res;j for simplicity. We have

PROPOSITION 3.2.1. For all 1 < j < N there exist P; and Q; # 0 in C{y}
such that Resy = Pj(y)/Q,;(y) on ;.
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PrROOF. Let us fix j € {1,...,N}. Since k; is parameterized by y we can
suppose £; = [z = 0] up to a change of coordinates. We have f o R = a,(y)z" +
ay+1(y)z"Tt + ... where v > 1 and a, #Z 0. Let ¢ be the order of a,(y). Consider
the transformation

H:{ vo= 2y

y =y
We have fo Ro H = y?“+([a,(y)/y]z" + O(z**1)). Since a,(y)/y? is a unit
then Y = (H*R*X)/y? satisfies vy (P) = v for every P in z = 0. As a con-
sequence Resi~ is holomorphic. The transformation H is biholomorphic out-

side y = 0, therefore it preserves the residues. Hence, we obtain Ressg 0,y) =
Resi79(0,y)/y®". O

Let g; = 0 be an irreducible equation of ;. Let gil ...gﬁ{,"yle“'NP be the
irreducible decomposition of f o R. We are looking for a holomorphic ¥+ x of the
form

N
y
’l/}R*X = O[ Z ln g] )
1 y
This equation is equivalent to
Oa(x,y) i(y) 9g; 1
(3.1) 5 Z 1 ==L
x i(y) Oz gj(z,y)

A solution « is an integral of the relatively closed meromorphic form obtained by
multiplying the right hand side of equation [3.1 by dx. The equation 3.1 is free of
residues.

LEMMA 3.2.1. There exists a solution « of equation 3.1 of the form

B
gyt gy T ymo

where 3 € C{z,y} and mo < max(mNi...N,, maxi<j<n v(Q;)).

PRrOOF. Let us consider a simply connected domain U x D C U, s where 0 ¢ U
and 0 € D. We also request (U x D) N (f o R = 0) to be either the empty set if
m =0 or U x {0} if m > 0. The equation

dp 1
dr foR

admits a solution a(z,y)/y™N» for a holomorphic function a defined over U x D.

We can extend p as a multi-valuated function to
V = ([|z| < €] x D) \U;»Vzllij.

The function ag = p — Zj.vzl(Pj /Q;)Ing; is single valued; it is meromorphic in V'
and holomorphic in V'\ [y = 0]. Moreover «y is a solution of equation [3.1. Let mq
be the order of pole of oy at the curve y = 0.

Consider a point P in x; \ {(0,0)}. The curve f o R = 0 can be transformed
into the curve = 0 up to a change of coordinates (Hp(z,y),y) defined over a
neighborhood of P. It is straightforward to find at P a local solution ap of equation
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3.1l such that apgéj_l is holomorphic. Since d(ap — ap)/dx = 0 then (ap —ap)(y)
is holomorphic in a neighborhood of y = y(P). As a consequence

B=aogy gy Ty
is holomorphic in ([|z] < €] x D)\ {(0,0)}; this function is holomorphic in a neigh-
borhood of the origin by Hartogs’ theorem. O

REMARK 3.2.2. The expression

g

In—1
cgN Y™

N

)
Yrex = e ) In g;

. (y
1 J

b
— Q;(y

shows the holomorphic dependance of {gr+=x on the parameter y outside of y = 0.
The holomorphic character of ¥g«x in the neighborhood of y = 0 is provided by the
proof of last proposition.

We denote by u(B) the order of pole of a meromorphic function B defined
in a neighborhood of 0. Let A be a multi-valued function defined in a pointed
neighborhood of 0. Suppose there exists k € N such that A(y*) is meromorphic in
the neighborhood of 0. We define the order of pole u(A) of A as u(A(y*))/k. The
definition does not depend on k. In our case we have
P(y'/M7)

Qy'/N9)

for some P, @ € C{y}. Let M; be the generic number of pre-images of Resﬁgzo =
cte; this number coincides with [v(P/Q)| if [v(P/Q)] > 1. Therefore if u(Resﬁ(j:O) #
0 then ;L(Resﬁ(jzo) = M;/N;.

Resli™ =

3.2.2. Dynamics at the limit line. In order to describe the dynamics we
study the behavior of the critical trajectories at y = 0.

PROPOSITION 3.2.2. Let A € S'. There are no critical tangent cords for
§(X(A),0,¢).

PROOF. If SingX is contained in y = 0 then all the tangent points are concave
(corollary[3.1.1)) and we are done. Otherwise, we consider the connected components
Cl()\), ceey Cl()\) of

de

) = (%(X(A),o),w&(X(A),o))‘;‘l«(O,0) \ {0}

We have | = 2(vx»)(0) — 1) = 2(#(X) — 1) by lemma 2.2.1. The number of
tangent points of £(X(A),0,¢) is also 2(#(X) — 1) by proposition 3.1.1. We have
CiAN)NCrA)NAU. =0 for 1 <j<k<land C;(A)NOU. # 0 forall 1 < j <I.
Since the number of tangent points and ! coincide then §(C;(A) N OU,) = 1 for all
1 < j <. Hence, the trajectories of £(X(\),0) in |z| < € passing through a tangent
point do not contain other points in OU.. Therefore, there are no critical tangent
cords. (]

<

REMARK 3.2.3. If SingX ¢ (y = 0) we proved that
(@g(x (2,00 We(x(2).0)) 1 <uiy (@) = (0,0)

|z|<e
for all Q € TJX(MO).
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Suppose that SingX # [y = 0]. The remark [3.2.3implies that the dynamics of
Re(X (X)) in U N [y = 0] is as described in picture 2.

FIGURE 2. Dynamics in y =0

3.2.3. Dynamics far away from the singular points. Far away from the
singular points, we can not distinguish them; basically they can be replaced by a
single singular point. We exploit this fact to show that the dynamics in the exterior
part of a domain U, s depends nicely on the parameter.

We suppose N > 1, otherwise the dynamics is trivial. Let f = y™f" ... fp*
be the the decomposition of f in irreducible factors. Throughout the rest of this
chapter and up to a ramification we suppose that f; = 0 is transversal to 0/0x for
all 1 < j < pand then N = p. This hypothesis is not restrictive since the results
we deal with in this chapter are invariant by a ramification (x,y) — (z,y*). We
split U, in two sets

Ul =Ucn(lz] <nlyl] and UP" =T N {[lz| = nlyl.
We claim that roughly speaking the dynamics at U™ is trivial whereas U~ can
be subdivided to obtain a simple description of the dynamics

The remaining part of this section is devoted to prove that Re(X (A\™))(x,r))
is dynamically similar to Re(X (A\™))(z,0) in U7+, We consider > 0 big enough
to guarantee that U \ [y = 0] does not contain singular points.

LEMMA 3.2.2. Suppose N > 0. There exists ng > 0 such that for all n > ng the
set T)lf(lfoyyy“l(yo) is composed by 2(v(X) — 1) convex points for all yo in a pointed
neighborhood of 0 and all Ay € S*.

PROOF. Since f; = 0 is parameterized by y then f;/(z — g;(y)) is a unit for
some g; € C{y}. Therefore, there exists a unit u € C{y} such that X is of the form

X =u(@,y)y™(@—gqy)" ... (x—gn(y))""0/0x.

Up to consider the transformation

{xzyw
y =y
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the vector field (wy,y)" X is equal to y™m+mit T8 =1y where

Y =u(yw,y)(w - g1(y)/y)"" .. (w = gn(y)/y)"" 0/ Ow.

Thus (r)\,w)*X()\O)‘y:M = rnl+~~~”N*1Y()\0)\"1+"'"N71)‘y:M. We have
_ ny _ nN
i W g/ (w—gnW)/y)™
wW— 00 wn1+nN

The limit is uniform in y € B(0, ). The derivative of
arg[u(yw, y)(w — g1(y)/9)"" - (w = v W)/} uol=m A (w=v0)

with respect to arg(w) tends to #(X) — 1 if n — oo and yg — 0. Since we have
(lz] = nly|) = (Jw| = n) then the result is a consequence of applying proposition
3.1.1 and corollary 3.1.1 to Y()\o)\"1+"'+”N_1)|y:T>\. O

From now on we suppose that > 0 is big enough. Next we provide a qualitative
description of the dynamics of Re(X (X\g)) in U2,

LEMMA 3.2.3. Suppose N > 1. Consider \g € S' and a point (xq,yo) in
T)If(‘::), Then, for s € {+,—} the closure of I‘gl?ggﬁe[xmyo] contains a unique
point (x(,y0) i (|z] = nlyol) U (|z| = €) different than (xq,yo). Moreover (z(,yo) €
(lzl = nlyol)-

PROOF. If yo = 0 the lemma is true (see remark 3.2.3). Suppose yo # 0; we
denote A = [n|yo| < |z| < €] C [y = yo] and & = £&(X (No), yo,€). Consider the set
H = Upere )F? [P]. Intuitively , the set H is the union of the critical trajec-

(Yo
X(Xo)
tories of Re(X) in A. With respect to A the points of Tgl‘%‘<€ are convex (corollary

3.1.1) whereas the points of Tgxl@ﬂy”l are concave (lemma [3.2.2). Moreover, we
have

1T (o) (W0) = HT) (o) = 2(9(X) — 1)
by proposition [3.1.1] and lemma |3.2.2.
We proceed like in proposition [3.2.2. Since A N SingX = @ then
AcC (ag,wg);(oo,oo).

For P € Tglm\<n\yo\ we denote by Cp the unique connected component of A\ H
such that P € Cp. We can define endj(S) = FQJF[S] N oA for S € Cp; the
definition of end is analogous. The sets end};(Cp) and end;(Cp) are connected
and contained in 0A \ (Tg‘zl<6 u Tglzl<n|y°|). There are two connected components
of A\ Tg‘mlqu0| whose closure contains P. Since P € dCp the set end}(Cp) is
contained in one of those components whereas end, (Cp) is contained in the other
one. As a consequence of this discussion Cp N Cq = 0 for Q € T£|x|<n|yo| \ {P}.
The set dCp \ (end};(Cp) U end;(Cp)) has two connected components. One
of them is {P} and since Cp N (Tg\mknlyol \ {P}) = 0 we deduce that the other
component is contained in H. As a consequence we obtain that Cp N T, §|x|<6 £ 0.
Moreover, the latter set is a singleton since ﬁTglee = ﬁTngmyo‘. We deduce that

for (zo,yo) € T£|I|<E NCp and s € {+,—} the set

T20x (xo).) %0, 0] N (DA {(0,%0)})



30 3. A CLOCKWORK ORANGE

is a singleton contained in end} (Cp) and then in [|z| = n|yol]. O

Since ﬁT)‘?(lfoé) (yo) = jjTlf(‘::)‘yo‘ (yo) = 2(7(X)—1) then the dynamics of Re(X (o))

in nlyo| < |z| < € is as represented in figure 3. The dynamics in the exterior zone of

o

2

FIGURE 3. Dynamics of Re(X()\g)) in U7+

&(X(Xo),y,€) is qualitatively equal to the dynamics of £(X(\g),0,¢). We are also
interested in a quantitative comparison.

Let Xo = (f/y™)(z,0)0/0z. The series (f/y™)(z,0) is of the form a;(x)z” )+
h.o.t where a;(x) # 0. We define Xoo = a;(x)2”¥)0/0z. For (yo, o) € B(0,5)xS!
we consider the set

Nlyo| <|z|<e
ol < bl < 9\ (Upegics o PR 5P

An exterior region at (yo, Ao) is the closure R}T(’ AO)(yo) of a component of the pre-
vious set. The exteriors regions depend continuously on (yo, Ag); a priori we can
have R}Té o) (%0) # R;’{Zem ro) (yo) but anyway the monodromy is finite since we have
R 100y Wo) = R ricoio 15 (W0). We denote (W08 by 8} ). Fix a region

RT3 (y). If the set T)lf(‘;;(y)ﬂR;Té/\) (y) is a singleton for all (y, A) € B(0,0) xS}y,

we denote its element by T;t\) (y); we say that R}T(’/\)(y) is an ”a” exterior region.

Otherwise R;{’(A)(y) is a "b” exterior region. It satisfies T)‘f(‘f)e(y) N R}?A)(y) =

{T‘;%}\) (y)> T;(’?A) (y)}
We have that

. ilazx)| ir0 in[2(0(X)=1)=1]
<e D(X)—1 V(X) — —_
Tl (y) =€ "% T {e"T =1 e O}
\ e ,
Xoo(N) Aagz(x)

in particular T)lfo‘:(;)(y) depends on A but it does not depend on y.

ly=y0
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LEMMA 3.2.4. Suppose N > 1. Let 0 < ¢ < 7/[2(0(X) —1)]. Fore << 1 and
d(e) << 1 we have that there is exactly one point of TlIKe( ) in =%z for all

X(N)
z € T‘IK(;) and A € St.

PrOOF. Consider the function arg§ : U, x S' — R defined in the proof of
proposition 3.1.1. Since (f/y™)(z,0) = azx)z”X)(1 + h.o.t) then for all (z,0) €
OU, and A € S' we have

largk ((z,0), A) — arg,, ((,0), A)| < h(e),
where h : (R*,0) — RT satisfies lim._oh(e) = 0. We also have that the de-

rivative of arg$ ((z,0),A) with respect to arg(z) tends to 7(X) — 1 > 0 when
e — 0; the limit is uniform in A € S!. We choose ¢, such that for € < ¢, we have

O(arg% ((z,0),N)/0(arg(z)) > (#(X) —1)/2 and h(e) < ((P(X) — 1)/4. These
properties imply that there is exactly one point of T)‘f(lf)e( ) in €'(=¢/2:¢/2) 2 for all

z € T)‘f‘?\) and A € St. We can extend the result to y € B(0,4) by continuity. [

Let 0 < ¢ < 7/[2(#(X) — 1)]. Consider a region R = RX()\)( y). For (yo, o) €

B(0,0) x S¥(X we have TX(,\ ) (o) € el(= C’C)TXUO(/\O) for a unique T;;O(AO) in
T)I?o‘:f\o If R)’(ré)\ (y) is of ”a” type we define
D"(Mo) = D5 (50, o) = (nlyl < o] < )\ (T ) BRO)-

If the type is ”b” then T;?/\O)(yo) € e”/(D(X)_l)ei(_C’C)TE’1 o(rg)- We define

0)
D3 (No) = D% (yo, Xo) = (nly| < |z| <€)\ (T)Efjo(,\(,) eim/REX)=DIR—)
The shape of D%7()) is as presented in picture 4l

Txoo(7~o €,2 €, 1
Xoo(*0) TXOO(AO)

FIGURE 4. D3"(N)

3.2.4. Behavior of the integral of the time form. We denote by 1y a
meromorphic integral of the time form of Xo; that is possible because Resx,, (0,y) =
0. We denote by & and 1® integrals of the time forms of Xy and X (1) respectively
defined in the set

DR" = [(w,y,A) € DF"(N) x {M N X € S5 x)]-
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Fix €y << 1; we choose ¥ and ¢ such that

e 1 5 1
d)R( XOOO oY y) = 1/’0( XOOO(A) y) = 7/)00( Xoo(A)’ Y)

for all (y,A\) € B(0,6) x SD(X)' Our approach is proving that the dynamics of
Re(X(\)) and Re(Xoo()\)) are similar by comparing ¥ and gy in U7

LEMMA 3.2.5. Suppose N > 1. Let ( > 0. Consider any exterior region

R(y,\) = RY(\(y). Then |8 oo — 1| < ¢ in DR for e << 1. Moreover, we have

Yoo
in DE" fore << 1,71 >>0 and § << 1.

<

PrROOF. We denote v = 7(X). We choose a determination for Inz in the
simply connected set D%7(1) and then we extend Inz analytically to D%”. Since
S},(X) = S' is compact there exists a constant J > 0 such that |[Img(Inz)| < J if

(z,y,\) belongs to D3". The function tgo(z,y, A) is equal to —1/(a, (v — 1)z~ 1)
and

e, y, A) = H(z)+C(\)

where b = Resx, (0); the continuous functions C'(\) and H(z) are defined in SI%( x)

and a neighborhood of B(0, €) respectively. The function C' is a continuous function
defined in a compact set and then bounded. We obtain

e
Yoo
Since |[Img(Inx)| < J then the right hand side is a o(1).
Let us focus on ¢ /¢ ft. We define K (, y, A) : DR — Csuch that K (z,y,\) =
P (z,y, \) — &(z,y,\). We have K(T;O’ (3):¥:A) = 0 by choice. Consider the

(= gn(y)"™

—1=—a,(v—1D[ba" ' Inz +2H(x) +CN)a"]

ni

decomposition u(z, y)y™(z — g1(y)) of f in irreducible factors.

Since

oty g 1
-yl and =
ox f(l%y) Ox u(z,O)znl—‘r...—&-nN

then K satisfies
flay) 0K | u@y)@—a@)™ ... (= - gn)"™
ym™ Oz u(x,0)gmt-tny '

For n >> 0 and § << 1 we have |(f/y"™)0K/0z| < Aily/z| in D" for some
Ay > 0. That leads us to

oK ly/=|
- N < Ag—F——
‘ 8(E ($7y7 )‘ — 2 |x|n1+‘..n1\1
in DR for some Ay > 0. We denote zo(\) = T;(O’ (n)- For any point (z,y,A) €

D3P we can express x as © = (1/eg)e?xo(A) for r € [n|yl, €] and || < 2. Let

x1 = 29(\)e’?; we obtain
z1
/ 8—de < 2m Az |y|
zo () Oz €

|K (21,9, A) — K(20(N),y, A)| < ST PR R
0




3.2. EXTERIOR DYNAMICS 33

Consider the path v :[0,1] — Dg(y, A) defined by
V(1) = (22 [(1 = 1) + tr/eo], y, A).

We obtain
0K oK
K -K < —dzx| < -— !
o) = Koy ) < | | Gae] <| [ G000
The previous expression implies
Ag(éo—’l") /1 1
K(z,y,\) — K(z1,y, )| < dt.
Ky d) = Koy N < S0 [ o

By integration we obtain

As 1 1
|K($7y) )\) _K(:Elvy? )| < 7 (Tn1+__,+n,N—1 - €On1+...+'ILN—1>

where A3 = As/(n1 + ...+ ny —1). As a consequence
1 1
|K (2, y,\)| < A4 |?J|Jr W

in D3 for Ay = max(2m Az, Ag). By the first part of the lemma we have A5 <
||z T for some As > 0 and € << 1. Therefore

. 2 (n+5) <2 (+3)
\|+77 A +n.

i
For N = 1 the behavior of Re(X(\)) in U, is analogous to the one we obtain
in the exterior regions.

1[5l
O

LEMMA 3.2.6. Suppose f = y™a™ for somen > 0. Let ( > 0. Consider any
exterior region R(y,\) = R}%/\)( ). Then [§ /oo — 1| < ¢ in DG° for e << 1.
Moreover, we have

Pr ‘
— 1| <
Yoo

n D;O fore<<1andd << 1.

PROOF. The first part of the proof is analogous to the first part of the proof

of lemma [3.2.5 For the second part of the proof we proceed as in lemma 13.2.5
but with improved inequalities. It is straightforward to check out that the function
K(x,y,\) satisfies

oK Y|

‘al‘(l" Y, A)‘ S Al |$|n1+4..nN
in D;’O N[y € B(0,6)] for some A; > 0 and § << 1. As a consequence there exists
A > 0 such that

-l
0o

in D;’O for e << 1and 6 << 1. O

< Aly|
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3.2.5. Variation. The exterior region R}?AO)(yo) C [y = yo] is simply con-
nected. Therefore the function In is uni-valuated in R;z AO)(yo) and it is unique
up to an additive constant. We define

Var(RX(A )(yo)) max [Img(Inzi) — Img(lnxo)].

w0’$16R;(>\0)( Yo)

The function Var(RX(A)( y)) : B(0,9) x Sl(X) — RT is well-defined and continuous.
By controlling the variation we assure that the trajectories in the exterior zone do

not spiral around the singular points of X. In next lemma we find an analogue of
Var(RXOO()\)( y)) < 7/(0(X) — 1) valid for Var(RY (A)( Y)).

PROPOSITION 3.2.3. Suppose N > 1. Let ¢ > 0. Consider an exterior region
R}?/\)( ). Fore<< 1,0 << 1 andn>>1 we have

Var(RY (A)( y)) < +¢

T
“p(X)-1
for all (y,A) € B(0,9) x S5 xy. In particular RY(,,(y) C Dr(A) for all (y,)) €

1
B(0,0) x Sy
PRrOOF. Let ¢ < m. Let (yo,Ao) € B(0,6) x Sé(X). We denote v = (X)) and
T;é,\o)(yO) by 21(yo, Ao). We also define

(Y0, A0) = TEsetaas ey 21 (W0, Xo) o).

Suppose Ry () is an ”a” exterior region. The function Img(Inz) is harmonic in
R}?)\ )( Yo); therefore the minimum and the maximum are attained in 9[RS X()\ )( yo)]-
The set of extrema of Img(Inx) restricted to the arc RX()\O)(yO) [lz] = nlyol] is
IR {5, (Wo) N [[z] = nlyol]]. As a consequence we have

Var(RY] Y 0n )(yo)) max [Img(lnzq1) — Img(ln xo)|.
©0,21€7(Y0,A0)

We denote h(\g) = X o(\o): bhis point satisfies

MW L)) € TR = Aoan(h(M))” ! € iR.
We obtain " . X
00 -
290 (h(N)) =
N (h(Xo)) v —1 Nay (h(Ao))"

Therefore Img[In(yoo/Ao)(h(Ao))] € {—n/2,7/2}; we can suppose it is 7/2 because
otherwise we would replace X with —X. If (¢,4,7n) is close enough to (0,0, 00)
lemmas 3.2.4/ and [3.2.5/ imply that

R

ﬁ()(zl(yo,xo),yo)} € [-C/Atm/2.C/A+ /2.

Let to € RT such that v(yo, Ao)[0,%0) C DE"(No). Let t1 € [0,%9); we have

R

Imgoln {qﬁo

Imgoln[

(Zl(yo,)\()),yo) +t1:| S (O,C/4+7T/2]

The equation
Yoo
A

0

(3.2) %

(7(y0, Xo)(t1)) = [ﬁf(zl(yo, o), Yo) + t1] (7(y0, Xo)(t1))
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and lemma 3.2.5 imply that

Imgoln z/;OO‘WO,Ao><t1>>] € (=¢/2.¢/2+ 7))

if (¢,d,n) is close enough to (0,0,00). We deduce that

ImgolnxoV(yoa/\o)(h)—Imgoln(h()\o))6[ =€ f*T )

2w —1)"2(v—1)
Since ¢ < 7 and v > 2 we deduce that v(yo, Ao)(to) € Dr(Ag). We just proved that
Fgggéi‘;ﬁe [21 (Y0, M), yo| is contained in Dg()g). In an analogous way we obtain

Fgé?éﬂ%lg_ﬁ[zl(yo,Ao),yo] C Dg(X\g); moreover if v(yo, Ao)[—to,0] is contained in

[nyo| < |z| < € for some ¢y € RT then

Iimg o ({50, Ao)(—to)) — Img o In(h(Ao)) € (

Therefore, the variation function satisfies

c ™ ¢
Var(RX?)\O)(yo)) < SX) 1 + =1
Suppose ﬁ[R}TEA)(y) N T}e((/\)(y)] = 2. We proceed in a similar way, we stress the

main steps of the proof. We consider the arc

arc(yo, o) = RY{,,)(%0) N OU..

Suppose Re(X(\g)) points towards U, in the interior of arc(yg, \g); otherwise we
replace X with —X. The arc arc(yo, \o) satisfies

arc(yo, Ao) C T;jo(/\ﬂ)ei[‘l(%“’ﬁJrﬁ}
for (e,d,7n) in the neighborhood of (0,0, 00) by lemma [3.2.4. As a consequence
Imgolnzo wT(;O(CLTC(yo, Xo)) C [—¢/4—7/2,(/4+7/2].
Again we use equation 3.2/ and lemma 3.2.5 to prove that

Img ol o S (Rl (u0)) © [~6/2 = 7/2,¢/2+ /2

for (e,d,7n) near (0,0,00). The last equation implies

. m ¢
VG/T(RX?)\O)(:[/())) < D(X) 1 + I;(X) 1

That implies R}TE/\O)(yO) C Dgr(Xo). O
We can adapt the proof of proposition 3.2.3/ to obtain

LEMMA 3.2.7. Suppose N = 1 and f = y™z™. Consider an exterior region

R, (y). Fore<<1 and § << 1 we have

X(N)
T
7(X) - 1

VC”“(R;O(,\) (y) < +¢

1
for all (y,\) € B(0,6) x SD(X)'

Next proposition implies that the trajectories in the exterior zone do not spiral
around the singular points of X.
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ProOPOSITION 3.2.4. Let N > 1 and ¢ > 0. Let f; = 0 be an irreducible
component of f/y™ = 0. Consider an exterior region R}(A)(y), For e << 1,
0 << 1 and n>>1 we have

T
) -1 ¢

[Img o Inf;(x1,90) — Img o Infj(xo,yo)| < 7(X)

for (zo,y0), (z1,Y0) € R;TE/\O)(yO) and for all (yo, No) € B(0,0) x Sé(x)'

ProOF. We have f; = u;(z,y)(z — g;(y)) for some unit u; € C{z,y}. We can
suppose that u;(0,0) = 1 by replacing f; with f;/u;(0,0). Since |g;(y)| < D|y| for
y € B(0,0) and 6 << 1 we have that

Inf; —Inz =Inuj(z,y) +1n (1 - g;(y))
x

tends to 0 if (¢,d,17) — (0,0,00). The result of the lemma is then a consequence of
proposition 3.2.3. ([l

3.3. The magnifying glass

We want to understand the behavior of Re(X()\)) in U.. We consider the sets
Ut and UM~ for suitable € > 0 and n > 0. We pointed out in lemma [3.2.5
and proposition 3.2.3 that the dynamics of Re(X(\)) and Re(Xoo())) in UM
are analogous. As a consequence, we can focus in the dynamical behavior in the
magnifying glass U ~.

Let (z,y) = (wy,y); we consider Y = [(yw,y) X]/ymFtmt-F+nv=1" More
precisely, if X = u(z,y)y™(x —g1(y)"" ... (z — gn(y)"~ 9/0z then

Moreover, we have
(yw,y)" X(\) = |y\"1+'“+m\’_1Y(ei(”1+~-+"N—1)arg(y)/\).

The set U~ \ [y = 0] is equal to [|w| < n]\[y = 0]. As a consequence to describe the
behavior of Re(X()\)) in U~ for all A € St it is enough to describe the behavior
of Re(Y(N)) in [Jw| < n] for all A € S'. The curve w = g;(y)/y intersects y = 0 at
the point (w,y) = ((9g;/9y)(0),0) for 1 < j < N. We consider the set

o dgn
F=<¢—(0),...,=—(0)».
{20, %% 0)
We choose n > 0 such that F' C [Jw| < n].
Let ¢ € F'; there are two cases depending whether or not

N i e L VY (e0) € [w—g;(u)/y = 0]}

is equal to 1. If N. > 1 we consider V_ y) = [|w — ¢| < k(c)] for some k(c) > 0
small enough. Otherwise ¢ = (9g,,/0y)(0) for a unique 1 < jo < N and we define
Ver(e) = llw — g5, (y)/y| < k(c)] for some k(c) > 0 small enough. The dynamics of
Re(Y (X)) in V_ i) is simple for N, = 1 and k(c) << 1 because of lemmas [3.2.6
and 3.2.7.

Between the exterior zone and the sets V; () (c € F) there is a set VC' such
that VC is the closure of [Jw| < 7]\ UcerVe k() deprived of y = 0. Since [Jw| <
N\ Ueer Ve i(e) is compact in (w,y) coordinates we say that VC' is a compact-like



3.3. THE MAGNIFYING GLASS 37

basic set. The set VC does not contain singular points of X; hence the dynamics
of Re(Y'()A)) is simple in VC. Then, we are down to the point of describing the
dynamics of Re(Y (X)) in V,, ¢y for N. > 1; this task is pretty much the original one
just replacing (X, Uc) with (Y, V, (). Fortunately, the latter goal is easier because
we can separate all the components of f/y™ = 0 by repeating this process a finite
number of times. Indeed, we are just desingularizing the curve fi...fy = 0. At
the end of the process we have only exterior sets, compact-like sets and domains of
the form [Jw| < k] such that [Jw| < k]NSingX = [w = 0] in some coordinates (w,y)
. These latter sets behave like exterior sets and then the domain U, is partitioned
in exterior and compact-like sets. All the sets in the partition are called basic sets;
they are dynamically simple.

Example: Let f = 22(z — y)*(z — y2)2. The first exterior zone is of the form
Un+ for some n > 1. We have F' = {0,1}. The curves w = 0 and w = y pass
through (w,y) = (0,0) whereas w = 1 pass through (w,y) = (1,0). Thus, for
k(0) > 0 and k(1) > 0 small enough we have

Vo) = [lwl <k(0)] and Vi) = [Jw —1] < k(1)]

We have VC = [Jw| < 5]\ ([Jw] < k(0)] U [Jw — 1| < k(1)]). Since Vpx, contains
two irreducible components of SingX then we consider the exterior zone (Ue’7/7+)’ =
llyln" < |w| < k(0)] for some i’ >> 0. For k¥'(0) > 0 and &’(1) > 0 small enough we
define the sets

o) =W <K ()] and Vi) = [lw’ =1 <K (1)].

in the system of coordinates (w’,y) given by (w,y) = (w'y,y). We also define
Ve =[|Jw'] <]\ ([Jw] < K (0)]U[Jw —1] < k'(1)]). The basic sets are

urt,ve, Vikq) > (Ug/’Jr)/ , Ve, Vo/,k/(o) and Vll,k’(l)'

The picture [5 corresponds to this example.

FIGURE 5. Partition of U, N [y = s] in basic sets

3.3.1. Dynamical finiteness of the partition. Any trajectory

<e T
e [ llto, 1] € T
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is divided in several sub-trajectories entirely contained in the basic sets. More
precisely there exists a sequence tg < t; < ... <ty =t such that

. Fg‘;&))[l’,y} [tj,tj+1] C Bj for a basic Bj and all 0 < j <k — 1.

e B #Bjforall 0 <j<k—2.

We denote split(l"‘;zga))[x, y][to,t]) = k. The definition implies that Re(X(\)) is

z|<e .
transversal to 9B; at Flg(‘);(/\))[x,y](tj) for1<j<k-1

LEMMA 3.3.1. Suppose N > 1. There exists K > 0 such that
split(TE; 5 (v 2 lfto, 1]) < K
for all possible trajectories of £(X (X)) in Uc N [y € B(0,6)].
ProOF. We have split(l"gl)?(i\)) [x,0][to,t]) = 1 since there is only one basic set

at y = 0. Consider a connected component C' of the boundary of a basic set B.
The set C'N [y = yo] for yo # 0 encloses some singular points, namely (g, (¥0), Yo),

s (95.(0);y0). The indexes ji, ..., jr, do not depend on yo. Now consider
Tg(C) = 2(nj, + ...+ n;. —1). By construction the set C'N [y = yp] is tangent
to Re(X())) in Tg(C) points for all yg € B(0,0) \ {0} and all A € S'. We define
Tg =73 cec;T9(C) where J is the sets of boundaries of basic sets except OU.. For
all (yo, ) € (B(0,0)\ {0}) x S! the set UcesC is a union of T'g points and T'g open
arcs which are transversal to Re(X ())). Therefore

z|<e
E(L?(A))[x, Yolto, t]) < Tg+1

by the Rolle property. [

split(T

3.3.2. The variation is uniformly bounded. We define X} (yo,A) the set
of couples of the form ((zq, yo) (1, yo)) such that (zg,y0) € V\[g = 0] and (z1,yo) €

Fgf)l(g(;])?‘j_ [70,v0]. We define

Varg((zo,y), (x1,)) = [Img o Inog(z1,y) — Img o Inog(xo, y)|

and

VCLT;/(X)(yo, A) = sup Varg((zo,y), (z1,y)).
((z0,9):(z1,9))€EXY (yo, M)

Finally we define Varé(X) = SUP(y,,\)€B(0,6) xS Var) (X)(yo,\). We denote Var}]/(X)
by Varf]’5(X )if V =U.N[y € B(0,6)]. The decomposition of the dynamics in basic
sets provides the basis to bound the variation Varjc’j‘S (X).

PROPOSITION 3.3.1. Suppose N > 1. Let 1 < j < N; then we have Var;;é(X) <
oo fore <<1 and d(e) << 1.

PROOF. By proposition [3.2.4 we have that Var;;é(X)(O, A) is bounded by any
constant greater than 7/(7(X) — 1) if we make € > 0 small enough. It is enough to
bound Var(*(X)(y, A) in (B(0,4) \ {0}) x S,

We have f; = u;j(z,y)(x — g;(y)) for some unit u; € C{x,y}. Since Inu;(z,y)
is a holomorphic function in U, s for e << 1 and § << 1 then we can suppose that
fi=x—g;(y).

Consider (z1,y0) = I‘gl)iﬁ)\))[xo,yo](t) for some t > 0 and yo # 0. There exists

0 =1ty < ... <ty =t such that I‘Zl);(i\))[x,yo] [tj,tj+1] is contained in a basic
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set for 0 < j < k — 1. Moreover, we can suppose k < K for a constant K > 0
only depending on X by lemma [3.3.1. As a consequence it is enough to prove
Vary, (X)((zo,v0), (x1,%0)) < Dp for a constant Dp > 0 depending only on X if

I’g‘)g()\))[aco, 40][0,t] is contained in a basic set B.
If B is the first exterior set then we can choose Dg to be any positive number
greater than 7/(0(X) — 1) by proposition [3.2.4. Otherwise, we define the vector

field Y = (wy,y)" X/y" ™+ +7 =L and fi = w — gi(y) = w — g;(y)/y. Since

In(z — g;(y)(wy,y) = Iny + n(w — g;(y)/y)
then Vary, ((zo,v0), (%1,40)) = Var g ((wo, yo) (w1, yo)) where we denote w; = x; /1y
for I € {0,1}. Moreover, we have

< —1
(w1,90) € Flaély(;(nﬁ N 1>arg<yo>,\))[WO’yO][Oat|yO|nl+ vl coB

As a consequence it is enough to bound Varf/ (Y)(y, \) for all (y,\) in B(0,8) x St
If B is the first compact like set VC we remark that Singy N VC = () and that
VC = [|lw| < 1] \UcEFVC’k(C) is compact. Therefore Varf](( )(y, ) is un upper
semi-continuous function and then bounded in the compact set B(0,§/2) x St.

If c € F\{g;(0)} then f; is a unit in the simply connected set V, () and then
In fj’ is holomorphic. We can choose

Dgp = ma Imgoln fi(P) — min Imgoln /(P
B Pevc,k(c)m[;(eB(o,s)} g 1(P) PEV, 1()NlyeB(0,8)] g 13(P)

for all B C V, k(-
If ¢ = g;(0) and B C V() then we just iterate the process. In this way we
find a bound Dpg for all basic set B. O

We just proved that spiraling wildly around the singular points is excluded for
Re(X) if X is a (NSD) vector field. Because of the absence of irregular behavior
the topological type of X can be characterized in terms of the residue functions.

3.3.3. The compact-like sets. The only basic sets which can support non
topologically trivial dynamics (with respect to y) are the compact-like sets. These
sets are the places where the interesting phenomena regarding the evolution of the
dynamics are located.

Let X = u(z,y)y™(x — g1(y))"" ... (x — gn(y))"~ 0/0x. We denote ¢; = (dg;/dy)(0).
Let X% = (0,0)(z — c19)™ ... (z — eny)"N0/0z. Since

|z|<e

T ZGT\x|<e
Xoo(e i(arg(y0)+9)m)

(X
=e N1 ) Xoo(e»arg(yo)m)

then the points in T‘gco| move at speed —m/(#(X) — 1) with respect to

Xoo(et ars(w)m)

arg(y). We have X = |y|™X (¢! *&®m): hence the situation for T'<*(y) is very
similar because the derivative of arg, with respect to argx at ((x,y), A) tends to

p(X)—1if (e,y) — 0. As a consequence the points in T)lfl<6(y) move at a speed
tending to —m/(#(X) — 1) with respect to arg(y) if (¢,y) — 0.
We consider

Y =u(wy,y)(w—g1(y)/y)"" ... (w — gn(y)/y)"" 0/ 0w
and

Yo = Yoo = u(0,0)(w —¢1)™ ... (w — cn)"™ —.
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The vector field Y (ef(m+mitdnp=Dargw)y i equal to (wy,y) X up to a positive
multiplicative function. Since the limit of the dynamics of Y (e!(m+7(X)—1)ars(y))
when y — 0 is Ypo(e!(mT7(X)=Dare®)) we will focus in the latter vector field. We
remark that (wy,y) X0 (e™212(¥)) is equal to Ypo(e!(m+7(X)=Darg®)) up to a mul-
tiplicative positive function. Therefore, studying the behavior of Yy and X in
the first compact-like zone V C are equivalent goals.

For y; = yoe ™)/ (m+7(X)=1) we have that

Yoo (e 7= argwi)y — (_1)Fyy(ef(m+7(X)—1) arg(yo))

We have that Re(Ypg (e +7(X)=Darg(1))) and Re(Yoo(e!(mH+7(X)=1)ars(yo))) are
topologically equivalent by the mapping

Hy : (w,y) — (w, e 7700-1y).

This mapping is equal to

Hy : (z,y) — (xeim+,;7zl§<),1 ,eierﬂ?E?f)fly).
expressed in (x,y) coordinates. Suppose k = 1. We have

Hy(Ty) (yo)) = e’ mF =TTy (Yo)-

XOO(eim arg(yo)) XOO(eim arg(yo))
We also have

€.J B e 16 SEV i AaY)
TXOO(eimmg(m))(yl) ~ e (=m0 1)TXOO(e”"arg(yo))(yo)

since the speed of the tangent points of Tﬁig‘ﬁ’l arg(y))(y) move at speed close to

—m/(P(X) — 1) with respect to arg(y) for n >> 0. Then

€,j+1 (e Dm0 s €,J
TXOO(eimarg(yl})(yl) ~ e (( () =Dm+r(X)-1 S 1)TXOO(eiWLarg(yo))(yO)

implies
J+1 _ yi
T;g()(eim arg(yl))(yl) - Hl (T;gO(eier arg(yo))(yo))'
By iteration we obtain

J+k _ \J
T;(?)O(eim arg(y1)) (yl) - Hk (T;g()(eim arg(yo)) (yO))

for £ > 0. The application Hy changes the roles of the tangent points, forcing
dynamics to rotate. The dynamics is not topologically trivial in V'C' with respect

to the parameter y except if all the tangent points in T)lg"(l‘f(zhfn‘ argm)(y) play the

same role, i.e. ¢, = ¢ for all a,b € {1,...,N}. Since the irreducible components
of f = 0 are separated by the desingularization process then for N > 1 there are
compact-like basic sets supporting non topologically trivial dynamics.



CHAPTER 4

The T-sets

4.1. Unstable set and bi-tangent cords

We define UN% C B(0,d) such that yo € B(0,6) \ UN% if there exists a
continuous family oy : [|z| < €] — [|z] < €] of oriented homeomorphisms for y in a
neighborhood W of yg such that

o oy, =1d

o {(X,yo,€) and (X, s, €) are topologically equivalent by oy.
Consider the projections mg and 77 obtained by restraining to SingX and T%
respectively the mapping (x,y) — y. The mappings g and 7 are ramified cov-
erings in their domains of definition. Their ramification places satisfy (ram(mg) U
ram(mr)) N (B(0,9) \ {0}) = 0 by the choice of the domain U, s and proposition
3.1.2 As a consequence we obtain

SingX N[y =re?|nU. = {8%(r,0),...,8%(r,0)}
TS N[y = retf) = {1 (r0),..., TPV o))

for 0 < r << 1 and 6 € R. The sections S’gf and T;k are real analytic. The list
L5 (s) associated to £(X, s, €) is composed of sets of the types

{5%s), T ()} , {T*"*1(5), T"(5)} and {T(s), T"(s)}.
When we vary the parameter s the first two types persist locally. On the other
hand, the sets of type {7 T%} are unstable. We call bi-tangent cords the critical

trajectories containing two tangent points. We will describe the set of parameters
containing a bi-tangent cord; this set is the natural candidate to be UN% \ {0}.

4.1.1. Partitions of the singular points and the basic formula. We
suppose SingX ¢ [y = 0]; otherwise there are no singular points to deal with.
Let 0 < € < ¢ there exists a small ¢(¢/) > 0 such that SingX and [¢/2 <
|z] < €] x [0 < |y| < c(€)] are disjoint. Let (zg,yo,A) be an element of the set
[€ < |z| < € x B(0,c(e")) x S'; we define M L(zo, yo, A) the maximum non negative
number such that

Te SO0+ [20, 4]0, ML(0, 30, V)] € [€ < |a] < €.

It is straightforward to check out that ML is upper semi-continuous and then it
attains its maximum in [¢’ < |z| < €] x B(0,c(¢’)) x St. We denote this maximum
by MX(€).

Consider a trajectory v : [0,1] — U, N[y = yo] of Re(X (o)) for some (yo, \o) €
B(0,c(¢’)) x St. Suppose also that v(0),~(t) € [|z| > €] and that t > M X (¢'). We
claim that ~ splits the singular points. We notice that v intersects |z| = € since
otherwise we would have ¢ < MX(¢'). Moreover #§(y N [|z| = €']) > 2, this is a
consequence of the convexity of the tangent points. Suppose f(y N [|z| = €]) = 2,

41
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let v(a) and v(b) (0 < a < b < t) be the points in v N [|z| = €]. We denote
Be = vla,b]. Let k, be a path in OU«s N [y = yo] going from ~(a) to v(b) in
counter clock wise sense. The path fe k75 ! encloses a connected component C_ (yo)
of (Ues N[y = yo]) \ Ber, the latter set has another connected component that we
denote by C4 (yo). We define

E_(yo) = C_(yo) N SingX and Ey(yo) = Ct(yo) N SingX.

Since SingX N[y = yo] C Ue then (E_(yo0), E+(yo)) induces a partition of the
singular points. We can extend continuously E_ and E, to the set [0 < r <
()] N[0 € R]; more precisely if E_(rge®) is equal to {S% (r0,60), - - -, S% (r0,00)}
then E_(r,0) = {S%(r,0),...,5%(r,0)}.

We can play basically the same game if f(yN[Jz| =€]) > 2;leta=1t < ... <
tor = b the sequence of times in which [0, t] intersects OU.. For 1 < j < k we
choose to; = taj41 if y(ta;) € Tf(/()\o)(ro, o). We choose ty;_1 < tgjforalll < j <k.
Consider a couple (ta;,t2541) for 1 < j < k. We have v[ta;,t2j41] C |z] > €; we
define v(¢]) as

e /2<|z|<e
()} =T eon=s Lyt N U

for I € {2, 2j + 1}. The trajectory y[th;,th; ] is homotopic in the set U, \ SingX
to a path 77 contained in QU /o and whose initial and ending points are 7(t5;) and
Y(t5;41) respectively (see picture[l). The path B = v[t1, v y[ts, th] o AT IY[thy, tok]

FIGURE 1. Changing 7[ta;,t2;+1] by 77

is contained in U.; moreover 3.\ {v(a),y(b)} C U.. We stress that v does not
cut twice any exterior region in €’/2 < |x| < € because of the Rolle property. As a
consequence the path [ is simple. We can nowdefine C_, C;, E_ and F, in an
analogous way than for the case §(yN[z] = €']) = 2.

If we consider ¢ < €’ < € then the partitions of the singular points induced by
B¢ is the same one than the partition induced by B... Of course, the same result
holds for ¢’ < ¢ if |yo| < c(€”).

We introduce the formula that is going to allow us to make a qualitative de-
scription of the dynamics of Re(X). We remind the reader that m is the only
non-negative integer such that y™|f but y™*! ff. Let vo(.,y0) be an integral of
the time form of X (1) defined in a neighborhood of v(0) in y = yo; we extend vy
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analytically along the path [0, a]x,7[b, t] to obtain an integral ¢ (.,yo) of the time
form of X (1) defined in the neighborhood of ¥(¢) in y = yg. Let ¥{(.,y0) be the
integral of the time form of X (1) defined in the neighborhood of () and obtained
by analytic continuation along +[0,t]. By the properties of the integral of the time
form we have

U Yo

t = L(y(t)) = =2 ((0)).
Y, 10) = 4 ((0)
The theorem of residues implies that

=) 2w Y Resxon(P)— S2(3(0).

PeE_(yo)

We will use the right hand side of the previous formula to calculate the time that
Re(X (\)) spends to join two points in the same trajectory.

There is a reason to replace 1] with 1);. Suppose we have a sequence of trajec-
tories v,[0,t,] C Uc N [y = y,] such that y,, # 0 for all n € N and lim,, o 4, = 0.
We also ask 7, to fulfill that I = lim, e 7, (0) and L = lim,,_, o v (tn) exist and
that they are both different than (0,0). Consider 0 < €’ < € such that U, contains
neither I nor L. The limit of the paths v,[0, t,] does not necessarily exist, moreover
if it exists it can be non-simple. Despite of this, the limit of [0, ay ]k, ¥[bn, t,] has
always a limit; the limit is a path ¢. We can now define ¥y to be an integral of the
time form of X (1) defined in the neighborhood of I in C? whereas we define 1; to
be the analytic continuation along o. The formula

Time = %(ﬁnal pt.) — 2mi Z Resx(x (P) — %(initial pt.)

involves holomorphic functions vy and ¢ whereas 1] can not be chosen holomor-
phic in the neighborhood of L. In this way we relate the complexity of the dynamics
with the residue functions.

4.1.2. Cords. We consider sections of the form S : (R>(,0) x R such that

S(r,0) € U.N [y = re'] for all (r,0) € (R>o,0) x R.
S5(0,6) # (0,0) for all 6 € R.
S(r,0 + 27rk) S(r,8) ¥(r,0) € (R>0,0) x R and some k € N.
S(r,0) is real analytic in (R>¢,0) x R.
We call them nice sections for X in U.,.
Example: A trivial example is S’(r,0) = (zo,re’®) for some zg # 0. The stan-

dard example is S(r,0) = T’ (r,6); in this case § — 6 4 27 induces a permutation
in T (re’?). We obtain S(r 0) = S(r,0 + 27k) for some k € N; moreover, we can
choose k = [P(X) — 1].

For two nice sections Sy(r, 6) and Sy (r, ) we say that they have no finite con-
nection on H C R if

® We(x(eitm)),([|z]|<e]u{S0(0,0)} (50(0 9)) ( ,0) forall 0 € H.
® Qe(x(eif™)),([|z|<e]U{S(0, 9)})(51 (0 9)) ( ,O) for all 0 € H.

o 51(0,0) € DL oy, [S0(0,0)] for all 0 € H.

We will always suppose that H is closed and invariant by § — 6 + 27k for some
k € Z\ {0}. We say that Sy and S; have no finite connection if they have no finite
connection on R. As a consequence we obtain
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LEMMA 4.1.1. Let Sy and S1 be two nice sections for X in U, with no finite
connection on H. Then, for all C > 0 there exists K(C) > 0 such that
z|<e
S1(r,0) & T (oiomyy 4 [So(r,0)][0, €]
for all (r,0) € B(0, K(C)) x [UpreuaB(#', K(C))].

REMARK 4.1.1. By last lemma the trajectories of Re(X) from Sy(r,0) to S1(r,0)
induce a partition of SingX for (r,8) close to {0} x H.

Consider two nice sections Sy and S; with no finite connection on H for X in
U.. We can define a holomorphic integral vy of the time form of X (1) in an open
set containing Sy(r, 8) for r << 1 and § € R; we just define vy in a neighborhood
of Sp(0,0) and then we make analytic continuation. We choose € > 0 such that
5;(0,0) & U for j € {0,1}; by lemma 4.1.1/ we can use the process in subsection
4.1.7 to define a holomorphic 1, for parameters in the neighborhood of {0} x H.
We consider a continuous partition (E_(r,0), E4(r,0)) of the singular points. We
define

(&)

eiGm

(S1(r,0)) = 2mir™ Y Resx (P) — ~22 (So(r,0)).

ISO,SlyE(Tv 0) = cibm

The function Ig, g, g(r,d) is real analytic outside r = 0 where it is maybe not
defined because ) pcp () Resx (P) is the ramification of a meromorphic function.
We denote by Ts, s, £ the set of parameters (rg,6y) such that there exists a tra-
jectory [0,] in U, N [y = roe?] of Re(X) satisfying v(0) = So(ro,00), (1) =
S1(ro,6p) and inducing the partition (E_(ro,00), E+(r0,60)). We have (ro,6y) &
{0} x H by the no finite connection hypothesis. We obtain ¢t = I, s, g(ro,01)/r§"
since we have X = |y|™ X (™). The next lemma is an immediate consequence of
the previous discussion.

LEMMA 4.1.2. Let Sy and S1 be nice sections for X in U, with no finite con-
nection on H and let E = (E_, E1) be a continuous partition of SingX. Then the
germ of Ts, s, g at {0} x H is contained in 15017517E(R+).

We define Ts, s, = UgpesTs,,s,, e where J is the set of continuous partitions
(E_,E;) of SingX.

PROPOSITION 4.1.1. If i} pep (5 Resx(P)) < m then the germ of the set
Ts,.s,.5 at {0} x H is empty.

PROOF. We choose 0 < €’ < esuch that ¢ < min; g)eq0,13xr 55(0,0). Since the
length of the trajectories of Re(X (™)) is bounded by M X (¢') on ¢ < |z| < € and
[[x] = €]N]|ly| < c(€')] is compact then [1b1 (S (7, 0)) — 1o (So(r, 0))] /™ is bounded
for (r,8) belonging to Ts, g,z NV for some neighborhood V of {0} x H. Therefore,
the hypothesis implies that there exists C' > 0 such that Ig, g, g(r,0) < C if
(r,0) € Ts,.s,,8 NV’ for some neighborhood V' of {0} x H. We deduce that
Ts,.5,. = 0 by lemma [4.1.11 ]

We can focus on the partitions satisfying n(3pcp (5 Resx(P)) > m.

LEMMA 4.1.3. Suppose n(3pep (s) Resx(P)) > m. Then IEO{SI,E(Rﬂ is a
finite union of branches of analytic sets.
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Proor. We denote Ig, s,z by I. The hypothesis of the lemma is invariant
under ramification as well as the real analytic sets. Hence, up to ramify by R =
(z,yN1Nr) we can suppose that > per_(y) Resx(P) is a meromorphic function.
We have

. C . C 1
—2mi S Resx(P)= 4+ 3. ija:d+0( d1>.
PEE_(y) L y Y
for some d € Z~,, and C' € C*. Hence, we obtain
I(r,0)rd=™ = Ce=®1 + O(r).

Moreover, the function I(r,#)r?=™ is real analytic. Since I € R* coincides with
Ird=™ ¢ R* the set I7!(R*) adheres to the set

) argC  2mj
DL = Z : — ).
{] € (0, d + d )}

Since Sy and S, are nice we have S;(r,0 + 2nk) = S;(r,0) for some k € N and all
j € {0,1}. As a consequence I~!}(RT) is invariant by (r,0) — (r,0 + 27k). We
deduce that I=1(R¥) is also the union of the irreducible components of I~(R¥)
adhering the finite set

DL ={0<j < kd: (0,arg(C)/d + (27j)/d}.

Then it is enough to prove that in the neighborhood of a point (0,6y) in DL the
set I71(RT) is a branch of a real analytic set. Since

I(r,0)rd=™ = |Cle"0=%) L O(r)
then Re(I(r,0)r?=™) € RT in the neighborhood of (0,6y). Moreover, we obtain
Img(I(r,0)r*=™) = —|C|(0 — 6o)d + O(r + (0 — 65)°)

and then Img(I(r,0)r¢=™) = 0 is a smooth real analytic curve parameterized by 7.
It is still smooth in the y plane since it is transversal to the divisor r = 0. Moreover,
its branch [Img(I(r,0)r®™) = 0] N [r > 0] coincides with the germ of I~!(R™) at
(Oa 90) . U

REMARK 4.1.2. If all the components of SingX different than y = 0 are pa-
rameterized by the coordinate y then 1501781 p(RY) is a finite union of branches of
smooth real analytic sets.

4.1.3. Definition, analyticity and finiteness of the T-sets. Let Sy, .51 be
two nice sections (for X in U,) with no finite connection on H. We consider the set
of curves Ig),sl = {Bj},c, such that 3; € I§ s if there exists a triple (Lo, L1, E)
such that

o L; € {S;} Ul rely for j e {0,1}.

* (X pep_(s) Resx(P)) >m.

. . . —1

e f3; is an irreducible component of I} ', 5(R™).
The nice sections Ly and L; do not have finite connections on H; this is a conse-
quence of the definition of no finite connection for Sy, .S; and the remark [3.2.3. If
we restrict (Lo, L1) to be (Sp, S1) in the previous definition we obtain the set Ig, s,;
it clearly satisfies Ig, s, C I 91,30 s,- Since the tangent sections and the continuous
partitions of SingX are both finite sets then J is a finite set.



46 4. THE T-SETS

LEMMA 4.1.4. Consider two nice sections Sg, S1 for X in U, with no finite
connection on H and a continuous partition E = (E_,E}) of SingX. Let 3 be a

semi-analytic curve such that (re®)™"(3) N [r = 0] is contained in {0} x H. Then
BN Tsy,s,,6 # 0 implies 8 C Ts, s,k

PROOF. We can suppose that 5N 3; # () implies 3 C (3; by considering U, 5 for
a smaller 6 > 0. We can suppose (3 pep (5) f2esx (P)) > m by proposition 4.1.1.
Since BNIg'g p(RT) # O then 3 CIg'y p(RT). Let (ro,60) € BNTs,,5,, 5. Con-
sider the piece of trajectory «[to, 1] of Re(X) in U.N[y = roe'®] such that v(¢;) =
S;(ro,6p) for j € {0,1} and 7[to, 1] induces the partition (E_(rg,00), E4+(r0,60))
of the equilibrium points. We consider the finite set y(to,t1) N OU, whose elements
are

Y(di) = Tx" (ro,0) , v(d2) =Tx"(r0,00) » .. , ¥(dn) =T¥"" (ro,060)
for some h > 0. We suppose tg = dyp < di < ... < dp < dp41 = t1. The no
finite connection hypothesis implies that y[ak, ax+1] induces a partition Ej of the
equilibrium points for 0 < k < h. We denote Ay = Sp, Apy1 = St and Ay = T™
for 1 <k <h.

For all k € {0,...,h} we define the set Hy C Ta, A, 5, composed by the
lines y; € B such that there exists a trajectory yx[c,d] of Re(X) in U, N[y = v1]
satisfying

Ye(e) = Ar(y1) » Yk(d) = Agg1(ya) and (e, d) N OU. = 0.

We have roe’® € Hy, C Tayapim C Ixfa,,, pm (RY) for all 0 < k < h
By proposition 4.1.1/ we have that M(ZPEE&?(S) Resx(P)) > m; therefore § C
IE:,A;CH,E;C (RT) for all 0 < k < h. We deduce that every set Hy is open in 3 by
continuity of the flow. As a consequence T, s, g is open in f3.

It is enough to prove that Hy is closed in 3 for all 0 < k < h because then
Ts,.5,.2 C 8 by connectedness. Suppose there exists y; in 8N [Hy \ Hy], then
U N [y = y1] contains a trajectory v} [c, d] of Re(X) satisfying

V(€)= Ak(y1) » Ve(d) = Agy1(y1) and 75, (c,d) N U # 0.

We choose a point v, (e) = T;akﬂ/z (y1) in v, (c,d) N OU.. We denote T;ak+l/2 by
Apt1/2.- We denote by F' and G the partitions of the equilibrium points induced by
Yi.le, €] and «v; [e, d] respectively. By the first part of the proof the sets Tay, Apyr o F

and Ta,_, , A,,,G are open in ;. Hence y1 ¢ Hy, that is a contradiction. O

COROLLARY 4.1.1. Let Sy, S1 be nice sections with no finite connection on
H for Re(X) in U.. Then, the germ of Ts, s, at {0} x H is a finite union of
semi-analytic sets.

Proor. The set Ig, s, is a finite union of branches of real analytic sets by
lemma [4.1.3. We are done, since by lemma [4.1.4 the germ of Tg, g, at {0} x H is
the union of some branches of Ig, g, O

COROLLARY 4.1.2. Let Sy, S1 be nice sections with no finite connection for
Re(X) in Ue. Then T, s, is a finite union of semi-analytic sets.

By definition a T-set is a connected component of the set of parameters U;cx Tpe.j ek
X X
containing a bi-tangent cord. The results in this section imply
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PROPOSITION 4.1.2. Let X = f0/0x be a germ of vector field defined in U, s
and satisfying the (NSD) conditions. Every T-set is a branch of real analytic curve.
Moreover, there are finitely many T-sets.

COROLLARY 4.1.3. UN% \ {0} is the union of the T-sets

4.2. Dynamical instability

So far we did not prove the existence of a (NSD) vector field X having at least
one T-set; this is the aim of this section.

4.2.1. Definition and properties of zones. We call zones the connected
components of B(0,6) \ UN%. We can enumerate the T-sets 51, ..., 81, Bi+1 = b1
by using a counter clock wise order. If UNS \ {0} = 0 then there is only one zone
Z% 1- Otherwise there are exactly [ zones; we denote by Z5 ; (1 < j <) the zone
whose boundary contains the set §; U 8;11. We will use the notation Z% if the
vector field X is implicitly known.

A zone Z5 adheres to either a point or to a closed arc of directions. In the
former case it is a narrow zone, otherwise it is a wide zone.

LEMMA 4.2.1. Suppose 0(X) > 0. Let ZS; be a wide zone. Then for allyy € Z%
we have

-1
(Q¢(X.90) We(X.y0)) < (005 00) = 0.
PrOOF. We define
-1
D(y1) = (Qg(x,y1) We(Xy1)) ) (005 20)

for y; € B(0,d). Suppose that there exists yo € Z¢ such that D(yg) # 0. In such a
case D(y1) # 0 for all y; € Z¢ because Z* NUNS% = (. We replace X with —X if
necessary to obtain a point 7" (y) such that

def (2| <OU{TL* ()} (pe,a
'Vy = Fg(x)gr x [TX (y)]
is a critical tangent cord (see subsection 2.1.4)) for all y € Z¢. The continuous curve
y — ¥ induces a continuous partition E(y) of the equilibrium points. Let Q(y) be
the only point in (v¥ NOU.) \ {T¥"(y)} for all y € Z¢. We define
wl . wO €,a
1) = 5 (@)~ 2mir™ Y Resx(P) — o (T3 (y))

PeE_(y)

for y = re?? € Z¢. Let d = 1(Xper_ (s) Resx(P)). We proceed as in the proof

of proposition [4.1.1 to show that [1)1(Q(y)) — ¥o(T%"(y))]/e*®™ is bounded in Z¢.
Moreover, we can also obtain that if d < m then there exists D > 0 such that
I < D in Z¢. Since U, N~¥(0, D] = 0 by continuity of the flow and remark [3.2.3
then d > m. We obtain I(y)|y|* ™ = Ce~? + O(r'/4) for some C' € C* and ¢ € N
like in the proof of lemma [4.1.3. The set I~*(R*) adheres to the d directions in
CA~% € R*T. Hence Z¢ adheres to a finite set of directions; since Z¢ is connected

then it is a narrow zone. 0
We explain now that the graph géf';;o) is connected for most of the parameters.
COROLLARY 4.2.1. Let Z% be a wide zone. Then for all yo € Z5 the graph

g|w\<€

(X v0) 18 connected.
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Proor. If #(X) = 0 then the graph has no vertexes and it is clearly connected.
Otherwise, lemma4.2.1 and proposition[2.1.3limply that the graph is connected. [
|z|<e

£(X.y)
nected for most of the parameters the absence of permanent edges will imply the

existence of T-sets for 7(X) > 0.

4.2.2. The graph does not have permanent edges. Since G is con-

PROPOSITION 4.2.1. There is not an edge S%(y) — S%(y) in g‘;(cl)f;) for all
y € B(0,6) \ {0}.

We clarify the statement. We consider a point roe'® € B(0,6) \ {0} and an
edge % (r0,60) — S%(r0,6p). The equilibrium points S% (r,0) and S% (r,6) are
obtained by analytical prolongation. Hence, the proposition only makes real sense
in[0<r<dnideR].

PrOOF. Up to ramify by R we can suppose that all the components of SingX
different than y = 0 are parameterized by y. Suppose there is a permanent edge
(A1(y),y) — (A2(y),y) for ally € B(0,6)\{0}. The vector field X can be expressed
in the form 5

X = (&= M) (@ — 2a(u))*h(a, )5
where {; > 2 and ged(h(z,y),xz — Aj(y)) =1 for all j € {1,2}. We denote by X;
the germ of X at x = A(y) for j € {1,2}. We have that

01 () Y 07 (6(X1,y)) = Gy){1, e/ LD Cr=2)/ (-1

where

o181 () = Aa ) (AL () )]
(A1(y) — Aa(y))?h(A1(y),y)

Gly) =
The directions in ©7 (yo) turn

l
v((A2(y) — A1 () *h(A1(y), )
lh—1
times (in counter clock wise sense) when y travels along 6 +— yoe?™ (6 € [0,1]). By
convention to turn a negative amount of radians in counter clock wise sense is the
same thing than turning in clock wise sense. In an analogous way the directions in

O (£(X2,90)) turn

—C) = —

oyl M(Ba(y) = 81(9)" h(Ba(y). )
la—1

times around x = Ay (yo) when y goes along the path § — yoe?™ (6 € [0,1]). We
define

D(yo) = (%(X)aWﬁ(x))‘;‘l«((Al(yo)ayo)7 (A2(yo),yo))-

We denote by D'(yo) the set of trajectories of £(X,yo,€) contained in D(yg). The
set D(yp) is connected for all yo € B(0,6) \ {0} by lemma 2.1.7. Thus D(yo)
adheres to unique directions A1 (yo) € ©~ (£(X1,y0)) and Aa(yo) € O (£(X2,y0))
by proposition 2.2.1.

Consider the real blow-up p of the curves x = A;(y) and z = Ay(y). If
v € D'(yo) we define ¥ = p~1(v). The starting point of 5 is A1(yg) whereas the
ending point of 4 is Aa(yp). Let 71, 72 in D'(yo); by lemma 2.1.9] there exists an
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homotopy 1+ (¢ € [0,1]) where y14. € D'(yo) for all ¢ € [0, 1]. We denote by ¥(y)
the unique homotopy class induced by the liftings of the elements of D’(y).

Fix yo € B(0,6) \ {0} and consider the path 6 ~ yoe?™® (9 € [0,1]). Since
the starting points of 7(yo) and 7(yoe?™) are equal then C; € N. In an analogous
way we obtain that Cy € N. For j € {1,2} we choose a loop o; in p~(A;(yo),%o)
turning once in counter clock wise sense; we also ask ¢; for having A;(yo) as initial
and ending point. We define D; = C; +v(A1(y) — A2(y)) for j € {1,2}. We travel
along the path 8 — F(yoe?™*) (0 € [0,1]) to obtain

Hyoe®™) = a1 A(yo)oy
We also know that §(yo) = F(yoe?™). This is a contradiction, since the topological
type of p~1(y = yo) is a figure eight and D; # 0 # D». O

FIGURE 2. X = 22(z — y)?0/0x. Parameters § = 0,1/8,1/4

FIGURE 3. Parameters § = 1/2 and 6 =1

Example: We consider X = 2%(z —y)°8/dz. For all yo € RT the real line

is invariant by &(X,yo,€). Moreover (0,y9) — (yo,yo) belongs to gg'}fzo). The

(e2™%y,) supposed (0,y) — (y,y) is a

pictures 2 and 3 illustrate the evolution of ¥
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permanent edge of the graph. We have 7(e?>™yy) = o375(yo )03 and as a consequence
the paths 7(e2™y,) and 7(yo) are not homotopic.

We defined N as $(SingX NU. N [y = o)) for yo € B(0,4) \ {0}; the number
N does not depend on .

COROLLARY 4.2.2. Let X be a (NSD) vector field defined in U.s. If N > 1
then there is at least a T-set, i.e. UN% N (B(0,48) \ {0}) # 0.

PRrROOF. If there are no T-sets then the only zone is UN% \ {0}. Since it is
wide the graph is connected. Therefore, there is at least a permanent edge in the
graphs gg:‘j;). That contradicts proposition [4.2.1. O

Next lemma focuses on the evolution of the dynamics in the neighborhood of
a point in the limit fiber y = 0.

LEMMA 4.2.2. Suppose that N > 1 and (y = 0) ¢ SingX. Let (x0,0) be a
point contained in Uc \ {(0,0)} such that we(x),|z|<c(x0,0) = (0,0). Then the set

{y € B(0,9) : we(x),|z|<e (w0, y) = 00}
adheres to 0.

PROOF. Suppose the result is false. Then (A(y),y) = we(x),|z|<c(T0, y) belongs
to SingX for y in some neighborhood B(0,n) of 0. The mapping A is continuous by
remark 2.2.1; hence A is an analytic function. The vector field X can be expressed
in the form

0
X = (@ = AW) h(z,y) 5
We consider the real blow-up p of the curve x = A(y). We define

) =p~! (FZ‘;);[%,Q]>~

for all y € B(0,n). The curve J(y) intersects p~*(A(y),y) at a point A(y). Fix
yo € B(0,n) \ {0}. Let o[0,1] be the loop obtained by turning once in counter
clock wise sense in p~*(A(yo), yo) and such that o(0) = o(1) = A(yp). We define
C =—v(h(A(y),y))/(l—1). We can proceed as in the proof of proposition 4.2.1] to
obtain that C € Z; we have

F(yo)o® ~ F(yoe*™) = F(yo)-

On the one hand N > 1 implies C' < 0, on the other hand p~1(A(yo),%0) has
the homotopical type of S, thus J(yo)c® ~ F(yo) implies C = 0. That is a
contradiction. O

4.3. Disassembling the graph

Let G be an oriented graph. We denote by Sing(G) and I'(G) the sets of vertexes
and edges of G respectively. By definition G C G’ if Sing(G) C Sing(G’') and
I'(G) Cc T(G'). We define a graph G&G' such that Sing(G&G') = Sing(G)NSing(G")
and I'(G&G") =T(G) NT(G").

Let G be an oriented graph such that Sing(G) C Sing&(X,yo,€). We can
associate a graph G(s) to any s contained in the universal covering of B(0, )\ {0}.
By definition the vertex S% (s) is in Sing(G(s)) if 8% (yo) is in Sing(G(yo)). In an
analogous way S% (s) — S%(s) is in T'(G(s)) if 8% (o) — S% (yo) is in T(G).

We define G, = QZEZO). Next result is a consequence of remark 2.2.1.
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LEMMA 4.3.1. Let yo € B(0,0) \ {0}. Let G be an oriented graph whose set of
vertezes is Sing&(X, yo,€). Then G C Gy, implies

g(S) - gs
for all s in some neighborhood of yq.

REMARK 4.3.1. By considering G = Gy, in the previous lemma we obtain that
the mapping y — G, is lower semicontinuous.

LEMMA 4.3.2. Let A : [0,1] — B(0,0) \ {0} be a path such that A0,1] is
completely contained in either B(0,6)\UN% orin UN%. Then Gx0)(A(1)) = Grq)-

PROOF. We define the set UN, C [0,1] such that ¢ ¢ UN, if there is a
continuous family of oriented homeomorphisms oy : [|z] < €] — [|z| < ¢] for ¢ in a
neighborhood W of ¢y in [0, 1] satisfying that

o oy, =1d

o £(X,\(to),e) and &(X, A(t),€) are topol. equivalent by o.
We have that tg € UN if there exists {T%(A(t)), T*(A(to))} in L (A(to)) but
{T%(\(t)), T*(A(t))} does not belong to L (\(t)) for all ¢ in a neighborhood of
to in [0, 1]. By hypothesis UN = ), thus the list LS (A(¢)) is constant for ¢ € [0, 1].
Since the list determines the graph (proposition 2.1.4) then N'Gy0)(A(t)) = NGx)
for all t € [0,1]. Hence Gy0)(A(0)) = Gx(o) implies Gx(0)(A(t)) = Gay for all
t € [0, 1] since the orientation of an edge remains constant in connected sets. O

We enumerate the T-sets (31, ..., 5 and the zones Z% ;, ..., Z; as in section
4.2l Let yo € Zf, we define the graph
G'(5) = Gyo (3)

for all s € Z{\ {0}. This definition does not depend on yo by lemma 4.3.2. If [ = 0
we define

G'(s) =G%(s) = G°(s) = ...
for all s € B(0,0) \ {0}. For I > 1 we provide an inductive definition. Suppose
we already defined G7(s) for s € Z¢\ {0}. Let y1 € Bj11. We define G/ (y1) =
Gy &G’ (y1). For y € Z5, ) \ {0} the graph G/ (y) is obtained by continuous
prolongation of G/*1(y;). The definition does not depend on %; by lemma 4.3.2.

LEMMA 4.3.3. For all j > 1 and y € 3; we have G(y) C G,. For all j > 1 and
y € Z5 we have Gi(y) C Gy.

PROOF. The first statement is a direct consequence of the construction. The
second statement is trivial for j = 1. Suppose j > 1 and let 31 € 3;; we have
GI(y1) C Gy, . Since y1 € Z¢ there exists yo € Z§ such that G7(y2) C Gy, by lemma
4.3.1. Thus we obtain

G’ (y) = [¢° (92)](y) C [Gy)(y) = Gy
for all y € Z5 by lemma 4.3.2. |
Consider the sequence of graphs {G/"*!(yo)},5,- We have

PROPOSITION 4.3.1. There exists M € NU {0} such that GM*1(yy) does not
have any edge.
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PROOF. We denote by M; the number of edges of the graph G/'*1(yo); by
construction we have M; > Mj; for all j > 0. Suppose the lemma is false, then
there exists k > 0 such that M; = D > 0 for all j > k. Since

(5% (90) — S% (y0)) € G (o) = (5% () — Sk () € G,

for all s in the universal covering of B(0,4)\ {0} our assumption contradicts propo-
sition 4.2.1l (]

The next couple of lemmas is devoted to study what kind of splitting induces
Gy in G7(y) when y € Bj41.

LEMMA 4.3.4. Suppose UNS \ {0} # 0. Let j > 1 and y1 € Bj41. Let
C be a connected component of G/ (y1). Then &£(X,y1,€) separates the connected
components of Gt (y1) whose sets of vertezes are contained in Sing(C').

PROOF. Let C; C C and Cs C C be two non-empty connected components
of G't1(y;). We have Cy, C G, for all k € {1,2} since G'"!(y1) C G,,. Suppose
&(X,y1,¢€) does not separate C; and Cy, then there exists a connected subgraph D
of Gy, such that Cy C D for k € {1,2}. We ask D for having as few vertexes as
possible. The graph D is unique because of the absence of cycles in NG, (lemma
2.1.11). We have D(y) C G, for all y in a neighborhood of y; by lemmal4.3.1. Since
NG, has no cycles then D(y) C C(y) for all y in Z¢ sufficiently close to y;. We
deduce that D C C. Since D C C C G/ (y;1) and D C G, we obtain D C G/T1(y;).
The connectedness of D implies C; = Cy = D. [l

LEMMA 4.3.5. Suppose UNS \ {0} # 0. Let j > 1 and y1 € Bj41. Let v be
a critical tangent cord of §(X,y1,€). Then for every connected component C of
GI(y1) except at most one, the set Sing(C) is contained in a connected component

of (Jz] <€)\ .

PROOF. Let E = S (y1) — SX(y1) be an edge of G (y1). We have E(y) C G,
for all y € Z5 by lemma 4.3.3. We define the set

D(yo) = (ag(X)aWg(x))ﬁ«(szf((yo)’Scx(yo))

for all yo € Z5. The set 9D (yo) N U, contains a convex tangent point T (yo) for
all yo € Z5. We have

(), We(x)) 1y < (TX " (91)) = (S5 (1), S (31))

by continuity of the flow.

Let C be a connected component of G’(y;) such that Sing(C) is not con-
tained in a connected component of (Jx| < €) \ v. We choose E to be an edge
S¥(y1) — SX(y1) joining two points of Sing(C) located in different connected

components of (|z| < €)\ 7. By our previous discussion we have (a, w) (I‘ZE; Q) =

(S5 (y1), SX (y1)) for some Q € OU.N(y = y1). Since (|z| <€)\ has two connected
l&'}?)e [Q] N~ # 0. We deduce that v C le;)e [Q] because v is a

piece of trajectory. We obtain

(O‘5(X)’w5(X))|a:|§e(7) € Sing(C) x Sing(C).

components then I'

The last relation implies the uniqueness of C' among the connected components of
G (y1) divided by 7. O



CHAPTER 5
The L-limits

The previous chapter provides the first glimpse of a more general phenomenon:
the limit of trajectories 7, passing through the points (z,,y,) — (¢,0) is not
necessarily the trajectory passing through (¢,0). We will prove that for N > 1 the
limit of the dynamics of Re(X)j,—s when s — 0 is the complex flow of X|,_,. This
chapter is devoted to make rigorous the previous statement as well as to prove it.

5.1. Setup and non-oscillation properties

Throughout this section we define some concepts we will use to define the
L-limits and to prove their main properties. We denote y = a + b.

Let (1, B2 be semi-analytic curves; indeed they are branches of real analytic
curves. The curve §; adheres to a unique direction A = A(3;). Next, we define the
order of contact I(1, B2). It A(B1) # A(B2) then we define I(81, B2) = 1. Otherwise,
up to linear change of coordinates we have A\(1) = A(fB2) = 1. There exists a
Puiseux expantion b = Pj(a) for j € {1,2}. We define I(51, 52) = v(Pi(a) — Pa(a)),
this is a positive rational number. Since A; =1 then v(P;) > 1 for j € {1,2}; as a
consequence [ (31, 82) > 1if 51 and (5 adhere to the same direction.

We will deal with meromorphic functions A(y) up to a ramification y — y*.
Such a function does not oscillate when restricted to a semi-analytic curve.

LEMMA 5.1.1. Let B be a connected real semi-analytic curve in a neighborhood
of y = 0 in C. Consider a meromorphic complex analytic function A(y*) in a
neighborhood of y = 0. For all d € NU {0} we have

lim 44 oo = lim AWy € C,
et y[TAw)] # N )

I I d 5 — lim I “A(y)) € R.
Jedim_ Hmg(lyl"A(y))] # oo yeim Tmg(|y|"A(y))

PrOOF. If A = 0 the result is obvious. Otherwise A = ay® + o(y°) for some
ce€ Qand a € C\{0}. If c+d < 0 then limyep, 4o ly|*|A(y)| = oo whereas if
c+d > 0 then limyeg, y—o ly|*A(y) = 0. If ¢ + d = 0 we obtain

. d —d
et y[FA(y) = aA(B)

Let us prove the second property. There exists a sequence y, € 3 such that
limg oo ¥ = 0 and limy o Img(|yk|dA(yk)) exists; we denote this limit by ¢. We
define e = max(u(A(y)),d). Let n be any positive real number. The curves

I = [Img(|y|°A(y)) = (c—n)ly*~], D = [Img(ly|°A(y)) = (c+ 0|yl

are real-analytic in coordinates (rl/ k X). The curve 3 does not cut neither I nor D
in a neighborhood of (r, A) = (0, A\(3)); otherwise we obtain two semi-analytic curves

53
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intersecting each other infinitely many times. That implies |Img(|y|*A(y)) —¢| <
for all y € 8 close to 0. Hence, we obtain limyecg, y—o0 Img(|y|dA(y)) =c. O

We focus now on evolution properties. Consider a meromorphic function A(y*)
such that p(A) > d. Suppose that limyeg, y—0 Img(ly|*A(y)) exists. For C € R
we define the set of contact curves TG as the set of semi-analytic curves such that
B e Y if A(B') = A(B) and

lim Im 14 — lim Im a4 =C.
sl Img(y“Ay) = lim Tmg(Jy“A(y)

A compact wedge W of width M > 0 is by definition a connected, simply connected
set W containing 8 such that W = Uce—m,m0q where 0§ € TG for all C €
[—M, M].

We prove next the existence of contact curves and compact wedges. We suppose
A(B) = 1 up to a linear change of coordinates. As a consequence the Puiseux
expansion b = P(a) of (3 satisfies v(P) > 1. For A € R we consider the curves

B(A) : Rt — C such that
B(A,a) = a+i[P(a) + Aat M4+,

PROPOSITION 5.1.1. Let d < p(A). Suppose limgsy .o Img(\y|dA(y)) e R.
Then, there exists K € R\ {0} such that B(CK) belongs to Y§ for all C € R. Let
M > 0. The set Uper—nr,anB(LK) is a compact wedge of width M. Moreover, the
function

(A, a) = [ly|"A(y)] 0 B0, a) — [ly|"Ay)] 0 B(A, a)
is continuous in [—M|K|, M|K|] x [0 < a < '] for 8’ > 0 small enough.

PROOF. We have

h_,a h_;
yljz;)) +Zy7jj +H(y) +... (hu(A) =+ 0)
jes

A:

where J C [d, 1(A))NQ is a finite set and H is a sum of monomials of degree bigger
than —d. Let F; = h_;/y’ for d < j < u(A); we have

ap oy — (19" =i
|yl j(y)— ? yi—d
By simple calculations we obtain

h_ _ . ,
yj*]d ° ﬁ(ova) o yjfjd °© ﬁ(Aa a) = Zh*JA(j - d)aH(A)_J + O(GM(A)_j)

where limacg, a—oo(a*=7) /a4~ = 0 for any compact set E C R.

We have lim,_,o ly|*H(y) = 0, thus (Jy|*H(y)) o B(A, a) is continuous in E x
(R>0,0) for any compact set £ C R. The analysis of A implies that (lyl*A(y)) o
B(0,a) — (Jy|*A(y)) o B(A, a) is of the form

AL (1(A) — d)] + o(1)

for A in a compact set E. It is a continuous function in £ x (R>, 0) for all compact
set £ C R. We define K = 1/(h_,a)[u(A) — d]); we have that 3(CK) belongs to
G for all C € R. O
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REMARK 5.1.1. Suppose that besides limyecg y—o Img(|y|*A(y)) € R we have
limyep, y—o Re(ly|*A(y)) = +o0 As a consequence we have

h_pay = Limy oy A(y) € R* U {0}.
Since h_,ay # 0 we obtain h_,4) € Rt and then K € RT.

5.2. Definition of the L-limit

Let X = f0/0z be a (NSD) vector field defined in a neighborhood of U,. Con-
sider a semi-analytic curve 8 and a point 0 < 2o < € such that we(x),|z/<c(20,0) =
(0,0). We are interested on describing the limit of I'¢(x) 4 [20,y] when y € 3 and
y — 0. Consider the decomposition y™ 1" ... fy* of f in irreducible factors. Let
0 < |z1| < € be a point satisfying that there exists a sequence {(z7, Yi)}jen con-
tained in C x 3 and such that

o (21,0) = limj_,oo(a;{,yj).
z|<e
o (21,0) & T 560 symy).a [0, 0]

e For all n > 0 there exists j(n) € N such that for all j > j(n) we have

j |z|<e+
(x1,y5) € Fggzx ;J ,Z+n) +[x0,yj].

The set of points satisfying the previous conditions will be denoted by LB vy 1018
the positive L-limit associated to xg, ¢ and 3. We can define L@’I0 by replacing

in the definition the positive trajectories with the negative ones. Next lemma is
obvious.

LEMMA 5.2.1. A L-limit L;’;O is contained in U, N [y = 0]. Moreover L;’;O is
invariant by E(X(A(B)™),0,¢€), more precisely
Q€ Ly, = TelkonsmlQ < iz,
5.2.1. True sections and virtual sections.
5.2.1.1. Ezistence of virtual sections. A L-limit is so far a definition. Through-
out this section we justify the term. In order to achieve this goal we define the
virtual sections. We denote by Ap_ the function —2mi} p p () Resx(P).

PROPOSITION 5.2.1. Let B be a semi-analytic curve. Consider x1 € Lﬂ oy
There exists a compact wedge 8 C W (width(W) > 0), a continuous section o :
W — C2, a sequence {yk}keN C B, yr — 0 and a continuous partition F =
(E_,EL) of the equilibrium points such that
1) W is associated to |y|™ Ag_(y) and .

) w(Ap_) >m
) o(s) € (y=s) forall s € W and limyecg, y—o0o(y) = (21,0).
4) T(s) & 91 (0(s)) /5™ + Ar_(5) — vo(0,5)/s™ € R for s € W.
) Fg‘;;“l [0, ye) (T (yx)) = o(yx) for alln >0 and k > k(n).
)

Flgz‘;)ﬁ"[xo,yk][O,T(yk)] induces the partition E(yy) for all p > 0 and

k> k(n).

As usual v is an integral of the time form of X (1) defined in a neighborhood
of (z9,0) whereas % is obtained from )y by applying the method in subsection
4.1.1. By definition a section o satisfying the conditions in proposition 5.2.1! is
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called a wvirtual section. Roughly speaking for a virtual section o the points (xg,y)
and o(y) are candidates to be connected by a trajectory spending time T'(y) to go
from (x0,y) to o(y). If that connection really exists, i.e. if conditions (5) and (6)
are satisfied for all y € W close to 0 then o is a true section.

PROOF. Let \g = A(6)™. Let (27,y;) be the sequence provided in the definition

of the L-limit. Consider a transversal T to Re(X(\)) passing through (z,y,A) =
(21,0,A(8)™). We can suppose that Tr contains the point (21,y;, (y;/|y;[)™) for
all j >> 0 by replacing (x],y;) with a point in the same trajectory of Re(X). We
have that (z7,y;) € Flgzl;;i”[xo,yj] for all 7 > 0 and j > j(n). For j > 0 big

enough the piece of trajectory of {(X,y;, e+ n) from (zo,y;) to ($j1, y;) induces a
partition of the singular points. By taking a sub-sequence we can suppose that the
partition is always the same, we denote it by E. We have

def Y1 j Yo
Iy je = Y™ (ym(wjhyj) +Ap_(y;) — ym(x07yj)> eR*
for all j > 0. As a consequence p(Ag_) > m because otherwise

Jim Loy 5,m(y5) = ($1(21,0) + b = (w0, 0)A5 " € RT U {0}

implies that (z1,0) € FLJEE(E/\D))[QCO,O](@) for some a > 0. That contradicts z1 €

Lg”;o. We have
Jim Imyg(ly;|™ Ap_ (y5)) = —Img (1 (21,0)A5 " — tho(w0,0)A5™).

Hence limyeg, y—o0 Img(ly|™ Ar_(y)) € R by lemmal5.1.1. By proposition 5.1.1 and
the implicit function theorem we obtain o : W U {0} — T'r such that

P1(o(s))/s™ + Ag_(s) — o(z0,8)/s™ € RT

for all y € W. By the uniqueness obtained from the implicit function theorem we
have o (yx) = (2%, y;,) for all k >> 0. Therefore o is a virtual section. O

Propositions [5.1.1 and [5.2.1 imply immediately the next remarks.

REMARK 5.2.1. If width(M) > 0 then the section o : W U {0} — C? is not
continuous at 0. In fact for ' € TEL we have

lim  Img(i(c(@)NB) ™) — lim  Img(¥i(a(y))AB) ™) = C.

yep’s y—0 yep, y—0
REMARK 5.2.2. We have limyew, y—o |y|" T (y) = +oo.

REMARK 5.2.3. Let M > 0. Suppose £(iX (N(B)™),0,€)[x1,0][—M, M] is con-
tained in U.. Then W can be chosen in proposition 5.2.1l to have width at least
M.

5.2.1.2. Ezistence of true sections of zero width. There is no difference between
virtual and true sections when the width of the wedge is 0.

PROPOSITION 5.2.2. A wirtual section o : U {0} — C? associated to a semi-
analytic B and points 0 < |zg| <€, 21 € LE’;O 18 a true section.
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PROOF. Let \g = A(8)™. Fix n > 0. We define

F={yep:oly) =Teky Mlzo.s)(T(v))}

We have y; € F for all j > 0 big enough. The set F' is open. If the germs of F' and
B at 0 coincide then we are done. Otherwise, consider the connected component
F. of F containing y,. There exists a sequence s — 0 such that s, € dFy. The
points sy satisfy that

o(sk) = Fl;zl)ae-m[fo, sk)(T(sk))

for all k& >> 0 but FZL?)G+"[JCO7S/€HO,T(S;€)) contains a tangent point T5 "% (sy).
A priori a depends on k but we can suppose that a is constant by taking a sub-
sequence. Consider the set

G={yeB:Tg™ (y) € TEE ag,y)).

We have s, € G for all k >> 0. The lemma [4.1.4 applied to Sy = (z0,y), S1 =

T (y) and H = {\(3)} implies G = 3. By Rolle’s property there exists a unique
function T” : 3 — RT such that

e+n,a z|<e
T (y) = DL o, y](T7 ()

and T"(s;) < T(sy) for all & >> 0. The function 7" is of the form

YL e (
T'(y) = y%(TXM’a(y)) + Ag (y) - y%(xo, y)
for 1} defined in the neighborhood of limyes, 4o T5% " (y) € T;E;O)(O). By lemma
5.1.1/ we have that
de . m
¢ dimy™(T(y) - T'(y) € Rz U {+00}.
Y€, y—0

If ¢ = 0 then (21,0) = limyes 0T "*(y) € (|| = € + n); that is not possible.
Therefore ¢ > 0; as a consequence T"(yx) < T'(yy) for all & >> 0. We deduce that
the trajectory

F‘;EL?)%L”[JJm yk] [0, T(yk)] C Ueiy
contains a point in QU4 for all k£ >> 0. That is a contradiction. 0

The existence of true sections defined over ( justifies the term limit for the

L-limit. The set {0} U I“gzl;(e)\(ﬁ)m)),Jr[mo, 0] U L;’;O is the limit of the trajectories

passing through (zg,y) when y € 3 tends to 0.

5.3. Structure of the L-limit

5.3.1. Dynamics supporting non-empty L-limits. Roughly speaking the
L-limit phenomenon appears when the limit of trajectories passing through some
points is not the trajectory passing through the limit point. Therefore, the existence
of L-limits is associated with complicated dynamics. We claim that the complexity
of the dynamics depends on whether N <1 or N > 1. We remind the reader that
N is the generic number of points in U, N [y = ] N SingX.

ProproOSITION 5.3.1. Suppose N < 1. For any choice of the data we have

e _
Ly, =0
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Proor. Consider a partition E of the singular points. We claim that y™ Ag_(y) =
Y™ (=2mi) Y pep () Resx(P) is a holomorphic function. If E_(y) = ) then Ap_ =
0, otherwise X (1) = u(z,y)(x — g(y))"9/0x and X = y™X; for u € C{z,y}\ (z,y).
The order of X(1) along x = g(y) is constant and equal to v; thus —27miRes x(1y(9(y),y) =

~—

y™Ag_(y) is a holomorphic function. By remark [5.2.2| we obtain L;’;O =0. O

PrOPOSITION 5.3.2. Suppose N > 1. There exists a semi-analytic 3 and 0 <
|ro| < € such that L;”;O # 0.

PROOF. We know that UNS \ {0} # 0 by corollary 4.2.2. We choose 3
to be a T-set. Let Ao = A(8)™. There exist T%% T%" and T : f — RT
such that I“g’clSe [T (s)|(T(s)) = T (s) for all s € B. The limit (c;,0) =

(X).+
limyep, y—o Ty’ (y) exists and it is contained in T, ,(0) for all j € {a,b}. We
have (¢, 0) € L;”; by proposition [3.2.2. O

LEMMA 5.3.1. Suppose N >1 and m = 0. Let xo € (0 < |z| < €). Then there

ezists a semi-analytic B such that L;)’;O U Lg;o # (.

PrOOF. We have that either
Qe(x), |z <e(20,0) = (0,0) or we(x),jz|<e(T0,0) = (0,0).
Suppose without lack of generality that we are in the latter case. We can suppose
that we(x), jzj<e(20,0) = (0,0) by replacing (xo,0) with Flg(‘;f[xo,O](t) for some
t >> 0 if necessary. We define

F={y € B(0,5)\ {0} : T {5, [0, y] N T () # 0}

The set F is a finite union of semi-analytic curves by corollary 4.1.2. Let 3 be
a semi-analytic curve contained either in F or in a zone Z of B(0,6) \ (F U {0})
such that we(x) z|<e(0,y) = oo for all y € Z. Such a curve exists by lemma

422, Since r';g‘;ﬁ L [z0,y] N AU # 0 for all y € (8 and F‘gg‘;; _[%0,0] € U then

Lg;;o N(|z| =€) # 0. O

5.3.2. Nature of the L-limit. A L-limit satisfies the Rolle property. Let 3
be a semi-analytic germ of curve.

LEMMA 5.3.2. Let (w1,0) # (22,0) in L5 UTE (gm0, 0], Then there

is no a connected transversal I C U. N (y = 0) to E(X(A(B)™),0,€) containing both
(1,0) and (z2,0).

PROOF. Let A\g = A(3)"™ and n > 0 small enough. Suppose the result is
false. The set I x V x W is a transversal to Re(X())) for some neighborhood
V' of 0 and some neighborhood W of A\g. For y € g sufficiently close to 0 the
trajectory 1"';2‘;;4'" [0, y] cuts T x {y} at points (x1(y),y) and (z2(y),y) such that

limyeg, y—o(z;(y),y) = (;,0) for all j € {1,2}. As a consequence the Rolle
property is violated for y € 8 sufficiently close to 0. O

Next we describe the structure of a particular L-limit.

PrOPOSITION 5.3.3. The L-limit L;’;O is a finite collection p1 < ... < p
of trajectories of E(X(A(B)™),0,€) in (|Jz| < €) x {0}. The number of connected
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components of L;’;() is at most U(X) — 1. The order is provided by the time of the
flow.

Let (2;,0) be a point of p;. By propositions [5.2.11 and 5.2.2] there exists
a true section o; : 3 U {0} — C? such that oy(y) = Fgl;)i"[xo,y](ﬂ(y)) for
all y € 3 and 0y(0) = (%;,0). The function 7; : 8 — RT is continuous and
hmye,& y—0 |y|mTl(y) = oo. We say that P < Pi41 if hmyeﬁ, y—0 |y|m(Tl+1 (y) -
Ti(y)) = oo. This order does not depend on the choice of the sections o; and
oi+1. Indeed, for a different choice o] the function T} :  — RT satisfies that

ly|™ | T (y) — Ti(y)] is bounded.

PROOF. Let A\g = A(3)". We claim that the order is a total one. Let p1, py be
two connected components of L;’jo. Let E7(s) be the partition of SingX induced

by I“m|<5+"[x0, s][0,T}(s)] for any n > 0. If

€(X),+
lim T —T; =00
veB, y 0‘1/| T2 (y) 1(y)]

then either p; < po or ps < p1. Otherwise the limit

limyes, y—o | 2mily|™ Z Resx (P Z Resx (P
PEEL (y) PEE? (y)

exists by lemma5.1.1. Hence ¢ = limyeg, y—o [y|™ (T2(y) —T1(y)) exists. We deduce

z|<e
that (z2,0) = Flg(‘X()‘O)) +171,0](c) and then p; = pa.

Y

FIGURE 1.

o |z|<e ) . )
Consider Hg(X(,\O) 0) (see picture [I) and the sequence

<
FZ‘X(E,\ o, 0] =po < pr <...<p
of connected components of LE”;O. For every 1 < j <[ we have ae(x(ag)),|z|<c(Pj) =
{0}; otherwise there is no component lesser than p;. Moreover, for all 0 < j < [ we
have we(x (), \ac|<e(Pj) = {0}.
We call "aba” set a union of three contiguous regions labeled ”a”, ”b” and ”a”
respectively. There are 2(7(X) — 1) 7aba” sets. It is straightforward to prove that
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the trajectories in ”"aba” sets can be connected by connected transversals. Hence
an “aba” set can not contain more than one component of L""E U po. For all
1 < j <1—1 the component p; is contained in an ”a” set and then in two ”aba”
sets. The components py and p; are contained in at least one ”aba” set. Hence, we
obtain 24+ 2(I —1) <2(7(X)—-1) = I <p(X)-1. O

The first component of a L-limit is the only one which is invariant by reduction
of the domain of definition.

LEMMA 5.3.3. Consider 0 < |zg| < e. Suppose LE’;(J # 0 and let p be a
component of L+’6 . Suppose that for all 0 < € < € there exist points (z(,0) €
< / .
F‘EJZL((;(B)’")) [330, ]ﬁ Ue and (21,0) € pN U such that x1 € L;’;é. Then p is the

first component of Lg o

PROOF. Let p; be the first component of L;’;O. Let € > 0 be a constant such

that U., does not contain p1- As a consequence U, N p; has more than a connected
component. Therefore L+ 6, C p; for all (z(,0) in F‘E?L?(EA(B)’")) [9,0]NU,. That

implies p N p1 # 0 and then p=p1. O

5.4. Evolution of the L-limit

5.4.1. Virtual evolution. Up to a linear change of coordinates we suppose
A(B) =1. Let p; < ... < p; be the connected components of the L-limit L;’;O and
. |z|<e
consider po = L' (1)) [0, 0].
Let oo(y) = (z0,y). For 1 < j <[ the couple (po, p;) has associated a true

section o; : 3U{0} — C2, a partition E; of the singular points and a time function
T; : 3 — R* such that ¢;(0) € p; and

¥

E@)Z*%Wﬂw)+A@ﬁ@)—§*@mw

Since o1 (0) € L (0) for j < k then (p;, px) has associated a partition E;j of

Sing(X) and a tlme function T}, : 8 — RT such that
wi’ v

Tiww) = (k@) + Apy(0) =

We denote E; by Ey ; and T} by T ;.
Fix L € Q>m Let co(Ej 1, L) be the coefficient of y=% in A,

(75 ().

ym

gk, —
LEMMA 5.4.1.
co(Ej i, L) + co(Egr, L) = co(Ej, L) for all 0 < j <k <r <lI.
WAg;, ) <p(Ag, ) if j'<jand k <K
(mv)>0ﬁMM@&J§L'
co(Ejg, L) > 0if p(Ag,, )=Lforall0<j<k<IL
Proor. The first relation is a consequence of T} + Ty, = T r.
Suppose j' < j, k < k' and (j,k) # (j', k'), thus |y|" (T} x — Tjx) tends to oo
when y € 3 tends to 0. As a consequence

™ AE, .- (W) < 1y As, . _ ()]
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in B since y — |y|"Tap(y) — [y|"|AE, , _(y)| is a bounded function of § for 0 <
a < b <. Therefore, we obtain p(Ag;, ) < p(Ag, ., ).

If u(Ag,, ) < L then co(Ejy, L) = 0. If u(Ag,;, ) = L then we obtain
co(Ej k, L) > 0 by remarks 5.1.1 and [5.2.2. O

By lemma [5.4.1 we have u(Ap, _) <... < u(Ag, _). We consider the compo-
nents p; < ... < pg such that

wAp, ) < ... < p(Ag, ) < L.
Let a — (a, P(a)) the Puiseux parametrization of 3. We define
B(A,0) = a+i[P(a) + Aak~"+]

and let us consider W(M) = Uaei—ar,m1B3(A). Our aim is describing the evolution

of the L-limit L;(A) 2o~ We denote by width; (W (M)) the width of W (M) as
a compact wedge relative to (pj, px), or in other words relative to the function
\y|mAE,;k,_-

LEMMA 5.4.2. The curve B(A) belongs to TCO(EJ L) (L=m)A

k < q. Then, width; ,(W(M)) = co(E; 4, L)(L — m)M

if we have 0 < j <

If co(Ejk,L) = 0 the statement of the lemma means that W (M) does not
contain a compact wedge relative to (p;, px) of positive width. We will not prove
explicitly the lemma because we are just rephrasing some of the results in proposi-
tion [5.1.1L

For 1 < j < g the curves p; belongs to ag_(lx(1)),\x|§e(o’ 0) whereas pj belongs to

g_(ﬁ(u)) ‘x|<e(0 0)for0<k<g—1. Ifp; C af_(lX(l)) ‘x|<e(0 0) then p; is contained
in a repulsive petal V for some I;” € ©7(X(1),_). There is an integral 1 of
the time form of X (1 )I _o defined in V . We define the curve

N .
P2 = (¥50) " (Wio(py) + R+ AL — m)eo(Eo, L)).
If p; C wg&(l)) M<6(O 0) we can use the same construction with the attractive

petal V+ containing p and the integral 1/} o of the time form of X (1) defined in V+.
We define

Pt = (vfy)~ W}fo(ﬂj) + R+ iA(L — m)co(Ey,;, L)).
Let hx =inf({j € {1,...,q—1}: p5_ # p5, } U{q}).

5.4.2. Evolution with respect to the base curve. This subsection is de-
voted to prove the next result:

PROPOSITION 5.4.1. Let L € Qs,,. Consider p1 < ... < p, the components of
L;;U such that M(AE, )<L foralll <j<gq. Then, for all A € R the first hg
components of L;(Z) 2 OTE
p1A7_ < ... < pfg7*.

We will prove the result step by step. Let us define o, = (L — m)co(E; x, L).
Fix M > 0. We choose points (z;4,0) in p; and (zg,—,0) in pp for 0 < j < g -1
and 1 < k < g such that
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def x| <€ .
(1) S e 0-Mag ; — 1, Mag ; + 1] is well defined.
(2) ¢ — def \ail&e(l))[xk —,0][-Magr — 1, Mg + 1] is well defined.
(3) Wex(1)).al<e(P) = {(0,0)} for all P € S}

(4) ag(X(l)%m«( ) = {(0,0)} for all P € Sk_
To obtain (z;4,0) we can try at first with any (z;4,0) € p;. If it does not
hold the previous conditions then we replace (x;4,0) with I‘zl;(e ))[;vj7+,0](t) for
some t >> 0. A similar method provides (zj41,—,0). Let y = re*. The previous
properties imply that

def c :

° Tr;r(y) = F‘;Ell;()\m))[% +Y[—May; — 1, Mag ; + 1] is well defined for
(r,A) in a neighborhood of (0, 1).

.« Tr(y) " Tlé-ﬂ;/\m))[mk,ﬂy][*MOéo,k —1,Mag; + 1] is well defined for
(r, A) in a neighborhood of (0,1).

Let v, 4 be an integral of the time form of X (1) defined in a neighborhood of Trj'
whereas 1;41,— is an integral of the time form of X (1) defined in a neighborhood
of T'r;,, obtained by prolongating ;1 (see subsection 4.1.1). For any point z;

in Tr;r(()); we define
Alzjy) = i 4(2,4,0) = i1 (254,0) = 97 o (25,4,0) — (5,1, 0).

Let zj,4 be a point in T} (0) such that |A(z; 4)| < Mag ;. We define

_ (-1) _ .
P (i) = (Wia0) (Wi 0@~ 0) + Az 1) + iy 11 + R).

LEMMA 5.4.3. Let z; 4 be a point in Tr;-r(O) such that |A(zj4)| < Mag;. If
A € [-M, M| then ij,j+1(zj7+) is the first component of L;(’Z

)sZj 4"
PrOOF. There is a virtual section 041, : W(M) — T'r;,; such that
Vjt1,— Y+
Tj+1,7(y) = JyT(UjH ~(y) + AE; Gl (y) — ;7($j,+ay)
and limyeg, y—00j41,-(y) = (€j41,-,0). We know that o115 is a true section
by proposition [5.2.2l Let n > 0; we consider the trajectory
<et
YY) = Ty s 40 00, Ty~ ()]
for all y = rA € 5. We have

|z|<e |z|<e
yééfnyl_)OV( y) = Fg(x(l))) +[754,0] UFg(X(l))) [%541,-,0].
Since limyeg, y—oy(y) does not contain points in OU, by the choice of z; + and
xj4+1,— then v(y) is contained in U for some € < € and y = r\ € 3 in a neighbor-
hood of 0. Moreover

(5.1) F‘?Lj{?)\m))[ (»)(C) C Uer

for all C' € [-Mayg ; —1, Mayg, ; +1], some €’ < e and y € § in a neighborhood of 0;
it is a consequence of the conditions on z;  and x;41,—. Hence p?,j+1(zj’+) is the
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first component of L;fj .- There exists a virtual section Ot W(M) —Tr,
such that
Pit1,— Vi +
T‘]{+1,7(y) = jym (U;+1,7(y)) + AEj,j+1,— (y) - y]m (Z.j7+7y)

and limyeg, y—o 0’3-+17_(y) € p?7j+1(zj7+). By proposition [5.1.1/ we have that

lim o _ c A 2
yeB(A), y—o T (Y) € Pl (zt)
for all A € [-M, M]. We prove next that ¢/, _ is a true section. Let us define
the set

G={rxe W(M): T¢5 T2, 4, 7N[0,T) 1y _(rN)] € Uc}.

Then S is contained in the open set G because of the relation 5.1 applied to C =
Img(Y;+(25,4,7A) — ¥ +(xj4+,7A)). Let F be the connected component of G
containing (; we denote by OF the boundary of F' in W(M). If y € OF then
I‘?E‘;)e [2j,+,9][0, T}, _(y)] is contained in U, but its intersection with OU, is not
empty. We deduce that OF' is contained in the set

H = {y € B(0,6)\ {0} : T{y, [254, 5] N Tk # 0.

By corollary 4.1.1] the restriction of H to a neighborhood of (r,\) = (0, 1) is a finite
union of semi-analytic curves.

Let £ be a connected component of H such that £ N OF contains infinitely
many points in every neighborhood of 0. Thus there exists Tg¢* and 7" : £ — R
such that T3%(y) = Fg;;[zj7+,y](T’(y)) for all y € & and T"(yr) < Tj,y_(y)
for a subsequence {yx} C &€ N OF such that limg_. yr = 0. We denote (¢,0) =
limyee,y—0 Ty (y) and (d,0) = limyeg, 400744, (y). We have (d,0) € S;,, since

[j41,-(d, 0) = Yjp1,— (2j41,-,0)| < 0 ;M + 41 M = agj 11 M.

By the condition on S ; we deduce that d € LZ;:. As a consequence we obtain
ly|" (T} 41, _(y) = T'(y)) — 400 when y € £ and y — 0. The point (z;,4,0) is in
Sf; that implies limyee, o [y|"T'(y) = +oo. Since T'(y) < T}, _(y) fory € §
we deduce that £ C JF. As a consequence the set OF is a union of at most 2
semi-analytic curves.

Let £ € OF. Consider a transversal Tr. passing through the point (z,y, \) =
(¢,0,1). There exists a virtual section o, : F' — T'r. such that limye¢, y—00c(y) =
(¢,0). The section o, has associated a function 7, : F — R* and a partition E, of
the singular points such that

_ Ve

" (oo(y) + A, () — Dt

Te(y) ym (2j,4:9)-

Moreover, we have T.(y) = T'(y) for all y € . By lemma 5.4.1] we have u(E.) <
w(Ej j+1) < L. By proposition 5.1.1

(Iyl" Ap.~) 0 8(0,a) = (ly|" Ap.-) o B(A, a)
is bounded in [-M, M] x Rx for E € {E., E; j4+1}. Then
lim |y|"™(Tj1 - (y) = Tey)) = _limJy[" (Tjp —(y) = Te(y)) = o0

yeF, y—0 yeg, y—0
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and
lim  [y|"Te(y) = lim |y["Te(y) = oo
yEF, y—0 yeg, y—0
We define (e,0) = limyeg, y—o0c(y). Since limyeg y—o [y|"Te(y) = oo then e €
LE,";; Moreover limyeg 40 |y|m(TJ{+1’7(y) — T.(y)) = oo implies p?’jﬂ(zj#) C
L;;ee We proved that p ;. (2 1) is not the first component of L;’;&. Since we
also proved the opposite statement then OF = ) and G = F = W(M). Therefore

/ : .
0j41,— 1s a true section.
,€

(A)254 Let 0 < e <e

We claim that pﬁj +1(2j,4) is the first component of L;
For t >> 0 we replace S]‘-" and S, with

Tty [SF1(8) and T [S7,4)(~1)

(X (™)) E(X(Am))
respectively. The choice of t > 0 is intended to satisfy the four conditions on Sj
and S, ; for € instead of e. We define

(Z;'ri” 0) = F‘;zl;(;m)) 2,4, 0](t).

We already proved that () # L;(’Z), 2, C pﬁj +1(2j,4+). We are done by lemma

5.3.3. 0
We can now prove the main result in this subsection.

PROOF OF PROPOSITION [5.4.1. Let M = |AJ; for 0 < j < hk — 1 we choose
Tj 4+, %j4+1,— satisfying the four conditions on (z; 1,0) in p; and (zj41,—,0) in pjy1.
We also consider the transversals Tr;r, T'r;,, and the integrals ¥; 4, ¢;41,— of the
time form of X (1) for all 0 < j < hg - 1.

By lemma [5.4.3 the first component of L;(Z),zo is pf_. Moreover, the only

point (z1,—,0) in pf_ NTry (0) satisfies
Y10(21,-,0) =¥y g(21,—,0) = Y1, (21,-,0) — ¥1,—(21,-,0) = iAag1.

Suppose now that for 1 < j < ha we have that the first 7 components of L;(’Z) -

are pf,_ < ... < ijﬁ. We also suppose that there is a unique point (z;—,0) in
p%_ N Tr; (0) such that
Vi 0(25,—,0) = Y5 o(x5,—,0) = ¥; —(25,—,0) —bj,—(x5,—,0) = iAag ;.

Since pﬁ7 = ij,+ there exists a unique point (z; 4+,0) € pﬁ; N Trj'(O). This point
satisfies that A(z;4+) = iAap,; and then |A(z;4+)] = Map,;. By lemma [5.4.3
the next component of L;{Z),wo is p5i41(zj,4). Since ag i1 = agj + a; ;11 then
ij—s-l,— = ij’j_H(zj,Jr). The proposition is proved by induction. O

REMARK 5.4.1. Suppose N > 1 and m = 0. Let 0 < |z1]| < €. Then either
we have ag(xy,|z|<e(71,0) = (0,0) or we(x) |z|<e(®1,0). Suppose without lack of
generality that we are in the former case. There exists a semi-analytic B such that
Ly, # 0 by the proof of lemmal5.5.1. Let (x0,0) be a point in the first component
of Ly, , thus x1 belongs to the first component py of L;’;O. Let L = u(Ag, _). For
any neighborhood V- C R we have that UAGVplAﬁ is a neighborhood in C of 1. As

a consequence the real flow of X generates the complex flow of X|,—o at every point
of U.N [y =0].



CHAPTER 6

Topological Conjugation of (NSD) Vector Fields

We described so far the behavior of a (NSD) vector field X. From now on
we will use this information to compare two different (NSD) vector fields and to
characterize whether or not they are topologically conjugated.

Our aim is comparing two (NSD) vector fields in a set

Hs ={ufd/0x / uis a unit}.

In order to assure that the elements of H; are (NSD) vector fields we ask f for
fulfilling the (NSD) conditions. We are going to describe whether the real flows of
X1 = u1f0/0x and X5 = usfO/0x are topologically conjugated by a homeomor-
phism o such that

® 0)[(SingX)\(y=0)] = Id.

® Yoo = Y.
A mapping o satisfying the two previous conditions will be called special. We
impose the special conditions because we are interested in comparing the dynamics
of Re(X;) and Re(Xs); whether they are topologically conjugated for a certain
fiber in a neighborhood of a singular point and if the evolution of the dynamics
with respect to the parameter is compatible.

We say that X; & X, if there exists a special germ of homeomorphism o such

that o conjugates Re(X;) and Re(X3).

6.1. Orientation

Consider f € C{xz,y} satisfying the (NSD) conditions. Let X;, X5 in Hj.

Suppose X L X, by a homeomorphism o defined in a neighborhood of m. For

every s € B(0,9) there exists a mapping

o(s), i m((UeNfy=s)\ (f =0)) = m((c(U) N[y =s)\ (f=0)
induced by o,—. Since o|y—o = Id then the fundamental groups

T ((Ues Ny =)\ (f =0)) and m((c(Ues) N[y =s])\ (f =0))
are canonically identified. We claim that the mapping o|,—, preserves the orienta-

tion for s € B(0,9).

PROPOSITION 6.1.1. Suppose N > 1. The mapping o(s), is the identity for all
s € B(0,9).

PROOF. The result is invariant under a ramification (z,y) — (x,%"*), so we
can suppose that the irreducible components of the set f = 0 are z = ¢1(y), ...,
r = gn(y) and maybe y = 0. We consider a loop £[0,1] : 6 + re?™ for 0 < r < 4.
We define k(z,y) = y. Let

i m(5TH €\ (@ =g; (1)) = m(xT () \ (& = g;(1))

65
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be the mapping induced by |.-1(e)\(2=g,(y))- It i enough to prove that o; = Id
for all 1 < j < p. The space k= (€) \ [# = g;(y)] is homotopic to a torus whose
fundamental group is isomorphic to Z x Z. We choose a loop a1 o C £~ 1(€)\ (f = 0)
such that oy 9 ~ 0in 7 (Ues\(f = 0)) and x(aq,0) turns once around 0. Let g 1 be
aloop in s 71 (r)\[z = g;(y)] turning once around (g;(r), 7). The choice of generators
a1, and g1 induces an isomorphism from Z x Z to 71 (k= (§) \ [z = g;(y)]). The
isomorphism o is of the form

o1 LXZ — Z X7
(a,b) — (a,cja+d;b)

because o preserves the fibration y = cte. Moreover, we have ¢; € Z and d; €
{-1,1}. Fix k€ {1,...,p} \ {4}, we denote v(g;(y) — gx(y)) by v. Let us consider
€10,1] : 0+ (gr(re®™?),re2™%). The loop & is contained in k~1(&) \ [z = g;(y)]
and since ojf—o = Id then 0;(£1) = & . Therefore, we have o;(1,v) = (1,v).

Consider a continuous function 12[0,1] :  — O (X7 (re?™?)) where X7 (s) is the
germ of Xyj,—, at (g;(s),s). The function 17 is determined by #(0). The direction
17(#) turns ¢t € Qo times around {0} x S' (see proof of proposition 4.2.1). The
number ¢ does not depend on 1] (0); moreover, it does not depend on X; but on f
(see proof of proposition [4.2.1 for a explicit calculation). Since o preserves basins
of attraction and repulsion then o induces a mapping from ©(X7(s)) to ©(X3(s)).
We define I(6) = o(12(0)). The function 1 is determined by (0); it turns ¢ times
around {0} x S! since ¢ depends on f. Let u € N such that —tu € N. Then
1} = o (1) implies o (u, tu) = (u, tu). We have

{Uj(u,tu) = (u,tu)

oj(l,v) = (Lv)
It is straightforward to prove that the previous system can only be satisfied if ¢; = 0
and d; = 1. As a consequence o; = Id. O

REMARK 6.1.1. Suppose N > 1. Let X1, Xo € Hy be vector fields such that
X, 2 X, by a special homeomorphism o. A priori, if a trajectory v of §(X,y, €) in-
duces a partition (E_, E1) the trajectory o(vy) induces either (E_, E}) or (B4, E_)
depending on whether the orientation is preserved or reversed. We are in the for-
mer case by proposition [6.1.1. Therefore v and o(v) induce the same partition of
the singular points.

6.2. Comparing residues

Let X; & X, be conjugated by o. We can suppose that X;, X5 and o are
defined in the neighborhood of both U, , and o(U.s). This section is devoted to
prove that the existence of o forces the residue functions of X; and X5 to be related.

LEMMA 6.2.1. Let X1, Xo € Hy such that X4 L X, by a special germ of
homeomorphism o. Consider a non-empty L-limit L;’;O associated to X1 and a

component p of L;’;O. Let E be the partition induced by (xo, p); then

p| Y [Resx,(P)— Resx,(P)] | <m.
PeE_(y)
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ProoOF. Throughout this proof the L-limits and sections will be referred to Xj.
Let 21 € p. There exists a true section S : 3U {0} — C? such that S(0) = z;. We
have T : 3 — R™ such that

ﬂw:¢;?w@»+A&xmnf@fw%w»

Let 7 > 0 such that X; and o are defined in Uy, 5. We define

() =T s Vo, 9]0, T(w)]

for y € 8. By remark [6.1.1] the partition induced by v(y) and o(v(y)) is the same.
Therefore, we have

¥1 x, $o,x,
ﬂ@Z*ﬁ?@@@m+Amxxw—i%%dmw»
for all y € 8. This relation implies

li m(A —A :
jeim y (Ae_ x,(y) E_x,(y) €C

Finally, we obtain u(Ag_ x,(y) — Aes_ x,(y)) <m. d

REMARK 6.2.1. The result in the previous lemma is also true if we replace E_
with E4 because for any (NSD) vector field X the function

s™ Z Resx (P) = s™ Z Resx (P) + s™ Z Resx (P)
PeSingXnN(y=s) PcE_(s) PcE,(s)

is holomorphic in a neighborhood of s = 0. This statement is a consequence of the
formula

s Z Resx (P) = Z Resx(1)(P) = /
PeSingXN(y=s) PeSingX (1)N(y=s) eStx{s}
where 1 is a multi-valuated integral of the time form of X (1) defined in the neighbor-
hood of OU.. The function feSlx{s} 1 is holomorphic because SingX (1) N OU. = 0.

Let X1, X, € H; such that X; 2 X,. Fix s € B(0,6)\ {0}. The graph G\*I=

§(X17S)
has several connected components Gy, ..., G; whose singular points we denote by
FEq, ..., Ej respectively.
LEMMA 6.2.2.

/u(AEj,Xl (y) - AE]'7X2 (y)) <m for all 1 < .] < L.

PROOF. The T-sets, zones, L-limits and sections in this proof are referred to
X, If TC';E';;S) = () then the result is true by the remark [6.2.1. Otherwise we

consider the set Z(G;) C TC'&‘;:S)’N (see subsection [2.1.4] for definitions). We

choose a € Z(G;); the lemma 2.1.12 implies
Ap;x,(y) — Ap;.x,(y) =
= (AEfj’l,Xl (y) — AEfjv17X2 () — Z (AESJ‘=27X1 (y) — AEbGj’Q,XQ ().
beE(G)\{a}
It is enough to prove that the right hand side is a summation of functions whose

order is less or equal than m. Either s belongs to a T-set 3 or it belongs to a
zone Z5 ; in the latter case we choose a semi-analytic curve 3 contained in Z. A
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critical tangent cord c(y) € =(G;(y)) contains a point Tf(f(y) and another point
P(y) € dU.. Since S! is compact there exists (z1,0) and a sequence yx € f3,
yr — 0 such that (z1,0) = limg_,oc P(yx). We denote (z9,0) = limyecg y—0 T)E(ld(y)
We have that x; € L;”;O U Lg,,- Moreover, the partition induced by (zq,z1) is
the same partition induced by ¢(s). Therefore, by lemma 6.2.1 we deduce that
/,L(AECGJ»,IC’X1 (y) — AEfj,k7X2(y)) <m for k € {1,2}. O

We consider the T-sets (1, ..., f; and the zones Z% ,, ..., Z%, ; associated
to the vector field X;. We consider the sequence of graphs G', G2, ... associated
to X7 (see section 4.3). Let G7, ..., G{j be the connected components of G/. We

define Ei = Sing(Gi). We have
LEMMA 6.2.3. Forall j > 1 and all 1 < k <1; we have
M(AEi,Xl (y) — AEi',XQ(y)) < m.

PROOF. In this proof T-sets, zones and graphs are referred to X;. If there are
no T-sets the result is obvious. The result for j = 1 is implied by lemma 16.2.2.
Suppose it is true for j = jg. Consider s € 3j,4+1. Let C be a connected component
of G7°. By varying C it is enough to prove the result for the connected components
of G0+ contained in C. By lemma 4.3.4 the critical tangent cords in TC’ELXS‘)’N
separate the connected components of G0+ contained in C. Let v C [y = s] be
a critical tangent cord dividing C; it induces a partition (E, _, E, +) in Sing(C)

and a partition (E _, E! ) in f = 0. It is enough to prove that

W Ae, _x,(y) = Ae, _ x,(¥) <m, w(Ae, . x,(y) — Ae,  x,(y)) <m

because then we can proceed as we did in lemma 6.2.2l Since v does not split any
component G other than C' (lemma 4.3.5) then we have

Ap, _x,(y) — Ar, _x,(y) =

(Ap x, ) = Ap %) = D (Asing(ca) 1Y) = Asing(c),x, (1)
deJ
for a certain subset {Cy} ., of components of G other than C. We obtain
wWAe, _ x,(y) — Ap, _ x,(y)) < m by lemmas 6.2.1, 6.2.2 and hypothesis of in-
duction. The proof for the + case is analogous. ]

PROPOSITION 6.2.1. Let X1, Xs € Hy such that there exists a special germ of
homeomorphism conjugating Re(X1) and Re(X2). Consider a continuous multi-
valuated section S : B(0,0) \ {0} — (f = 0) such that S(s) € [y = s] for all
s € B(0,0)\ {0}. Then

p(Resx, (S(y)) — Resx, (S(y))) < m.

PROOF. By proposition 4.3.1 we can apply lemma 6.2.3 to the graph with no
edges. Since the connected components are singletons we are done. O

6.2.1. Rigidity of the special conjugation at y = 0. Let X; < X, be
conjugated by 0. We argued in remark[5.4.1/that the real flow generates the complex
flow at y = 0. We make rigorous that statement in order to prove that oy, npy=o
is complex analytic if N > 1 or m > 0.
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LEMMA 6.2.4. Let X1,Xy € Hy such that X X, by a special germ of
homeomorphism o. If [y = 0] C SingX1 then oy npy—o i holomorphic, moreover

it conjugates X1(1),,_, and Xa(1)

ly= ly=0"

For t € C we define exp(tX)(xo,yo) the point obtained by following the vector
field X from (xg,y0) during time t. For ¢ close to 0 we have exp(tX)(zo,yo) =
FE(eiarg(t)X,yo,e) [xO,yO]th

PrROOF. We have X; = y™X; (1) and Xy = y™X5(1). Let n > 0 such
that X; and o are defined in Uy, s whereas X, is defined in o(Ueqys5). Let
(0,0) € Ug; there exists A > 0 such that the complex flows exp(tX1)(zo,0) and
exp(tXs)(o(x0,0)) are well defined for |¢t| < 24. Our goal is proving

o(exp(tX1)(x0,0)) = exp(tX2)(o (o, 0))

for all t € B(0,A). This statement implies that o7 ,—o) is holomorphic except
maybe at 0 and then Riemann’s theorem implies that oy, njy—0j is holomorphic.

Let t € B(0,A) \ {0} and consider \g € S such that ¢/|t| = A\J'. We restrict
our parameters to the line y € ART. In y = r)g the vector fields Re(X;) and
Re(X5) are topologically conjugated. We obtain

Re(ABnXl(l))h/:T)\o ~ Re()\ngQ(l))w:r)\o
By making r — 0 we have
a(exp(hAy' X1(1))(x0,0)) = exp(hA]' X2(1))(o(x0,0))
for all 0 < h < A. Therefore
o(exp(tX1(1))(xo,0)) = exp(tX2(1))(o(x0,0)).

g
We remind the reader that N is the generic number of points in [f = 0]N[y = s].

LEMMA 6.2.5. Let X1,Xo € Hy such that X; L X, by a special germ of
homeomorphism o. Suppose N > 1. Then oy ny=o] s holomorphic, moreover it
conjugates X”y:O and XQ‘yZO,

This lemma is a consequence of the evolution of the L-limits.

PROOF. In this proof the L-limits, virtual and true sections are referred to Xj.
By lemma [6.2.4] we can suppose that [y = 0] ¢ Sing(X;). Let 1 € B(0,¢) \ {0}.
We proceed as in remark [5.4.1. Consider M > 0 such that exp(B(0,2M)X;)(x1,0)
is contained in UAeRplAﬁ. There exists a true section

¥ W(M/[(L — m)co(E1, L)]) — C?
and a function T : W — R such that
T(y) = ¥1,x, (W) + A, _ x, (¥) — Yo.x, (T0,y)-

Moreover, we know that

Img (wl,xl ( lim Z(y)) —1,x, (33170)) = A(L — m)co(Er, L).
yeB(A), y—0
Let (z2,0) = exp(K X1)(x1,0) for K € B(0, M); we define

Ay = Img(K)/[(L —m)co(E1, L)).
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and r = 1 x, (22,0) — Y1 x, (limyep(a,), y—o X(y)). We have r € R. Now consider
Y, (y) = exp(rX1)(E(y)). We use that o is a conjugation between the real flows
to obtain

(6 1) ¢17X2 (U(ZLW (y))) + AE],—,XZ (y) - wO,Xz (U(‘r()vy)) =
’ = w17X1 (212 (y)) + AEl,—,Xl (y) - 1/’0,X1 (J}(), y)

Since by proposition [6.2.1 the function Ag, _ x,(y) — Ag, _ x,(y) is holomorphic
up to a finite ramification then there exists C' € C such that

C= ;E%(AEL—,Xl (y) - AE1,—,X2 (y))
We define D = C+g x, (0(20,0)) — %0 x, (x0,0). By taking y € 8(Ap) and making

y — 0 we obtain
¥1,x, (0 (exp(KX1)(21,0))) — v1,x, (exp(K X1)(21,0)) = D
for all K € B(0, M). We substract from the previous one the expression we have
for K = 0. Therefore, the expression
¥1,x, (0 (exp(K X1)(21,0))) = ¥1,x,(0(21,0)) = K
is satisfied for all K € B(0, M). The last equation is equivalent to
o(exp(KX1)(z1,0)) = exp(K X2)(o(21,0))

for all K € B(0, M). As a consequence o}, is holomorphic in the neighborhood of
(71,0). By changing (x1,0) we deduce that oy ny—g) is holomorphic except maybe
at 0. By Riemman’s theorem the mapping oy, =0 is holomorphic. ([

Let f1" ... fy"y™ be the decomposition of f in irreducible factors. The previous
lemmas imply

PROPOSITION 6.2.2. Let X1, X2 € Hy such that X, L X, by a special germ
of homeomorphism o. Suppose (N,m) # (1,0). Then o)y npy—o) is holomorphic,
moreover it conjugates X1(1)y; =0 and X2(1) 17, A=)

6.2.2. Comparing the residues revisited. We can improve the results we

obtained early in this section. The rigidity of the special conjugation at y = 0
implies a stronger relation on the residues.

LEMMA 6.2.6. Let X1, Xo € Hy such that X, L X, by a special germ of
homeomorphism o. Consider a L-limit L;’;U # () associated to X;. Consider a

component p of L;’;O and let E be the partition induced by (xo,p). Then

lim > [Resx,(P) — Resx,(P)] | =0.
PeE_(y)

PrOOF. We use the same notations than in the proof of lemma [6.2.1. There
exists C' € C such that

C = li (A — A .
jeim Y (Ae_.x,(y) X, (Y))

‘We have
C = [¥1,x,(0(5(0))) = ¥1,x,(5(0))] = [¢o,x, (0 (20, 0)) — to,x, (0, 0)].

Since 0,—¢ is holomorphic (prop. [6.2.2) then ¢, x, 00|,—o — o, x, |y—0 = D for some
D e C. The function 11 x, is the prolongation of ¢y x, along a path v C C* x {0}
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going from (x0,0) to S(0) in counter clock wise sense. The function 94 x, is the
prolongation of g x, along o(y). Hence, the prolongation of v x, o ojy—g =
Yo, x, |y=0 + D along v is 1 x, 0 0)y—¢ and then ¢ x, 0 0)y—¢ = V1 x,|y=0 + D. As
a consequence the constant C' is equal to D — D = 0. (I

PROPOSITION 6.2.3. Suppose (N,m) # (1,0). Let X1,Xo € Hy such that
X, 2 X, by a special germ of homeomorphism. Consider a continuous multi-
valuated section S : B(0,9) \ {0} — (f = 0) such that we have S(s) € [y = s] for
all s € B(0,9) \ {0}. Then

Jim y™ (Resx, (S(y)) — Resx,(S(y))) = 0.

ProOF. The lemma [6.2.1is the key to prove proposition [6.2.1. Lemmas [6.2.2
and 6.2.3] are intended to prove that the partitions can be chosen to be singletons.
In an analogous way the lemma 6.2.6/ leads us to prove the proposition 6.2.3| for
N > 1. If N =1 and m > 0 then we have Resx,(1)(0,0) = Resx,(1)(0,0) by
proposition [6.2.2. That implies [y™(Resx, (S(¥))](0) = [y™(Resx,(S(y))](0) for
the unique continuous section S of f = 0. (]

6.3. Topological invariants

Let X € Hy. The set of topological invariants SP(X) of X for the 2 conjuga-
tion is by definition
o SP(X)=0if N=0or (N,m)=(1,0).
e Otherwise we consider the parts of degree less or equal than 0 of every
function y™(Resx (S(y))) associated to some continuous section S : B(0, §)\
{0} — SingX.
We say that X “C" Y for X,Y € H; if X and Y are conjugated by a special
analytic diffeomorphism. By definition we denote X ‘X" Y if X, Y € H(C,0) are
analytically conjugated.

LEMMA 6.3.1. Let X,Y € Hy. Suppose (N,m) # (1,0); then
SP(X)=SP(Y) = X(1)jy=0 ~ Y (1)},=0-
Moreover, if N =1 and m > 0 we have
SP(X)=SP(Y) & X(1),—0 “~" Y(1)y=o.
PROOF. If N = 0 the result is obvious because X (1),— and Y (1),—o are both
regular. Otherwise, since for Z = X or Z =Y we have
Resz(1)(0,0) = glil% s Z Resyz(P).
Pe[f=0]N[y=s]

Then SP(X) = SP(Y) implies Resx(1)(0,0) = Resy(1)(0,0). As a consequence
X(1)1y=0 o Y (1), since the only analytic invariants are the order and the
residue and v(X(1)y—o) = v(Y (1)|y=0) = v((f/y™)(x,0)). For N =1 and m > 0
the part of degree less or equal than 0 of y™Resz(S(y)) associated to the unique
continuous section S(y) is equal to Resz(1)(0,0) for Z € H;. As a consequence

X(1)jy=0 "~ Y (1)},—0 implies SP(X) = SP(Y). O
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THEOREM 6.1. Let f € C{x,y} satisfying the (NSD) conditions. Let X,Y €
Hy. Then

X®Y & SP(X)=SP(Y).

PROOF OF THE IMPLICATION =-. The invariants coincide by proposition [6.2.3.
O

Our next goal is proving the <= implication in theorem [6.1.

6.3.1. Proof of theorem 6.1/ for the case N =0, m > 0.

PROPOSITION 6.3.1. Let X; = uj(z,y)y"0/0x € Hyn for j € {1,2} and
m >0. Then X ‘X"Y.

PROOF. It is enough to prove the existence of an analytic diffeomorphism
(&(x,y),y) conjugating X1(1) and X2(1). The mapping

expy(t,y) = exp,(tZ(1))(0,y)

is a germ of analytic diffeomorphism for all Z € Hym. Moreover exp, conjugates
0/0z and Z(1). As a consequence (£(x,),y) = expy oexpy’ conjugates X (1) and
Y (1). O

6.3.2. Case N > 1. Strips. Let x = x; + ix2. Consider X, X> in Hy such
that SP(X1) = SP(X32). A good candidate to be a special conjugation is

(3 (2, y),y) o (P (z,y),y)

where 1} is an integral of the time form of X; for j € {1,2}. This conjugation is
well-defined only if Resx, (P) = Resx,(P) for all P in [(f =0)\ (y = 0)] and then
it is analytic. We will modify the integral of the time form of X in order to make
this strategy works.

Consider the decomposition X; = (1/2)(RX; — iSX1) in real and imaginary
parts. We have X3 (¢1) = 1 and SX;(¢1) = ¢ whereas an integral | of the time
form of X, only satisfies RX(¢)]) = 1. That provides a motivation to replace 1
with ] such that

(1) y™p} is multi-valuated and continuous in V'\ (f/y™ = 0) for some set V.
Moreover 7 is C* in V' \ (yf = 0).
(2) RX1(¢)) =1 and 3X;(¢}) is uni-valuated and bounded.
(3) f(¥2 —1}) is a complex uni-valuated continuous function defined in V. It
satisfies [f (12 — ¥1)]|(f/ym)=0 = 0.
(4) TEN +m > 1 then f(va — ) jyryy—o) = F®2 — 1)1y g
(5) If N +m > 1 then limy,—oSuppep(o.,) [SX1(¥1)(P) —i| = 0.
(6) O(fltp2 —1])/0x; is continuous in V' \ (f/y™ = 0) for j € {1,2}.
We say that 1] is a modification of 11 with respect to Xo. The set V is typically
of the form U, N[y € W U {0}]; the set W C B(0,9) is always a simply connected
open set such that 0 € W. The modification will take effect in strips. Consider a
continuous section T%" : W — T and a circular arc arc(s) = T;gla(s)T;(’fH(s)
such that

We (X)), (Jz|<e)u{zo} (Zo, ¥0) € (f =0), V(zo,y0) € arc(yo) and Vyo € W.
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We have we(x),|z|<e(arc(s)) = F(s) where F'(s) is a continuous section of SingX;
defined over W. We say that S = UseWFgE):[arc(s)] is a positive strip over W

with vertex at F'.
We define a C*° function H defined over C such that

e H:C — [0,1] is an increasing function of Img(z).
o H(z)=0if Img(z) <0 whereas H(z) = 1if Img(z) > 1.
We define Mg(z,y)/(2mi) as

(Resx,(F(y)) — Resx, (F(y)))H <[ : Yi(z,y) — i(TY"(y)) )
mg

DT () — (T (9)))

for (z,y) € S. The function Mg can be extended to a C'°® multi-valuated function
defined in (U N[y € W])\ (f = 0). We define RX1(Ms) =0 and SX;(Ms) =0
outside of S. Since

then we use the couple RX7, 3X; to obtain Mg by C* prolongation.

In next lemma W is a neighborhood of 0 if (N,m) = (1,0); otherwise we
suppose 0 € W. Anyway [(f/y™) = 0] N[y € W] is composed by N continuous
sections (g;(y),y) : W — SingX; for 1 < j < N. Suppose there exists a positive
strip S7 over W with vertex at (g;(y),y) for all 1 < j < N. Then, we define

N
7/)/1 =11 + ZMSa‘.
j=1
LEMMA 6.3.2. Let X1,Xs € Hy such that SP(X1) = SP(X3). Then ¢} is a
modification of 11 in U N [y € W U {0}] with respect to Xs.

ProOF. Up to ramify by (z,y) — (x,3"*) we can suppose that (f/y™) = 0 is
the union of N curves z = g;(y) for 1 < j < N. It is enough to prove the lemma
in this setting because conditions (1) through (6) are invariant by (z,y) — (x,y").

Let V = U.nN[y € WU{0}. The function ¢ is C* in V' \ [yf = 0] by
construction. The construction also implies that $8X;(¢]) = 1. We define ] such
that 1] (¢,y) = ¢¥1(e,y) for ally € W. There exists K > 0 such that Var;’ig'_ o <K
for all 1 < 7 < N by proposition 3.3.1. Proposition [3.2.4 implies that ’

[ImgIn(z1 — g;(y)) — ImgIn(zo — g;(y))| < 27 + K
for all (zo,y), (v1,y) € Sk andall 1 < j,k<N.
We define R{)Q(y) = Resx,(g;(y),y) — Resx, (g;(y),y). We have that D =
g — Py — Zjvzl R{ 5(y)In(x — g;(y)) is a solution of

oD 1 1 RO(R]L(y) Il —g;(y)])
9 uaf wf Z -

This equation is free of residues. Moreover, the right hand side is of the form h/f
for some h € C{xz,y}. By lemma(3.2.1 the function 15 — 1)1 can be expressed in the
form
Bz, y)
(@—g(@)" " (@ =g (y)" Ty

N
- Z R} ,(y)In(z — g;(y))
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for some € C{z,y}.

Let (x,y0) € U. \ [yf = 0]. We can obtain (12 — 9})(z,y0) by continuous
extension of a path v : [0,1] — U. N[y = Yo such that v(0) = (e,40) and (1) =
(z,30). Consider the universal covering U, (yo) of (Uc N[y = wo]) \ [f = 0]. We
can choose v such that the lifting 4 of v cuts at most one connected component of
S (yo) for all 1 < j < N. As a consequence

[ImgIn(z — g;(y))(v(t)) — Imgn(z — g;(y))(e, y)| < 27 + (27 + K)

forall 1 < j < N and all ¢ € [0,1]. We deduce that for § << 1 the choice of
satisfies

Imgn(z — g;(y)) ([0, 1) € [=(67 + K), 67 + K]

for all (x,90) €U\ [yf =0] and all 1 < j < N.
By continuous extension we obtain

g (V1 — v <2 > [y R, (wo)]
1<5<N

for all yo € W. If SP(X;) = SP(X3) the right hand side is bounded when yy —
0. Hence [y™ (¢} — ¥1)](7(1)) is bounded independently of (z,yo). Moreover, if
(N, m) # (1,0) the right hand side is a O(y).

We have that

(z,y ZR y)n(z — g;(y))| (v(1))

is less or equal than

N N
F@,90) Y RY5(yo) In |z — g;(yo)|| + (67 + K) | f(2,90) Y RY 5 (v0)

Jj=1 Jj=1
As a consequence

[f (2, 9) (2 = ¥D](2,y) = O((x = 91(y) - - ( — g (1))

nU.Ny 6 W]. We have ymR{’2 € (y) for N+m > 1and all 1 < j < N since
SP(X)=SP(Y). As a consequence for N +m > 1 we have that

[f(x,y) (W2 — ¥)](z,y) — B(x,y) (@ — 91(y)) - .- (x — gn(y))

isaO((z—g)™ " (x—gn®)"™ 'y) in U.N]y € W]. We extend the func-
tion f(tp2 — ¢)) to [f/y™ = 0] as 0 whereas for N +m > 1 we extend f(p2 — ¢})
to U. N[y = 0] as B(z,0)xY. This definition implies conditions (3) and (4). Since
Y™ = y™ (Y] — a) + y™a)e the proof of condition (1) is now complete.

Since X7 (¢1) =i then

N
X = X (Mg)).
j=1

By making calculations in the system of coordinates provided by 1, we obtain

N
o |Resx,(g;(y),y) — Resx, (9;(y),y)l
SX —1
Sl =i D leumm (T () — (TS ()]
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where D = 2w Supzec |0H/0Img(z)|. The function

Gap(a, \) < [ Tmg (g™ o) (T 0) = (1w en) (T4, (0)))]

is defined over J = {1,...,2(#(X1) — 1)} x S!. It is strictly positive; hence C' =
inf(, xyes Gap(a, A) belongs to RT. We have
N

ISX1 (¢1) (2, ) = Z mR€312

=1

for all x € B(0,¢) and y € W close to 0. ThlS equation is analogous to the one
we obtained for |y™ (¥ — ¢1)|. We deduce that $X;(¢]) is bounded. Moreover
X1 () extends continuously to V N[y = 0]; for (N,m) = (1,0) is obvious,
otherwise we define X1 (¢])(x,0) = i. As a consequence X (¢)]) is continuous,
uni-valuated and bounded in V' \ [f/y™ = 0]. Condition (5) is a consequence of
Y™ Res] , € (y) for N+m>1landall1<;j<N.

The only condition still to prove is (6). We suppose (N, m) # (1,0), otherwise it
is trivial. Condition (6) is equivalent to the function d(y™[y1 — ¢1])/0x; extending
continuously to (V N[y = 0]) \ {0} as the zero function for j € {1,2}. Since
RX1 (1 — 1) =0 and [SX; (1 — ¢1)| < nly| for some 1 > 0 we have

Re(uy f)O(r — 1) /0wy + Img(uy f)O(Yp1 — 1) /0z2 = 0
—Img(uy f)O(1 — ) /0z1 + Re(ur f)O(1 — ) /0y = m

where |n1(x,y)| < n]y|. By solving the system we deduce that

‘6<ym[w1 — 1)) nly|
dz; = uallf/y™
for all j € {1,2}. The inequalities imply condition (6). O

REMARK 6.3.1. The constant C depends on € and lim._oC(e) = oco. As a
consequence we can choose SX1(1)) as close to i as desired just by taking (e, d)

close to (0,0).

6.3.3. Existence of strips. Case N = 1. In this case the set f/y™ = 0 is
equal to a curve z = f1(y).

LEMMA 6.3.3. Let N =1, m = 0 and X € Hy. There exists a strip over
B(0,9) with vertex at v = f1(y).

PROOF. We claim there exists an arc arc(0) = T¢*(0)T¢* ' (0) such that

w§(X)7(|z‘<€)U{zo}(mo,0) = (0, 0), V({,C(), 0) S CLT‘C(O).

We choose 1 < a < 2(9(X) — 1) such that in the interior of arc(0) the vector field
Re(X) points towards the interior of |z| < e. By Rolle property the trajectory
Fg&?iu{x”}[az ,0] for (x0,0) € arc(0) is contained in the bounded region enclosed

by the curve

FI&‘;;JTG “(0)Ju FZ‘;;JF[Ts “1(0)] U are(0) U {(0,0)}.

It is a Jordan curve by remark 3.2.3. Then
We(X),(Jel<e)u{zo} (To,¥) € (f = 0), Y(x0,y) € arc(y) and Yy € B(0,9)

since the basins of attraction and repulsion of « = f;(y) are open by remark 2.2.1l
O
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The same proof implies the existence of strips for N =1 and m > 0.

LEMMA 6.3.4. Suppose N =1 and m > 0. Consider X € Hy. There exists a
strip over B(0,6) \ (A\oR* U {0}) with vertex at x = f1(y) for all \g € S*.

Next we prove the existence of modifications for N = 1.

LEMMA 6.3.5. Fizn > 0. Let N = 1. Consider X1,Xo € Hy such that
SP(X;1) = SP(X3). There exists a modification ¥ of yn in U.s with respect to
Xso. If m = 0 we can choose ] to be C* in U5\ [f = 0]; moreover, for e >0 and
d(e) > 0 small we have |SX1(¢Y]) —i] <n.

PROOF. If m = 0 the lemma 6.3.3 guarantees the existence of strips. Then
we use lemma [6.3.2 to build a modification in U, s by taking W = B(0,4). The
function ¢} is C* in U 5\ [f = 0] by construction. Moreover |3X;(¢]) —i| can be
made as small as desired by remark 6.3.1.

If m > 0 we define W, = B(0,6) \ R<g and W_ = B(0,0) \ R>¢. By lemmas
6.3.4 and [6.3.2] there exists a modification 1, of 11 with respect to X5 in U N
[y € W, U{0}]. By replacing + with — in the previous argument we obtain
11,—. Consider a partition of the unit &y, {_ of B(0,6) \ {0} with respect to the
covering W, UW_. It is straightforward to check that ¢} (z,y) = &4 ()1 +(z,y) +
&_(y)1,—(z,y) is a modification of ¢ with respect to Xo in Ues. O

REMARK 6.3.2. The properties RX1(¥]) =1 and |3X1(¢]) —i| < 1 imply that
Wy s locally injective. That is a necessary condition in order to make

(a2, 9),y) " 0 (%1 (2,),y)
well-defined.
6.3.4. Existence of strips. Case N > 1. Let X € H;. We have UN% \
{0} # 0 by corollary 4.2.2. We denote by i, ..., f the T-sets and by Z% j, ...,
Z% ; the zones as we did in section 4.2l If [ = 1 we choose a semi-analytic fake

T-set B2 such that B # (1. Then we can suppose that [ > 2. As a consequence
the set

J def
zy = Zx i UBj+1UZX jia
is contained in B(0,0) \ {0} and it is simply connected; then there are N sections
z=g;(y) in ZY of SingX for 1 <j < N.

LEMMA 6.3.6. Let 1 < k <. Foralll <j < N there is a strip S,z over Z;k
with vertex at v = g;(y).

PrROOF. Fix s € Bi+1. There exists a connected component D of

-1

(0, w)¢(x),21<((95(5),5), (g5 (s), 5)) C [|z] < ¢]
by lemma [2.2.1. The set 9D is of the form vy U{(g;(s), s)} where 7o is a trajectory
of £(X) in |z| < e. There exist times o, t1 € R such that vo(t,) € T%(s) for
q € {0,1} and [yo(—00,t0) U~ (t1,00)] N T%(s) = 0. The sub-trajectory ~o(t1,00)

is the boundary of two connected components of (|z| < €) \ Hgl;fs), namely D

and a component Dy contained in (a,w)g(lx),lxlq(oo,(gj(s),s)). Let arco(s) =

T;“O(S)T)E("IOH(S) be the unique arc containing endg(x,s,e)(DO)' We have that



6.3. TOPOLOGICAL INVARIANTS 7

Yo(t1) is either T (s) or T® ' (s). We suppose without lack of generality that
we are in the former case. Then either

We(X),(|z|<e)u{zo} (Z0, 8) € (f = 0) for all (x0,s) € arco(s)

or there exists Q1 /2 € arco(s) \ {T5¥"* (s)} such that v, = Fg;; 9 +[Q1/2] contains

a point T (s) different than Qq/o. Let ¢{ be the unique real number such that
1 (t}) = T3 (s) for some 1 < a3 < 2(#(X) — 1) and 71 (t},00) N T (s) = 0.
The sub-trajectory 71 (¢}, 00) is in the boundary of two connected components of
(Jx] <€) \H‘gg‘;z), namely Dy and a component Dy C (o, w) ™" (o0, (g;(s),9)).

We can iterate the process; we claim that at some point we obtain some arc(s) =

T (s)T () such that
We (X)), (x| <e)u{zo} (T, 8) € (f = 0) for all (z9,s) € arco(s).
Otherwise we build an infinite sequence Dy, Dy, ... of components of (Jz| < ¢€) \

ngzl;z) contained in (a,w)g(lx),‘zl«(oo, (gj(s),s)) (see picture [I)). This sequence

Y(tq)

v(td) Y(t)

FIGURE 1.

is periodic, in particular UgenDy is a neighborhood of (g;(s),s). But that is a
contradiction since [UgenD,] N D = 0.
We consider arc(y) = T (y)T ™ (y) for y € Z¢F. We claim that

E={z¢ Z;-k L We(X),(Jal<e)U{zo} (To, 2) € (f = 0) V(x0,2) € arc(z)}

is equal to Z;’k. We already proved that s € E. If E # Z;k then the set of
parameters containing a bitangent cord joining a point in {T¢*(s), T¢* "' (s)} with
another tangent point is a non-empty union of T-sets intersecting Z;’k and disjoint
from Z}’k \ Br41; therefore it contains Si1. Since s € fry1 N E we obtain a

contradiction. As a consequence the set S} = Uyezek F‘gz‘;; Llare(y)] is a strip over

Z$" with vertex at = g;(y). O

LEMMA 6.3.7. Let N > 1. Let X1, X2 € Hy be vector fields such that SP(X,) =
SP(X3). There exists a modification ¥} of Y1 in U, s with respect to Xa.
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ProOOF. By lemma 6.3.6l we can define

N
Y1 =Y+ ZMsi

j=1
for 1 < k <. The function %, j is a modification of 1; with respect to Xo defined
inUsNly € Z;’k U {0}] by lemma [6.3.2. Now we can define a modification ]
of ¢ with respect to X3 in U, 5. We just have to consider a partition of the unit
associated to the covering Ulgkng;k of B(0,4)\{(0,0)} and then to proceed like
in lemma 6.3.5. O

6.3.5. End of the proof of theorem 6.1.

PRrROOF. Let X7 = X and X; =Y. We have X; = u; f0/0x for all j € {0, 1}.
If N =0 the result is true by proposition 6.3.1. We define

o 8 - UiU 2
e = el 50 = ) e o

Let & = u2(0,0)/(u2(0,0) — u1(0,0)); we have {& € C U {oco}. The vector field
Xi4¢ belongs to Hy if £ € C\ {&}. The integral of the time form of X ¢ is
(1 —&yn + &Ya. As a consequence any couple of vector fields X ¢ and Xi4¢
satisfy that SP(X;.¢) = SP(X e). Suppose we can prove X; ~ X, under the
hypothesis & & [0,1]. Then we are done because if & € [0,1] we consider the
families

ULUL 44 f 8 Up44;U2 (9
U1+i(1 — f) + Ulf ox ’LL2(]. - 5) + ’LL1+1'§ (9ac
Since u1.44(0,0)/(u144(0,0) — u1(0,0)) and u2(0,0)/(u2(0,0) — u14:(0,0)) do not
belong to [0, 1] we obtain X, R X144 2 X,.

We choose U 5 such that Cy < |u11¢(z,y)| < C for (z,y,§) in Ue s x [0,1] and
some positive constants Cy and Cy. Let x = x1 + izy. Let 9] be the modification
of ¢ with respect to X5 provided by lemmas [6.3.5 and [6.3.7. We can choose U, 5
and ¢ to satisfy |SX7 (] — 1) < n for some 0 < n < 1 we will precise later on.
We want to find a vector field Z = 0/9¢ + ad/0x1 + bd/0x2 such that

1 2
Xije = and Xi, . =

0 0 0 / _
(35 + a(fﬂay’f)aixl + b(fﬂay’ﬁ)@xz) (1= &v) + &) = 0.

We want a and b to be continuous functions satisfying

e g and b are real continuous functions defined in U, 5 x [0,1].

® (s /ym=0)x[0,1] = i(s/ym=0)x[0,1) = 0-
Supposed Z exists then the mapping

0 0 0
0'(.’177 y) = exp ((95 + a(m, Y, 6)87& + b(l‘, Y, g)%) (l‘, Y, 0)
is a special germ of homeomorphism such that ¢} = 13 o 0. Therefore we obtain
that X1 & X, by o.
Let us find Z. The equation for Z is equivalent to

) ) ) o -
(aaxﬁ ba@> (1= OWly™ + Euay™) = Yiy™ — thoy™.
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Let f" = f/y™. We define ¢, = ¢1y™ and ¢, = ;y™ for j in {1,2}. We
define H = Hy +iHy = (1 — &Y, + Y2m. We remark that ¢ . — 2, and
(1 = Y1+ EP2,m)/0z; (5 € {1,2}) are uni-valuated and continuous in (Ue s\
[f/ =0]) x [0,1]. We obtain a system

a0H1/0x1 + bOH; /0 Re(Y1 1, — 2,m)
adHy/0x1 + bOHy /0y = Img(d) ,, — Yo,m)

whose solutions

Re(wll,m - ’(/}2,771) 5H1/8m2
Im(wi,m - wQ,m) 8H2/8$2

OHy/0x Re("/}i,m — 2.m)
Y | O0H2 [0z Im(y,, — Y2,m)
B ’ OH,/dx1 OH,/dxy B ‘ OH,/dx1 OH,/dxs

8H2/8x1 8H2/8:1:2 8H2/8x1 6H2/(9$2

satisfy that the numerators and denominator in the previous expressions are con-
tinuous in (Ues \ [f' = 0]) x [0,1]. We denote ¥} ,, — 1, by p = p1 + ip2 and
(1 =&)%1.m +&Yam by h = hy +ihy. The denominator of the previous expressions
can be developed as

4
D,
; j

8h1/8x1 8h1/63:2
3h2/8x1 ahg/axz

. 8h1/6x1 8/)1/81‘2
T (1 5)’ 8h2/8x1 8p2/8x2 T

. 8p1/8l‘1 6h1/8x2 . 2 8p1/8l‘1 (‘3p1/8x2
+(1 5) 8p2/6az1 8h2/8m2 +(1 5) 3p2/8x1 (9/)2/8.132 ’

Since h is holomorphic we can use the Cauchy-Riemann’s equation to obtain
6]11/8331 6]7,1/8.132 o % 2 + % ? _ @ ?
8h2/81:1 6h2/8$2 o 8171 31‘1 o 656

We have Oh/0x = y™/(u14+¢f), therefore Dy = |Dq| > 1/(|f17C?) in Ue,s x [0,1].
We have

ons| _[on[ _ 1
Oz | — |0z| ~ |f'|Co
for all j € {1,2} and k € {1,2}. We want to estimate |0p;/0xy|, the relations
RX1(pj) =0 and |SX1(p;)| < |y|™n provide the system
Re(uy f)0p;/0x1 + Img(u1 f)Op; /0x2 = 0

—Img(u1 f)0p;/0x1 + Re(u1 f)0p;/0x2 = m
where |91 (z,y)| < |y|"n for (z,y) € Ucs. By using Kramer’s rule we deduce that
|0p;/0xk| < n/(|f'|Co). Therefore, we can choose 7 > 0 to have

‘ 8H1/6I1 8H1/6':z:2 1 4’(] 2’(]2 > 1

> — — .

OHxf0u OHafOua || |pPCY  |fPCE IFIPCE ~ 2Af°CE
As a consequence @ and b are continuous in (U s \ [f' = 0]) x [0,1]. It is enough to
prove that

(fl)2 Re("//l,m - 1/12,7n) OH, [0y,

Im(Y'y = Yam) OHa/Oxy
is a continuous function in U, s for k € {1,2} whose restriction to f’ = 0 is identi-
cally 0. We have

1 n 1+7n

< L
If'[Co  |f'|Co | f'ICo

OH;
6$k
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for (z,y,€) € Ues x [0,1] and j, k € {1,2}. Condition (3) on ] concludes the proof
since f'(Y] , — Yo.m) = f(¥] — 2). O

COROLLARY 6.3.1. Let f € C{z,y} satisfying the (NSD) conditions. Let
X,Y € Hy. If SP(X) = SP(Y) then Re(X) and Re(Y) are conjugated by a
germ of special homeomorphism o such that

e o is analytic in a neighborhood of (0,0) if N = 0.
e 0 and o=V are C* outside f =0 if (N,m) = (1,0).
e 0 and o=V are C™ outside yf =0 if N >1 and N +m > 1.

PROOF. The result for N = 0 is a consequence of proposition 6.3.1. The
proof of theorem [6.1 has a modification ¢} as an input and a special continuous
conjugation o as an output. For (N,m) = (1,0) the modification 9] is C* in
Ues \ [f = 0]; therefore o is C* in a neighborhood of (0,0) minus f = 0. For
N + m > 1 the modification v} is C° in the complementary of yf = 0, this
property is shared by o. [



CHAPTER 7

Families of Diffeomorphisms without Small
Divisors

We already classified the topological behavior of the (NSD) vector fields. By
definition ¢ € Diff (C2,0) is a (NSD) diffeomorphism if it can be expressed in the
form ¢(z,y) = (x + f(z,y),y) for a (NSD) function f. We will show that a (NSD)
diffeomorphism has a flow-like behavior.

7.1. Normal form and residues

By definition ¢ € Diff (C™, 0) is unipotent if for all & € N the linear isomorphism
or: m/mktt - m/mkt1

g+mPtl o gop 4+ mhtl

is unipotent where m is the maximal ideal of C[[x1, . .., z,]]. We denote by Diff ,,(C", 0)
the subgroup of Diff (C™,0) of unipotent diffeomorphisms. It is easy to check out
that ¢ is unipotent if and only if ¢ is unipotent. Since a (NSD) diffeomorphism

@ satisfies jtp = (x + py,y) for some p € C then the (NSD) diffeomorphisms are
unipotent.

We consider the set of formal vector fields H(C",0) whose elements are of the
form 2?21 a;(z1,...,2,)0/0x; where a; € Cl[[z1,...,z,]] and a;(0) = 0 for all
1 < j < n. We denote by ﬂn((C”, 0) the set of nilpotent formal vector fields. The
set of formal diffeomorphisms Dift (C™,0) is composed of elements @ = (P1,...,Pn)
where ¢; € Cl[z1,...,z,]], $;(0) =0 for 1 < j < nand j'¢ is a linear isomorphism.

By definition

NN © Rl
exp(tX) = th (,xl),...,ZtJ#
=0 ' =

J

is the exponential of X € H,(C",0). We have X9(z;,) = z) whereas X7+ (z;) =
X (X (xy)) for all j > 0. The components zj o exp(X) (1 < k < n) converges in
the Krull topology for X eH, (C™,0). Moreover, we obtain the next well known
result:

PROPOSITION 7.1.1. The exponential mapping exp(1l-) establishes a bijection
from H,(C™,0) onto [ﬁu(C”,O), Moreover, for all X € H,(C",0) and1 <k <n
we have xy, 0 exp(tX) € C[t][[x1,. .., xn]].

We denote by log ¢ the unique nilpotent formal vector field such that ¢ =
exp(log ).

PROPOSITION 7.1.2. Let p = (z+ f(x,y),y) be a (NSD) diffeomorphism. Then
log ¢ is of the form 4f0/0x for some formal unit G € C|[x,y]].

81
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PROOF. Since y o ¢ = y we obtain y o exp(tlogy) = y for all t € Z. The
series y o exp(tlog ) — y belongs to C[t][[x,y]] and it vanishes at Z; therefore
yoexp(tlogy) = y. We have

yoexp(tlogy) —y

log p(y) = lim , =0;

that implies logy = §d/0x for some § € Cl[z,y]]. We can develop exp(log )
to obtain that ¢ is of the form (z + 9§,y) where ©(0) = 1. As a consequence
logp =071 f0/0x. O

We provide next a convergent normal form for the logarithm of a (NSD) dif-
feomorphism.

PROPOSITION 7.1.3. Let ¢ = exp(tufd/0x) be a (NSD) diffeomorphism. Then
there exists u € C{x,y} such that i — uy € (f*) for all k € N.

PROOF. Let f = y™f]" ... fy” be the decomposition of f in irreducible com-
ponents. It is enough to prove that there exists uf € C{z,y} such that a—uj € (g*)
for g € {f1,..., fp,y} and k € N. Fix g; the result is obviously true for k = 0.
Suppose it is true for k = a; we have

¢ = exp ((U§ - g“ﬁ)fai)

where h € C[[x,]] by hypothesis. Since g2|log¢(g) we obtain

xop—xoexp(ulfo/0x) — g“fﬁ S (g“'“f).

As a consequence the series (z o ¢ — x o exp(ud f9/0x))/(g*f) belongs to C{z,y};
we denote it by v. We have h — v € (g); thus we obtain @ — uf,, € (g**!) for
ug+1 =ud + g*v. ([l

Let exp(@f0/0x) be a (NSD) diffeomorphism. Then X = uf0/0x is a conver-
gent normal form of exp(af0/0x) if & — u € (f?). Proposition [7.1.3 implies

PROPOSITION 7.1.4. Every (NSD) diffeomorphism has a convergent normal
form.

The normal form is not unique. It can be proved that ¢ is formally conjugated
to every convergent normal form; the proof is beyond the scope of this work.

Let ¢ be a (NSD) diffeomorphism; we define Res,,(P) = Resx (P) for P € Fixp
where X is a convergent normal form of ¢. The residues are well defined since

LEMMA 7.1.1. Let X; = ujfa/aJC € Hy forj e {1,2}. If uy —ug € (f) then
Resx, (1)(P) = Resx,(1)(P) for all P € [f =0].

PROOF. Let f = y™f{'"" ... fp* be the decomposition of f in irreducible com-
ponents. Fix (zg,y0) € [f = 0]; let v = vy (f1" ... fu"(2,90)). The residue
Resx;1)(z0,90) is a function of the jet of order 2v — 1 of X;(1) at the point
r = x¢. Since

(1" - £57) (0 90) = (- f7) (@, 90) € (@ = 0)™)
we have Resx,1)(P) = Resx,)(P) for all P € [f = 0]. O

ly=vo
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7.2. Comparing a diffeomorphism and its normal form

Throughout this section let ¢ be a (NSD) diffeomorphism; consider a convergent
normal form X (¢) whose exponential exp(X (¢)) we denote by av,. Let 1x () be an
integral of the time form of X. We claim that ¢ and « have very similar dynamics.
Indeed, we want to prove

THEOREM 7.1. Let ¢ be a (NSD) diffeomorphism. There exist open neighbor-
hoods V.C W of (0,0) and a constant C > 0 such that

(@) = (@y)....,aD(z,y)} CV

for j € Z implies {0 (x,y),...,09 (z,y)} C W and

V() 09 (2,y) — x40 (2,y) + 5] < C.

Moreover, we can make C arbitrarily small by shrinking V.

This theorem is very powerful. We are claiming that the orbits by ¢ are very
close to the orbits by v, regardless of the number of iterations. Apparently the
function x4 © o) — (Yx(p) +J) is not well defined since 9 x () is multi-valuated
but it is. Let A = 1x(y) 0@ — (¥x(p) + 1); we define

Aj=1vx) 0 ) — (Yx(p) +J)-
Then A; = S0 Aoe® if j>0and A; = S0 Aok if j < 0.

LEMMA 7.2.1. The function A does not depend on the choice of Vx(,y. More-
over A is a holomorphic function in U s which belongs to (f?).

ProoF. The function y™x () is unique up to an additive holomorphic func-
tion depending only on the variable y. As a consequence A is a holomorphic function
in defined U \ [f = 0] for some neighborhood U of (0, 0). Since

zop—zoa€ (f°) and A=1hx(yop— Uy o

then A = O(y*>™) in the neighborhood of the points in [y = 0] \ {(0,0)}. As a
consequence A is holomorphic outside f/y™ = 0. Consider a point P in the set
[f =0]\ [y =0]. Up to a change of coordinates in the neighborhood of P we can
suppose that f = 2™ and p; = (z+v12",y) for j € {1,2}. Moreover u; —uy € (f?)
implies v; — vy € (z2"). We obtain

Ae O(x(?m—l)—(n—l)) _ O(f2)

in the neighborhood of P since 1y, = O(1/2""1). We deduce that A/f? is a
bounded function in the neighborhood of [f = 0] \ {(0,0)}; hence A/f? is holo-

morphic in a pointed neighborhood of (0,0). Since compact singularities can be
removed then A/f? is holomorphic in the neighborhood of (0,0). O

The previous lemma implies immediately the following corollary:
COROLLARY 7.2.1. If {¢O(P),...,0U)(P)} C U.s then

Ux(g) © 9 (P) = (¥x(g)(P) + j)
is well defined.
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7.2.1. Comparing ¢ and o, in an exterior basic set. In order to prove
theorem [7.1] we will use the division in basic sets that we introduced in chapter 3.
Throughout subsections [7.2.1 and [7.2.2, and up to ramify we will suppose that the
components of f/y™ = 0 are parameterized by y.

Let X = X (p). We study next the behavior of A; in the exterior sets. We will
use the concepts and notations defined in section[3.2. Suppose N > 1 and let A(y) =
y™/|y|™. Every trajectory exp([0,j]X)(Q) contained in U7 is also contained in
some exterior region R}?A)( ). We have RG’"(A)( ) € D%"(X) by proposition 13.2.3.
There exists an uni-valuated determination % = dzf((w) of Yx (o)1) in DFT(A). We
define

7vz}X(g,o( )6(00’0 )\)v ) qZ)O( )6(00’0()\ ) 1/’00( Xoo ,\)vy)
for some 0 < ¢y << 1 like in subsection [3.2.4.

LEMMA 7.2.2. Suppose N > 1; let A = O(y*>™ f%). Fiz R)’(’Z)\)(y). Then

A =0y /(W% ,)") in DF'(A) for all e << 1,6 << 1 and 5 >> 0.

PROOF. Let v = (X(p)); the hypothesis N > 1 implies v > 2. Since D" C
UMt then A = O(y?z®). Moreover 1 ~ tpgg ~ 1/2z¥~! by lemma [3.2.5; hence

A = Oy (R)*) for e = v/ (v — 1). O

Let f=y™f =y™(x—g1(y))"" ... (x — gn(y))"" be the decomposition of f
in irreducible factors. In the first exterior basic set X (¢)/y™ never vanishes and
A= O(mef’Q) by lemma [7.2.1. For each point ¢ in

Fr={0991/0y(0), ..., 9gn /9y(0) }
there exists an exterior basic set E, enclosing (w,y) = (¢,0) where z = wy. Let
FY be the set of indexes such that j € Ff if dg;/0y(0) = c. Let vy = 0(X) =
ni+ ...+ ny. We have that X (¢)/y™ 01 is never singular in E,. whereas

A =002 2 I] (w—g;()/m)*™).
JEFY
If 4FY # 1 we have to continue the process; let v, = EjeFf n;. For any next
exterior basic set E.. we have that X (¢)/y™T70tv=2 is never singular and A =
O(y?m+2vot2ve 2 ) where f.. is the strict transform of the curves in f/ = 0 enclosed
by E.-. It is easy to obtain expressions for X(p) and A in every basic set by
induction. Fix an exterior basic set E; let J(X) and v7(A) be the non negative

integers such that X (¢)/ y”yE (X) and A/ y”yE (4) are holomorphic and never vanishing
in E. The previous discussion implies:

LEMMA 7.2.3. Suppose N > 1. In any exterior basic set E we have A =

O(yl’f(A)f%) where fg = 0 is the strict transform of the curves in f' = 0 enclosed
by E. Moreover v (A) — v, (X (p)) > 0; the inequality is strict if E is not the first
exterior set or m > 0.

We can now bound A; in any exterior basic set. For simplicity we formulate
the proposition for the first one.

PROPOSITION 7.2.1. Suppose N > 1. Let v = vy(A) — vy(X). Fix M > 0
and n >> 0. Suppose A = O(f?). For any & > 0 there exists U, s such that the
conditions
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i WJX(:,D)(way) - q/)X(Lp)(x7y)| < M where (l',y) e U..
e exp([0, 71X () (x,y) C Ues NUDT for some j € NU{0}

imply
[Yx 0 Ut (w,y) — Px 0 al ™ (2, y)| < |Yx(w,y) — Yx(z, )|+ Ely|”

The condition [ x () (w,y) — ¥ x () (z,y)| < D for some constant D > 0 means

that (w,y) € exp(B(0,D)X(¢))(z,y). The statement in the proposition is not
completely rigorous. Technically, it would be necessary to say that there exists
Ues O Ues where X(), ¥x(p), @, and ¢ are defined and such that al)(z,y) €
Uecs N UZT implies cp(j)(w,y) € Ues. We think that this formulation is more
natural. There is an analogous statement for j < 0, we omit the details.

PRrROOF. Let & < M. We define v = exp([0, j] X (¢))(z,y) C UZ*. Then 7 is
contained in some R?{?A) C D%". The integral w)]?(cp) of the time form of X (p)(1)
is defined in D?;’"/Q for e << 1 and n >> 0. We denote 1/1)}?(@) by 4 for simplicity.
We remark that x,) = w/y”y(X). For every C' > 0 we can choose ¢ > 0 such
that || > C in UZT N DR for 0 < e < ec.

We have |A] < Kly|”*“™/|y[* in D?;’"m for some K > 0 by lemma [7.2.2.
Suppose Q; € Uen(’g) and |¢(Py) — ¥(Q1)] < 2M|y|"*™; we obtain

Q)| 2M [y 2My| ™)
() P =T O o

If C > C; for some Cq > 0 then P; € D?;’W/Q and

<1+

IA(P)| < KL'%(AL < 2K7|y|uy(A)2.
[ (P1)] [Y(Q1)]

Now consider Cy > Cy such that C' > Cy implies

65v(X) (42 2
2K —
( cz T\o Ter)) <t
We choose € = ¢(C) for some C' > Cy. We will prove the proposition by induction.

The result is true for j = 0 since 2K§*v(X) /C? < £. Suppose the result is true for
0,1,...,5—1; thus

W)X o @(k)(way) - Q/JX © Oé(k)(x,y)‘ < |'¢)X(w7y) - wX(xay)‘ + £|y|l’ <2M

for all 0 < k < j and § < 1. As a consequence we obtain

‘y|l’y(A)

2
(. y) + ky |

for all 0 < k < j. We have |¢(z,y) + ky*»X)| > C for 0 < k < j by the choice of
€. We define 7 = w(x,y)|y|”y(x)/y”y(x); we have

1A 0 oW (w,y)| < 2K

J
vy(A) 1

k=0 |7 + k|y|

< 2K|y|

j
> AopM(w,y)
k=0

uy<X>|2'
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We divide C N [|z] > C] in three sets, namely Ey = [Re(z) > |Img(z)|], B2 =
, 2
[[Re(z)| < [Img(z)|] and E5 = —E;. Let S; be an upper bound of 7 1/|7" + kly" )
supposed 7/ + k|y|”y(X) €E for0<k<j. Let S =8+ So + S3; we obtain
ox 0 @D (w,y) = dx 0 alT (2,9)] < o (w,y) — dx ()| + 2Ky V8.
We can calculate explicit values for S;, Se and S;. If 7/ € E; then Re(r') >
C/+/2 > 0; that implies
1% 2 1% v 2
7+ Ry OO 2 (Re(r!) + Fly ) = (€/VE+ Kl )
As a consequence we have
=0 (C/V2+Kly |”y )"
The right hand side is smaller or equal than
o dr 1 2 V2 1
/ 2 T 2SSt
O (C/V2Hrly)T (CIV2) |yl

If 7/ € Ey then 7/ + 2[Img(7')| + 1 € Ey \ Ea; moreover Img(t') > C/v/2. We
obtain

jZ _ @Img()] + 1)/ly]* ™ +1
2 — 2
=0 |7 + K|y [Img(7')]

2[ 1 2

sve(X) 42 2
2Ky X5 < 2K (6 + V2 + 02> <£

and then

The inequality

o C
implies
[x 0 @D (w,y) — vx 0 TV (@, y)| < [ (w,y) — ()] + [y["€.
O

7.2.2. Comparison in a compact-like basic set. We can proceed like in
the exterior sets. For the first compact-like set V' C; we have

vh=u) (A) =) (X () =m+P(X)+1>0.
For any other compact-like basic set V' C; we obtain
V' =1/ O(A) = 1 X (9)) > 1y (D) — 1) (X () > 0.

PROPOSITION 7.2.2. Fiz M > 0 and a compact-like basic set VC;. There exists
a constant K; > 0 such that

o [hx(p)(P) = Vx(p)(Q)| < M where {P,Q} C Ucs N[y = s].
e exp([0, ] X (¢))(Q) C Ues NVCy for some j € NU{0}.

imply [ 0 00D (P) — 0 0T+ (Q)] < [dx (P) — v (Q)] + Kals]”



7.2. COMPARING A DIFFEOMORPHISM AND ITS NORMAL FORM 87

PrOOF. Let 7= V?}/C’(A), (= z/?ycl (X(p)). We define
VE] = exp(B(0,2M) X () (VCy).

There exists D > 0 such that |[A| < D|y|” in VC]. Since VI is compact and
X (¢)/y¢ does not have singular points then j < D’/|y|* for some D’ > 0. Suppose
that we have p(¥) (P) e V(| for all 0 < k < j" and some 0 < j' < j. We deduce
that [y o U T (P) — ¢x 0 @' +1)(Q)]| is smaller or equal than

(D
[Ux (P) = ¢x(Q)| + Dls| <|S< + 1) .
We choose & > 0 such that DD’6™~¢ + D§7 < M. That implies U +1(P) € VC;
we obtain ¢(F)(P) € VCJ for all 0 < k < j + 1 by induction. We define K; =
DD’ + DS, it clearly satisfies the thesis of the proposition. O

7.2.3. Proof of theorem [7.1. Suppose N = 0. We can consider U, s as a
compact-like set since there are no fixed points outside y = 0. Since v, (A)—v,(X) >
m for N = 0 then proposition 7.2.2/implies theorem (7.1 for some neighborhood U, 5
of (0,0).

Suppose N > 1 from now on. The hypotheses and theses in theorem [7.1] are
invariant under ramification. As a consequence we can suppose that the components
of Fizy different than y = 0 are parameterized by y. We can apply the results in
subsections [7.2.1 and [7.2.2.

We suppose j > 0 without lack of generality. Fix M > 0. For {R,Q} C
Ue,s N [y = s] there exists K > 0 such that

(7.1) bx 09U HD(R) —4hy 0 HD(Q)| < [x (R) — ¥x (Q)] + K]s[™ "

if [¥x(R) — ¥x(Q)| < M and exp([0, j'] X (¢))(Q) C B for a basic set B different
than the first exterior one F; and some j' > 0. This claim is a consequence of

VyB(A) —yf(X) > yfl(A) —ufl(X) >m

for every basic set B # F; and propositions [7.2.1 and [7.2.2. We can choose the
same K > 0 for every basic set because there are only finitely many such sets. Any
trajectory of (X s, €) splits in at most D sub-trajectories contained in the basic
sets; the number D > 0 is provided by lemma 3.3.1. Let C' € (0, M]; the correction
term | Zi,:o Aop®)(P)| for E; can be made smaller than C|y|™/(2D) by shrinking
U.,s, making 1 bigger and using proposition [7.2.1l
Let 0 =jg < j1 < ...<jqg=7— 1 Dbe the only sequence satisfying that
e exp([jp, Jo+1]X)(P) C Bpyq foral0 <b<d—1
e Byisabasicset for 1 <b<dand By # Bpyj forall 1 <b<d—-1

We point out that d < D. Since ji can be non-integer if 0 < k < d then we have
to tweak a little bit the sequence. We define kg = —1, k1 = [j1] where [] stands for
integer part. Suppose we have defined

O=ko+1<ki<ki+1<ky <k +1<...<k

such that exp([k; + 1, kj+1]X)(P) is contained in a basic set for all 0 < j <1 —1.
If k; # j — 1 we define kj11 = inf{[jp] : j» > ki + 1}. The sequence —1 = kg < k1 <
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... < kg = j — 1 satisfies d’ < d. Now we apply the equation [7.1] or its analogue
for Fy to the 3-uples

(R,Q,5') = (¢™FV(P), ™D (P), kg1 — (y + 1))
for 0 < b < d — 1. By plugging each inequality in the following one we obtain

bx(p) © @ (P) = tx(p) 0V (P)| < Cly™ (1/2+ O(y)) < Cly|™
for § > 0 small enough.

7.2.4. Some consequences of theorem [7.1. Basically the dynamics of a
(NSD) diffeomorphism and its normal form are the same. For instance, we have

LEMMA 7.2.4. Let ¢ be a (NSD) diffeomorphism and let X (p) be one of its
normal forms. There exist U 5 and € > € such that

wﬁ(X(Lp),y,e)7\w\§e(xay) € [f = O] = {@(j)(xvy)}jel\]u{o} CUe.
Moreover, we have lim,;_. 0 (x,y) = We (X () ,6), |zl <e (T, Y)

In other words the basins of repulsion and attraction for a (NSD) diffeomor-
phism and its normal form can be considered to be the same.

Proor. Fix C' > 0. We can choose the domains V' and W provided by the-
orem 7.1 in the form V = U, s and W = Uy 5 for some 0 < ¢ < €. We also
want exp(tX (¢))(P) to be well-defined in ¢ € B(0,2C) and such that U, contains
exp(B(0,2C)X (¢))(P) C Ue. That is possible by choosing a smaller € > 0. Since

[¥x(p) © @7 (P) = thx(p) 0 exp(i X (9))(P)| < C
then {P, ¢(P), p?(P),...} C U.. Moreover
lim 1 (P) € exp(B(0,C)X (¢))(lim oif(P)) = { lim o) (P)};
j—o0o j—o0 j—o0

the last equality holds because lim;_, afpj )(P) is a fixed point. |

We know that the analytic class of X (1)|,—¢ is a special invariant of a (NSD)
vector field X if (N, m) # (1,0) by lemma6.3.1. That motivates us to look for the
underlying complex structure associated to a (NSD) diffeomorphism ¢ at y = 0. If
m > 0 we define log (1) = X(©)(1)y=0; the definition does not depend on the
choice of X (). For N > 0 and m > 0 we can define (1) = exp(log ¢o(1)) since
log o(1) is singular at 0. For N > 0 and m = 0 we define ¢o(1) = ¢jy—o-

The L-limit phenomenon has a similar behavior for (NSD) diffeomorphisms and
vector fields. Consider ¢, €, € and ¢ like in lemma [7.2.4. Let 3 be a semi-analytic
curve and zg € [0 < |z| < €]. Suppose for simplicity that the direction A(3) of
[ at 0is 1. Let 1 € U, be a point in the first component p; of L;g,’;o. There
exists a continuous partition (E_, E}) of Fizy and a true section x : W(M) — Uy
(0 < M << 1) such that for y € W we have

(2 o
= W(X(y)) +Ar_(y) - yfm(ffo,y) eR*
where W = U,.¢(_ a8y and 3, € TZ\E, for r € [- M, M]. If we choose the section

x like in the proof of proposition 5.4.1 we obtain

lim exp(sX (1)x(9) = expl(s + i) X (1)) (@1,0)

T(y)
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for all (s,r) € [-M, M] x [-M, M].

Fix z = s +ir € [-M, M] +i[—M, M]. We define T, : 3, — RT as T,(y) =
T(y)+s/ly|™. Since limy_.o T:(y) = co we consider the sequence of points {2}, o
in 3, such that the germ of T, *(N) at 0 coincides with U, en{yZ }; we have lim,, . yZ =
0. The question is what we can say about the sequence

(Tz(yn))(

¥ x07yrzz)'

The point (zg,0) is in wE_(i((l),O,s) (0,0) whereas (z1,0) is in O‘g_(lx(l),o,e) (0,0). We
defined in subsection [5.4.1] the integral war, o of the time form of X(1),_, defined
in the attractive petal Vj+ C [y = 0] containing (z¢,0). In an analogous way we
define 9 in the repulsive petal V;- C [y = 0] containing (z1,0). By lemma [7.2.4
the domains Vj+ and V}- are still basins of attraction and repulsion respectively for
©o(1). By the one variable theory there exists an integral of the time form ’(/Ja: o of

©o(1) in Vj+, in other words w({gf satisfies

Yo owo(1) =gy +1.
By definition 1/)({6'9 = Yo+ PIIWANC ). There is also an integral Y1y of the
time form of ¢ in V;-; by definition 9y ” = ¢ g — 372, Ao o(=9),

PROPOSITION 7.2.3. The limit lim,, .o @ 7=Wn) (x4, yZ) exists for all complex
number z = s +ir € [-M, M| +i[-M, M]. Moreover

lim Jy7 "™ (T (y) = Ap_(97) = 03 (lim @ T=0D) (9, y7)) — 23 (20, 0)

n—oo )
and
Y (lim T (20, 2)) — oy (lim T (29,4/0)) = 2.

The first formula allows to estimate how much time ¢ spends to go from (xq, y7)
to o(T=Wn)) (20,42). The second formula is the analogue of

Jim_ exp(T(y7) X) (w0, y5) = exp(2X (1)) (21, 0)

for (NSD) diffeomorphisms. As a consequence the complex flow of ¢o(1) is gener-
ated by ¢ for N > 1.

PROOF. Since
Vx (o) (0T (20,42)) — Yx(p) (T (g, 42)) | < C

then the accumulation points of the sequence ©T=w)) (x4, y2) are contained in
exp(B(0,C) X (p))(exp(2X (1))(x1,0)). In particular

lim =0 (29, 7) = exp(2X (1)) (21, 0)

n—oo
for m > 0; since for m > 0 we also have ¢ ;¥ = 1, and 9 ;¥ = 1], then
there is nothing to prove. We suppose m = 0 from now on. We can suppose
that (7= (yi))(xo, yZ) is convergent up to take a subsequence; we denote the limit
by (x1,.,0). Later on we will prove that (z.,0) is the limit and not only an
accumulation point. We have

T.(y2) = 1 (o' =W (20, 942)) + Ap_(y) — Yolzo, y2).
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We want to rewrite the previous expression in terms of ¢(T=(¥n)) (20,72 ) instead of
aT=(n)) (20, 52). We obtain that Ty (y?) is equal to
T:(y,)-1 ,
(T (wo, 7)) + Ap_(y) — (o, up) — D Ao (xg,y7).
j=0

We are interested in calculating the limit of the series in the previous expression
when n — oco. Let an arbitrary 0 < ¢; < |z1]. We claim that for n >> 0 there
exists 0 < a1 < ag < T (yZ) such that

o exp([0,a1]X)(zo, y5) U exp([az, T. (y;)] X) (20, y7) C [Jz] = e1].

o exp([ay, as]X)(zo,yZ) C U, .
This is a consequence of exp(zX)(x1,0) belonging to the first component of L;:x()'
By theorem (7.1 we have

[az]
Y AcW(wo,yr)| < D(ar)
j=la1]+1
for a constant D(e1) > 0 such that lim,, .o D(e;) = 0. As a consequence

S Ao (ao,yn) = 3 Ao (w0,0)+ Y Aol (ay.,0)
§j=0 j=0

j=1
when n — oo. We obtain
Tim (T (y;) = Ap_(97)) = 167 (21,2,0) = 9g (0, 0).
A different expression for the same limit provides
$1f (21,2, 0) = g (0, 0) = Y1 (21, 0) — 9 o(0,0) + 2.

Since every accumulation point of w(Tz(yi))(xo,yfl) satisfies the previous expres-
sion then (z1, z) is the only accumulation point, aka the limit. Substracting the
expression for z = 0 we obtain

Y100 (21,2,0) — Py o7 (21,0,0) = 2

as we wanted to prove. O

Morally, the orbit @) (xg,72) (0 < j < T.(yZ)) induces the same partition of
the fixed points than exp([0,T,(yZ)]X)(xo,y?). We explain how this is possible.
Let C' > 0; let V and W be the domains provided by theorem [7.1; we can suppose
V =U.s and W = Uy s without lack of generality. Moreover, we can suppose
t — exp(tX)(P) is well defined in ¢ € B(0,3C) and its image is contained in Uy 5
for all P € U, 5. We stress that if ¢t — exp(tX)(P) is well-defined in B(0,3C) and
P does not belong to [f = 0] then it is injective by the Rolle property.

First of all, we want to draw some sort of continuous path joining ¢(®)(P) and
oM (P) for P € Uy 5. We define

Ko(Pra) = (1 = a)x (o) (P) + athx () (¢(P))
for a € [0,1]. Since |k((P,a) — Yx(p) (¥ (P))] < C then we define ro(P,a) =
1/))_(@)(/{6(13, a)). We define k;(x0,y2) = ¢ (ko(z0,y2)) for all 1 < j < T(yZ) — 1.
A possible choice for a path joining the points of the orbit is

K = Ko(wo,Y5)k1(T0,Y5) - - - K1, (y2)—1(T0, Y5)
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Let ki, (yz) (P, a) C [y = y(P)] be the path

@ = Y3y ((1 — a)Yx(p) (P T (P)) + a%DX(w)(Oé(TZ(yZ))(P)))

for all a € [0,1]. We have

LEMMA 7.2.5. The paths Kk, (=) (%0, y5,) and exp([0, T (y;)] X) (w0, y5,) are ho-
motopic in [y = y:] \ [f = 0].

PRrROOF. By construction we have

ro((z0,97), a) € exp(B(0,0)X)(a' (z0,47))
for all a € [0,1]. That implies
ki((w0,v7,), @) € exp(B(0,2C) X) (0 (0, ;)
forall 1 <! <T(yZ)—1 and all a € [0,1]. Finally
~r. (y2) (20, 97), @) € exp(B(0, C) X) ("= (g, 7))

for all @ € [0, 1]. Since Ube[O,Tz(ny)]E(Q 2C) is simply connected we are done. [

The last lemma implies that x and exp([0, T, (yZ)]X)(x0,yZ) induce the same
partition in the fixed points set. Next, we are going to study the topological conju-
gation of diffeomorphisms. Since those conjugations do not conjugate normal forms

we have to interpret partitions in terms of long orbits instead of long trajectories
of the normal form.






CHAPTER 8

Topological Invariants of (NSD) Diffeomorphisms

We define the set

Dy ={(z+ulz,y)f(2,y),y) / uwis a unit}

for any f € C{x,y} satisfying the (NSD) conditions. The set Dy is the analogous
of the set H; for diffeomorphisms. We want to study when two elements of D are
conjugated by a special homeomorphism.

Suppose that o1, p2 € Dy are conjugated by the special homeomorphism o. Fix
convergent normal forms X; = X (¢1) and Xo = X (2) respectively. Let a; = oy,
and v; = hx(,,) for j € {1,2}. Fix C' > 0. For j € {1,2} there exist 0 < 7; < 7;
such that {P,.. .7a§k)(P)} C U, for some k € Z implies {P,.. .,gagk)(P)} c Ux
and

k
(e (P) = (W (P) + k)| < C.

The objects ¢;, a; and ; are defined in UTJ/_. By making 7 > 0 smaller we can
suppose that

e o is defined in the neighborhood of U, .

e t — exp(tX;)(P) is well-defined in B(0,3C) for P € U,,.
By replacing (71,0, X;) with (m5,0("Y, X;) in the previous conditions we obtain
an analogous condition for 75. We choose € < k1 < 7; and kg < 75 such that

e exp(B(0,6C)X4)(U.) C Uy, C U,,.
e exp(B(0,6C + 1)X5)(0(Uy,)) C Uy, C Un,.

8.1. Topological invariants
8.1.1. Orientation. We remind the reader that the mapping
o(s), :m((Ur, N[y =3\ (f =0)) = m((o(Ur,) N[y =s]) \ (f =0))
is the one induced by o,—, for s € B(0,9).

PROPOSITION 8.1.1. Suppose N > 1. The mapping o(s), is the identity for all
s € B(0,9).

PROOF. We can just copy the proof of proposition 6.1.1. In that proof we did
not use that o conjugates X7 and Xz but only that o;—¢ = Id and that it satisfies

—1 —1
T(We(xy e fe<er (B Y)) © We(xy y.eo) a <en (82 Y)

for some 0 < ¢1 <¢, 0 < e and V(z,y) € (U, s N[f =0]) \ [y = 0] (ditto for the «
limit); the last result is a consequence of lemma [7.2.4. ([l

93
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8.1.2. Partition of the fixed points. Let zq € B(0,¢€) \ {0} and let 3 be
a semi-analytic curve. Suppose L;’;O (X1) # 0; let 21 € U, be a point in the
first component p; ; of LE’;O (X1). There exists a continuous partition (E_, F, ) of
SingX1 and a true section x : f — U,, such that for y € 8 we have

T(y) = %(X(y)) +Ap_ x,(y) —

and limyeg y—0 x(y) = (z1,0). We remind the reader that ¢ ; and 1y o are integrals
of the time form of X;(1). Consider the sequence {y,} of points in 77!(N). The
orbit ¢’ (@0,9a) (0 < j < T(yy)) is mapped onto o5 (o(x0,y)) (0 < j < T(yn))
since o conjugates ¢ and 5. Then

PROPOSITION 8.1.2. We have that limyeg y—oexp(T(y)X2)(o(zo,y)) exists.
Let (z4,0) be such a limit. Then x| belongs to the first component p2 1 ofL;’(':(on 0)(X2).
Moreover, the partition of the fized points induced by ps1 is (E_,E,).

PROOF. We suppose A(8) = 1 without lack of generality. We denote v, =
exp([0, T'(yn)] X2) (0(20, yn)) and an = v (T(yn)). We have that of(zo,yn) €
exp(B(0,C)X1)(U,) for all 0 < j < T(y,). Therefore gogj)(sco,yn) € o(Uy,) for all
0 < j <T(y,) and then =, is contained in exp(B(0,1+ C)X1)(c(Ux,)). We define

b= tim o (00, ya)) = o (lim o (@0, )

n—oo
the limit exists by proposition [7.2.3. The set of accumulation points of {a,}
is contained in exp(B(0,C)X3)(b). Up to take a subsequence we can suppose
that {a,} converges; we denote the limit by (x{,0). Since z; € L;,’;O (X1) then
limy, o0 [yn|"" T (yn) = 00; as a consequence | € L;’:(Zmo) (X3). Let (E’, E',) the
division induced by ~,; we can suppose it is the same for all n € N by refining the
subsequence. We have that lim, .o |yn|" (Ae_ x, (Yn) — Ar' x,(yn)) is equal to

(¥2,1(27,0) = 91,1(21,0)) = (¢2,0((0,0)) — ¥1,0(20,0))

by comparing the formulas for exp([0, T (y»)] X1)(z0,yn) and v,. By lemma [5.1.1
the limit limyeg y—o [y [(AE_ x, (¥)—Ag x,(y)) exists. That implies the existence

of a true section ¢ : 3U {0} — C? such that
" T(y) = Y21 (CWNA™ + [yI" Apr x, — Y2,0(0 (20, y))A™™

where A\ = y/|y|. Moreover we obtain {(0) = (x1,0) and {(y,) = a, for all n. >> 0.
Suppose x} is not in the first component of py 1. Then there exists a function
T’ : 3 — Rt such that

lim |y|™ T’ = lim |y|"™(T —-T = 00
yeﬁlyl (v) yeﬁlyl (T'(y) ()

and such that limyeg,,—oexp(T"(y)X2)(o(z0,y)) exists. Let {y;} the sequence of
points in 7'~ ' (N). By analogous arguments to the already exposed we can prove
that gogT,(y;))(a(aco,y;) has an accumulation point different than (0,0). By ap-
plying ¢(-1) we obtain that gogT/(y:‘))(mo,y;l) enjoys the same property and then
exp(T"(y),) X1)(zo,y,,). But such an accumulation point is in a component of
L;”;O(Xl) smaller than py 1 since limyeg|y|™(T(y) — T"(y)) = oo. That is im-
possible by hypothesis.
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We still have to prove (E_,E}) = (E’,E’.). We consider the path x!(n) =

K5 (20,Yn) - - - Kj%(yn)il(mo, yn) associated to the couple (¢1, X1) and defined in sub-

section[7.2.4. We also consider the path £ (n) = r3(c(20, yn)) - - - 67, ) _1(0(z0,Yn))

associated to (¢2, X2). Since (E_, E.) is induced by x!(n) then it is also induced
by o(k!(n)) because o preserves the orientation. Then it is enough to prove that
o(xt(n)) is homotopic to x%(n) in [y = y,] \ [f = 0] because the latter path induces
the partition (E’, E’,). We remark that py(o(k})) = o(kj, ) and po(kF) = K7, ;.
It is enough to prove o(k} (zo,yn)) ~ K3, (0(x0,yn)) for one 0 < jo < T(yn) — 1

J
since @9 preserves the fixed points and the orientation. We define

Hj(a) =t 0 0 0 5}(a) — s 0 K2 (a)

for 0 < j < T(yn) —1 and a € [0,1]. The function Hy is bounded since [0, 1]
is compact. Moreover, we have |H;(a) — Hp(a)| < 2C for 1 < j < T(y,) — 1.
Therefore, we can suppose |H,;(a)| < D for some D >0 and all 0 < j <T(y,) —1
and a € [0,1]. Since

K5 (0(20,yn))(a) € exp(B(0,2C)X2)(a" (0(20,n)))
we deduce that o (k] (0, yn)) U k3 (0(20,yn)) belongs to
exp(B(0,1+ 2C + D) Xz)(a? (0/(z0, yn)))-

Let € > 0 such that ¢ < min(|z| o o(zg,0),|z}]) and t — exp(tXs2)(P) is well
defined in t € B(0,1 + 2C + D) for all P € U.,. For all n >> 0 there exists jo(n)
such that o/ (5(2¢,,)) € Us; otherwise we obtain L;::(on,O) (X2) =0, that is a
contradiction. Since B(0,1+ 2C + D) is simply connected then O’(H}O(n)(xo, Yn)) ~

n?o(n)(a(xo,yn)) for n >> 0; we are done. O

Last proposition and proposition [7.2.3 will be the key tools in order to prove
that the topological invariants for the special conjugation of (NSD) diffeomorphisms
are basically the same than for vector fields.

8.1.3. Rigidity of the special conjugation when [y = 0] C [f = 0]. In
this subsection we prove that oj;—q is analytic for m > 0 through the study of
sectorial convergent logarithms.

A set Vi p(v1,v2) = [Jz] < 1] N{y € B(0,v2) \ {0} : a < argy < b} is called a
sectorial domain; its aperture is = (V) = b — a.

PROPOSITION 8.1.3 (Voronin (see [I792])). Consider ¢ = exp(ay™d/dz) in
Dym and X (p) = uwy™0/0x. Let a < b in R such that b —a < w/m. Then, there
exist a sectorial domain S = Vg p(v1,v2) and a vector field Y defined in S such that

o Y is of the form y™u'(x,y)0/0x where u — v’ = O(y*™).
e 1 is the asymptotic development of v’ in S.
e p=exp(Y).

The vector field Y is not unique. Anyway, any vector field fulfilling the previous

properties will be called a sectorial logarithm of . Its existence implies:

LEMMA 8.1.1. Let o be a special germ of homeomorphism conjugating @1, p2 €
Dym form > 0. Then o),—q is a germ of analytic biholomorphism. Moreover oj,—q
conjugates log p1 0(1) and log vz 0(1).
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PROOF. Let p; = exp(t;y™0/0x) and X; = u;y™0/0x for j € {1,2}. There
exist 2m + 1 sectorial domains V3, (v1,v2) (1 < j < 2m + 1) such that b; —a; <
m/mfor 1 <j<2m+1and

U1§j§2m+1va_j7b_j (Ul,vz) = [|1’| < 'Ul] N [0 < |y| < Ug].

Moreover we can suppose that ¢; has a sectorial logarithm ij in the domain
Var o (V) for j € {1,2} and 1 < k < 2m~+1. Let ¢ > 0such that exp(B(0, ()X1(1))(0,0))
is contained in U,,. Consider ¢’ € B(0,(); we define 6y = arg(¢’)/m and r, =
(I¢'|/n)"/™.  There exists ko such that (0,vs)ei® C Ty (Vary bag (V1,02)).  Let
Yn = €% we have

o (1" (0,5n)) = 4" (010, yn)-

By developing <p§") and gogn) we obtain

v
QD(ln)(O,yn) = exp(nYlko)(O’ yn) = €exp (C/ ylm ) (ann)

and
ko

05 (0(0,yn)) = exp(n¥y°)(0(0,y,)) = exp (<’§ﬁn ) (0(0,yn))-

We have

o(exp(¢'X1(1))(0,0)) = exp(¢'X2(1))(0(0,0))
by making n — oo. Since X7 (1) y—o and X5(1) \y—o are regular then o, is analytic

in the neighborhood of (0,0). O

ProproSITION 8.1.4. Let o be a special germ of homeomorphism conjugating
©1, w2 € Dy. Suppose m > 0. Then oy—g is a germ of analytic biholomorphism.
Moreover o|,—o conjugates log p1,0(1) and log v2,0(1).

PROOF. Let (z¢,0) € U\ {(0,0)} and xf, = z 0 0(z0,0). The mapping o(z,0)
is analytic in a neighborhood of (g, 0) if and only if the mapping
x(@,y) = (@oo(z +20,y) — 74,Y)
satisfies that x(z, 0) is a analytic in a neighborhood of (0, 0). Moreover x conjugates

(x —z0,y) o p10(z +x0,y) and (2 —z0,y) 0 w20 (z+25,7);
both of these diffeomorphisms belong to Dym. By lemma 8.1.1/ the diffeomorphism
x(x,0) is analytic in a neigborhood of (0,0). As a consequence o(z,0) is holomor-
phic in [0 < |z| < ¢] N [y = 0]. Since o is continuous then o(x,0) is holomorphic in
o] < N [y =0]. O
8.1.4. Definition of the Topological Invariants. Let ¢ € D;. The set of
topological invariants SP(p) of ¢ for the % conjugation is by definition empty if
N =0or (N,m) = (1,0). Otherwise SP(y) contains
e The parts of degree less or equal than 0 of every function y™ (Res,(S(y)))
associated to some continuous section
S : B(0,0)\ {0} — Fixe.

e The analytic class of ¢g(1).
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These invariants are analogous to the (NSD) vector fields ones. Even the analytic
class of X (1),—o is a topological invariant for (NSD) vector fields (lemma 6.3.1).

The analytic class of ¢o(1) can be replaced with the analytic class of ¢),—g. If
m = 0 it is clear since (1) = ¢j,—¢. Otherwise it is still true since ¢|,—g = Id and
the analytic class of ¢g(1) is determined by the invariants attached to the residue
functions (lemma [6.3.1)).

8.2. Theorem of topological conjugation

THEOREM 8.1. Let f € C{z,y} satisfying the (NSD) conditions. Let @1, p2 €
Dy. Then

01 % py & SP(p1) = SP(p2).

8.2.1. Theorem 8.1. Proof of the sufficient condition. We will prove
first the sufficient condition. We will proceed in an analogous way than for proving
the sufficient condition in theorem 6.1l

LEMMA 8.2.1. Let @1, w2 € Dy such that ¢, L vy by a special germ of homeo-
morphism o. Consider a non-empty L-limit Lg”;o (X(¢1)). Consider a component
p of Lﬁ w0 (X (1)) and let E be the partition induced by (xo, p). Then

" Z [Resx () (P) — Resx(w)(P)] < m.
PeE_(y)

PROOF. The proof is analogous to the proof of lemma [6.2.1. Suppose AB)=1
without lack of generality. Suppose p is the first component of LB 960( 1). Let
x1 € p. There exists a true section x : U {0} — C? such that x(0) = (x1,0) and

T(y) = 2 (v(w)) + Ap_ x, (4) - “; 9 (z0,9)

for a function T : 8 — RT. We consider the sequence of points {y,} contained
in T7Y(N). The limit (21,0) = lim, ga(T(y”))(xo, Yn) exists by proposition [7.2.3l
Moreover, proposition [7.2.3 also implies

B [y ™ (T(0a) ~ A x, (9)) = 157 (21,0) — i (20,0).

By proposition 8.1.2 the limit (z7,0) = lim,—, 00 exp(T(yn)X2)(o(x0, yn)) exists and

it is in the first component of szrf(on O)(Xg). Since
Tim gy (o (20,yn)) = o lim ¢y " (20,yn)) = 0(21,0)

we can proceed like we did previously to obtain
[y " (T(9) — A x, () = 17 (0(22.0)) — 57 (0(20,0));
the partition of the fixed points coincide by proposition 8.1.2. Hence
Jim fyn|"(Ap_ x,(yn) — Ap_ x,(4n) € C;

that clearly implies u(Ag_ x, — Ar_ x,) < m.
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Let p1 < ... < pr = p < ... be the decomposition of Lﬁ’io (X1) in connected

components. By the first part of the proof the partition of the fixed points (Ei , Ei)
associated to (p;, pj+1) satisfies

WApi x, —Agi x,) <m and ,u(AELX1 _AEi,Xz) <m

forall 0 < j <k —1. Let (F1, Fs,..., F;) be the partition whose elements are the
sets of the form
0 k-1
E;,Nn...NE; "
where (sq, ..., s,_1) € {+,—}". We can obtan WAFR, x, — Ar, x,) < mfor 1 <
j <l by proceeding like in lemma 6.2.2. Since

AE—7X1 - AEﬂXz = Z(AFJ,Xl - AFj»Xz)
jeJ
for some subset J C {1,...,{} then the result is proved. O

PROPOSITION 8.2.1. Let 1,92 € Dys such that there exists a special germ
of homeomorphism conjugating @1 and 2. Consider a continuous multi-valuated
section S : B(0,0)\ {0} — (f = 0) such that S(s) € [y = s| for all s € B(0,9)\ {0}.
Then

p(Resg, (S(y)) — Resy, (S(y))) < m.

The proof of proposition 8.2.1] is obtained by copying the proofs of lemmas
6.2.2],16.2.3| and proposition 6.2.1l with no change.

PROPOSITION 8.2.2. Suppose N # 0 and (N,m) # (1,0). Let o be a germ
of special homeomorphism conjugating elements o1 and o in Dy. Then o),—q is
analytic, moreover it conjugates ¢1,0(1) and @20(1).

ProoF. If m > 0 then o},— is analytic by proposition 8.1.4. Moreover o,—o

conjugates exp(log ¢1,0(1)) and exp(log¢20(1)).
If m =0 then N > 1. Let (z1,0) € Uc \ {(0,0)}. Suppose ag(x,),|z|<c(71,0) =

(0,0) without lack of generality. Hence, there exists a L-limit L7 (X;) # 0. We
can suppose A(3) = 1. There exist (see proof of proposition [7.2.3)) a point (zg,0),
a compact wedge W = Upe[—ar,anBr (Br € T?, ), a true section x : W — C? and
a function T : W — R* such that

T(y) = vY11(x(¥) + Ae_ x,(y) — ¥1,0(z0, ).

lim;, 0 af;lT(y"))(ml, Yn) is in the first component of Ly’ (X1).

(1,0) = lim,, 00 @%T(y"))(xo, 0).

limyeg, y—o x(y) = exp(irXy)(limyep y—o x(y)) for r € [-M, M].

For these conditions {y,} is the sequence of points in 771 (N) N 3. We proceed like
in the proof of proposition [7.2.3. Let z = s + ir in the set [-M, M| + i[—M, M];

we define T, = T + s, then we choose the sequence {yZ} of points in 7, 1(N) N 3,.
(T=(y))

By proposition [7.2.3| the limit (x; ,,0) = lim,, o 5 (0, y?) exists, moreover
we have

Tim (T2(57) ~ Ap_x, () = Y (21,2,0) — ™ (0,0).
Since

(T=(y7))

T.(yZ 2 . p
(o1 (o, y7)) = lim g (o (20, 47,))

o(z1,,,0) = ningoa
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proposition [8.1.2] allows to apply the same method to ¢ to obtain
lim (T.(y7) — Ap_ x, (47)) = Y157 (0(21,2,0)) = 1957 (0(20,0)).-

The limit D = limy,_o(Ag_ x,(y) — Ap_ x,(y)) exists, it is a consequence of
wAe_ x,(y) — Ag_ x,(y)) = 0. Therefore
1P (0 (21,2, 0)) — 1 i (21,2,0) = D + (¢ 7% (0(0,0)) — 157" (w0, 0)).

Since ¥y 57" (21,2,0) = 1 " (21,0,0) + 2 the mapping z — 1. is a local biholo-
morphism. We deduce that o(z,0) is holomorphic in the neighborhood of (z1,0).
That implies o(x,0) to be holomorphic in (U, N[y = 0]) \ {(0,0)}. Indeed, it is
holomorphic in U, N [y = 0], we can remove the singularity. O

Let V be a petal (either attracting or repelling) V' C [y = 0] associated to
¢|y=0- We denote by 7%/{0 the integral of the time form of X (p)(1) in V. We
denote by 1}, the integral of the time form of $|y=0 in V defined by

Who=Uo T ) Aoeld or =iy~ Aol
§=0 j=1
depending on whether V' is attracting or repelling.

LEMMA 8.2.2. Let 1, w2 € Dy such that @1 2z o are conjugated by a special
germ of homeomorphism o. Suppose N # 0 and (N,m) # (1,0). Let V be a petal
for p1(2,0) in |z| < e. Then, we have

d’ffV),o ©g - 7%/7,10 =L
for some constant L € C which does not depend on V.

PROOF. If m > 0 then ¢y, = 1/)‘),{0 for every petal V' C [y = 0]; as a conse-
quence the result is a trivial consequence of proposition 8.1.4. Suppose m = 0. Let
V c B(0,¢) \ {0} be a petal for ¢1(x,0). We can suppose V is repelling without

lack of generality. Since there exists a non-empty L[;’;l (X1) for some semi-analytic
0 then we can proceed like in proposition [8.2.2/ to obtain

17’(’)“’2 (0(x1,2,0)) — i(’fl(xl’z,O) = cte
for oy 57 = Uy, U1y = ¢f(zv) o and z in a neighborhood of 0. We deduce that
Uty 0 ©0(@,0) = ¥ (2,0) is locally constant; therefore

wf(zv),o oo(x,0)— \ﬁ,lo(xa 0) =Ly

in V for some constant Ly € C. Let V' be a petal next to V and let x,, € [|z]| < €/n]
such that z, € VNV’ and

(aﬁ(X1,07e/n)7w&(X17O,e/n))|m‘<€/n(In7 O) = ((Oa 0)7 (Oa O))
By theorem [7.1] there exists C'(¢/n) > 0 such that lim,,_.., C(e/n) = 0 and
‘(wf(zv),o © O'(xn’ 0) - w$}0<xn’ O)) - ('9[);((2\/),0 © O'(xm 0) - l)/(,b('rm 0))‘
is lesser or equal than 2C(e/n). Since we can consider w‘),ib = ‘)/(,170 and 1@(2‘/),0 =
zpfg‘,,) o in V-NV" we deduce that Ly = Ly by making n — oo. Therefore Ly
does not depend on V. ([
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LEMMA 8.2.3. Let @1, w2 € Dy such that o1 2z w2 by a special germ of home-
omorphism o. Consider a component p of a non-empty L-limit L;”;O (X(p1)). Let
E be the partition induced by (xo, p). Then

g}lg%) v Z [Resx (1) (P) — Resx (p,)(P)] | = 0.
PEE_(y)

PrOOF. It is enough the proposition supposed p is the first component of
LE,’;O (X1); otherwise we proceed like in lemma [8.2.1] to extend the result to all
the partitions induced by L-limits.

There exists D € C such that

D= lim |y"(Ap_x,(y) — Ap_ x,()))
yeB,y—0

by lemma 8.2.1. Let x; € p; we have
107 (0(1,2,0)) = ¥y 57 (21,2,0) = D + (g 57 (0(20,0)) = 15 57 (0, 0))

as we see in the proof of proposition 8.2.2. Let L be the constant provided by
lemma 8.2.2; we obtain L = D 4+ L and then D = 0. O

To end the proof we just need

PROPOSITION 8.2.3. Suppose N # 0 and (N,m) # (1,0). Let ¢1,p2 € Dy
such that they are conjugated by a special germ of homeomorphism. Consider S :
B(0,6)\{0} — (f =0) a continuous multi-valuated section such that S(s) € [y = s]
for all s € B(0,9) \ {0}. Then

liy ™ (Res., (S(9) — Res(S(9) = 0.

We do not explicit the proof. It is completely analogous to the proof of propo-
sition 16.2.3.

8.2.2. Proof of the necessary condition in theorem 8.1 when N = 0.
Let ¢ = exp(uy™0/0x) € Dym. Let X (p) = uy™0d/0z its convergent normal form.
By theorem 6.1/ it is enough to prove that ¢ is specially conjugated to exp(X(¢)).
Consider a sectorial domain S =V, ;(v1, v2) whose aperture b—a is less than w/m.
Let uy be the unit provided by proposition 8.1.3. An integral 1g of the time form
of us0/0x in S is characterized by the equation

s —v) 1 11 <u—u’5>

= !
Ulg

Ox Culgy™ uy™ Y™
Since the right hand side is a O(y™) there exists an integral ¥ g of the time form of
u'0/0x such that s — 1) = O(y"™). Moreover, the equation ¢ = exp(ugy™9d/0x)
implies ¥5 0 = 154+ 1. Now consider 2m 41 sectorial domains S = Vo, », (v1, v2)
(1 < j < 2m + 1) such that their union is [|z| < v1] N[0 < |y| < vo]. Let
{¢; (y)}je{1 be a partition of the unity associated to the covering U, (S;).

We define

..... 2m+1}
2m—+1

Yo = 2 GWs, @)

The following properties are straightforward:
e 1, is a C* function in [|z| < v N[0 < |y| < va].
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® Y,0p=1),+ 1.

o Oy —1)/0x; = S & ()0(s, — )/0x; = O(y™).

o Yy -1 =O0(y™).
The last two properties imply that v, 0, /0x and 0v,/0x admit a continuous
extension to Uy, .,. We look for a vector field

0 0 0

Z = A 7,2

a1, 5 + 00 50+ 5
such that Z((1 — &)¥ + £y,) = 0; we also require a and b to be continuous and to
satisfy a(0,0) = b(0,0) = 0. If such a and b exist then exp(Z)(z,y, 1) conjugates
exp(X (¢)) and ¢. We proceed like in the proof of theorem [6.1. For instance, we

have
‘ Re(y™[y —v,]) OHi/0xs
Im(y™ [y —vbp]) OH3/Oxs
6H1/8x1 (9H1/(95L‘2
‘ 8H2/8I1 8H2/8$2
where H = Hy +iHy = (1 — )y + {y™¢y. The denominator is of the form
1/|u)® + O(y?™) whereas the numerator is a O(y®™). As a consequence a is a
O(y®™) and then a(x,0) = 0. We can prove that b is continuous and it satisfies
b(x,0) = 0 in an analogous way. The special mapping exp(Z)(x,y,1) conjugates
exp(X (¢)) and ¢; moreover exp(Z)(x,y, 1) is the identity by restriction to y = 0.







CHAPTER 9

Tangential Special Conjugations

9.1. The general plan

The remainder of the paper is devoted to prove the necessary condition in
theorem [8.1 for N > 0. To conjugate @1 and 9 such that SP(p1) = SP(p2) we
consider a composition of special mappings

(=1)

/
o200 00

where ¢’ is a homeomorphism conjugating Re(X (¢1)) and Re(X (¢2)) and o; con-
jugates a,,; and @; for j € {1,2}. If the mapping o; is a germ of homeomorphism
and m = 0 then ;o(1) %" exp(X (¢;)jy=0). That is not always possible since
©;0(1) is not in general the exponential of a convergent vector field (or in other
words ¢; (1) is not always analytically trivial). This approach is hopeless if we do
not enlarge the class of mappings we are considering.

We say that a mapping o is tangential special (or tg-sp for shortness) if it
satisfies that

e 0 is a germ of homeomorphism defined in (Ues \ [y = 0]) U {(0,0)} for
some €, > 0.
e yoo =y and oj5/ym—g = Id.

Suppose SP(p1) = SP(p2); we will prove the existence of a special analytic bi-
holomorphism 7 such that 7, 0 ¢1,0(1) = 2,0(1) 0 7y—. That will allow us to
suppose that ¢1,0(1) and ¢ ¢(1) coincide.

The diffeomorphisms a,,; and ¢; are conjugated by a tg-sp mapping ;. The
mapping o = gg 00’ o 05_1) is a tg-sp conjugation between 1 and po. If N =1 or
m > 0 the conjugating mappings o; can be chosen to be defined in a neighborhood
of (0,0). In other words, for N =1 or m > 0 a (NSD) diffeomorphism is conjugated
to its normal form by a special germ of homeomorphism. That implies theorem
8.1L

Suppose N > 1 and m = 0. Since ¢1,0(1) = ¢20(1) then the mapping cr"y=0
can be chosen to be the identity map. We will provide a method to construct o;
for j € {1,2} such that o can be extended to y = 0 as the identity map.

9.1.1. Preparation of ¢; and ys. This subsection is of technical type; its
purpose is showing that we can suppose ¢1,0(1) = ¢2,0(1) when proving theorem
8.1 Moreover, in such a case X(p1) = u; f0/0x and X (p2) = uafd/0x can be
chosen such that u; — ug € (y).

103
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PROPOSITION 9.1.1. Let ¢1,p9 € Dy such that SP(p1) = SP(p2). Suppose
N >0 and (N,m) # (1,0). Then, there exists an analytic special germ of biholo-
morphism 7 such that

T|;i0 [¢] @270(1) [e] 7'|y:0 = 410170(1)-

PROOF. Suppose N = 1; that implies f = y™(x — g(y))". There exists h €

Diff (C, 0) conjugating ¢1 o(1) and ¢2,0(1). We can define
7= (hx—9) +9v),v)-

Suppose N > 1. Let ¢; = exp(t,f0/0z) and X (p;) = u; f0/0x for j € {1,2}.

There exists k € N such that
Fla,y) = y™ (@ = gi(y)™ ... (x — gn (y)"™.

We define

B— i Y (RES (4178 0, 0(wy%) — RS (217K 0r0(a,y)) (95 (1): Y)
2 ERICETRm)

Since SP(¢1) = SP(y2) all the numerators in the previous expression belong to
(y). Moreover B(z,e®™/ky) = B(z,y) and then the function f(z,y)B(z,y'/*) is
holomorphic in the neighborhood of the origin and it belongs to (y). We consider
the unit vy € C{z,y} satisfying

1 1
B,y
vaf  uif @y

By construction Resx (y,)(P) = Resy,f/0.(P) for P € [f/y™ = 0]. Since no
modification is required the special mapping p conjugating v f0/0z and X (p2)
and provided by theorem 6.1] is in fact analytic. Therefore, we can suppose that
1 1
— = f(z,y)B(z,y'/*
gy VPV
up to replace @s with p(—1 0 5 0 p. Thus u1(x,0) = us(x,0) and then
(@ — i) (,0) = [(@1 — wr) — (2 — u2)](x,0) € (f(x,0)*).
For m > 0 we are done, the identity conjugates ¢ 0(1) and ¢2,0(1). Otherwise

(f?(z,0)) = (22”(X(@1))) As a consequence there exists h in Diff (C,0) such that
howio(l) = pao(l)oh and h(z) — x € (x?*X(@1)+1) We define

$—>\k
A= Mg

N
H(xa)‘l,"'a)‘N) = Z(h()‘]) - )‘J)
j=1 ke{l,...N}\{7}
We can express it in the form
H/(.’I,‘, )\1, ey )\N)

Thicjcnen (A = Me)°
where H' € Clz]{\1,..., Ay} and the degree of H' as a polynomial in x is at
most N — 1. It is clear that (A; — Ag)|H’ for all j # k. Since H(z,A1,...An) =
H(x, A1), - - -, Ap(n)) for every b € S, then the same property holds when we replace
H with H'. As a consequence (\; — o)’ |H' for j # k. We deduce that H belongs
to Clz]{A1,...,An}. We can express H in the form

H=HoAi,...;, An) + ...+ Hy 1 (A, AN h

H =
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We have v(H;) > v(h(z) —x) — j for all 0 < j < N. Since #(X(¢1)) > N then
H; e (M,...,An) for all 0 < j < N. We define
7= (h(z) = H(z, g1(4""). .., gn (y"%)), 9).

By construction we obtain 7),_o = h whereas 7 is the identity over the fixed points.
Moreover H(xz,g1(y**),...,gn(y"*)) € C{z,y} N (y) since H is symmetric in
()\1,...,)\]\[)andHE()\l,...,)\N). U

LEMMA 9.1.1. Let @1, o be elements of Dy such that SP(p1) = SP(p2) and
©1,0(1) = p2,0(1). Then, we can choose X (p;) = u;f0/0x for j in {1,2} such that
up —u2 € (y).

PrOOF. We denote ¢; = exp(4; f0/0x) for j € {1,2}. By hypothesis we have
iy — G2 € (y). We choose X (¢;) = v; f0/0x for j € {1,2}. Since @; —v; € (f?) for
1 <j <2 we define u; = v; and

Uy —vy U — 1

u2($7y) zvg(x,y)+h2($,y) h2 o h2 (.T,O)
where h = f/y™. It is clear that us —v2 € (f?) and then we obtain iy —ug € (f?).
Moreover ug(x,0) = ui(x,0) as we wanted to prove. O

9.2. Shaping the domains

9.2.1. Prerequisites. We will construct a tg-sp conjugation between a dif-
feomorphism ¢ and its normal form X (). At first we will solve the problem in the
neighborhood of y = yo for yo € B(0,6) \ {0}; then we will use a partition of the
unity to obtain the tg-sp conjugation.

Let X be a (NSD) vector field defined in U 5. Fix 0 < g < 1. We can suppose
that 0 < ¢ <1 and § > 0 satisfy that whether

{aO(P),.. .,agg'>(P)} CUos

then |A;(P)]| = [¥x(p) (97 (P)) — (¥x(p)(P) + §)| < p. We consider 0 < € < ¢
such that exp([—3,3]X (¢))(Ue,) C Uer.

We fix a number M > 32 from now on. We remind the reader that Nr is equal
to 2(7(X) — 1). Let € < € < 1; consider a section T’ (r,6). We define

Tred (r,0, H) = exp([—H, H)ir™ X (")) (T (r, 0)).
There exists 0 < €y < € such that for k = 6(2M + 1)Nr + 3 the transversal
Tréi(r,0,r) is well-defined and it is contained in U. for all 1 < j < Np and
all € < ¢p. Moreover, we choose ¢y > 0 small enough such that Tr< (0,0, k) is
contained in X
(@g(x(eimo)), We(x(eim0))) 4 <o ((0,0), (0,0))

forall 1 <j < Np and 6§ € R.

9.2.2. Eared domains. Fix yo € B(0,6) \ {0}. The construction of the tg-
sp conjugation between «, and ¢ relies in dynamical study of Re(X(¢)). The
construction is simpler if yo & UN Y, since the vector field {(X (), y, €) is locally
trivial in the neighborhood of yy. Otherwise, we will add some ”ears” in order to
break the bi-tangent cords.

Let € < €g; there exists a > 0 and b > 0 such that

exp({—a, b} X ("™ ))(Tr9(0,0,x)) C U,
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forall 1 < j < Npand 0 € R. Let 0 < D < k; we define
O]D(r, 0) = exp([—a, b]X(ewm))(Tre’j(r, 0,D))\ U..
By definition the set OjD (r,0) is an ”ear” of width D over the tangent point

T;{emg)(r, 6). The set Tr%J(r,0, D) has exactly one end which does not belong to
Ue; we denote it by v (r,6). It is the vertex of the ear. For K = (Ki,...,Kn,) €

[0, 5)V" we define U, (K) such that Uc(K) N [(r,0) = (ro,8)] is the interior of
(2] < € UOK (rg,00) U... U O (ro, 0).

We define U, 5(K) = U(K) N[y € B(0,d)]. The set U, is a domain with zero width
ears. The topological behavior of Re(X) in domains of type U.(K) and U, is totally
analogous. Let

- X,
UAK) = U(K) \Ugroyefr....Nryx[0.5)xr 1V, (1,0)};

we define the positive critical trajectory passing through U,f"‘ (r,0) as

UL(K)U{v, * (r,0)
I (VA () )

Analogously we define negative critical trajectories. The critical tangent cords are
still the critical trajectories not containing singular points and the bi-tangent cords
are the critical trajectories containing two vertexes. The bi-tangent cords can be
removed by adding ears.

LEMMA 9.2.1. Let X be a (NSD) vector field. Fiz ry in [0,0) and 6y in R. For
all v > 0 there exists ) = (1, ..., 7n,) € [0,0)"T such that Re(X (™)) does not
have bi-tangent cords in U.(n) N [y = roe?°].

PROOF. Let ¢ € [0,5)"". We define H(¢) C {1,..., Ny}? as the set such that
(j,k) € H(C) if j # k and there exists a bi-tangent cord joining ’UJC»j (ro,00) and
v,ﬁk (ro,6p) in Uc(¢). Tt is enough to prove that for all v > 0 there exists £ € [0, V)T
such that §H (¢ + &) < max(§H(¢) — 1,0); this property implies the lemma by an
induction process.

Consider (j, k) € H(¢). We define & = 0 for | # j. We claim that (j, k) does
not belong to H(¢ + &) if 0 < §; << 1; otherwise there would be a trajectory of
Re(X (e'™%0)) cutting twice T (rg, 0y, k). Moreover, we have that (5, k') & H(()
implies (j',k") & H(C + &) for §; << 1 by continuity of the flow. Now, we just
choose £; < v small enough. (I

REMARK 9.2.1. From now on we will always consider sets Uc(n) such that
0§m<1f0ralll§j§NT.

9.2.3. Changing the boundary of U.(n). Consider two consecutive sec-
tions T’ (r,0) and T’ (r,6). We denote by S;(r,0) the closed circular segment
between T (r,0) and T/ (r,0). We define ¢; = 1 if Re(X) points towards
the interior of U in S;(r,8); otherwise we have ¢; = —1. Let ¢;/y™ be an in-
tegral of the time form of X defined in a neighborhood of S;(r,8). We define
hi(r,0) = (TS (r,0))e . We consider the set Trg’ (r,0,0,0) whose image by
,(/}je—imQ is
hj+hjt1

¢;K + Re 5

+ i[min(Imh;, Imh; 1), max(Imh;, Imhjiq)].
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We define 775’ (r,0,a,b) = exp(i[—a, b] X)(Trg’ (r,6,0,0)). We have

LEMMA 9.2.2. There exists K > 0 such that Tres’j(r,ﬁ, K, k) is contained in U,
for all1 < j < Np and (r,0) € [0,9) x R.

PROOF. Since T)E(’k(r, 0) = T;(’k(r, 6 + mN7) we can suppose that 6 belongs to
[0, 7N7]. As a consequence

K=1+2 sup |Re[1h;(P)e™"™% — h;(r,0)]]
(4,r0)e{1,...,Nr}x[0,6)x[0,7N7], P€S;(r,0)

satisfies K < oo. The choice of K guarantees that
(9-1) K > ¢j[Re(je™ ") (P) — Re((hy(r,0) + hj11(r,0))/2)]
for all (j,7,0) € {1,...,Nr} x [0,d) x R and every P € S;(r,6). The situation for

¢j = 1lis represented in picturel. Proposition|3.2.2/implies that I‘Zl;(iime)) [P](cjw)

€, N
TXJ e

réc”j (a,b)

g,j+1 8
Tx .2

FIGURE 1. Picture of Trg’j(r, 6,a,b) in coordinates 1;e~"m?

belongs to U, for all P € S;(0,0) and all (5,0, w) in {1,..., Ny} x R x RT. There-
fore, equation [9.1] implies that Trg’j (r,0,0,0) is contained in U, for all (j,r,0) in
{1,..., N7} x [0,0) x R and § > 0 small enough.

We have that 757 (0,6, %, &) \ Tr5’ (0,6,0,0) is contained in

(af(X(eims))vwf(X(eime)))‘;‘1<€((Ov 0),(0,0)).

Hence Trg’j(r, 0,k,k) C U for all (j,r,0) € {1,...,Nr} x[0,0) xR and § > 0 small
enough. ([l

Fix yo € B(0,0) \ {0}. We can just change Uc(n) by a domain with very
similar properties. We consider L(s) = Ui<j<n, 175 (s,a;,b;) where (aj,b;) =
(=nj, —nj+1) if Im(h;(yo) < Im(hjt+1(yo)); otherwise we have (a;,b;) = (=041, —1;)-
The set L(s) is not connected for s in a neighborhood of yg; indeed L(s) has N con-
nected components. Anyway, for 1 < j < Ny there exists ¢;j(s) > 0 and d;(s) > 0
such that exp(tX)(v;(s)) does not belong to L(s) for t € (—c¢;(s),d;(s)) but it does
for t € {—c;(s),d;(s)}. We consider the domain W,(n) whose boundary is equal to

Usev[L(s) Ur<j<ng exp([—c;(s), d;(s)]X)(v;(s))]
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trajectories of

o
A

trajectories of
6Uuﬁ\, < Re(iX) —>

FIGURE 2. Picture of a domain W, (0)

for some neighborhood V' of yo. The domain W,(n) has a very simple boundary; it
is composed by a union of trajectories of Re(X) and Re(iX). We define

17(n.5) = [I(n) N [y = 8] \ Ur<jens Tl ol (s)]

for I € {U,W}. The mapping (ag(x,s),We(x,s)); - is constant in the connected

components of I(n, s) for I € {U,W}. We call these components regions as usual.
There is a bijection between the regions in W1 (n, s) and the regions in U (n, s).
Moreover, for every region Zy (s) in WE(n), s) there exists a unique region Zy(s) in
UZ(n, s) such that Zy (s) N Zy(s) # 0 for s in a neighborhood of 0. Indeed those
regions satisfy Zw (s) C Zy(s) for all s in a neighborhood of 0. As a consequence
the dynamical properties of U.(n) and W, (n) are the same.

REMARK 9.2.2. Clearly Trg’ (r,0, s, k) C W(n) for all1 < j < Ny and (r,6) €
[0,0) xR

9.3. Base transversals

For constructing a special conjugation between «, and ¢ in a neighborhood of
y = 1o there are two basic steps.
For the first step we choose a trajectory

Tr(s) CW.n+x—=3)N[y = 3]
of Re(iX) and we construct a special conjugation o7, between «, and ¢; it is
defined in
Usev Drr(s) = Usevexp([=1,11X) (T I [Tr(s)] n W)

for some neighborhood V' of y = yg. The second step is a process of interpolation
for conjugations obtained by considering different base transversals. In this section
we focus on the first step.
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[ e\ é— boundaries
T of earsll

trajectories of

/ Re(iX) —_

FIGURE 3. Picture of a domain W, (C1,...,Cy,)

The set ¥ x(,)(Tr(s)) is of the form z € c(s) +i[d(s), e(s)]; thus ¢¥x () (Drr(s))
can be expressed as

[Imz € [d(s),e(s)]] N [Rez € [¢(s) — q1(Imz, s), c(s) + g2(Imz, 5)]]

where g; is upper semi-continuous and defined in Uy [d(s), e(s)] x{s} for j € {1,2}.
We will define o7, in

Usev (Im(¥x(p)) € [d(s),e(s)]] N [Re(dx () € (c(s) = 1/3,¢(s) +4/3)))
and then we will extend to Dp,(s) by using o7, 0 vy, = ¢ 0 opr. In order to assure
that such a extension is well-defined it is enough to prove the following lemma:

LEMMA 9.3.1. Let (o, ), (x1,5) € Tr(s). Suppose

tj - C(S) € [_ql (Img<'(/}X(<p) (mja 5))’ 5)7 q2(1mg('¢)X(<p) (xja 5))7 S)]
forj € {1,2}. Thenexp(toX)(xo,s) = exp(t1X)(x1,s) implies xg = x1 andty = t;.
PROOF. If Img(vx(y)(0,5)) # Img(1x () (21, s)) then the trajectory of Re(X)
passing trough exp(toX)(xo, s) cuts twice Tr(s). That is impossible by the Rolle

property. Hence zy = x1; moreover ty = t; since otherwise there is a cycle and that
violates the Rolle property. ([

Next we explain how to construct op,. Last lemma justifies the use of ¥ x(,)
as a coordinate in D, (s). Therefore, we consider the system of coordinates given
by (z,8) = (Ux(p)(®,5),s). We want (o7r) 7,5y = Id, ie. o(z,5) = (z,s) for
z € ¢(s) +i[d(s),e(s)]. That choice implies

o(c(s) + i€ +1,8) = (c(s) + i€ + 1+ Ao (hx(py,8) T (e(s) + i€, ), 5)

for all £ € [d(s),e(s)]. We denote A = (¢x(p),y) 0o ag(;l) o (wx(w),y)(_l). Since
€ < ¢y (see subsection 9.2.1) then exp([—2,2]X)(W.(n)) C Us. We deduce that
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A(.,s) is defined in
z €c(s)+[—1/3,4/3] +i[d(s), e(s)].

Consider the partition Iy = (—1/3,2/3),I, = (1/3,4/3) of (—1/3,4/3). Let hy, hs
be a partition of the unity associated to the covering I; U Is. We define

B+ i€, 5) = ha(c — e(s))(c + i€, 8) + ha(c — c(s)) Alc + €, 5)
for ¢ + i€ € c(s) + (—1/3,4/3) + i[d(s),e(s)]. By choice B is the identity in the
neighborhood of Tr(s) whereas B = A in the neighborhood of o7, (Tr(s)). We
define o, = (1/JX(¢),y)(71) o Bo (Yx(y),y). We obtain

[Ux(p) 0 Orr — Ux(p)| = [20 B o (Vx(e),y) — Ux(p)| < 1

The inequality is a consequence of |A(z,y)| < pin Ues. The conjugation or, can be
extended to Dr,(s) by applying the formula oo o, = poo. We define Do, (zo, 5)
the jacobian matrix of (o7, ) at * = xg. Then Dop,.(xo,s) is a 2 x 2 real-valued
matrix.

ly=s

PROPOSITION 9.3.1. For < 1 there exists a universal i, > 0 such that
e or, is C™ in the interior of Usey Dy ().
® [Ux(p) 0 0Tr — Vx ()| < 20 in Usey Dryp(s).
o [ID((¥x(p): ) 0 071 © (x5 9) ) = Idl] < s

The last inequality holds in Uyev[tx (o) (Drr(y))] X {y}. The latter properties
express that op, ~ Id and Do, ~ Id.
PRrROOF. The mapping o, is C*° by construction. Suppose that ag)(xo,s)
belongs to exp([0,1]X)(Tr(s)) for some j € Z. We have
oy (w0,5) = ¢ 0 opp 0 (Y (w0, 5)).-

Since |1 x ()00, =V x (4)| < 1inexp([0,1]X)(Tr(s)) then the point JTTO(ag)(.’E07 s))
belongs to exp([—2, 2] X)(Wc(n))UW(n+r—2) C Us. As a consequence we obtain

|¢X(¢)(UTT(J;O’8)) - ¢X(ga)(x075)| <p+ |A—j °0ry © ag)($0,8)| < 2pu.
Let h(z,y) = (Yx(p)(2,9),y); we have
8(AJ o h(_l))

5% (20,8) =0
(A o A=) L/ Ajo hH)dZ
0z 211 |z—z0|=1 (2720)2
for (zg,s) € Dry(s) and j € Z. For the second inequality we need A; defined in
exp(B(0,1)X)(z0, s). Such a property can be fulfilled by requiring
exp([—3,3|X) (W () UWe(n+x—1) C Ue.

That is the case, since We(n+ k — 1) C We(k) C Ues and exp([—3,3]X)(Ue) C Ues
(see subsection 9.2.1). By making j = 1 we deduce that ||[DA — Id|| < u. As a
consequence we obtain

and

20,8) = < .

Oh
105 ~ 1d] < 104 = Fal| + sup | 52 0)| <
ve

2
v




9.4. THE M-INTERPOLATION PROCESS 111

for g1 = 14 sup,cg |0(h2)/0v| and (2, s) € h(exp([0, 1] X (v))(Tr(s))). If (z + 74, 5)
belongs to the latter domain then

B(z,8) =ho o) o A=Y 0 B(z 4 j, 5).

By simplifying we obtain

z0B(z,8) —z=(20B(z+j,8) — (24 7)) + A_j o k=Y 0 B(z + j, 5).
That leads us to

IDB = 1d||(z,5) < p + [|D(A—j 0 b 0 B(z + j, 9))]-

We develop the previous expression to obtain

IDB — 1d||(2,5) < ppr + |[D(A—; 0 RED)|(L + ||DB(2 + j, 8)) — Ld|l);
we can still simplify to have

[IDB — Id|(z,5) < ppa 4 p(1 + papp) < fruwpe
for (z,8) € Yx(4)(Drr(s)) x {s} and pryy = 1+ 2p1. Therefore

ID((¥x(0)sY) © 07 0 (Vx (), %) ) (2, y) = Id|| < pruwis
for (z,y) € ¥x (o) (Drr(y)) X {y}- O

9.4. The M-interpolation process

Since a single transversal can not intersect all the trajectories of Re(X) then
somehow we have to interpolate conjugations obtained by taking different transver-
sals. Throughout this section we consider strips Usey B¢(s) such that

Ux(p)(Be(s)) = [z € [a(s) = (,a—(s) + (] +iley (s), ¢ ()]

where ¢y — c¢; = M. The functions a., a_,, ¢ and ¢4 are continuous in V. These
functions are real-valued but we allow a._ = —oo0 and a_. = co. We denote the
curve Be(s)N[Img(x(e)) = cj(s)] by Wf(s) for j € {1,1}. Let 0| and oy be special
mappings defined in the neighborhood of Uscy Bi(s) and conjugating a, and ¢.
Let h = (¢x(4)(7,¥),y); suppose that the inequalities [z 0 h oo — 2z 0 h| < 2u and

ID(h oo 0ht=D) — Id||(h(x,5)) < wp

are fulfilled in the neighborhood of Usey By (s) for some p? > 0 and every j € {1, |}.
Let g be a mapping defined in the neighborhood of a curve ~; we denote by (g,7)
the germ of g in the neighborhood of v. We want to prove

PROPOSITION 9.4.1. For some C(u',put) > 0 and all 0 < p < C(pul, pt) there
exists a C special diffeomorphism oy defined in Usey Bo(s) such that we have
oroay, = ooy and (07,75 (s)) = (05,75 (s)) for (s,j) € V x {1,1}. Moreover, we
obtain

o [thx(p) 001 — Ux(pl(z,y) < 2p
o [ID((Ux(p):y) 001 0 (Ux(p, ) ) = Idll(2,y) < ulp

for all (z,y) € Usey Bo(s). Moreover pl depends only on p' and wt.
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Let h = (Yx(y)(2,y),y); we define Af(s) =0j (fyf(s)) Let p > 0 small enough;
since ||D(h oo o h(=V) — Id|| < pp we have that h(AJC(s)) is parameterized by
Re(z) for (j,¢,s) in the set {7, ]} x [0,1] x V. We obtain that Re(z o h(A](s)))
contains [a.(s)—1/2,a_(s)+1/2] for j € {1,]} and s € V by considering p < 1/4.
We denote

7j(s) = Aj(s) N [Re(vx(p)) € [a(s) = 1/2,a-.(s) + 1/2]]).
Let u(«) = =1, u(—) =1, v(T) = 1 and v(]) = —1; we define
Pji(s) = Aj(s) N [Re(¥x(g)) = ar(s) + u(k)/2]
for (j,k) € {1,1} x {+, —}. Consider the curve 74(s) such that
Ux (1i(5)) = ar(s) + u(k)/2 + ilImg(Yx (P k(s))), Img(¥x (Prk(s)))]
for k € {—,—} and s € V. We define
T(s) = 7—(s) UTp(s) UT(s) UT|(5);

it is a Jordan curve. We denote by D(s) the closure of the bounded component of
[y = 5]\ 7(s). We define

Bj(s) = Bi(s) N [Img(¥x () € [ey + (1 +v(5))M/8, ¢r — (1 = v(j)) M/8]]
for j € {1, 1}.

LEMMA 9.4.1. We have D(s) C o (B|(s)) Uoy(B1(s)) foralls e V.

Proor. Let j € {1, !}; we define

7;/(s) = o(Bi(s) N [Im(dx(p)) = ¢; — v(j)3M /4]).
We consider
7j(s) =77 (s) N [Re(thx(y)) € la(s) = 1/2,a(s) + 1/2]]
for j € {1,1}. As 7(s) and 7/(s) the curve 1x(,)(7/(s)) is parameterized by
Rez € [a— —1/2,a_, +1/2]. We denote by D;(s) the closure of the only bounded
connected component in
[y = s]\ (T (s) Ut (s) UT;(s) UTi(s))

for j € {1, 1}.
We claim that D;(s) C 0;(B;(s)) for j € {1, ]}. That is a consequence of

9D;(s) C a;(B;(s))

which we obtain by construction since o; ~ Id and Do; ~ Id. As a consequence
it is enough to prove that D(s) = D|(s) U D;(s) for s € V. Then the inequality

[Vx(p) © 05 — Ux(p)| <1/2for j € {1,]} implies
ianm[wx(w)(Ti(S))] >ci(s)+3M/4—1/2
and
sup Im[1x () (T{(s))} <c/(s)+M/4+1)2.
Since M > 32 by choice then 3M /4 —1/2 > M/4 + 1/2. That implies
Ux () (D(5)) = ¥x(p)(D1(5)) Utbx () (D (s))
which is equivalent to D(s) = D, (s) U D;(s) for s € V. O
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We want to define a cut-off function in D(s). Let  : C — [0,1] be a C°
function such that

e 1(z) =n(ilmgz), i.e. n only depends in the imaginary part.
o n(ib)=1forbeRand b < M/4+2.
e 1)(ib) =0 for b€ R and b > 3M/4 — 2.

We define np : Usev D(s) — [0, 1] such that
o 1p(z,5) = ((x(p) 0 0\ V) (@, 5) —ic(s)) if (z,5) € oy (B (s)).
o np(z,s) =0in D(s)\ o (B|(s)).
Since np is 0 in the neighborhood of 7{(s) then the function np is C*° in the interior

of Usev D(s). Let us define an integral ¢ of the time form of ¢ in Usev D(s) as
follows:

o Ui(z,5) = (np(x(p) 00|
D(s)Nno(B(s ))ﬂUT(BT(S)

)
).
b 1#1(35»5) ¢X(<p OJT ( 75) if 77D($»8) =0.
o Y1(x,8) = Vx(p) oal ( s) if np(x,s) =1.

LEMMA 9.4.2. The function vy is defined in Usey D(s) and it is C* in the
interior. Moreover, it satisfies 1 o p =y + 1.

D)+ (1= np) (o) 0 0t )(x, ) for (z,5) in

PROOF. The second property is an immediate consequence of the construction.

Since [¢x(4) 00 —Vx (o) < 1/2for j € {1, ]} and o < 1/4 then the set 1 x(,)(D(s))
contains

z€a(s)—1/2,a_(s) +1/2] +i[c;(s) + 1/2,¢1(s) — 1/2].

We have that

Img(Yxp)(x,8)) <ci(s) +M/4+2—-1/2 = np(x,s) =1
and

Img(Yx ) (x,8)) > c|(s) +3M/4-2+4+1/2 = np(z,s) =0
by [tx(p) ©0j —Vx(p)| <1/2. As a consequence 97 is well-defined and C*° in the
interior of Usey D(s). O

LEMMA 9.4.3. We have ¥ x(,)(Bo(s)) C 1 (D(s)) for all s € V.

PROOF. Since [¢x () 00 1 —Yx(p)| <1/2in 0;(Bj(s)) then

i
~(

[2 € la(s), a—(s)] +ic; (s)]] € Py (7;(s)) for 7 € {T, 1}
Then |¢X(¢)OU —@bx(@ | <1/2 (5 € {1,1}) implies [t} —9x ()| < 1/2in D(s).
Hence, we obtain 1 x () (Bo(s)) C ¥1(D(s)). O

LEMMA 9.4.4. There exists C'(ur, i) > 0 such that 0 < p < C'(uy, p)) implies
o [ —Ux(p] <2
o ID((1.9) © (W) )" = Td| 0 (¥x () 9) < prop

in UseyD(s). The constant pg > 0 depends only on p! and pt. The mapping Py
is injective in D(s) for all s € V.



114 9. TANGENTIAL SPECIAL CONJUGATIONS

PROOF. Since [¢x () oa§_1) —Yx(p)| < pfor j € {T,1} and ¢; is a convex
combination of ¥ x () oaifl) and ¥ x () 00%71) then |11 —x ()| < 20 in Usey D(s).

We want to estimate |[D((31,y) o (qpx(w,y)(‘l)) — Id|]. f np = 0 in the
neighborhood of P € Usev (¥x(y), ¥)(D(s)) then

D((¥1.9) 0 (Wx(e ) ™) = Dl w) 001 0 (x(e9) ™)
in the neighborhood of P. Since
AV =Td— (A—1Id)+ (A—Id)* — (A—Id)* + ...

for real squared matrices such that ||A — Id|| < 1 then we deduce that

in a neighborhood of P supposed u'y < 1/2. Analogously, if plp < 1/2 and np = 1
in a neighborhood of P then

ID(C19) © (0 9) ™) = 1d]| < 24t
in a neighborhood of P.
Now, we focus on the interior of D(s) N o (B (s)) No1(Bi(s)). We denote

h = (¥x()y) and H = (¢1,9) © (¥x(4)) "5 we have
H=(npoh™hoo™ on=Y + (1 —npohrD)hoo!™ onl-1,
For y > 0 small enough we obtain
IDH — Id]| < 2(u" + iy + 1]
where J7' is equal to

oh(—1) — — — —
( e xpy 0 0] o hT) — (g 001V 0 HCY)] )

oh(—1) _ B - B
g () 0 0] Vo b — iy 00y Vo )]

Let K = supy g |(On(ib)/0b)(b")|; we have

d(Imglx(p) 0 o) Y o h(-D))
ORez ’

d(np o h{=Y) .
ORez -

Therefore, we obtain [0(np o h(-1)/0Rez| < 2Kpu'p. In a similar way we have
|0(np o h{=1)/0Imgz| < K(1 + 2utu). All the previous calculations lead us to

|DH — Id|| < 2(p" + p)p+ 4pvV2K (1 + 20t o).
By plugging p'p < 1/2 into the previous inequality we obtain
IDH — Id|| o (Yx(4), ) < 2(u* + p! +4V2K)p

in Usey D(s). We define o = 2ut + 21 + 8V2K.

We denote D'(s) = 1x(,)(D(s)). Suppose piope < 1/4. The foliations Rez = cte
and Img(H) = cte are transversal in D’(s) since 0Img(H)/0Im(z) > 1-1/4 = 3/4.
Moreover Img(H) = ¢ contains 9 x(,)(7x(s)) and Rez = a;(s) + u(j)1/2 contains
Vx(p)(Tj(s)) for j € {«,—} and k € {T,]}. As a consequence (Rez,Img(H))
is injective in D’(s). Suppose H(zp,s) = H(z1,s) and 2y # 21; we deduce that
Re(zy) # Re(z1). We consider the connected curve

v = [Img(H) = Img(H (20, ) = Img(H (z1,5))].
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The tangent vector to 7 at any point belongs to 1 +i(—1/3,1/3). Since we also
have ORe(H)/ORez > 3/4 and ORe(H)/0Im(z) < 1/4 then

2|Re(z1 — 20)|/3 < |Re(H)(z1,s) — Re(H)(z0,5)| # 0.
We deduce that H is injective in Usey D'(s). Thus ¢y is injective in D(s) for all
seV. O
PROOF OF PROPOSITION (9.4.1l. We define

JI = (wl(xvy)ay)(il) © (q/)X(‘P)(x’y)’y)

Thus oy is C°° by lemma 9.4.2. By lemmas 9.4.3 and 9.4.4 the mapping oy is
well-defined in Usey Bo(s). Moreover, it is injective. By extending o by o; in the
neighborhood of 79 (s) we obtain

(07,75 (s)) = (07,77 (5))
for all (s,7) € V x {1,]}. We have
Yo (o) 0ap) =Ux(p) 00y =Vx(y) +1 =110 (pooy).
That implies oy o a, = @ 0 oy in Usey Bo(s) N Useva(_l)(Bo(s)). The inequality
|91 — Yx (e < 2p is equivalent to [1x(y) © cré_l) — ¥x(p)| < 2. Therefore, we
obtain [1)x(y) © 07 — ¥x ()| < 2u. Since

(Yx(p)y) © CT%_l) o (Yx (e y) Y = (¥1,y) 0 (¢X(Lp)ay)(_l)

then we deduce that
—1 -1
||D((’(/JX(@)7y)OOé )O(’(/}X(<p)7y)( ))_IdHSNOM
by lemma 9.4.4. By considering pop < 1/2 we have

I[D((Yx(p),y) 00y © (1/))((@)71/)(71)) — Id|| < pyp
for u! = 2p9. We are done since g just depends on u! and . [l

9.5. Regions and their limiting curves

Fix yo € B(0,6) \ {0}. Consider a region Z(s) C WZE(n,s) associated to
Re(X(¢)). The number of connected components of 0Z(s) \ SingX (p) is either 1
or 2. Moreover, it is equal to 1 if and only if

Qe(x), W () (Z(8)) = we(x),w. () (Z(5)) € SingX ().
Every connected component of 0Z(s)\ SingX (¢) is contained in a trajectory v(s) =
F?(/}(?) [/, s]. We say that v(s) is a limiting trajectory of Z(s). We denote by LZ(s)
the set of limiting trajectories of Z(s). We have LZ(s) = {~Z(s),yZ(s)} where
vjz(s) depends continuously on s € V for j € {0,1} since Z(s) and 9Z(s) do so.

Each curve in LZ(s) contains exactly one vertex of W(n). A curve 1"?&(;7) [v;“ (s)]

limits exactly three regions (see picture 4). Let v(s) € LZ(s). Either we have

Img[x ) (v(s))] = (m,si)IéfZ(s) Img[x(p) (2, 8)]
or
Img[x ) (v(s))] =  sup  Img[px(y)(z,s)].

(z,8)EZ(s)
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vili(s)

FIGURE 4.

In the former case we define

Bj(s)" = Z(s) N [Img(¢x(p)) < Img(¥x () (1(s))) + M]

whereas the definition is

BY(s)' = Z(s) N [Img(¥x(y)) = Img(¥x (o) (1(s))) — M]

in the latter case. We define B)(s) = exp([—1,1]X)(B}(s)’) for both cases. By
construction ¥ x () (B%(s)) is of the form

[a(s) = La(s) + 1] + ey (s), 1 (s)]

for some functions a., a_,, ¢4 and c¢| depending on Z and y. Moreover we have
¢y —c; = M. We define the width WZ(s) of a region Z(s) by the formula

WZ(s)= sup Imgly z,s)]— inf Im x,s)].
()= sup Imolvxo(es) = b Imglixo (@)
The width W Z is either a positive function in V or WZ = oo in V. The latter case
corresponds to fLZ = 1.

9.5.1. The game. Here we define a game; the goal is building a special home-
omorphism ¢ conjugating o, and ¢ in U, N [y € V]. There are several steps in this
game. For a step j and a region Z C W2 (n) we attach a label lab;(Z) C LZ U{Z}.
The labels satisfy

e laby(Z) = 0 for all region Z C WE(n).
o If = € lab;(Z) then lab;(Z) = LZ U{E}.
The meaning of the labels is related to the existence of conjugating mappings.

o If v € labj(Z) N LZ there exists a special continuous conjugation o,
defined in B}.
o If = € lab;(Z) then there exists a special continuous conjugation o de-
fined in Z.
e If E€labj(Z) and v € LZ then oz = 0, in a neighborhood of 7 in Z.
The mappings ¢, and oz do not depend on j. For a region Z in WZE(n) and a curve
v € LZ we denote by Z1(Z,~) and Zy(Z,v) the other regions of W1 (n) limiting
with 7. Next, we introduce some compatibility conditions that the conjugations
have to fulfill.



9.5. REGIONS AND THEIR LIMITING CURVES 117

o If v € lab;(Z) then v € lab;(Z1(Z,~)) Nlabj(Z2(Z,7)).

o If y € lab;j(Z) then oy = 0} in 0Z N JZ for all k € {1,2}.

o If v € labj(Z) the mapping defined by gluing o and oy, is C* in the

neighborhood of 0Z N 9Z, N W,(n).

There is also a technical condition regarding the M-interpolation process.

o If WZ(yo) < 2M then either lab;(Z) = 0 or E € lab;(Z).
We define u*¥ = max(tyy, ul(uw, tup)). The next set of conditions assures that
oz ~ Id and Doy ~ Id.
If v € lab;j(Z) then [thx(,) © 0} — Yx(p)| < 2p in BY.
If 2 € lab;j(Z) then [¢hx(p) 00z — Ux(p)] < 2uin Z.
ID(x(g) 0 0% © (Vx(0),4) V) = 1d|| < pups in B if 7y € lab;(Z).
ID(Yx(p) 002 © (Wx(p),y) V) = Id|| < p*p in Z for = € lab;(Z).
We introduce a condition making explicit the goal of the game.

e There exists j € N such that E € lab;(Z) for all Z C Wl(n).
The numbers €, §, i and the domain V' can be interpreted as the initial data of the
game. We ask these objects to fulfill some prerequisites that we introduce next.
We fix 0 < p < min(1, C(typ, tuw))- Let €g > 0 as described in subsection 9.2.1; we
choose 0 < € < ¢y and a small enough § > 0. The choice of (¢, d, i) is independent

of Yo-
The success in solving the game will imply

PROPOSITION 9.5.1. Let ¢ be a (NSD) diffeomorphism. Consider a S-uple
(n,6,8) € RT x RT x RT fulfilling the prerequisites of the game. Then, for all
yo € B(0,0) \ {0} there exists a neighborhood V. C C of yo and a special mapping
oy defined in W, s N[y € V] such that

e oy isC® in (Wes\[f=0])N[yeV]
oV o, =gooy
[Vx(p) 00V — Yx ()| < 20
ID(Wx(p),y) 0 0v 0 (Ux(p), 1) TY) = Id||(¥x (), y) < 1"
inWesNyeV].

Roughly speaking the proof goes as follows: since the goal of the game is
achieved then we obtain a conjugation oz for each region Z and all of them paste
together by the compatibility conditions.

It looks like difficult to achieve the thirteen properties (plus the goal property)
we ask the game for. In despite of this we will introduce a process to solve the
game such that most of the properties can be trivially checked out.

9.5.2. The algorithm solving the game. The algorithm has several steps.
In each step of the game exactly one step of the algorithm is applied. The steps of
the algorithm are ranked in a priority list. If the correspondent condition is satisfied
then we apply the first step; otherwise we try to apply the second step and so on.

Prerequisites: Fix yo € B(0,6)\{0}. We select € [0,1)"" such that there are
no bi-tangent cords in Uc(n) N [y = yo]. We have to choose a neighborhood V in
B(0,0)\{0} of yg. We suppose that there are no bi-tangent cords in W (n)N[y € V].
Moreover, we can also suppose that WZ(s) > 2M for all s € V' if WZ(yo) > 2M
whereas otherwise WZ(s) < 2M + 1 for all s € V. That choice is possible since
W Z(s) is a continuous function.
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First step: This step is applied if there exists a region Z C WX (n) such that
LZ Clabj(Z) but Z & lab;(Z). The M-interpolation process condition implies that
WZ(s) > 2M for all s € V. Let us denote (ag(x,s),wWe(x,s))yy ) by (a,w). Next,

we choose a transversal Tr to Z(s). If a(Z) = oo we choose Tr(s) = end_(Z(s)).
If a(Z) # oo and w(Z) = oo we define Tr(s) = end;(Z(s)). For the remaining
case let us consider a vertex v;*(s) in Z(s). We choose
Tr(s) = exp(i[0, W Z(5)] X ) (vy" (5))
if Re(iX) points towards Z at v*. Otherwise we define
Tr(s) = exp(i[=WZ(s), 0].X)(v;" (5))-

By the choice of the domains W, (#) the transversal T'r is a sub-trajectory of Re(iX).
We obtain or, by proposition 9.3.1. Let v; € LZ (I € {1,2}); we denote by 7, the

curve B} N We(n) \ 7. We interpolate o7, and ¢} in B}' to obtain ¢’ such that
(0, NdZ)= (o, NIZ) and (o', 71) = (o7, 11)-

If fLZ = 1 we define 0z = ¢’ . Otherwise we interpolate o’ and o’ in B}? to
obtain oz such that

(02,72 NOZ) = (0,72 NIZ) and (cz,75) = (o', 75).

Let us remark that (¢/,v5) = (o1, 7%) since WZ > 2M. By applying proposition
9.4.1 at most twice we obtain that [¢x(,) 0 0z — ¥x ()| < 21 and

||D((¢X(<p)7 y) ©ozo©o (wX(Lp)a y)(_l)) - Id”(’(/}X(ap)? y) < MMIJ
in Usev Z(s).

Finally, we define lab;;1(Y) = lab;(Y) U {Z} for all region Y in WX (n) such
that LZ C lab;(Y) and = & lab;(Y'). Otherwise we define lab;1(Y) = lab;(Y). By
construction all the properties (except the one regarding the goal) are preserved for
labj+1.

Second step: Suppose there exists a region Z such that 7Z € labj(Z) but
¢ ¢ labj(Z). We fix Z; let us consider a sequence

(Zv’YOZ) = (Z0770) - (Zlafyl> IR (Zk?'yk)
satisfying
yyeLZ and vy € LZ;_1 forall 0 <l < k.
Zy # Zpyq and v # y4q forall 0 <1 < k.
Vi1 € labj(Z;) for 0 <1 < k.
W Z(yo) < 2M for all 0 < < k.

Such a sequence will be called a generating sequence. The element (Z,Z) is called
the root of the sequence. Consider the vertex v{" in v;; we define

Tr(s) = exp(i[—(x — 3),k — 3]X) (v{" (s)).
The conjugation o, satisfies the claim in proposition 9.3.1]in the set

Usev Drr(s) = Usevesp([—1,11X) (TR (Tr(s) n W)

We claim that

PROPOSITION 9.5.2. The mapping o, is defined

e in a neighborhood of Usenglz (8) in We(n).
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e in a neighborhood of Usey Z;(s) in We(n) if WZi(yo) < 2M.
e in a neighborhood of Usey By (s) in We(n) if W Z(yo) > 2M.

To prove the proposition we require the following lemma
LEMMA 9.5.1. The number of regions in WE(n) is at most 3N7.

PROOF. Every region has at least one limiting curve. The regions limited by
a limiting curve are exactly 3. (]

PROOF OF PROPOSITION [9.5.2 Since K—3 = 6(2M +1)Np > 2M the result is

clear for UsevB}Z (s). By splitting the original generating sequence in several ones
we can suppose (Z;,7v) # (Zy,y) for 0 <1 < I’ < k without lack of generality.
Since §LY < 2 for all region Y C W2(n) then k 4+ 1 < 6N7. Let v)" be the vertex
in . For 1 <1<k we define ;= —3 — (2M +1)(I — 1) and

Tri(s) = exp(i[—k, k] X) (0] (5)).
We claim that UgeyTr(s) is in the interior of Ugey (1"?(’;{(;7+n73) [Tr(s)]) in the set
We(n+x —3). Since k — 3 — (2M + 1)(6N7 — 2) > 2M + 1 the proposition is a
consequence of the claim.

The claim is true for [ = 1. Suppose it is true for I = [ < k. We have
WZ,, < 2M + 1; as a consequence for all s € V there exists a unique point
(x0,8) € Tryy(s) such that

We k—3
1o (s) € Doy o, 5],
Moreover (zg,s) = exp(it, (S)X)(vlno'o(s)) for some ¢;,(s) in (—2M — 1,2M + 1).
We deduce that

. W)
exp(i[—ku, + [t (8)], K1y — 1o ()1 X) (03 (5)) € DT [Tr(s)]
for all s € V. Since |y, (s)] < 2M + 1 and ;.41 = K1, — (2M + 1) we are done. O

The assignment of the labels is natural. If Y C Wf(n) is not in any generating
sequence then lab;11(Y) = lab;(Y). If (Y,7) is in a generating sequence then
lab;(Y) = {73, 71 ,E} for WY (yo) < 2M; otherwise we include v in lab;;1(Y).
We also define lab;1(Z) = {v¢, 7%}

We have to prove two things. The first one is that we are not redefining any
oy or oy for any Y or 4 because we claimed that these data do not depend on j.
The second one is that the conditions are fulfilled; all of them are trivial except the
compatibility conditions.

LEMMA 9.5.2. Consider a region Y C WZE(n) and ) € lab;Y such that
(Y, &) # (Z,7¢). Then (Y,~Y) does not belong to any generating sequence whose
root is (Z,~¢).

PROOF. Suppose we have a generating sequence

(Z’ /70Z) = (Z()?’YO) - (Zla’yl) R (Zk,’Yk)
such that (Zg,v) = (Y,7Y) for k > 0. The curve 74 belongs to LZ;_; but not
to lab;(Zy—1) by the definition of generating sequence. On the other hand since
Y& € labj(Zy) then we obtain 4 € lab;(Z;—1) by the compatibility conditions for
step 5. That is a contradiction. (I
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LEMMA 9.5.3. The compatibility conditions are fulfilled for the step j + 1.

PROOF. Let Y C WE(n) be a region. If 7y € lab;(Y) the compatibility
conditions for (Y,~{) in the step j and j + 1 are the same. Therefore, we can
suppose 7¢ € labj11(Y) \ lab;j(Y). The compatibility conditions for the step j
imply that ~g & lab;(Z1(Y, 75 ) Ulab;(Za(Y, 75 ))-

Suppose (Y,7Y) = (Zk, Vi) for a generating sequence

(Z,A8) = (Zo,%0) = (Zr,m) — - — (Zie, We)-

The region Zj_; is equal to Z;,(Y,~d) for some Iy € {1,2}. Suppose Iy = 1
without lack of generality. By construction we obtain that ¢ € lab;+1(Z1(Y, 7).
Moreover, we can replace (Y,~y ) with (Za(Y,7Y),7a ) in the generating sequence.
As a consequence ¢ is in labj1(Z2(Y, 7))

Now, suppose (Y, ) = (Zi,v) but (Y,~") does not belong to any generating
sequence whose root is (Z,7Z). In this case 7 € lab;;1(Y) implies WY () < 2M.
We can append (Z;(Y,7Y),7Y) at the end of the series and we still have a generating
sequence. Therefore that leads us to 7¢ € lab;j+1(Z1(Y,1¢)) Nlabjs1(Z2(Y, 7).

The remaining compatibility conditions are obvious because all the oy or oy,
that we define are just restrictions of or.. O

Third step: Suppose j = 0. We choose Z such that
a(Z) =w(Z) € SingX(p).
We consider the generating sequences of the form

Z=2o—(Zv,m)— . — (Zis k)

where v = fyOZ . The root of the sequence is Zy. The conditions we require to
the generating sequence are the same than in the second step; we just remove the
conditions involving ~p.
The process for constructing a special conjugation between «, and ¢ and the
assignment of the labels lab; (Y') are analogous to the ones in the second step.
The goal of the game:

LEMMA 9.5.4. The goal of the game is achieved.

PRrROOF. Suppose that no step of the algorithm is applicable to the step j of the
game; hence j > 0. For every region Y C W2 (n) we have that either lab;(Y) = 0
or E € labj(Y). We claim that = € lab;(Y) for all region Y C W[ (n). Otherwise
there exist Yy, Y1 C WL (n) such that LYoNLY; # 0, Z € lab;(Yp) and lab;(Y:) = 0.
Let v be an element of LYy N LY7; it satisfies v € lab;(Y1) by the compatibility
conditions. That is a contradiction.

If for a step j of the game we apply the second step of the algorithm then for
step j + 1 we apply the first step. Since the number of regions is at most 3Np
then we have that there exists jo < 6Np such that = € lab;,(Y) for all region
Y c WE(n). O

PROOF OF PROPOSITION [9.5.1. Let (u,€,d) € RT x RT x R* fulfilling all the
prerequisites. For every yo € B(0,6) \ {0} we choose V,, C B(0,9) \ {0} satisfying
the corresponding prerequisites for a neighborhood of yy. By applying the game
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we find oy defined in (We(n) \ [f =0]) N[y € V,,] for some n(yo) € [0, )T The
properties in proposition [9.5.1 for the domain

(WA [f =0 Ny e Vi) W)\ [f =0]) Ny € V]

are deduced from the properties of the game. Moreover, by defining oy |;—o = Id
we extend oy continuously to f = 0 since |¢x(,) 0 ov — ¥x ()| < 24

9.6. Conjugating a diffeomorphism and its normal form

For each yo € B(0,6) \ {0} there exists a neighborhood V,,, where the claim
in proposition 9.5.1 holds. It is evident that Uscp(o,5)Vs = B(0,6) \ {0}. Let
B(0,6) \ {0} = UjesV; be a locally finite refinement of Uscp(o,5)Vs. We choose a
partition of the unity h; (j € J) associated to the covering U;c ;V;. The function

hy = Zhj(y)(f/fxw) o U\(/J_.l))
jeJ
is a candidate to be an integral of the time form of ¢ defined in a neighborhood of
(0,0) deprived of the line y = 0. We have to explain the meaning of the previous
formula. So far we were dealing with simply connected sets like Usey D, () or
Usev Bi(s). Now we want to define v, in a domain U, 5\ [f = 0] whose intersection
with the fibers is not simply connected. Anyway, we have

Ux(p) 0 0y, (P) = Px (o) (P) =t & oy, (P) = exp(tX ())(P).

Hence the function 9 x () o Ug/;l) — Yx(yp) is single valued and so ¥, — Px () is a
single valued function such that [¢, — ¥ x ()| < 2p in its domain of definition.

PROPOSITION 9.6.1. Consider (u,€2,02) € (]R*)3 fulfilling the prerequisites of

the game. Suppose max(p, pp’) < 1/4. There exist € > 0 and § > 0 such that for

all yo € B(0,9) \ {0} the map oy provided by proposition [9.5.1 satisfies that 0‘(;1)

is well-defined in U s N[y € V.
PROOF. Since [¢x(,) 0 0v — ¥x ()| < 21 < 1/2 then
ov(P) € exp(B(0,1/2) X (¢))(P)

for all P € W, s,. Thus oy (P) = oy (Q) implies @ € exp(tocX(¢))(P) for some
to € B(0,1). We consider U, s such that exp(B(0,2)X (¢))(Ues) is contained in
We, 5, Since Doy ~ Id we obtain

[Vx(p) 0 0v(Q) — Yx(p) 0 ov(P)] - to > |to]”/2

supposed P € exp(B(0,1)X (¢))(Ue,s) \ [f = 0]. The - stands for the scalar product
in R2. Then

ov(P)=0v(Q) = to=0 = P=Q.
Thus oy (y,) is injective in exp(B(0,1)X (p))(Ue,s) for yo € B(0,9) \ {0}. Fix yo €
B(0,9) \ {0} and consider P € (Ues \ [f = 0]) N[y € V]. We define the path
v : St — exp(B(0,1)X (9))(Ues) such that

V(A) = v (exp(AX(9))(P))-
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Since [¢x () 0 0v — P x(p)| < 21 < 1/2 then v is not homotopic to a trivial loop in
[y = y(P)]\{P}. But clearly ~y is homotopically trivial in oy (exp(B(0, 1) X (¢))(P));
we deduce that

P e oy (exp(B(0,1)X(¢))(P)) C ov(exp(B(0,1)X(9))(Ue,s))
and then o, ) is well-defined in Ues N[y € V]. O

Last lemma implies the existence of an integral of the time form of ¢ in a
neighborhood of (0,0) deprived of y = 0.

PROPOSITION 9.6.2. Let ¢ be a (NSD) diffeomorphism. There exists (j,€,06) €
Rt x Rt x RY such that there exists a tg-sp mapping o satisfying
o and o=V are O in U. s\ [yf = 0].
goa,=¢oo.
[Yx(p) 00D — x| < 2u for j € {—1,1} in Ues \ [yf = 0].
ID((¥x(0),4) 0 0 © (¥x(),4) ) = Td|[(hx (), y) < 4p*pe.

PROOF. Suppose max(u, pu"?) < 1/4. Let U, s be the domain provided by
the previous proposition; the function v, is defined in U,, s. We consider U, s such
that exp(B(0,1)X (¢))(Ue,s) C Uey,5. We define

0= (Yo, 9) " 0 (Ux(p),y) and ol = (W), 9) T 0 (Yuy).
By the definition of 1, we have |, — ¥x ()| < 2p. Thus =D (P) belongs to
exp(B(0,21) X (¢))(P) for all P € Ue, 5. That implies [¢)x(p) 0 0™V —thx ()| < 2u
in U, 5. The mappings oy provided by proposition 9.5.1] satisfy
ID((Wx (o5 9) 0 0% 0 (x4, 9) ) = Tl (W o), ) < 20"

in U, 5 \ [y =0]. That leads us to

(9.2) 1D (¥, y) © (Vx () y) ) — Id||(¥x(p) y) < 20"

in the domain U, 5 \ [y = 0]. Let P € U5 \ [y = 0]; proceeding like in proposition
9.6.1 we find a unique @ € exp(B(0,1)X(¢))(P) such that ¥,(Q) = x () (P).
Since ¢(~1(Q) = P we deduce that

[Vx(p) 00 — Vx| < 2p

in Ue 5\ [yf = 0]. The mappings o, (=1 are well-defined C' local diffeomorphisms
in U.s \ [yf = 0]. Moreover, since o(P), o~V (P) belong to exp(B(0,1)X (p))(P)
then o and o~ can be extended continuously to [f/y™ = 0] as the identity
mapping. Finally, the inequality 9.2/ and 2u*Yu < 1/2 imply

|HD((¢X(§0)ﬂ y) coo (/l/}X(Lp)v y)(il) - Id”(wX(tp)a y) < 4‘uuvﬂ
in UE)(;. ([l
COROLLARY 9.6.1. Suppose m > 0. Let ¢ be a (NSD) diffeomorphism. Con-

sider the tg-sp mapping o conjugating o, and ¢ and provided by proposition [9.6.2.
Then o and o=V admit a continuous extension to y = 0 such that Oly—o = Id.
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1

PRrROOF. We define oy_;ny=0) = O'((J:é)m[yzo] = Id. By prop. 9.6.2/ we have

{o(P), 0"V (P)} C exp(B(0,211) X (¢))(P)

for all P € Ues \ [y = 0]. Since exp(tX(9))(Q) is continuous in ¢ and @ then the
mappings o and o(~1) are continuous in U, 5 N [y = 0]. O

REMARK 9.6.1. When (N, m) = (1,0) we can choose yg = 0 and the result in
proposition [9.5.1 is still true for some V neighborhood of 0. We can proceed as in
proposition|9.6.2 to obtain that oy is a germ of homeomorphism such that it is C'*°
outside of f =0.

9.6.1. Proof of theorem [8.1 for m > 0 and (N,m) = (1,0). We al-
ready proved the sufficient condition. Since SP(p1) = SP(p2) then we obtain
SP(X(p1)) = SP(X(p2)). We denote by o; (j € {1,2}) the germ of homeomor-
phism conjugating o, and ¢; (see proposition 9.6.2, corollary [9.6.1/ and remark
9.6.1). Since Re(X(p1)) and Re(X (¢2)) are conjugated by a germ of homeomor-
phism ¢’ by theorem [6.1] then we define

c=0300 ool

The mapping o is a germ of homeomorphism (corollary [9.6.1] and remark [9.6.1)
conjugating ¢; and ¢s. Since o; (j € {1,2}) and o’ are C*° outside of [yf = 0]
then the same property is satisfied by o. For (N, m) = (1,0) the mapping o is C*>
inUcs\[f=0]

9.7. Comparing tg-sp conjugations

We suppose from now on that N > 1 and m = 0. We already proved the exis-
tence of a tg-sp conjugation between o, and ¢. Moreover, such a conjugation does
not extend continuously to y = 0 since that would imply that ¢|,—¢ is analytically
trivial.

Suppose SP(p1) = SP(p2); we can suppose that ¢ ,—g = @2 |y—0 up to
an analytic change of coordinates (see proposition 9.1.1). We denote X (y;) and
¥x(p;) by Xj and 1; respectively for j € {1,2}. We denote ay,; by a;. We can
choose X |,—o = X3 |y—0 by lemma 9.1.1. Let k¥ € N such that fla,y*) =0 is
the union of N curves = g;(y) for 1 < j < N. For 1 < j < N we define

Res] 5(y) = (Resx, — Resx,)(g;(y),). Let (z —g1(y)* ... (x = gn(y)™ be the
decomposition of f(z,y*) in irreducible factors.

LEMMA 9.7.1. There is a choice of 1 and vy such that (Y — 1)(z,y*) is of
the form

B
H1gj§N (- g;
for some B € C{x,y} N (y).

N
R{ o(y) In(z — g,
IR +; L) In(z — g;(y))

PrROOF. The function 3 satisfies

E B [ ur —u2 ouF) — al R{,z(y)
Oz <H1<j<N (fﬂ—gj(y))cj_1> B ( uug f )( ) Zz*gj(y)'

j=1
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Then X |,—9 = X3 |y—o implies u; —uz € (y). Moreover R{,Q €(y)foralll <j <N
since SP(X1) = SP(X3). As a consequence the right-hand side of the equation is
of the form h(z,y)/f(x,y*) where h € (y). The equation

2 ( g ) _ h(zy)/y
Ox H1§j§N (z — !Jj(y))cﬁ1 [z, yk)
is free of residues and then it admits a solution 8’ € C{z,y}. We define 5 = y3’. O

As a consequence of the lemma we have 1y — 1, = O(y'/*) in every compact
simply connected set contained in the universal covering of U, 5 \ [f = 0]. Let o’
be the special homeomorphism conjugating Re(X;) and Re(Xs) and constructed
in chapter 6. We have

o' = (Y2,9) "o (441,9)
where v} is a modification of ¥;. Let f = f{'* ... f,” be the decomposition in
irreducible factors of f. We claim that

LEMMA 9.7.2. There is a choice of 11 and 1o such that the function f(ig —})
is a O(f1 ... fyy*/*) for some k > 0.

PROOF. It is enough to prove the lemma for the modifications attached to the
strips since a relation like f (2 —1)) = O(f; ... fpyl/’“) is preserved by the partition
of the unity process we use to paste them. Consider the notations in lemma 6.3.2.
Let k > 0 such that f(z,y*) = 0 is the union of N curves z = g;(y) for 1 < j < N.
By the proof of lemma 6.3.2] we have

Flbe — i) (2, y%) = Bla,y) (@ — 91(y) - .. (z — gn (v))

isa O(y(z —g1(y))...(x —gn(y))). The function S is the one we obtained in the
previous lemma. Therefore

flbe — 1] (2,9%) = O(y(z — 1(y)) - .. (z — g ()
and then f[ihy —¢1] = Oy  f1... fp). U

COROLLARY 9.7.1. There exists a special germ of homeomorphism o' conjugat-
ing Re(X1) and Re(X2) and such that J\/y:o = Id.

Let Tra(s) be a trajectory of Re(iX3); we use Tra(s) as a base transversal
to construct a conjugation o2, between oy, and @s. The curve ¢~V (Try(s)) is
transversal to Re(X7); it is contained in a level set Re(v]) = h(s). The idea is

replacing ¢ with ¢} and the function Ajl- =) 0 gpgj) — (1 + 7) with the function

A = o p” — (41 + 7). We define A2 = 0 ) — (4 + j) and 7 = ¥ — ¢,

We notice that we required the function ¢, only to fulfill three properties,
namely [y 0 @17 — (41 +j)| < p,

ID(A 0 ai™ 0 (1,9) )| < pand [ID(A] o (91,9) )] < .

Analogous properties are also satisfied for ¢} and A’j

LEMMA 9.7.3. Let it > 0. There exist 0 < vg < v and 6 > 0 such that

{ag(aol) (.’,Eo, y)a R O[L(pjl) (J:Oa y)} - UUO = {80(10) (1'07 y)7 ceey ng)(xov y)} c UUl
for j € Z and (z9,y) € Uy,,5. Moreover, we can obtain

o |Al(z0,y)| < p.
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|D(r o wl y><— L)l (1) = OyY*) in Uy, s.
1D(A 0 i ™ o (01, 1) "yl o (W4, y) < in Upg.s.
o A~ Al\(xo, y) < uly).

ID(A, o (44, 9) )[4 (20, 9), y) < pe

where 1(y) = O(y'/*) does not depend on (x,y) or j € Z.

PROOF. By theorem 7.1l we can choose vy and vy such that |[AJ| < u/2 in
exp(B(0,2)X1)(Uy,,s). By Cauchy’s formula we deduce that

ID(A] o (1,9) )| < /2
and
ID(A" 0 af ™ o (¥1,) )| < /2
in exp(B(0,1)X1)(Uy, ) We remind the reader that $X; (1] — ¢1) = 0 whereas
IX1 () — 1) = O(y'/*). As a consequence

a(ro (¢1,1) ")

Sl = RX (U] — 1) = 0

and

a(r o (v1,y) )

= X% — 1) = O(y/*) = ' (y)
for (z,y) = (z1 + iz2,y) in U,,,s. Since |(¢1 o ga(j) Y1) — j| < /2 then
ro @i’ —rl < (u/2)i' (4) = O(y'/").
The equation A} — A} =70 ng) — r implies
A% = Afl(z0,) < (1/2)i/(y) = O(y*").
For § > 0 small enough we obtain A’ (xg,y)| < p. Since
Vo)V =Wy oz - 1y)

then to conclude the proof is enough to bound [[D(A’ o (w’l,y)(fl))H in the set
exp(B(0, l)Xl)(UU0 s5). We have

Lo (W, y) Y = (A 1o — 1) o ($1,9) ] 0 [(r,y) 0 (¥, 9) V).
Since

@1, y) 0 (W1,y) V(zy) = (2 + 70 (W1, y) TV (2),y)
then||D<<wa, y) o (¢, >< ”—Idm:\|D<ro<w17y><*>)| We have

roe? o (1,9 " = (ro (1,9) ) o (W1,y) 09 o (1h1,4) V).

We can develop the previous expression to obtain

row? o (1,9 = (ro (1,y) V) o (4 5+ Abo (11,5, y).

All the previous work lead us to
DA o (61,3 I < (/2 + 1+ /20w ) + O] (1 + Oy*))
and then we obtain [|[D(A]; o (%,y)(_l))ﬂ < p for 6 > 0 small enough. d
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9.7.1. Setup. We can suppose that the domains U,, and U,, provided by

lemma [9.7.3 satisfy |¢9 0 go(zj) — (Y2 + )| < i,

1D(A? 0 af™ o (v, 9) ")l < and [|D(AT 0 (Y2,9) ") <
in Uy,,s by shrinking these domains if necessary.
There exists 0 < ¢’ < vy such that
U s U0 (U 5) U0 D (U0 5) C Uy s

for U, s = exp(B(0,4) X (¢2))(U. 5). We want to choose some 0 < €y < € satisfying
the conditions in subsection [9.2.1] with respect to the vector field X5. We will
consider domains W2(n) for € < eg and 0 < n; < 1 for all 1 < j < Np. Hence
OWZ2(n) N[y = s is the union of sub-trajectories of Re(Xz2) and Re(iX2) = 0. We
define W2(n) = o'V (W2(n)).

Given a sub-trajectory Tra(s) of Re(iXs) the definition of D2, (s) is the usual
one, namely

D%,(s) = exp([-1,11Xa) (T3 TV [T (5)] N W2() ) -

Then Try(s) = o "V (Try(s)) is transversal to Re(X;) even if it is not anymore a
sub-trajectory of Re(iX;). We define D, (s) = o' (=1(D2, (s)). For a choice of a
transversal UseyTr2(s) we obtain that proposition 9.3.1] can be applied to obtain
conjugations o1, and 0%, defined in Usey DL, (s) and Usey D2,.(s) respectively.

9.7.2. Approaching y = 0. Next lemma is the key tool to prove that we can
find o1 and o2 behaving in a similar way when y — 0 and such that o; is a tg-sp
mapping conjugating «; and ¢; for j € {1,2}.

LEMMA 9.7.4. Let 7 > 0. There exists ( > 0 and co > 0 such that for (z2,y0) €
Ue oy and j € Z satisfying

{0150) (x27 y0)7 R aéj)(x% yO)} C Ué’
then |A?(x27 yo) - A;’(zla y0)| <7 ifU/(Il, yO) € eXp(B(Ov C)X2)(x27 yO) MOT’GO'UET’,
we have

o 0 o (@1,90) € exp(B(0, [ (w2, yo) — ¥ (21, 30)| + 7) X2) (5" (w2, 90))-

PROOF. Since

Yaoa’ o soﬁ”(:cl,yo) — g0 90(21)(552,”5/0) =)o soﬁ”(xl,yo) — g0 (péj)(x% Yo)
= (Y1(z1,50) — Ya(m2,50)) + (Af(1,50) — A% (32, 90))
then it is enough to prove |[A%(zo,y0) — A%(21,90)| < 7.
We can suppose j > 0 without lack of generality. We suppose that 7 < 1 since

it is enough to prove the result for 7 > 0 small. We denote |12(x2, yo) — 9] (21, yo)|
by d; we suppose d < 1/2. We obtain that

(o o0’ (21,90), ..., 0 o' (21, 10)} C exp(B(0,1/2)X2)(Uer ).
That leads us to
{0l (21,90), -, 0 (@1, 30)} € o'V (exp(B(0,1/2)X5) (Uer5)) € Us,.
As a consequence |A%(zo,y0) — Aj(x1,10)| is well defined for d < 1/2.

To prove the lemma we split U,, in two sets U, and Uy \ Uy. The value
of v > 0 will be determined later on. Our idea is splitting exp([0, j]X2)(z2,yo) in
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pieces contained in either U, or U, \ U,. Depending on the set we will use different
methods in order to bound |A%(xa,y0) — A%(21,%0)] -

Let v > 0 such that exp([a,b]X2)(P) C U, for {a,b} C [0,j]NZ with a < b
implies

h
> A%opl(p

l=a—1

) <%f0ra—1§h§b—1.
0

We will choose a precise value for Cp > 0 later on.
For exp([a, b] X2)(x2,y0) C U, we have

exp([a, b]X1)(z1,90) € 0 TV [exp(B(0,1/2)X2)(Up5)] C Upr 5
where lim(,, 5)—(0,0y v'(v,d) = 0 since ¢’ is a homeomorphism. We can choose v
such that exp([a’, '] X1)(Q) C U, implies

a’ —1 l T
AL (@ T Q))] = ZAWP

l=a’—1

fora’ —1 < h <b —1. By lemmal9.7.3 we obtain that

h
S Ao <
l=a’—-1
if y(Q) is close to 0.
Now suppose that exp([a, b X2)(x2,yo) C Ue \ U,. Such a thing implies that

lexp(fa — 1,8)X1) (21, 90) U {e\* ™ (@1, 90), - -, " (@1, 50) ] N Uy = 0

for some vo > 0 independent of the choices of a, b, (x0,y0) and (z1,yo)-

The sub-trajectory exp([0, 7] X2)(xo,yo) splits in at most Np + 1 trajectories
contained in either U, or U,, \ U, since the number of tangent points between
Re(X3)y=s and OU, N[y = s] is exactly Np. The sub-trajectories exp([0, ] X2)(P)
contained in U, \ U, satisfy that [ is uniformly bounded by a constant C' > 0
independent of P. We define

mfora’—lghgb'—l

-
1+ M)Q(NTJrlfh)(CJrl)

Th —
for 1 < h < Np + 1. We choose Cy > 0 such that 75,41 — 7, > 7/Cp for all
1 < h < Np. Let ag = —1; we define recursively

Yht1 = exp([an + 1, any1]X2)(22,90) ({an, ant1} C Z)

such that y,4+1 C U, or Yh+1 C U \ U, but the respective condition is not fulfilled
for exp([ap, + 1, apt1 + 1] X2)(z2,y0). We obtain a curve «y, for all 1 < h < L and
some L < Np + 1; we also have ar, = j. We define D, = AZ(22,y0) — A} (z1,v1)
and Dy = 0; we have

Dy = Dyy +[A% 008 (25, y0) — Ajo " (@)
Our goal is proving that for d close to 0 we have
‘D1| <T1,...,|Da1| <T1,...,|DaL71+1‘ <7’L,...,|DQL‘ <TL.

That would prove the lemma since 7y < ... <7 < 7.
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We will proceed by induction. Suppose |D1| < 71, ..., |Dg,| < 7 for d < d; and
Yo € B(0,ch). If 4441 C U, then

Z A/Oﬁpgq) (El,yo) .

q=ay

h—1
Dl < [Day] + | D A% 0 o8 (22, y0)
q=ay
for all a; + 1 < h < aj41. We have |Dp| < 71 + 27/(2Cy) < 741 for d < di41 < d;
and |yo| < cl+1 < ck by our choice of Cy > 0. Suppose now ;11 C U \ U,. We
have

a;+h a
|Daytns1] < [Daysn| +]A% 0 Wé o )(952,3/0) —A'o ﬁpg s )($17y0)|

for 0 < h < ajp1 —a; — 1 < C. The difference A’ — A' is a O(y'/*) by lemma
9.7.3. On the other hand A’ — A? is a holomorphic function whose value at y = 0
is identically 0; therefore A’ — A? is a O(y'/*). We obtain

1Daysnir] < 1Darin] + A2 0 08 (25, 50) — Ag 0 o8 (y, )| + Oy ).

‘We have

[ 0 8" (22, y0) — w2 0.0 0 P T (21, 0)| < d + | Dayinl-
We also have that 1300’ — 19 = o(1) in the complementary of U,,, since Uly o =1d

(the notation o(1) stands for a function tending to 0 when y — 0). That implies

[ 0 05" (@2, y0) — 2 0 DT (21, y0)| < d + | Dayen| + o(1).
Since ||D(A2 o (2,)")|| < p then

1/k
|Daynt1] < 1Daynl + p(d + | Dayonl + 0(1)) + O(g")
for 0 < h <apy1 —a;—1<C. Now suppose

1
|Day+n] < Tl+1w

(1+p

IFLh < cé; that result is clearly true for h = 0,

for d < dp,; < d; and |yo| < cq

1+1,0

d),, =d; and ¢;" " = ¢} by the choice of 7; and 7,41. Then

1

[Da+ht1| < 1 +MTl+1 (1 +u)2(0+17(h+1)) +pd + o(L).
We obtain
1
|Daynt1| < 141 — .
(1+H)2(C+1 (h+1))
for d < dﬁql < dP and |yo| < Cl+1 htl < H'l’h. The proof is complete; we just
define di11 = minp<p<a;,; —a; le and cf) = MiNg<p<ariq—a céﬂ oh O

9.7.3. Constructing a special conjugation. Consider yo € B(0,0) and
a domain W2(n) such that W2(n) N [y = yo] does not have bi-tangent cords. We
consider a neighborhood V of yq fulfilling the pre-requisites of the algorithm solving
the game with respect to X,. Let UgseyTra(s) one of the transversals we use
throughout the game to build a special conjugation o2, between as and o defined

in Usey D2, (s). Then
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LEMMA 9.7.5. We have
2008, 00" 0 o — | < H(y)
in Usey om, (DX,(s)). Moreover H(y) is a o(1); it does not depend on yo or V.

PrOOF. We denote

Ua(Tra(s)) = 1 (Tr1(s)) = c(s) + i[d(s), e(s)]

for s € V. We consider the functions A5 and By defined as in section 9.3 with
respect to Xo and 3. Analogously we define A; and By with respect to X; and
;. We have

A(ey) = (z+ 001 0 (14,) " (5.9).0)
and
Aa(z,y) = (z+ A% 0 af™ o (92,9) 7 (5,9), )
both mappings are defined in z € (¢(s) + [—1/3,4/3]) + i[d(s), e(s)]. We define

(wi,y) = at ™ o (], 5) TV (z,y) and (w2,y) = a§ Y o (Y2, )TV ().

The definition implies o' (w1, y) = (w2,y). Since of,_, = Id then wy — w1 = o(1).
That leads us to

A% (wa,y) — A(wy,y) = A%(wy,y) — A'(wy,y) + o(1) = o(1)

since A2 — A’ = (A% — Al) 4 (A' — A’) = O(y'/*). As a consequence we have
z0 Ay —zo0 Ay = o(1). Since B; is obtained by interpolating A; and Id then
zoBy—zoBy =0(1) in z € (c¢(s)+(—1/3,4/3)) +i[d(s), e(s)]; this is equivalent to

|2 0 0%, 0 (12, 9) T (2,9) — W 0 oy 0 (81,9) T (2,9)] < HA(y) = o(1)
in Usev ((c(s) + (—1/3,4/3)) + i[d(s), e(s)]).

We will extend the result to the remaining part of Uscy (D%, (s)). Let
(wa,y) € D2, (y); there exists a number j € Z such that

o (wa,y) € exp((—1/3,4/3)X2)(Tra(y)).

(j)(wg,y) by (wh,y). We also denote

/(_1

We denote the point «

(w1,y) = 0 TV (ws,y) and (wl,y) = o D (wh,y).

We have that 1 0 0%, (w2, y) — ¢} o ok, (w1,y) is equal to
(2 0 0%, (wh, y) = Uy 0 o, (wy,y)) + (A2 0 0, (wh,y) — Af o o, (wy, y)).
We have 19 0 02, (wh,y) — g 00’ ook (w},y) = o(1) by the first part of the proof.
Lemma [9.7.4 implies that
W2 0 0 (w2, y) — ¥ 0 o7, (wi,y) = o(1)
and then
_ 1
Y2008, 0 (1a,y) T —uf oo 0 (0].) " =o0(1)
in Usevt2(D7,(s)) x {s}. H
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Now, suppose that we want to paste two conjugations

1(-1)

alzafoa'oal =1,

andalza%oa'oa%

The conjugations O'JQ- are constructed taking base transversals 77 for j € {1, |}
whereas ojl- are constructed taking base transversals ol(’l)(T r3). We suppose that

D%TT (S) n D%ri
Y2(BE(5)) = [2 € [a(s) = C,a—(s) + ¢] +ile  (s), ¢ (5)]]
and ¢; —c) = M. We ‘deﬁne Bi(s) = 0/(_1)(32(8)). We use the M-interpolation

process to conjugate a% and a{ to obtain o/ for j € {1,2}.

(s) contains a strip B?(s) for s € V where

LEMMA 9.7.6. Suppose |13 0 op — 91| < H'(y) = o(1) in Usevoi (Bi(s)) for
1e{1,1} and a function H' independent of I, yo or V. Then
00”00’ 00D — 4| < J(y)
in Usey ol (By(s)). Moreover J(y) is a o(1); it does not depend on yo or V.
Proor. We use the notations in section 9.4, We choose p > 0 such that
max (g, pp?) < 1/16. In D*(s) C 07(B}(s)) Uo7 (B3 (s)) there is an integral of the
time form ¢% of 9 such that

Y2 =h (a0 0t ) + (1 —nd ) ootV

and 1% (z,s) = n(yq o af(_l)(x, s) —ici(s)). In an analogous way we define

¥ =np@Wieo ™)+ (1 —np)yf ooy ™Y
where n},(z, s) = 17(1/)/100'1(_1)(58, s)—icy(s)). Then we have 02 = (1/)%, y)(_l)o(q/zg, Y)
whereas 0! = (¢%,y)(71) o (¥7,y). Since
_ -1
Yroo?o0 00D g =gy o Wiy o (Why) — vt

then it is enough to estimate the right hand side.
Let E|(s) = a*(B{(s)) N [Imgy| < c|(s) +5]. Since
o' (By(s)) C o} (B](s)) U o (Bj(s))
then F|(s) No{(Bi(s)) = 0 implies E|(s) C ](B](s)). The former propriety is a
consequence of
o1 (Bi(s)) C [Imgyy > ¢)(s) + M/4 —1/2]
and 5 < M/4 —1/2. As a consequence we have w% =)o 01(_ ) and nh =1in
Usev E|(s). By definition we have 03, 0 oy = np, in Usev[o] (B[ (s)) N o[ (Bj(s))];
moreover

1

Ya 0 Uf(fl)

in Useva|(B](s)). We deduce that 1/1% oo = Tﬁ% in Usey E|(s). As a consequence
2

ooy =vpioo 7V

o0’ 00 ("1) =g} in Usey E|(s) and then

00?00’ 0 7D — gl = o(1)

we obtain o

in UsEVEl(S)-
Consider the set Fi(s) = o'(Bj(s)) N [Imgy; > ¢i(s) — 5]. We can prove
Ei(s)N ai (Bi(s)) = () in an analogous way than in the previous paragraph. Hence,
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we obtain 7}, = 0 in Usey E1(s). We have o1 (E;(s)) C [Imgips > ¢1(s)—5—2(1/2)];
moreover o1 (E;(s)) C a%(B%(s)) since

o} (B(s)) C [Imgips < ¢1(s) — M/4+1/2]

and —5 — 1/2 —1/2 > —M/4 + 1/2. Hence, we obtain n?, = 0 in oy (E;(s)).
Moreover, that implies w% ooy = w% in Usev E7(s) and then

Ypo00?oc oot — Y1 =o(1) in Usey Eq(s).
Finally, consider the set
E(s) = o' (Bg(s)) N [Imgy) € [ey(s) +4,c1(s) — 4].

The set E(s) is contained in o (Bj(s)) No{(Bj(s)). As a consequence o| and oy
are defined in E(s) for s € V. We have

vioo; — vl =(1—nh)(2o0i Voo, —yf0a;V)
which can be expressed also as
Yooy —yl =1 —nh) (oot Voo — oot Vogy).
The relations g 0 o7 — g 0 O'l = 1/1’1 — 9} +0(1) = o(1) and
1D(2 007 0 (2, ) 7Y) = Id]| < 2pp™

imply
1/1 0o, — 77/11 =o(1).

Since w% o200’ 0ol = wI we deduce that

w% ocg?oc’ oot — z/)% oo = o(1).
We use || D(2)o 0 (w%,y)(_l)) — Id|| < pp™? to prove

Ya00o00’ 0ot — gy o0 o =o(1).
Since

Wa 002 oa oat=D — Pt = (g0 — ) + (w200200’oal(_1) — g o))
then we obtain
Ppo0oo oot — g = 0(1) +0(1) = 0(1)

in Usey E(s) as we wanted to prove. O

Now we consider the diffeomorphisms J{, conjugating a; and ¢; in U sN[y € V]
for j € {1,2}. An iterative application of the previous lemma allows to prove

COROLLARY 9.7.2. Let u > 0 small enough We have
[ 00 00’ 0oy — | < Ly) = o(1)
for some function L not depending on V.

Let us define
=Y @ aooy V)and ¢t = 3 hyv(y) (@) ooy ).

veJ VeJ

The mapping o = (¢?, y)(_l) o (1!, y) is a tg-sp conjugation between ¢; and ¢s.
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LEMMA 9.7.7. The mapping o extends to a germ of homeomorphism in a neigh-
borhood of (0,0) by defining o|,—o = Id.

PrOOF. We define oy = 0% 00’ o 0‘1,(_1). We have
Woo' =yl =3 hy(y)lzooy Voo —ioa V).
ved
We can express the previous equation in the form
Voo =yl =3 hy(ypooy Voo — ooyt Yooy,
veJ

We consider the expression

g 0 0‘2/(_1) o (1/)2,1/)(_1) o (ha,y) 00’ —1hg o0 012/(_1) o (7/12ay)(_1) o (12,y) oov.

We have that |12 0 oy — ]| < L(y) = o(1) by hypothesis whereas 13 00’ — 1)} = 0.
As a consequence we obtain

200y = tha 0 0’| < L(y) = o(1).
Since ||D(tg o 0‘2/(_1) o (@bg,y)(*l)) — Id|| < 2up™?; we deduce that

% 00’ — ' < (14 2up™)L(y) > hv(y) = o(1).
veJ

We remark that 12 o ¢ = 1!, therefore we obtain 12 o ¢ — ¥? 0o 0/ = 0(1). The
mapping 13 o (1/)2,y)(_1) satisfies || D (9 o (wQ,y)(_l)) — Id|| < 4pp™ and then

Pao0 =) =thgoa — oo’ =o(l).

The last equation implies that ¢ and o(~1) can be extended continuously to y = 0
by defining 0,9 = 0’}y—o = Id and (0(71))“]:0 = (or/(’l))lyz0 = Id. O

The proof of theorem 8.1]is now complete. Moreover, we also proved the Main
Theorem since it is a consequence of theorem 8.1 and propositions 8.1.4 and 18.2.2.

REMARK 9.7.1. We constructed a germ of special homeomorphism o conjugat-
ing p1 and @2 such that SP(p1) = SP(p2). Since o is the composition of three
tg-sp mappings which are C* at a neighborhood of (0,0) deprived of yf = 0 then
o is still C* in the complementary of yf = 0.

COROLLARY 9.7.3. Let f € C{z,y} satisfying the (NSD) conditions. Let
1,02 € Dy. If SP(p1) = SP(p2) then ¢1 and o are conjugated by a germ
of special homeomorphism o such that

e o and o=V are C™ outside f =0 if (N,m) = (1,0).
e o and o=V are C* outside yf =0 if (N,m) # (1,0).

It is well known that a homeomorphism o conjugating ¢1, 2 in Diff (C, 0) can
not be chosen to be C*°. Let v = v(pi(x) — z); Martinet and Ramis [MR83]
pointed out that if ¥ = 2 and ¢ is C! in a neighborhood of the origin then o
is either holomorphic or anti-holomorphic. Afterwards Ahern and Rosay |[AR95]
proved such a property for any order v > 1 if o is C®. Finally Rey [Rey96]
improved the previous result to obtain that a C'¥ conjugation is either holomorphic
or anti-holomorphic, moreover Rey’s result is the best possible. As a consequence
the conjugation o provided in corollary 9.7.3 is not in general C'*° at the points
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of f = 0. But it could be extended in a C* way to y = 07 The answer is no in
general. The diffeomorphisms ¢ and @2 in D,s(,_,)2 such that

Bly—z)? 0 3 2 0
Y1 = eXp <]W6]; and Y2 = exXp <£L’ (y — .T) 81‘>

are conjugated by a special homeomorphism which can not be chosen to be C! in

[y = 0]\ {(0,0)}.
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