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Abstract. We give a complete topological classification for germs of one-
parameter families of one-dimensional diffeomorphisms without small divisors.
In the non-trivial cases the topological invariants are given by some functions
attached to the fixed points set plus the analytic class of the element of the
family corresponding to the special parameter. The proof is based on the
structure of the limits of orbits when we approach the special parameter.
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Introduction

In this paper we give a complete topological classification for germs of one-
parameter families of one-dimensional diffeomorphisms without small divisors. More
precisely, we study germs of diffeomorphism in (C2, 0) of the form

ϕ(x, y) = (x ◦ ϕ, y)

The curve Fixϕ ⊂ C2 of fixed points of ϕ is given by x ◦ ϕ− x = 0. We associate
ϕ(x0,y0) ∈ Diff (C, 0) to every point (x0, y0) ∈ Fixϕ; it is the germ defined by ϕ|y=y0

in a neighborhood of x = x0. There are two kind of phenomena which can produce
a complicated dynamical behavior for a diffeomorphism ϕ.

Presence of small divisors. We say that ϕ has small divisors if there exist j ∈ Z
and P ∈ Fixϕ(j) such that (∂ϕ

(j)
P /∂x)(P ) ∈ S1 and (∂ϕ

(j)
P /∂x)(P ) is not a Bruno

number [Bru71], [Bru72]. Then the dynamics of ϕ
(j)
P is very chaotic if ϕ

(j)
P is not

linearizable [Yoc95], [PM97].
Evolution of the dynamics. In absence of small divisors the dynamics of ϕ|y=s

admits a simple description. It depends in some sense continuously on s for s 6= 0,
but it can change dramatically for different values of the parameter s.

There are some works identifying regular zones in the parameter space, i.e.
zones where the dynamics of ϕ|y=s converges regularly to the dynamics of ϕ|y=0

when s → 0 (see [Ris99] for the case where j1ϕ(0,0) is an irrational rotation or
[DES] for the case j1ϕ(0,0) ≡ Id). But so far there was no description of the zones
in the parameter space where the dynamical behavior does not commute with the
limit. There was also no information about the dependence of the dynamics of
ϕ|y=s with respect to s (s 6= 0) except in the topologically trivial case. Here we
provide a description of these phenomena in the absence of small divisors.

A diffeomorphism ϕ without small divisors will be called (NSD) diffeomor-
phism. The (NSD) character implies that we are in one of the following cases:

• ϕ is analytically conjugated to (λ(y)x, y) for some λ ∈ C{y}.
• j1ϕ = (λx, y) for a root λ ∈ S1 of the unit.
• j1ϕ = (x + µy, y) for some µ ∈ C.

We will deal with the latter scenarios since the first one is trivial. For j1ϕ = (λx, y)
and λp = 1 we can relate the dynamics of ϕ with the dynamics of ϕ(p). Then we can
suppose j1ϕ = (x+µy, y) for some µ ∈ C up to replace ϕ with an iterate. Thus, from
now on (NSD) will mean (NSD)+unipotent. In the one-variable case the topological
[Lea97], [Cam78], [Shc82] formal and analytical classifications [Eca82], [Vor81],
[MR83] of unipotent diffeomorphisms are well-known (see [Lor99] for an excellent
survey on these topics).

We are interested on giving a complete characterization of whether or not two
(NSD) diffeomorphisms have the same dynamical behavior, or in other words when

vii



viii INTRODUCTION

they are conjugated by a homeomorphism defined in a neighborhood of 0 in C2.
Such a conjugating homeomorphism can be wild; for instance in general it is not of
the form (σ1(x, y), σ2(y)). Since we want to describe the evolution of the dynamics
of ϕ|y=s we impose two natural conditions. Let ϕ1, ϕ2 be (NSD) diffeomorphisms
conjugated by a germ of homeomorphism σ; we say that σ is special if

• y ◦ σ ≡ y.
• σ|Fixϕ1\(y=0) ≡ Id.

If such a special conjugation exists we denote ϕ1
sp∼ ϕ2. We denote the topological

and the analytic conjugations by
top∼ and ana∼ respectively.

If we have ϕ1
sp∼ ϕ2 for (NSD) diffeomorphisms ϕ1 and ϕ2 then Fixϕ1 = Fixϕ2.

This equation has two be understood as a relation between analytic sets with not
necessarily reduced structure; for instance we have Fix(x+x2, y) 6= Fix(x+x3, y).

Let ϕ be a (NSD) diffeomorphism. We denote by m(ϕ) the unique non-negative
number such that ym divides x◦ϕ−x but ym+1 does not divide x◦ϕ−x. Consider
the decomposition x ◦ ϕ − x = ymfn1

1 . . . f
np
p in irreducible factors. We define

N(ϕ) =
∑p

j=1 ν(fj(x, 0)). Then for every sufficiently small neighborhood U of
(0, 0) and y0 6= 0 in a neighborhood of 0 we obtain N = ](Fixϕ ∩ U ∩ [y = y0]).
The couple (N, m) is a topological invariant.

Let ϕ be a (NSD) diffeomorphism. Consider an irreducible component γ 6=
[y = 0] of Fixϕ. We define Resγ

ϕ : γ \ {(0, 0)} → C as the function associating to
P the residue of the diffeomorphism ϕP . The function Resγ

ϕ is holomorphic. Our
main theorem in this paper is:

Main Theorem. Let ϕ1, ϕ2 be two (NSD) diffeomorphisms with same invari-
ant (N, m). We have

• If N = 0 or (N,m) = (1, 0) then ϕ1
sp∼ ϕ2 ⇔ Fixϕ1 = Fixϕ2.

• For the remaining cases ϕ1
sp∼ ϕ2 if and only if

– Fixϕ1 = Fixϕ2.
– ym(Resγ

ϕ1
− Resγ

ϕ2
) extends continuously by 0 to (0, 0) for all irre-

ducible component γ 6= [y = 0] of Fixϕ1.
– ϕ1,(0,0)

ana∼ ϕ2,(0,0).
Moreover if (N, m) 6= (1, 0) then σ|y=0 is complex analytic for every special germ
of homeomorphism σ conjugating ϕ1 and ϕ2.

Suppose m = 0 throughout this paragraph. The condition ϕ1,(0,0)
ana∼ ϕ2,(0,0)

is much stronger than ϕ1,(0,0)
top∼ ϕ2,(0,0) for N > 1 since the analytic classes con-

tained in a topological class are parameterized by a functional invariant. Suppose
ϕ1

sp∼ ϕ2; we have

(N,m) situation in y = 0 existence of irregular zones

N = 1, m = 0 ϕ1,(0,0)
top∼ ϕ2,(0,0) NO

N > 1, m = 0 ϕ1,(0,0)
ana∼ ϕ2,(0,0) YES

The rigidity provided by the main theorem is attached to the existence of irregular
zones in the parameter space. Our work unveils a new phenomenon whose existence
is based on the structure of the limits of orbits in the irregular zones.

Let us say a word about the proof of the main theorem. We study at first the
real flow of a vector field X = f∂/∂x such that exp(X) is a convergent normal form
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of a (NSD) diffeomorphism ϕ. We use techniques analogous to those in [DES] to
study Re(X). In fact we classify topologically all the vector fields Re(X) where
X ∈ H(C2, 0) and exp(X) is a (NSD) diffeomorphism. The same techniques can
be used to classify the real flows of all the vector fields of the form X = f∂/∂x for
any f ∈ C{x, y}. Anyway, we do not do it for simplicity and because it is of no
utility to study the (NSD) diffeomorphisms.





CHAPTER 1

Outline of the Paper

A germ of diffeomorphism ϕ = (x + µy + h.o.t., y) ∈ Diff (C2, 0) has no small
divisors if and only if ∂(x ◦ ϕ)/∂x ≡ 1 by restriction to Fixϕ. This condition
has an algebraic translation. Let ymfn1

1 . . . f
np
p (m ≥ 0) be the decomposition of

x ◦ ϕ − x in irreducible factors. Then ϕ is (NSD) if and only if nj ≥ 2 for all
1 ≤ j ≤ p. This condition can be checked out on any f = ymfn1

1 . . . f
np
p ∈ C{x, y}

such that f(0, 0) = 0. Therefore, we can speak of germs of (NSD) functions. A
germ X ∈ H(C2, 0) is a (NSD) vector field if exp(X) is a (NSD) diffeomorphism or
in a equivalent way if X can be expressed in the form f∂/∂x for some (NSD) germ
of function.

Every germ of (NSD) diffeomorphism ϕ is the exponential exp(1X̂) of a unique
formal vector field X̂ = f̂∂/∂x where f̂ ∈ C[[x, y]] and

exp(tX̂) =

( ∞∑
n=0

tn
X̂n(x)

n!
,

∞∑
n=0

tn
X̂n(y)

n!

)

for t ∈ C. By definition X̂0(g) = g and X̂j+1(g) = X̂(X̂j(g)) for j ≥ 0. We just
wrote down the Taylor formula for the formal vector field tX̂. We have that X̂ is
of the form ûf∂/∂x where û ∈ C[[x, y]] is a unit and f = x◦ϕ−x. The vector field
X̂ is transversally formal along f = 0.

Proposition 1.1. Let ϕ = exp(ûf∂/∂x) be a (NSD) diffeomorphism. For all
k ∈ N there exists uk ∈ C{x, y} such that û− uk ∈ (fk).

We say that X = uf∂/∂x ∈ H(C2, 0) is a convergent normal form of ϕ if
û − u ∈ (f2). The diffeomorphism ϕ is formally conjugated to exp(X). Our
approach consists in comparing the dynamics of ϕ and exp(X). The first step of
this program is describing the dynamical behavior of Re(X) for a (NSD) vector
field X. That is the purpose of chapters 2 through 5.

We fix domains Uε = [|x| < ε] and Uε,δ = B(0, ε) × B(0, δ). We will always
suppose that SingX ∩ (εS1 ×B(0, δ)) ⊂ [y = 0]. We want to study the vector field
ξ(X, y0, ε) = Re(X)|B(0,ε)×{y0} for a specific y0. Afterwards, we are interested on
the evolution of the dynamics of ξ(X, y0, ε) with respect to y0. Let us focus on the
first task.

For P ∈ SingX we can define XP ∈ H(C, 0); the definition is analogous to the
definition of ϕP for P ∈ Fixϕ. The (NSD) character implies that XP is nilpotent for
all P ∈ SingX. The dynamics of Re(Y ) and exp(Y ) for a nilpotent Y = a(z)∂/∂z
is well-known. There exists a fundamental system {Vn}n∈N of open neighborhoods
of 0 such that Vn \ {0} is the union of ν(a(z))− 1 basins of attraction of z = 0 for
Re(Y ) and ν(a(z))−1 basins of attraction of z = 0 for Re(−Y ) [Lea97], [Cam78].
As a consequence the real parts of nilpotent vector fields in H(C, 0) have an open

1



2 1. OUTLINE OF THE PAPER

character since the set of points whose α limit is z = 0 is an open set (ditto for the
ω limit). The nilpotent character of the singular points also implies

Proposition 1.2. Let X be a (NSD) vector field. For all y0 ∈ B(0, δ) the
vector field ξ(X, y0, ε) satisfies the Rolle property.

In other words a trajectory of ξ(X, y0, ε) never intersects a connected transversal
for two different times. In particular for any positive trajectory γ : [0, c) → Uε,δ ∩
[y = y0] of Re(X) the following dichotomy holds:

• c ∈ R+ and limt→c γ(t) ∈ ∂Uε,δ.
• c = ∞ and ω(γ) ∈ SingX ∩ [y = y0].

Roughly speaking the trajectories of Re(X) are attracted either by the boundary
of Uε,δ or by the singular points.

The dynamics of Re(X)|y=y0 in the neighborhood of every point (x0, y0) ∈ ∂Uε,δ

where Re(X)|y=y0 is transversal to εS1 × {y0} is locally a product. Since nilpotent
singular points have an open character then the unstable trajectories of ξ(X, y0, ε)
are contained in trajectories of Re(X)|B(0,ε)×{y0} passing through points where
Re(X) and ∂Uε,δ are tangent. The unstable trajectories are also called critical
trajectories.

Proposition 1.3. Let X be a (NSD) vector field. For all y0 ∈ B(0, δ) the
critical trajectories of ξ(X, y0, ε) determine ξ(X, y0, ε) up to topological equivalence.

Next we focus on the evolution of the dynamics of Re(X)|y=y0 with respect
to y = y0. In chapter 3 we divide Uε,δ in a union of ”basic” sets. There are two
kind of basic sets, namely ”exterior” and ”compact-like” ones. Let y0 ∈ B(0, δ);
the dynamics of ξ(X, y, ε) restricted to an exterior set is locally a product in the
neighborhood of y0. Such a property is no longer true for a ”compact-like” basic
set; anyway since it is somehow compact the dynamics of the restriction of Re(X)
to a ”compact-like” basic set is bound to be non-chaotic. The decomposition in
basic sets is used throughout this paper to find uniform patterns of regularity for
the orbits of Re(X) (or ϕ for (NSD) diffeomorphisms) in Uε,δ \ [y = 0].

We are interested in the evolution of the dynamics of ξ(X, y, ε) with respect
to y. In chapter 4 we study the set UN ε

X of instability of the dynamics. By
definition y0 ∈ B(0, δ) \ UN ε

X if there exists a neighborhood V of y0 in C and a
homeomorphism σ : B(0, ε)× V → B(0, ε)× V such that

• σ|y=y0 ≡ Id.
• σ|y=s is a topological equivalence between ξ(X, y0, ε) and ξ(X, s, ε) for all

s ∈ V .
We denote by T ε

X ⊂ ∂Uε,δ the set of points where Re(X) is tangent to ∂Uε,δ.
The unstable trajectories of ξ(X, y0, ε) are the ones contained in trajectories of
Re(X)|B(0,ε)×{y0} passing through points of T ε

X . Thus, the following proposition is
natural.

Proposition 1.4. Let X be a (NSD) vector field. Then y0 ∈ UN ε
X if and only

if there exists a trajectory γ of Re(X)|B(0,ε)×{y0} such that ](γ ∩ T ε
X) > 1.

The connected components of UN ε
X are called T-sets since they connect tangent

points. We describe the nature of UN ε
X .

Proposition 1.5. Let X be a germ of (NSD) vector field. There are finitely
many T-sets. Moreover, every T-set is a semi-analytic curve.
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Chapters 2 through 4 allow to describe the behavior of Re(X) restricted to
Uε,δ. The downside is that the information that we obtain depends not only on
the germ X ∈ H(C2, 0) but also on the domain Uε. The sets UN ε

X and UN ε′
X are

different if ε 6= ε′. We would like to have a domain independent tool to study the
dynamics. We accomplish this goal by studying the L-limits. In the remainder of
the introduction we suppose m = 0, i.e. [y = 0] 6⊂ SingX since the notations and
definitions are simpler. It is the generic case among (NSD) objects. Anyway, the
propositions are enounced in complete generality.

We denote by ΓU
ξ(X),+[P ] the positive trajectory of Re(X)|U passing through

P . Analogously we define ΓU
ξ(X),−[P ] and finally we define ΓU

ξ(X)[P ] = ΓU
ξ(X),+[P ]∪

ΓU
ξ(X),+[P ]. The positive L-limit Lε,+

β,x0
of a point x0 ∈ B(0, ε) along a semi-analytic

curve β is the subset of B(0, ε) \ {0} such that x1 ∈ Lε,+
β,x0

if there exists (xn, yn) →
(x1, 0) such that

• yn ∈ β for all n ∈ N.
• For all η > 0 we have (xn, yn) ∈ Γ|x|<ε+η

ξ(X),+ [x0, yn] for all n >> 0.

• (x1, 0) 6∈ Γ|x|≤ε
ξ(X) [x0, 0].

In other words, the L-limit Lε,+
β,x0

is the accumulation set of the positive trajectories
Γξ(X),+(x0, y) when y ∈ β and y → 0 deprived of the trajectory passing through
(x0, 0).

Proposition 1.6. A L-limit is a limit.

We prove this by finding a continuous S : β ∪ {0} → C2 satisfying that for all
η > 0 there exists k(η) > 0 such that S(s) ∈ Γ|x|<ε+η

ξ(X),+ (x0, s) for all s ∈ B(0, k(η))∩β.
We also require S(0) = (x1, 0). The L-limit would behave like an accumulation set
and not like a limit if we would drop the hypothesis on the semi-analyticity of β.

The connected components of Lε,+
β,x0

are naturally ordered by the time of the
flow Re(X); moreover, there are only finitely many. We claimed that the L-limit
does not depend on the domain of definition (and then on ε) and that is not exactly
true. The L-limit depends on ε but

Proposition 1.7. Let X be a (NSD) vector field. Consider a L-limit Lε,+
β,x0

6= ∅.
Then, the first component of Lε,+

β,x0
does not depend on the domain of definition of

X.

For ε > 0 and δ(ε) > 0 small enough we define

N = N(X) = ](SingX ∩ [y = y0])

for y0 ∈ B(0, δ)\{0}. The number N does not depend on y0 since SingX ∩∂Uε,δ ⊂
[y = 0]. We have

Proposition 1.8. Let X be a germ of (NSD) vector field. Then there exists a
non-empty L-limit if and only if N > 1.

The existence of a non-empty L-limit Lε,+
β,x0

implies that the limit of the positive
trajectories of Re(X) passing through (x0, y) (y ∈ β) is not the positive trajectory
of Re(X) passing through (x0, 0). Somehow ”limy0→0 Re(X)|y=y0” is richer than
Re(X)|y=0. Let m = νy(X(x)); we have
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Proposition 1.9. Let X be a germ of (NSD) vector field. Then

lim
y0→0

Re(X)|y=y0 = X|y=0

for (N,m) 6= (1, 0). Otherwise limy0→0 Re(X)|y=y0 = Re(X)|y=0.

The formula limy0→0 Re(X)|y=y0 = X|y=0 means that the complex flow of X
at y = 0 is generated by the real flow of X|y=y0 when y0 → 0. Proposition 1.9 is
based in the following result:

Proposition 1.10. Let X be a (NSD) vector field with a non-empty Lε,+
β,x0

.
There exist x1 ∈ Lε,+

β,x0
, a neighborhood V of 0 in R and a continuous family of semi-

analytic curves {β(s)}s∈V such that β(0) = β and ∪s∈V Lε,+
β(s),x0

is a neighborhood
of (x1, 0).

In particular the previous proposition implies that for a germ of homeomor-
phism σ conjugating two (NSD) vector fields and defined in Uε,δ the value of σ(x0, 0)
determines the value of σ(x, 0) for x in the neighborhood of x1. The proof of this
kind of results relies in the fact that we can calculate the time T (y) spent by Re(X)
to go from (x0, y) (y ∈ β) to the neighborhood of (x1, y) for x1 ∈ Lε,+

β,x0
. Roughly

speaking T is the restriction of a meromorphic function

s → −2πi
∑

P∈E(s)

ResX(P )

where E(s) ⊂ SingX ∩ [y = s] is a set depending on the connected component of
Lε,+

β,x0
containing x1. Moreover E(s) depends continuously on s. The functions Res

are the usual residue functions. More precisely, for a nilpotent Y ∈ H(C, 0) there
exists a unique form ω ∈ Ω(C, 0) such that ω(Y ) = 1; we define ResY (0) as the
residue at 0 of ω and then ResX(P ) = ResXP (P ) for all P ∈ SingX \ [y = 0].

We are interested on determining whether or not the real flows of germs of
(NSD) vector fields X1, X2 are topologically conjugated. Our approach is based
on studying the evolution of the dynamical behavior of Re(X)|y=y0 with respect
to y0 and in particular the evolution of the dynamics of Re(XP ) with respect to
P ∈ SingX. Then, it is natural to assume that the topological conjugations satisfy:

• y ◦ σ ≡ y.
• σ|SingX\[y=0] ≡ Id.

Such mappings will be called special. A special mapping has a certain degree of
regularity, that is not always the case for conjugations. For instance, a general germ
of homeomorphism conjugating real (NSD) flows does not preserve the fibration
y = cte.

Let X1, X2 be (NSD) vector fields. If Re(X1) and Re(X2) are conjugated by
a special germ of homeomorphism then they both belong to some set

Hf = {uf∂/∂x : u ∈ C{x, y} is a unit}
where f satisfies the (NSD) conditions. As a consequence we restrict our study to
the sets Hf .

Let x1 ∈ Lε,+
β,x0

and suppose that Re(X1) and Re(X2) are topologically con-
jugated by a special σ. We already pointed out the existence of a real function
T (y) ∼ −2πi

∑
P∈E(y) ResX1(P ) such that

lim
y∈β,y→0

exp(T (y)X1)(x0, y) = (x1, 0).
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Moreover, we have

lim
y∈β,y→0

exp(T (y)X2)(σ(x0, y)) = σ(x1, 0)

since σ conjugates Re(X1) and Re(X2). Because of this last equation we will see
that T (y) ∼ −2πi

∑
P∈E(y) ResX2(P ). Therefore, we obtain

∑
P∈E(y) ResX1(P ) ∼∑

P∈E(y) ResX2(P ), i.e. the residue functions attached to X1 and X2 are related.
The ideas in this discussion will lead us to prove the sufficient condition in the next
theorem:

Theorem 1.1. Let X1, X2 be elements of Hf for some f ∈ C{x, y} satisfy-
ing the (NSD) conditions. Suppose (N, m) 6= (1, 0).Then Re(X1) and Re(X2) are
topologically conjugated by a special mapping if and only if

lim
y→0

ym(ResX1(S(y))−ResX2(S(y))) = 0

for all continuous section S : (0, δ) × R → [f = 0] such that S(r, θ) belongs to
SingX ∩ [y = reiθ] for all (r, θ) ∈ (0, δ) × R. Moreover, every special conjugation
is analytic by restriction to y = 0.

The analyticity of the special topological conjugation by restriction to y = 0 is
a consequence of proposition 1.9. For the dynamically simple case (N,m) = (1, 0)
we have

Proposition 1.11. Let X1, X2 be elements of Hf for some f ∈ C{x, y} sat-
isfying the (NSD) conditions. Suppose (N, m) = (1, 0). Then Re(X1) and Re(X2)
are topologically conjugated by a special mapping.

We explain briefly how we can prove proposition 1.11 and the necessary con-
dition in theorem 1.1. To conjugate Re(X1) and Re(X2) we replace Img(X1)
with h(x, y)Img(X1) where h : Uε,δ \ [f = 0] → R+ is a continuous function
such that (Re(X1))(h) = 0 and c0 < |h(x, y)| < C0 for some c0, C0 > 0 and all
(x, y) ∈ Uε,δ \ [f = 0].

Let y0 ∈ B(0, δ). Consider a loop γ : [0, 1] → [y = y0] such that γ ∼ 1 ∈ Z ∼
π1([y = y0]\{P}) for some P ∈ [f = 0]∩[y = y0] and γ ∼ 0 ∈ Z ∼ π1([y = y0]\{Q})
for all Q ∈ ([f = 0] ∩ [y = y0]) \ {P}. Let ψ1 be a complex function in the
neighborhood of γ(0) in y = y0 such that

Re(X1)(ψ1) = 1 and (hImg(X1))(ψ1) = i.

Such a function ψ1 exists since [Re(X1), hImg(X1)] = 0; moreover we can extend
it continuously along γ. If pγψ1 is germ of the extension of ψ1 at γ(1) = γ(0) then
pγψ1 − ψ1 is a constant function. We denote by X ′

1 the complex vector field such
that Re(X ′

1) = Re(X1) and Img(X ′
1) = hImg(X1). We have

ResX′
1
(P ) = ResX′

1,P
(P ) =

1
2πi

(ψ1 ◦ γ(1)− ψ1 ◦ γ(0)) .

We can choose h to obtain ResX′
1
≡ ResX1 in SingX \ [y = 0]. Now, we can apply

the method of the path to conjugate the complex vector fields X ′
1 and X2. We

obtain a special germ of homeomorphism σ such that

σ ◦ exp(tX ′
1) = exp(tX2) ◦ σ

for t ∈ C and then
σ ◦ exp(tX1) = exp(tX2) ◦ σ
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for t ∈ R. The choice of h and X ′
1 is based on the dynamical properties of Re(X1).

The real goal of this work is classifying the dynamics of germs of (NSD) diffeo-
morphisms. We define

Df = {(x + uf, y) : u ∈ C{x, y} is a unit};
this is the analogue of Hf for (NSD) diffeomorphisms. We have

Theorem 1.2. Let ϕ be a (NSD) diffeomorphism and let X be one of its con-
vergent normal forms. For all µ > 0 there exists Uε,δ such that

ϕ(j)(P ) ∈ exp(B(0, µ)X)(exp(jX)(P ))

for all j ∈ Z and P such that {exp(0X)(P ), . . . , exp(jX)(P )} ⊂ Uε,δ.

As a consequence of last theorem the dynamics of a (NSD) diffeomorphism is
a slight deformation of the dynamics of the exponential of its normal form. The
main ingredient of the proof of theorem 1.2 is the division of Uε,δ in exterior and
compact-like sets that we develop in chapter 3.

The similarity between a (NSD) diffeomorphism ϕ and a normal form X implies
that there is an analogue of the L-limit phenomenon for (NSD) diffeomorphisms and
N > 1. We obtain points x0 ∈ B(0, ε) \ {0}, semi-analytic curves β and sequences
{yn} ⊂ β and {T (yn)} ⊂ Z such that

• limn→∞ yn = 0 and limn→∞ T (yn) = ∞
• ∃ limn→∞ exp(T (yn)X)(x0, yn) and ∃ limn→∞ ϕ(T (yn))(x0, yn)
• limn→∞ exp(T (yn)X)(x0, yn) is in the first component of Lε,+

β,x0
.

Moreover, in this context we have

Proposition 1.12. There exists a neighborhood V of 0 in R and a continuous
family of semi-analytic curves {β(s)}s∈V (β(0) = β) such that for all (x1, 0) in a
neighborhood of limn→∞ ϕ(T (yn))(x0, yn) there exist s0 ∈ V and sequences {y0

n} ⊂
β(s0) and {T (y0

n)} ⊂ Z satisfying

lim
n→∞

y0
n = 0 and lim

n→∞
ϕ(T (y0

n))(x0, y
0
n) = (x1, 0).

The value of a topological conjugation σ at (x0, 0) determines σ|y=0 in the
neighborhood of limn→∞ ϕ(T (yn))(x0, yn). We obtain

Proposition 1.13. Let ϕ1, ϕ2 ∈ Df be (NSD) diffeomorphisms. Suppose
(N, m) 6= (1, 0). Let σ be a germ of special homeomorphism conjugating ϕ1 and
ϕ2. Then σ|y=0 is complex analytic.

We take profit of the previous proposition and the similarity between (NSD)
diffeomorphisms and normal forms to obtain the sufficient condition in next theorem

Theorem 1.3. Let ϕ1, ϕ2 ∈ Df be (NSD) diffeomorphisms. Let Xj be a con-
vergent normal form for ϕj (j ∈ {1, 2}). Suppose (N,m) 6= (1, 0). Then

• ϕ1 and ϕ2 are conjugated by a special homeomorphism
if and only if both following conditions are satisfied

• Re(X1) is conjugated to Re(X2) by a special homeomorphism.
• ϕ1|y=0 is analytically conjugated to ϕ2|y=0.

We also have
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Proposition 1.14. Let ϕ1, ϕ2 ∈ Df be (NSD) diffeomorphisms. Suppose
(N, m) = (1, 0). Then ϕ1 and ϕ2 are topologically conjugated by a special map-
ping.

Theorem 1.3 and proposition 1.14 are equivalent to the Main Theorem for
(N, m) 6= (1, 0) and (N,m) = (1, 0) respectively. To prove the necessary condition
in theorem 1.3 and proposition 1.14 we embed ϕ in a complex flow which is not in
general analytic. That is equivalent to exhibit a special homeomorphism conjugat-
ing the exponential exp(X) of the normal form and ϕ. Then, we just define

ϕ(t)(P ) = σ(exp(tX)(σ(−1)(P )))

for t ∈ C. Unfortunately, theorem 1.3 implies that such a σ does not exist if ϕ|y=0

is not the exponential of a nilpotent element in H(C, 0). As a consequence instead
of germs of homeomorphism we will consider tg-sp (tangential-special) mappings σ.
By definition σ is a tg-sp mapping if there exist V and V ′ neighborhoods of (0, 0)
such that

• σ is a homeomorphism defined in (V \ [y = 0]) ∪ {(0, 0)}.
• σ(−1) is a homeomorphism defined in (V ′ \ [y = 0]) ∪ {(0, 0)}.
• σ(0, 0) = (0, 0) and y ◦ σ ≡ y and σ|[f=0]\[y=0] ≡ Id.

We explain now how to build a tg-sp mapping conjugating the normal form exp(X)
and a (NSD) ϕ. A possible approach to embed ϕ in a complex flow is by using
transversals. Let Tr be a 3-dimensional transversal to Re(X). We suppose that
Tr ∩ [y = y0] when non-empty is contained in a trajectory of Img(X) for all
y0 ∈ B(0, δ). We define the function ∆ such that

ϕ(P ) = exp((1 + ∆(P ))X)(P )

for all P in a neighborhood of (0, 0). Now we can define

ϕ(a+ib)(P ) = exp(a[1 + ∆(exp(ibX)(P ))]X)(exp(ibX)(P ))

for a ∈ [0, 1] and exp(ibX)(P ) ∈ Tr. To define ϕ(a+ib) for a ∈ R we consider
c ∈ [0, 1] such that a− c ∈ Z; we define

ϕ(a+ib) = ϕ(a−c) ◦ ϕ(c+ib).

Now we build a mapping σTr conjugating exp(X) and ϕ; we define σTr(exp(aX)(P )) =
ϕ(a)(P ) for a ∈ R and P ∈ Tr. This mapping is not C∞ because the complex
flow ϕ(t) is not C∞ for Re(t) ∈ Z but only continuous. Anyway we can change
slightly the definition to obtain a C∞ flow. We have to face another problem;
let y0 ∈ B(0, δ), there is no in general a connected 1-dimensional transversal to
Re(X)|y=y0 intersecting all the trajectories of Re(X). Therefore, we have to in-
terpolate conjugations obtained by considering different transversals. For both the
construction of σTr and the interpolation of different σTr and σTr′ we use dynam-
ical properties of Re(X). Then, to make this construction to depend continuously
on y we have to work in the neighborhood of parameters y0 such that Re(X)|y=s

is topologically equivalent to a product in the neighborhood of s = y0. We are in
that situation for y0 6∈ UN ε

X . If y0 ∈ UN ε
X \ {0} we change slightly Uε,δ in order

to have y0 6∈ UNX with respect to the new domain. Hence, for all y0 6∈ UN ε
X ∩ {0}

there exists a neighborhood Vy0 such that we can build a C∞ mapping σy0 defined
in (Uε,δ ∩ [y ∈ Vy0 ]) \ [f = 0] and conjugating exp(X) and ϕ. The mapping σy0 is
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obtained by interpolating conjugations σTr. Moreover, we can extend σy0 continu-
ously to f = 0 by defining σy0,|f=0 ≡ Id. For (N,m) = (1, 0) we have 0 6∈ UN ε

X and
then σ0 is a special germ of homeomorphism conjugating exp(X) and ϕ. Otherwise
we have to interpolate some conjugations σy0 to obtain a conjugation σ defined in
Uε,δ \ [y = 0]. Again, we can extend σ continuously to f = 0 by defining σ|f=0 ≡ Id.
The mapping σ turns out to be tangential-special. We obtain

Proposition 1.15. Let ϕ be a (NSD) diffeomorphism with normal form X.
There exists a tg-sp mapping σ conjugating exp(X) and ϕ. Moreover σ can be
chosen to be a germ of homeomorphism if N ≤ 1 or m > 0.

Now proposition 1.11 implies proposition 1.14. Analogously theorem 1.1 implies
the necessary condition in theorem 1.3 for N ≤ 1 or m > 0.

The remaining case in theorem 1.3 is N > 1 and m = 0. Since ϕ1|y=0 is
analytically conjugated to ϕ2|y=0 we can suppose ϕ1|y=0 ≡ ϕ2|y=0 up to replace
ϕ2 with h(−1) ◦ ϕ2 ◦ h for some special h ∈ Diff (C2, 0). Hence, we can choose
the convergent normal forms to satisfy X1|y=0 ≡ X2|y=0 too. As a consequence
there exists a special homeomorphism σX conjugating Re(X1) and Re(X2) such
that σX,|y=0 ≡ Id. Consider a tg-sp mapping σj conjugating exp(Xj) and ϕj for
j ∈ {1, 2}. The mapping

σ = σ2 ◦ σX ◦ σ
(−1)
1

is a tg-sp mapping conjugating ϕ1 and ϕ2. The last part of the paper is devoted
to prove that there is a choice of σ1 and σ2 such that σ is a special germ of
homeomorphism. We define the function ∆k

j such that

ϕ
(j)
k (P ) = exp((j + ∆k

j (P ))Xk)(P )

for (j, k) ∈ Z× {1, 2} and {exp(0Xk)(P ), . . . , exp(jXk)(P )} ⊂ Uε,δ.

Lemma 1.1. We have |∆1
j − ∆2

j | ≤ L(y) for all j ∈ Z where L = o(1) is
independent of j ∈ Z.

The lemma claims that the orbits of ϕ1 and ϕ2 are very similar, even outside
of y = 0, since the ”distance” tends to 0 uniformly on the orbits. This fact allows
to choose σ1 and σ2 in a way such that σ|y=0 ≡ Id and σ

(−1)
|y=0 ≡ Id are continuous

extensions of σ and σ(−1) respectively.



CHAPTER 2

Flower Type Vector Fields

2.1. Definition and basic properties

Consider a real analytic vector field ξ defined over an open subset V of R2. Let
P ∈ V be a singular point of ξ; there is a ”flower type” singularity at P if for all
neighborhood U of P there exist two non-empty open sets U+, U− ⊂ U such that

• U+ ∪ U− ∪ {P} is a neighborhood of P .
• U+ is positively invariant by ξ and the ω limit ω(Q) of any Q ∈ U+ is

equal to {P}.
• U− is negatively invariant by ξ and α(U−) = {P}.

Throughout this section we will consider a real analytic vector field ξ defined in a
neighborhood of D. Such a vector field is of flower type if

(1) Singξ ∩ ∂D = ∅
(2) There are only flower type singularities.

Remark 2.1.1. The only relevant property is the second one; property (1) can
be skipped by enlarging the domain of definition.

Let V be a set where ξ is defined. We define ΓV
ξ [Q] the trajectory of ξ in V

passing through Q. On top of that we define the positive and negative trajectories
ΓV

ξ,+[Q] and ΓV
ξ,−[Q] obtained by restraining ΓV

ξ [Q] for positive and negative times
respectively. We can define the mapping ωV associating to each Q ∈ V the ω limit
of the trajectory ΓV

ξ [Q] of ξ passing through Q in V . We can define the mapping
αV in an analogous way.

We say that a set S ⊂ D is positively invariant if for every open neighborhood
B of D we have

∪Q∈SΓB
ξ,+[Q] ⊂ S.

We can define a negatively invariant domain in an analogous way.

Remark 2.1.2. Let U be any neighborhood of a singular point P ∈ D and
consider a point Q ∈ D \ U . Since the singularity at P is of flower type we have

ΓDξ,+[Q] ∩ (U+ ∪ U− ∪ {P}) = ΓDξ,+[Q] ∩ U+.

As a consequence we have
• If ωD(Q) contains a singular point P then ωD(Q) = {P}.
• ω−1

D (P ) is an open set for all P ∈ Singξ.
• By Poincaré-Bendixon’s theorem the only values for ωD(Q) are

(1) ωD(Q) = ∞; by definition this happens when ΓDξ,+[Q] reaches ∂D for
a finite time.

(2) ωD(Q) = {P} for some P ∈ Singξ.
(3) ωD(Q) is a cycle.

9
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Next property on the α and ω limits is not restricted to the flower type setting.

Remark 2.1.3. Let γ be a cycle of a C1 vector field X defined in a neighborhood
of γ in R2. There is an open set U containing γ such that either ω(Q) or α(Q) is
a cycle for all Q ∈ U . This property is based on Poincaré-Bendixon’s arguments.

2.1.1. The Rolle property. We say that vector field ξ satisfies the dynamical
Rolle property if there is no connected transversal I such that ΓDξ [Q] cuts I for two
different values of time. Our definition implies that any vector field having cycles
can not hold the Rolle condition. Anyway, the definition coincides with the usual
one if all the cycles are isolated.

Lemma 2.1.1. Let ξ be a flower type vector field and let P ∈ Singξ. Then
(α, ω)−1(P, P ) \ {P} 6= ∅.

Proof. Let U = D. Consider an open connected neighborhood V of P con-
tained in U+ ∪ U− ∪ {P}. Since ωD(U+) = {P} then U+ ∩ V 6= ∅; in an analogous
way we have U− ∩ V 6= ∅. We obtain

V \ {P} = ([U+ ∩ V ] \ {P}) ∪ ([U− ∩ V ] \ {P}).
The set V \ {P} is connected; as a consequence there exists a point

Q ∈ (U+ ∩ U−) \ {P} ⊂ (α, ω)−1(P, P ) \ {P}.
¤

Proposition 2.1.1. Let ξ be a flower type vector field. Then ξ satisfies the
dynamical Rolle property.

Proof. Suppose the proposition is not true. Let γ(t) ⊂ D be a trajectory
of ξ and let I ⊂ D be a connected transversal to ξ such that γ(t0), γ(t1) ∈ T for
different t0 and t1. We can suppose without lack of generality that γ(t0, t1) does
not intersect I.

We denote by ST the segment of transversal in between γ(t0) and γ(t1). The
union of the sets {γ(t)/t0 ≤ t ≤ t1} and ST is a simple curve β. We denote by
U the bounded region limited by β and contained in D. By replacing ξ with −ξ if
necessary we suppose that ξ points towards U at the points in ST . If γ is a cycle
then ST = ∅ and the last condition is empty.

The region U is positively invariant. We claim that U ∩ Singξ is not empty.
Let Q be any point in U , then ωD(Q) is either a singular point P ∈ D or a cycle
C. In the latter case the cycle is in the boundary of a bounded region containing a
singular point P . We consider the set

A+,− = {Q ∈ U \ Singξ / αD(Q) ⊂ U}.
The set (U \ Singξ) \A+,− is equal to ∪Q∈ST ΓDξ,+[Q], hence it is an open set. We
also define

Ap = {Q ∈ A+,− s.t. αD(Q) and ωD(Q) are points} ,

Bp = {Q ∈ A+,− s.t. either αD(Q) or ωD(Q) is a cycle}.
The set Ap is open in U because of the flower nature of the equilibrium points. The
set Bp is also open in U \Singξ, it is a consequence of the remark 2.1.3. Therefore,
we can express U \ Singξ as a disjoint union of open sets, more precisely

U \ Singξ = (Ap ∪Bp) ∪ [(U \ Singξ) \A+,−].
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Figure 1.

Since (α, ω)−1
D (P, P ) is contained in Ap then Ap ∪ Bp is not empty (lemma 2.1.1).

Moreover [(U \ Singξ) \ A+,−] contains the curve β and then it is not empty. But
U \ Singξ is connected, we obtain a contradiction. ¤

Corollary 2.1.1. There are no cycles.

Remark 2.1.4. The curve ∂D is not invariant by ξ. This result can be obtained
by applying the corollary 2.1.1 to ξ′ = (x/(1 + η), y/(1 + η))∗ξ for some η > 0 small
enough.

2.1.2. Critical trajectories. Let Q ∈ ∂D be a point where ξ is tangent to
∂D. The point Q is a convex tangent point if for some η > 0 and every open
neighborhood U of D we have

ΓU
ξ [Q](−η, η) ∩ (U \ D) = ∅.

In other words ΓDξ,−[Q] 6= {Q} and ΓDξ,+[Q] 6= {Q}. The behavior of all the trajec-
tories in a neighborhood of a point M of ∂D is the same except if M is a convex
tangent point (see picture 2). The point Q is a concave tangent point if there exist
an open neighborhood U of D and some η > 0 such that

ΓU
ξ [Q](−η, η) ∩ D = ∅.

If Q is neither convex nor concave then it is by definition an inflexion tangent
point. We define the set TDξ,+ ⊂ ∂D as the set of tangent convex points whereas
TDξ,− ⊂ ∂D is the set of tangent concave points. We define the set of tangent points
TDξ = TDξ,+ ∪ TDξ,−; we dismiss the inflexion points.

For any convex tangent point Q we can define the critical trajectories passing
through Q. The positive critical trajectory passing through a convex tangent point
P is the set

ΓD∪{Q}ξ,+ [Q].

It is equal to ΓD∪{Q}ξ,+ [Q]∪ωD∪{Q}(Q) if ωD∪{Q}(Q) ∈ Singξ, otherwise it is a curve
joining Q and a point in ∂D whose interior is contained in D. To define the negative
critical trajectories just replace + with −. We denote byHDξ the union of the critical
trajectories; it is a closed set.
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Figure 2. Convex, concave, inflexion points

Lemma 2.1.2. The mapping

(α, ω)D : D \ [HDξ ∪ Singξ] → (Singξ ∪ {∞})× (Singξ ∪ {∞})
is locally constant. In particular, it is constant by restriction to any connected
component of D \ [HDξ ∪ Singξ].

Proof. We will prove that ωD is locally constant; the proof for αD is analogous.
Let Q ∈ D \ [HDξ ∪ Singξ]. If ωD(Q) ∈ Singξ then ω−1

D (Q) is a neighborhood of
Q. If ωD(Q) = ∞ then the closure of ΓDξ,+[Q] contains a unique point Q′ such
that Q′ ∈ ∂D. Since Q 6∈ HDξ then ξ is either transversal to ∂D at Q′ or Q′ is an

inflexion point. As a consequence ΓDξ,−[∂D] is a neighborhood of Q. Since ΓDξ,−[∂D]
is contained in ω−1

D (∞) then ωD is locally constant. ¤

Let C be a connected component of D \ [HDξ ∪ Singξ] such that ωD(C) = ∞.
Consider the mapping

end+
ξ : C → ∂D

Q 7→ ΓDξ,+[Q] ∩ ∂D.

The mapping end+
ξ is continuous. Hence, the set end+

ξ (C) is connected and then it
is an open arc. Moreover end+

ξ (C) does not contain neither tangent convex points
nor concave tangent points. If ωD(C) 6= ∞ then we define end+

ξ (C) = ∅. In an
analogous way we can define end−ξ for the components contained in α−1

D (∞).

Lemma 2.1.3. Let C be a connected component of D \ [HDξ ∪ Singξ] contained
in (α, ω)−1

D (∞,∞). Then

∂C \ [end+
ξ (C) ∪ end−ξ (C)]

has two connected components.

Proof. We consider the boundary points A1 and A2 of end+
ξ (C). We define

γj = ΓDξ,−[Aj ] ∩ C
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for j ∈ {0, 1}. The sets γ1 and γ2 are connected. We have

∂C \ [end+
ξ (C) ∪ end−ξ (C) ∪ Singξ] = γ1 ∪ γ2.

We choose Q ∈ end+
ξ (C). We have γ1 6= γ2 because they are in different connected

components of D \ ΓDξ,−[Q]. ¤

The previous lemma characterizes the dynamics for the components in (α, ω)−1
D (∞,∞)

(see picture 3). Next we focus on the components in α−1
D (Singξ) ∪ ω−1

D (Singξ).

Figure 3. Component of (α, ω)−1
D (∞,∞)

Lemma 2.1.4. Let P ∈ Singξ. For every neighborhood U of P we have that
∂((α, ω)−1

D (P, P )) ∩ (U \ {P}) 6= ∅. Moreover ω−1
D (P ) does not contain a neighbor-

hood of P .

Proof. Let B any open neighborhood of D contained in the domain of de-
finition of ξ. We define D = (α, ω)−1

D (P, P ). By lemma 2.1.1 we obtain that
D \ Singξ 6= ∅. We have

D \ Singξ 6= D \ Singξ

because ∂D is contained in the closure of α−1
D (∞) ∪ ω−1

D (∞). We choose a point
Q in ∂D ∩ (D \ Singξ). Since Q ∈ ∂D the trajectory ΓB

ξ [Q] is contained in D
and there exists Q′ ∈ ΓB

ξ [Q] ∩ ∂D. We have that αB(ΓB
ξ,−[Q′]) = P ; hence there

exists MU ∈ ΓB
ξ,−[Q′] ∩ (U \ {P}). Then we have MU ∈ ∂D ∩ (U \ {P}) 6= ∅.

Moreover, for all neighborhood U of P the set ω−1
D (P ) does not contain U because

ωD(MU ) = ∞. ¤
Corollary 2.1.2.

Singξ ⊂ HDξ
Proof. Let P ∈ Singξ. Suppose P 6∈ HDξ . We deduce that (α, ω) is constant

in some pointed neighborhood of P . But then ω−1
D (P ) contains a neighborhood of

P , that is a contradiction. ¤
Lemma 2.1.5. The mapping ω is constant over any positively invariant domain

D ⊂ D and ω(D) is a singleton contained in ∂D. In particular D does not contain
any equilibrium point.
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Proof. The mapping ωD : D \ Singξ → D ∩ Singξ is locally constant since
the singular set is composed by flower points. As a consequence ωD(D \ Singξ)
contains a unique point P ∈ D. If the point P belongs to D then D ⊂ ω−1

D (P ),
that contradicts lemma 2.1.4. ¤

Lemma 2.1.6. Let C be a connected component of D \ HDξ contained in the set
(α, ω)−1

D (Singξ × {∞}). Then ∂C \ (end+
ξ (C) ∪ Singξ) has two connected compo-

nents.

Proof. Consider the same notations than in lemma 2.1.3. Let P = αD(C).
We have

∂C \ (end+
ξ (C) ∪ Singξ) = γ1 ∪ γ2.

Since γ1 and γ2 are connected it is enough to prove that γ1 6= γ2. Suppose γ1 = γ2;
we choose an open neighborhood V ⊂ D of P such that V \ (γ1 ∪ {P}) and V are
connected. Since [V \ (γ1 ∪ {P})] ∩ C 6= ∅ and [V \ (γ1 ∪ {P})] ∩ ∂C = ∅ then
V \ (γ1 ∪ {P}) ⊂ C. Therefore, we have (αD, ωD)[V \ (γ1 ∪ {P})] = (P,∞). If V
is a small neighborhood of P we also obtain that α−1

D (P ) contains V ∩ (γ1 ∪ {P})
and then the whole V ; that contradicts lemma 2.1.4. ¤

For C ⊂ (α, ω)−1
D (Singξ×{∞}) the picture 4 is a faithful representation of the

dynamics. We describe next the dynamics in the connected components of D \ HDξ

Figure 4. Component of (α, ω)−1
D (P,∞)

contained in (α, ω)−1
D (Singξ × Singξ).

Lemma 2.1.7. Let P, Q ∈ Singξ. Suppose that (α, ω)−1
D (P, Q) 6= ∅ and P 6= Q.

Then ∂((α, ω)−1
D (P, Q)) is a closed simple curve of the form γ = γ1∪γ2∪{P}∪{Q}

where γ1 and γ2 are different trajectories of ξ in D. Moreover (α, ω)−1
D (P, Q) is the

bounded component of R2 \ γ.

Proof. Let D = (α, ω)−1
D (P, Q). Since (α, ω)−1

D (P, P ) 6= ∅ by lemma 2.1.4
then there exists A1 in [∂D ∩ D] \ Singξ. We define γ1 = ΓDξ [A1]. Since γ1 ⊂ ∂D
there exists a convex tangent point Q1 ∈ γ1 ∩ ∂D.

We claim that ∂D 6= γ1 ∪ {P} ∪ {Q}. Otherwise we proceed as in lemma 2.1.6
to obtain that α−1

D (P ) is a neighborhood of P ; that is impossible by lemma 2.1.4.
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There exists A2 in (∂D ∩ D) \ (γ1 ∪ {P} ∪ {Q}). We define γ2 = ΓDξ [A2]. There
exists at least a convex tangent point Q2 ∈ γ2 ∩ ∂D.

The curve γ = γ1 ∪ γ2 ∪{P}∪ {Q} is a simple closed curve defining a bounded
region B. The region B is invariant by ξ, hence α and ω are constant on B. Since
αD(γ1 ∪ γ2) = {P} and ωD(γ1 ∪ γ2) = {Q} then B ⊂ D. We have that B ∼ D
because of Jordan’s curve theorem. We can choose a curve I[0, 1] ⊂ D such that
I[0, 1] is transversal to ξ, I(0) = Q1 and I(1) = Q2. Since P and Q are in different
connected components of D \ I[0, 1] then D = B. ¤

The dynamics in (α, ω)−1
D (P, Q) (P 6= Q) is represented in picture 5.

Figure 5. (α, ω)−1
D (P, Q) for P 6= Q

Lemma 2.1.8. Let P ∈ Singξ and let C be a connected component of the set
(α, ω)−1

D (P, P ) \ {P}. Then ∂C is a simple closed curve {P} ∪ γ′ where γ′ is a
trajectory of ξ in D. Moreover, C is the bounded component of R2 \ ({P} ∪ γ′).

Proof. By lemma 2.1.4 there exists Q ∈ (∂C ∩ D) \ Singξ. Let γ′ = ΓDξ [Q].
We have (α, ω)D(γ

′) = (P, P ), as a consequence γ = γ′ ∪ {P} is a simple closed
curve. Let B be the bounded component of R2 \ γ. By lemma 2.1.5 we have
(α, ω)(B) ∈ ∂B × ∂B and then (α, ω)(B) = (P, P ). Since γ′ ∩ ∂D 6= ∅ then
γ is a union of critical trajectories. Therefore B is a connected component of
D \ [HDξ ∪ Singξ]. For a small neighborhood V of Q the set V \ C is contained in
α−1
D (∞) ∪ ω−1

D (∞); we obtain that C = B. ¤

Last lemma is not enough to describe the dynamics in C. We need a little bit
more.

Lemma 2.1.9. In the setting of the previous lemma let M, Q ∈ C \ {P}. There
exists a continuous mapping F : [0, 1]× [0, 1] → C such that

• F ({0} × [0, 1]) = F ({1} × [0, 1]) = P
• F ((0, 1)× [0, 1]) ⊂ C \ {P} and F|(0,1)×[0,1] is injective
• F ((0, 1)× {t}) is a trajectory of ξ in D for all t ∈ [0, 1]
• F ((0, 1)× {0}) = ΓDξ [M ] and F ((0, 1)× {1}) = ΓDξ [Q]



16 2. FLOWER TYPE VECTOR FIELDS

Proof. It is enough to prove the lemma for Q in a small neighborhood of M
since C \ {P} is connected. Let I(t) ⊂ C (t ∈ [0, 1]) be a transversal to ξ passing
through M . We define F (s, t) = ΓDξ [I(t)](s). We claim that F is continuous at the
points of type (∞, t) and (−∞, t). For instance, for a point (∞, t0) we consider
any neighborhood U of P such that F (0, t0) 6∈ U . By remark 2.1.2 there exists
s0 > 0 such that F (s0, t0) ∈ U+. Therefore F (s, t) ∈ U+ for all s ≥ s0 and all t in
a neighborhood of t0. We deduce that F is continuous. We parameterize [−∞,∞]
by the interval [0, 1]; in this way we can consider F as defined over [0, 1]× [0, 1]. ¤

Figure 6. Dynamics in a component C of (α, ω)−1
D (P, P )

Because of the last lemma the picture 6 represents the dynamics in C for
C ⊂ (α, ω)−1

D (P, P ).

2.1.3. Tangent singular diagram. Let ξ and ξ′ be flower type vector fields;
we say that HDξ ∼ HDξ′ if there exists an oriented homeomorphism h : D→ D such
that h(HDξ ) = HDξ′ .

We enumerate the points T 0
ξ , T 1

ξ , . . ., T
NT (ξ)−1
ξ , T

NT (ξ)
ξ = T0 contained in TDξ .

The set of indexes is Z/(NTZ). The order is induced by turning in S1 in counter
clock wise sense. The enumeration is unique up to a translation j 7→ j +C for some
C ∈ Z/(NTZ). We also enumerate the points S1

ξ , . . ., Sl
ξ in Singξ. We consider a

list LDξ of sets of types

{Sa
ξ , T b

ξ }, {T a
ξ , T b

ξ }, {T a,a+1
ξ , T b

ξ }.
The set {Ca

ξ , Db
ξ} (C,D ∈ {T, S}) belongs to LDξ if there is a critical trajectory

either from Ca
ξ to Db

ξ or from Db
ξ to Ca

ξ . The set {T a,a+1
ξ , T b

ξ } belongs to LDξ if
either the negative or the positive critical trajectory passing through T b

ξ contains a
point in the open arc (T a

ξ , T a+1
ξ ) ⊂ ∂D. It is clear that every point T b

ξ belongs to
at least one couple in LDξ ; we also have that every Sa

ξ is contained in a couple of LDξ
because of corollary 2.1.2.

By definition LDξ ∼ LDξ′ if
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• NT (ξ) = NT (ξ′) and ](Singξ) = ](Singξ′)
• There exist c ∈ Z/(jZ) and σ ∈ S]Singξ such that

– {Sa
ξ , T b

ξ } ∈ LDξ ⇔ {Sσ(a)
ξ , T b+c

ξ } ∈ LDξ′

– {T a
ξ , T b

ξ } ∈ LDξ ⇔ {T a+c
ξ , T b+c

ξ } ∈ LDξ′

– {T a,a+1
ξ , T b

ξ } ∈ LDξ ⇔ {T a+c,a+c+1
ξ , T b+c

ξ } ∈ LDξ′

We define ICDξ = [LDξ ]. We have

Lemma 2.1.10.
HDξ ∼ HDξ′ ⇔ ICDξ = ICDξ′

Proof. Implication (⇒). Suppose h : D → D is an oriented homeomorphism
conjugating HDξ and HDξ′ . The homeomorphism h preserves the critical trajectories;
as a consequence h also preserves the convex tangent points and the singular points
(corollary 2.1.2).

We will denote (αξ, ωξ)D and (αξ′ , ωξ′)D the (α, ω) mappings for ξ and ξ′ re-
spectively. A concave tangent point Q is in the closure of a unique component CQ

of D\HD contained in (α, ω)−1
D (∞,∞). Let C be a connected component of D\HDξ

such that (αξ, ωξ)D(C) = (∞,∞). The set of tangent concave points in C coincides
with end+

ξ (C)∩end−ξ (C). We define lξ(C) as the number of connected components
of ∂C ∩ D. The number of tangent concave points in C is equal to 2 − lξ(C).
Since lξ(C) = lξ′(h(C)) then the number of tangent concave points in C and h(C)
are the same. Therefore, there exists a bijection ι from TDξ,− onto TDξ′,− such that

ι(Q) ∈ h(CQ
ξ ) for all Q ∈ TDξ,−. Consider the mapping θ : HDξ ∪ TDξ,− → HDξ′ ∪ TDξ′,−

such that θ|HDξ = h|HDξ and θ|TDξ,−
= ι. Thus θ conjugates LDξ and LDξ′ .

Implication (⇐). Let j → j + c and σ the permutations conjugating LDξ and

LDξ′ . We define h(T a
ξ ) = T a+c

ξ′ and h(Sb
ξ) = S

σ(b)
ξ for all a in Z/(NTZ) and 1 ≤

b ≤ ]Singξ. We can extend h to the union of the critical trajectories. Consider a
connected component C of D \ HDξ . We denote by λ(C) the connected component
of D \ HDξ′ such that

h(∂C \ [end+
ξ (C) ∪ end−ξ (C)] = ∂λ(C) \ [end+

ξ′(λ(C)) ∪ end−ξ′(λ(C))].

The mapping λ induces a bijection from the connected components of D \HDξ onto
the connected components of D \ HDξ′ . It is enough to prove that we can extend h

to C such that
h : C → λ(C)

is a homeomorphism. It is straightforward since C ∼ D and C ∼ D. ¤

By definition, two flower type vector fields ξ and ξ′ are topologically equivalent
if there exists an oriented homeomorphism h : D→ D such that h maps orbits of ξ
in orbits of ξ′.

Proposition 2.1.2.
ξ

top∼ ξ′ ⇔ HDξ ∼ HDξ′
Proof. The implication (⇒) is obvious.
Implication (⇐). We use again the notations in lemma 2.1.10. Let h : D → D

an oriented homeomorphism such that h(HDξ ) = HDξ′ . By lemma 2.1.10 we can
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suppose that h(TDξ,−) = TDξ′,−. Let θ be the mapping defined in HDξ ∪ TDξ,− ∪ {∞}
such that θ = h in HDξ ∪ TDξ,− and θ(∞) = ∞.

Let C be any connected component of D \ HDξ . It is enough to prove that θ

can be extended to a topological equivalence from C onto λ(C). We described the
dynamics in both C and λ(C) and proved to be the same; that is a consequence of

θ({αξ,D(C), ωξ,D(C)}) = {αξ′,D(λ(C)), ωξ′,D(λ(C))}
and lemmas 2.1.3, 2.1.6, 2.1.7, 2.1.8 and 2.1.9. Therefore, it is straightforward to
extend θ to C. We obtain an oriented homeomorphism θ : D→ D, it is a topological
equivalence by construction. ¤

2.1.4. The singular graph. We can associate an oriented graph GDξ to ξ.
The vertexes of the graph are the points in Singξ. There is an edge P → Q going
from P ∈ Singξ to Q ∈ Singξ (P 6= Q) if (α, ω)−1

D (P,Q) 6= ∅.
For an oriented graph G we define NG the non-oriented graph obtained from

G by removing orientation of the edges.

Lemma 2.1.11. The graphs GDξ and NGDξ are both acyclic.

Proof. Consider and edge P → Q. The points P and Q belong to different
connected components of D \ (α, ω)−1

D (P, Q) (proof of lemma 2.1.7). As a conse-
quence the edge P → Q can not be contained in a cycle neither for GDξ nor for
NGDξ . ¤

We will say that P,Q ∈ Singξ are separated by ξ if there exists M ∈ D \Singξ
such that P and Q are in different connected components of D \ ΓDξ [M ]. Clearly P

and Q can not be separated if they belong to the same connected component of GDξ .
It is a sharper idea to deal with separation of connected components of GDξ instead
of separation of singular points.

We define the set of critical tangent cords TCDξ as the union of all the critical
trajectories in LDξ not containing singular points.

Proposition 2.1.3. Two different connected components of GDξ are always sep-
arated by ξ. More precisely, they are separated by a critical tangent cord.

Proof. It is enough to prove that no connected component of D \ TCDξ con-
tains more than one connected component of GDξ . Suppose it is false. Let C be a
connected component of D \ TCDξ containing l > 1 connected components G1, . . .,
Gl of the graph GDξ . For 1 ≤ j ≤ l we denote by Sing(Gj) the set of singular points
(also vertexes) of Gj . We define

Vj = [α−1
D (Sing(Gj)) ∪ ω−1

D (Sing(Gj))] \ Singξ

for all 1 ≤ j ≤ l. The set Vj ⊂ C (1 ≤ j ≤ l) is open since ξ is a flower type vector
field, moreover it is not empty by lemma 2.1.1. For all 1 ≤ j < k ≤ l we have
Vj ∩Vk = ∅, otherwise the restriction of GDξ to Sing(Gj)∪Sing(Gk) is a connected
graph. We define the set ES ⊂ C \Singξ such that Q ∈ ES if (α, ω)D(Q) = (∞,∞)
and the two points in ΓDξ [Q]∩∂D are not convex tangent points. The set ES is open
and it satisfies ES ∩ Vj = ∅ for all 1 ≤ j ≤ l. Let M ∈ (C \ Singξ) \ (V1 ∪ . . .∪ Vl);
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since Singξ ∩ C = ∪1≤j≤lSing(Gj) then (α, ω)D(M) = (∞,∞). The point M

belongs to ES because otherwise M ∈ TCDξ ⊂ R2 \ C. As a consequence

C \ Singξ = V1 ∪ (V2 ∪ . . . ∪ Vl ∪ ES)

is a disjoint union of non-empty open sets. Since C \ Singξ is connected we obtain
a contradiction. ¤

We consider that two different critical tangent cords are equivalent if they
induce the same partition in the singular points. Let TCDξ,∼ a subset of TCDξ
containing one element for each equivalence class.

Let G be a connected component of GDξ . Then Sing(G) is contained in a unique
connected component C of D \ ∪η∈TCDξ,∼

η . We define Ξ(G) the set of elements of

TCDξ,∼ contained in C. We denote by (EG,1
η , EG,2

η ) the partition of the singular
points induced by a η ∈ Ξ(G); we choose EG,1

η to satisfy Sing(G) ⊂ EG,1
η .

Lemma 2.1.12. Let G be a connected component of GDξ . For η, η′ in Ξ(G) such
that η 6= η′ we have that EG,2

η ∩ EG,2
η′ = ∅.

Proof. Since η′ ∩ D and Sing(G) are in the same connected component of
D \ η then EG,2

η′ ⊂ EG,1
η and we are done. ¤

Proposition 2.1.4. LDξ determines completely NGDξ .

Proof. For {T a
ξ , T b

ξ } ∈ LDξ we denote by βa,b the critical trajectory joining T a
ξ

and T b
ξ . For {P, T a

ξ } ∈ LDξ and P ∈ Singξ we denote by βa
P the critical trajectory

joining P and T a
ξ . Let P,Q ∈ Singξ such that P 6= Q. We claim that P ↔ Q

belongs to NGDξ if there exists k ≥ 1 and a sequence

{P, T a1
ξ } , {T a1

ξ , T a2
ξ } , . . . , {T ak−1

ξ , T ak

ξ } , {T ak

ξ , Q}
contained in LDξ such that P and Q are in the same connected component of D \
βaj ,aj+1 for all 1 ≤ j < k.

Suppose P → Q belongs to GDξ . Consider a trajectory γ1 of ξ in D contained in
the boundary of (α, ω)−1

D (P, Q). By the proof of lemma 2.1.7 the curve {P} ∪ γ1 ∪
{Q} is a union of critical trajectories. Therefore, there exist k ≥ 1 and a sequence

{P, T a1
ξ } , {T a1

ξ , T a2
ξ } , . . . , {T ak−1

ξ , T ak

ξ } , {T ak

ξ , Q}
contained in LDξ . Moreover P and Q belong to the same connected component of
D \ βaj ,aj+1 for 1 ≤ j < k, otherwise (α, ω)−1

D (P, Q) = ∅. The proof for Q → P in
GDξ is analogous.

Suppose we have a sequence satisfying the aforementioned properties but (P ↔
Q) 6∈ NGDξ . Then P and Q are in different connected components of GDξ , otherwise
NGDξ′ has a cycle for ξ′ = (x/(1 + η), y/(1 + η))∗ξ and η > 0 small enough. By
proposition 2.1.3 there exists M ∈ D \ Singξ such that ΓDξ [M ] separates P and Q.
We claim that

(βa1
P \ {P}) ∪1≤j<k βaj ,aj+1 ∪ (βak

Q \ {Q}) = ΓDξ [M ].

The right hand side term separates P and Q and then the intersection of both terms
is not empty; since both sides are trajectories then they are equal. Hence ΓDξ [M ]
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coincides with βaj ,aj+1 for some 1 ≤ j < k; that is a contradiction since ΓDξ [M ]
separates P and Q. ¤

2.2. Families of vector fields without small divisors

We will define throughout this section the objects that we are going to study.
We will consider families of flower type vector fields. The flower singularities we
will deal with are parabolic.

2.2.1. Parabolic germs of vector fields. Let Y ∈ H(C, 0) such that νY ≥
2. The vector field Y can be expressed in the form

Y = (aνY
xνY + aνY +1x

νY +1 + . . .)
∂

∂x

where aνY
6= 0. We define the set Θ−(Y ) ⊂ S1 of νY − 1 roots of |aνY

|/aνY
. We

define Θ+(Y ) = e(πi)/(νY −1)Θ−(Y ). The set Θ−(Y ) is composed by the directions
contained in (avY

xνY )/x ∈ R+, in other words [(avY
xνY )/x ∈ R+] ≡ Θ−(Y )R+.

We expect a repulsive behavior in the neighborhood of the directions in Θ−(Y )
and an attractive one in the neighborhood of [(avY

xνY )/x ∈ R−] ≡ Θ+(Y )R+. We
define Θ(Y ) = Θ+(Y ) ∪ Θ−(Y ). The set Θ(Y ) is ordered in a natural way; for
every l ∈ Θ(Y ) there exists a next one NE(l) = le(πi)/(νY −1) and a previous one
PR(l) = le−(πi)/(νY −1). Moreover, if l ∈ Θ+(Y ) then NE(l) and PR(l) belong to
Θ−(Y ) whereas if l ∈ Θ−(Y ) then NE(l) and PR(l) belong to Θ+(Y ).

Let π : (R+ ∪ {0}) × S1 → R2 be the mapping defined by π(r, λ) = rλ. This
is the real blow-up of the origin in R2. We say that a set E ⊂ R2 adheres to a
direction λ if (0, λ) ∈ π−1(E \ {0}). Consider a vector field ξ and a point Q 6∈ Singξ
such that ω(Q) is a point. We define lξ,+[Q] the set of directions at ω(Q) such that
Γξ,+[Q] adheres at. In an analogous way we define lξ,−[Q].

Proposition 2.2.1. (Leau [Lea97], see also [Cam78]) Let Y ∈ H(C, 0). Sup-
pose that νY ≥ 2. For any neighborhood V of 0 there exists a family of open
non-empty connected subsets {Vl}l∈Θ(Y ) of V \ {0} such that

(1) W
def
= (∪l∈Θ(Y )Vl) ∪ {0} is a neighborhood of 0.

(2) For l ∈ Θ+(Y ) the domain Vl is positively invariant by Re(Y ), moreover
ωRe(Y )(Vl) = {0}.

(3) For l ∈ Θ−(Y ) the domain Vl is negatively invariant by Re(Y ), moreover
αRe(Y )(Vl) = {0}.

(4) For l ∈ Θ+(Y ) and Q ∈ Vl we have lVl

Re(Y ),+[Q] = {l}.
(5) For l ∈ Θ−(Y ) and Q ∈ Vl we have lVl

Re(Y ),−[Q] = {l}.
(6) Let Q ∈ W \ {0}; if ωRe(Y ),W (Q) = {0} then

ΓW
Re(Y ),+[Q] ∩ (∪l∈Θ+(Y )Vl) 6= ∅.

(7) Let Q ∈ W \ {0}; if αRe(Y ),W (Q) = {0} then

ΓW
Re(Y ),−[Q] ∩ (∪l∈Θ−(Y )Vl) 6= ∅.

(8) Vl ∩ Vk 6= ∅ if and only if k ∈ {NE(l), PR(l)}.
In particular 0 is a flower type singular point for Re(Y ).
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Remark 2.2.1. Consider Y = (aνY (y)xνY + aνY +1(y)xνY +1 + . . .)∂/∂x where
aνY

(0) 6= 0. There exists a family of open connected sets {Vl}l∈Θ such that {Vl ∩ [y = y0]}l∈Θ

satisfies the conditions in proposition 2.2.1 for all y0 in some neighborhood of 0.

2.2.2. Holomorphic families. We will consider germs of vector field of the
form X = f∂/∂x. We will ask f for fulfilling the no small divisors (NSD) conditions:

• f(0, 0) = 0 and f 6= 0
• The decomposition fn1

1 . . . f
np
p ym of f in irreducible factors satisfies that

m ≥ 0 and nj ≥ 2 for all 1 ≤ j ≤ p.
The first condition implies that f = 0 is an analytic curve whereas the second one
guarantees the absence of small divisors.

We define the sets

Uε = {(x, y) : |x| < ε} and Uε,δ = {(x, y) : |x| < ε and |y| < δ}.
Our results will be valid for ε > 0 and δ > 0 small enough. Many times it will be
implicit that the results are true up to shrink the domain.

Let Uε,δ a domain such that f is defined in a neighborhood of Uε,δ. We also
request that [fj = 0] \ Sing(fj = 0) is connected in Uε,δ and [([x] = ε) × (|y| ≤
δ)] ∩ [fj = 0] = ∅ for all 1 ≤ j ≤ p. We define ξ(X, y0, ε) as the restriction of the
real analytic vector field Re(X) to [y = y0] ∩ [x < ε] for y0 ∈ B(0, δ). If ε or y0 are
implicit we just write ξ(X, y0) or ξ(X) for shortness.

Let P = (x0, y0) ∈ SingX such that [y = y0] 6⊂ SingX. We denote by νX(P )
the order of the vector field X|y=y0 at x = x0. Our conditions imply that νX(P ) ≥ 2
for all P ∈ SingX. As a consequence

Corollary 2.2.1. Let y0 ∈ B(0, δ). If y0 6= 0 then the vector field ξ(X, y0, ε)
is a flower type vector field. Moreover, if m = 0 then ξ(X, 0, ε) is also a flower type
vector field.

We can describe the nature of (α, ω)−1(P, P ) for P ∈ Singξ(X, y0, ε).

Lemma 2.2.1. Let P ∈ Singξ(X, y0, ε) for a flower type vector field ξ(X, y0, ε).
Then (α, ω)−1(P, P ) \ {P} has exactly 2(νX(P )− 1) connected components.

Proof. We denote P = (x0, y0). Consider the partition {Vl}l∈Θ associated to
ξ = ξ(X, y0, ε) at P (proposition 2.2.1). We choose a point xl in Vl for all l ∈ Θ;
we consider ε′ ≤ min(minl∈Θ |xl − x0|, ε − x0). For l ∈ Θ+ let γl be the unique
connected component of Γ|x|<ε

ξ,+ [xl]∩ [|x−x0| < ε′] contained in ω−1
ξ,|x−x0|<ε′(P ). By

replacing ω with α we define γl for l ∈ Θ−. The set [|x − x0| < ε′] \ ∪l∈Θγl has
2(νX(P )− 1) connected components; we denote by Al (l ∈ Θ) the one adhering to
the closed arc in (r, λ) ∈ {0}×S1 going from l to NE(l) in counter clock-wise sense.
Let {Wl}l∈Θ be a partition associated to ξ at P and whose sets are contained in
|x−x0| < ε′. By construction Al ∩Wk 6= ∅ if and only if k ∈ {l, NE(l)}. Therefore
Al ∩ (Wl ∪WNE(l)) is a neighborhood of 0 in Al. As a consequence we obtain that
Al∩Wl∩WNE(l) 6= ∅ because otherwise (Al∩Wl)∪(Al∩WNE(l)) induces a partition
in non-empty disjoint open sets of every sufficiently small connected neighborhood
of 0 in Al. We choose Ql ∈ Al ∩Wl ∩WNE(l).

Let l ∈ Θ; we define Cl the component of (α, ω)−1
[|x|<ε](P, P ) \ {P} containing

Ql. By conditions (4) and (6) (resp. (5) and (7)) in proposition 2.2.1 the mapping
l+ (resp. l−) is locally constant in Cl. Therefore, we have

l
|x|<ε
ξ,+ [Cl] ∪ l

|x|<ε
ξ,− [Cl] = {l, NE(l)}.
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Moreover, the component Cl adheres to the directions in the closed arc going from
l to NE(l) in counter clock-wise sense by construction of Ql. We deduce that
Cl 6= Cl′ if l, l′ ∈ Θ and l 6= l′.

Suppose there is a connected component C of (α, ω)−1
[|x|<ε](P, P )\{P} such that

C 6= Cl for all l ∈ Θ. On the one hand C adheres to at least two directions l′ ∈ Θ−
and l′′ ∈ Θ+ at P . On the other hand C is contained in a connected component of
[|x| < ε] \ [∪l∈ΘCl] and then C adheres at most to a direction at P . We obtain a
contradiction. ¤



CHAPTER 3

A Clockwork Orange

Let X = f∂/∂x be a (NSD) vector field. We want to split Uε in several pieces
where the dynamics of Re(X) is simple. We define the number N = SingX ∩Uε ∩
[y = y0] for a generic y0 ∈ B(0, δ). For N = 0 the dynamics is simple. Since there
are no singular points then

(Uε ∩ [y = s]) = (αξ(X(λ),s,ε), ωξ(X(λ),s,ε))
−1

|x|<ε
(∞,∞)

for all s ∈ B(0, δ) \ {0}. As a consequence Uε ∩ [y = s] is the only component of
[|x| < ε] \ H|x|<ε

ξ(X(λ),s) and its boundary contains no critical trajectories. Therefore,

we obtain ]T
|x|<ε
ξ(X(λ),s),− ≡ 2. The dynamics is represented in picture 1. The tricky

Figure 1. Dynamics of ξ(X(λ), s, ε) for N = 0

dynamics is attached to the case N > 0.

3.1. The tangent set

Since our approach is based in study Re(X) in a fixed domain Uε,δ then it is
natural to study the set where Re(X) and ∂Uε are tangent.

We define the sets T ε
X(s) = T

|x|<ε
ξ(X,s,ε) and T ε

X = ∪s∈B(0,δ)T
ε
X(s). The set T ε

X(0)
is not defined if [y = 0] ⊂ SingX. Let fn1

1 . . . f
np
p ym be the decomposition in

irreducible factors of f . We denote ν(fn1
1 . . . f

np
p (x, 0)) by ν̃(X). We define the

vector field X(λ) = λ(f/ym)∂/∂x for λ ∈ S1.

Proposition 3.1.1. Let X = f∂/∂x be a (NSD) vector field. There exists
ε0 > 0 such that if ε < ε0 then ]T ε

X(λ)(s) = 2|ν̃(X)− 1| for all s in a neighborhood
of 0 and all λ ∈ S1.

23
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Proof. The points in T ε
X(λ) are those in Uε where x∂/∂x and X(λ) are or-

thogonal, i.e.

T ε
X(λ) ≡

{
Re

(
λf(x,y)

xym

)
= 0

|x| = ε.

We denote ν̃(X) by ν. We have (f/ym)(x, 0) = aνxν +aν+1x
ν+1+. . . where aν 6= 0.

We define
Λε

X : ∂Uε × S1 → S1

(P, λ) 7→ λ (f/xym)(P )
|(f/xym)(P )| .

We define argε
X = ln(Λε

X)/i; it is well defined up to a multiple of 2π. If ε > 0
is small enough then ΛX((x, 0), λ0) is a locally injective |ν − 1| to 1 function for
all λ0 ∈ S1. We identify ∂Uε with S1 × (C, 0). The derivative of argε

X((x, 0), λ)
with respect to arg(x) is then well-defined and it tends uniformly to ν − 1 when
ε → 0. The derivative of argε

X((x, η), λ) with respect to arg(x) tends uniformly to
the derivative of argε

X((x, 0), λ) when η → 0. Therefore, there exists ε0 > 0 such
that for all ε < ε0, all λ0 ∈ S1 and |y0| < δ0(ε) the mapping Λε

X((x, y0), λ0) is |ν−1|
to 1.

Since
T ε

X(λ)(y0) = {(x, y0) : Λε
X((x, y0), λ) ∈ {−i, i}}

then ]T ε
X(λ)(y0) = 2|ν − 1| for all ε < ε0, λ ∈ S1 and |y0| < δ0(ε). ¤

Corollary 3.1.1. Let X = f∂/∂x be a (NSD) vector field. If p ≥ 1 all the
points in T ε

X(λ) are convex, otherwise they are all concave.

Proof. A tangent point is convex (resp. concave) if the function argε
X is

locally increasing (resp. decreasing) with respect to arg(x). By choosing ε and δ
small enough we make the derivative of argε

X with respect to arg(x) sufficiently
close to ν̃(X) − 1. Hence, the tangent points are convex if p ≥ 1 since the (NSD)
conditions imply ν̃(X) ≥ 2. If p = 0 then ν̃(X) = 0 and all the tangent points are
concave. ¤

Remark 3.1.1. If m = 0 then X = X(1), otherwise the trajectories of Re(X)
and Re(X(ym/|y|m)) coincide. Therefore, the statements in proposition 3.1.1 and
corollary 3.1.1 are valid outside of ym = 0 when we replace X(λ) with X.

Let π : (R+ ∪ {0}) × S1 → R2 be the real blow-up of the origin. We can lift
π(r, λ) = rλ to the universal covering of (R+ ∪ {0}) × S1 to obtain a mapping
π̃ : R≥0 × R→ R2 such that π̃(r, θ) = reiθ.

Proposition 3.1.2. The set T ε
X is the union of 2|ν̃(X)− 1| real analytic sets

T ε,1
X (r, θ), . . ., T

ε,2|ν̃(X)−1|
X (r, θ) defined in [0, r0]× R for some r0 > 0.

Proof. Consider a local chart x = εeiζ of the manifold |x| = ε. The mappings
Λε

X(r, ζ, θ, λ) and argε
X(r, ζ, θ, λ) are real analytic. We choose

λ = ym/|y|m = eimθ.

As a consequence we can consider Λε
X and argε

X as real analytic functions of (r, ζ, θ).
Moreover, the choice of λ implies that

T ε
X = (Λε

X)−1{−i, i}.
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We can make ∂argε
X/∂ζ sufficiently close to ν̃(X)− 1 if r << 1. As a consequence

we can suppose [∂argε
X/∂ζ](r, ζ, θ) 6= 0 for all (r, ζ, θ) in (R≥0, 0) × R × R. The

thesis of the lemma is now a consequence of the implicit function theorem. ¤

Remark 3.1.2. If [y = 0] 6⊂ SingX then T ε,j
X (y) is a real analytic function for

1 ≤ j ≤ 2|ν̃(X) − 1|. The proof is almost the same than the proof of proposition
3.1.2; the difference being that since λ ≡ 1 is a function of y then argε

X can be
consider as a function of (ζ, y).

3.2. Exterior dynamics

3.2.1. Existence of the integral of the time form. This paper is based on
a basic fact: the dynamics of the real part of a (NSD) vector field can be described
both qualitatively and quantitatively. The qualitative study can be enriched with
quantitative estimates provided by the analysis of the integrals of the time form of
the (NSD) vector field.

Let Y be a holomorphic vector field Y defined over a 1 dimensional analytic
variety. We can associate to Y a unique meromorphic 1-form ωY such that ωY (Y ) =
1; this is the time form. At any P ∈ SingY the 1-form ωY has attached a residue
ResY (P ). An integral ψY of the time form ωY is a multi-valued function defined
outside SingY and such that

Y (ψY ) = 1 ⇔ ψY =
∫

ωY (z)dz.

As a consequence we have

ψY ◦ exp(tY ) = ψY + t for all t ∈ C
where the last equality is defined.

We can associate to X = f∂/∂x a 1-form ωX in the relative cohomology of the
vector field ∂/∂x. The expression of ωX in coordinates (x, y) is equal to (1/f)dx.
We denote by ψX an integral of ωX for every fiber y = y0 in a neighborhood
of y0 = 0. For any P ∈ SingX we denote by ResX(P ) the residue of the form
(ωX)|y=y(P ) at P .

Remark 3.2.1. For any component β 6= (y = 0) of f = 0 the function ResX is
holomorphic in β \ {(0, 0)}. On the other hand, in general the function (ResX)|β
is not continuous at (0, 0). Let X = x2(x− y)2∂/∂x. For (0, y) ∈ [x = 0] \ {(0, 0)}
we have ResX(0, y) = 2/y3 whereas ResX(0, 0) = 0.

We denote by Resβ
X the restriction of ResX to β\{(0, 0)}. Consider fn1

1 . . . f
np
p ym

the decomposition of f in irreducible factors. The number

Nj = ]([fj = 0] ∩ [y = y0])

does not depend on y0 for y0 in a small pointed neighborhood of 0. We define the
ramification

R = (x, yN1...Np).
Then f ◦ R = 0 has N =

∑p
j=1 Nj irreducible components κ1, . . ., κN different

than y = 0. These curves are smooth and transversal to ∂/∂x, hence they can be
parameterized by y. We denote Res

κj

R∗X by Res
κj

X for simplicity. We have

Proposition 3.2.1. For all 1 ≤ j ≤ N there exist Pj and Qj 6= 0 in C{y}
such that Res

κj

X = Pj(y)/Qj(y) on κj.
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Proof. Let us fix j ∈ {1, . . . , N}. Since κj is parameterized by y we can
suppose κj ≡ [x = 0] up to a change of coordinates. We have f ◦ R = aν(y)xν +
aν+1(y)xν+1 + . . . where ν ≥ 1 and aν 6≡ 0. Let q be the order of aν(y). Consider
the transformation

H :
{

x = zyq

y = y.

We have f ◦ R ◦ H = yq(ν+1)([aν(y)/yq]zν + O(zν+1)). Since aν(y)/yq is a unit
then Y = (H∗R∗X)/yqν satisfies νY (P ) = ν for every P in z = 0. As a con-
sequence Resz=0

Y is holomorphic. The transformation H is biholomorphic out-
side y = 0, therefore it preserves the residues. Hence, we obtain Res

κj

X (0, y) =
Resz=0

Y (0, y)/yqν . ¤

Let gj = 0 be an irreducible equation of κj . Let gl1
1 . . . glN

N ymN1...Np be the
irreducible decomposition of f ◦R. We are looking for a holomorphic ψR∗X of the
form

ψR∗X = α(x, y) +
N∑

j=1

Pj(y)
Qj(y)

ln gj(x, y).

This equation is equivalent to

(3.1)
∂α(x, y)

∂x
=

1
f ◦R

−
N∑

j=1

Pj(y)
Qj(y)

∂gj

∂x

1
gj(x, y)

.

A solution α is an integral of the relatively closed meromorphic form obtained by
multiplying the right hand side of equation 3.1 by dx. The equation 3.1 is free of
residues.

Lemma 3.2.1. There exists a solution α of equation 3.1 of the form

β

gl1−1
1 . . . glN−1

N ym0

where β ∈ C{x, y} and m0 ≤ max(mN1 . . . Np, max1≤j≤N ν(Qj)).

Proof. Let us consider a simply connected domain U ×D ⊂ Uε,δ where 0 6∈ U
and 0 ∈ D. We also request (U × D) ∩ (f ◦ R = 0) to be either the empty set if
m = 0 or U × {0} if m > 0. The equation

∂ρ

∂x
=

1
f ◦R

admits a solution a(x, y)/ymN1...Np for a holomorphic function a defined over U×D.
We can extend ρ as a multi-valuated function to

V = ([|x| < ε]×D) \ ∪N
j=1κj .

The function α0 = ρ−∑N
j=1(Pj/Qj) ln gj is single valued; it is meromorphic in V

and holomorphic in V \ [y = 0]. Moreover α0 is a solution of equation 3.1. Let m0

be the order of pole of α0 at the curve y = 0.
Consider a point P in κj \ {(0, 0)}. The curve f ◦ R = 0 can be transformed

into the curve x = 0 up to a change of coordinates (HP (x, y), y) defined over a
neighborhood of P . It is straightforward to find at P a local solution αP of equation
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3.1 such that αP g
lj−1
j is holomorphic. Since ∂(α0 − αP )/∂x = 0 then (α0−αP )(y)

is holomorphic in a neighborhood of y = y(P ). As a consequence

β = α0g
l1−1
1 . . . glN−1

N ym0

is holomorphic in ([|x| < ε]×D) \ {(0, 0)}; this function is holomorphic in a neigh-
borhood of the origin by Hartogs’ theorem. ¤

Remark 3.2.2. The expression

ψR∗X =
β

gl1−1
1 . . . glN−1

N ym0
+

N∑

j=1

Pj(y)
Qj(y)

ln gj

shows the holomorphic dependance of ψR∗X on the parameter y outside of y = 0.
The holomorphic character of ψR∗X in the neighborhood of y = 0 is provided by the
proof of last proposition.

We denote by µ(B) the order of pole of a meromorphic function B defined
in a neighborhood of 0. Let A be a multi-valued function defined in a pointed
neighborhood of 0. Suppose there exists k ∈ N such that A(yk) is meromorphic in
the neighborhood of 0. We define the order of pole µ(A) of A as µ(A(yk))/k. The
definition does not depend on k. In our case we have

Res
fj=0
X =

P (y1/Nj )
Q(y1/Nj )

for some P, Q ∈ C{y}. Let Mj be the generic number of pre-images of Res
fj=0
X =

cte; this number coincides with |ν(P/Q)| if |ν(P/Q)| ≥ 1. Therefore if µ(Res
fj=0
X ) 6=

0 then µ(Res
fj=0
X ) = Mj/Nj .

3.2.2. Dynamics at the limit line. In order to describe the dynamics we
study the behavior of the critical trajectories at y = 0.

Proposition 3.2.2. Let λ ∈ S1. There are no critical tangent cords for
ξ(X(λ), 0, ε).

Proof. If SingX is contained in y = 0 then all the tangent points are concave
(corollary 3.1.1) and we are done. Otherwise, we consider the connected components
C1(λ), . . ., Cl(λ) of

C(λ)
def
= (αξ(X(λ),0), ωξ(X(λ),0))

−1

|x|<ε
(0, 0) \ {0}.

We have l = 2(νX(λ)(0) − 1) = 2(ν̃(X) − 1) by lemma 2.2.1. The number of
tangent points of ξ(X(λ), 0, ε) is also 2(ν̃(X) − 1) by proposition 3.1.1. We have
Cj(λ) ∩ Ck(λ) ∩ ∂Uε = ∅ for 1 ≤ j < k ≤ l and Cj(λ) ∩ ∂Uε 6= ∅ for all 1 ≤ j ≤ l.
Since the number of tangent points and l coincide then ](Cj(λ) ∩ ∂Uε) = 1 for all
1 ≤ j ≤ l. Hence, the trajectories of ξ(X(λ), 0) in |x| ≤ ε passing through a tangent
point do not contain other points in ∂Uε. Therefore, there are no critical tangent
cords. ¤

Remark 3.2.3. If SingX 6⊂ (y = 0) we proved that

(αξ(X(λ),0), ωξ(X(λ),0))[|x|<ε]∪{Q}(Q) = (0, 0)

for all Q ∈ T
|x|<ε
ξ(X(λ),0).
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Suppose that SingX 6= [y = 0]. The remark 3.2.3 implies that the dynamics of
Re(X(λ)) in Uε ∩ [y = 0] is as described in picture 2.

Figure 2. Dynamics in y = 0

3.2.3. Dynamics far away from the singular points. Far away from the
singular points, we can not distinguish them; basically they can be replaced by a
single singular point. We exploit this fact to show that the dynamics in the exterior
part of a domain Uε,δ depends nicely on the parameter.

We suppose N ≥ 1, otherwise the dynamics is trivial. Let f = ymfn1
1 . . . f

np
p

be the the decomposition of f in irreducible factors. Throughout the rest of this
chapter and up to a ramification we suppose that fj = 0 is transversal to ∂/∂x for
all 1 ≤ j ≤ p and then N = p. This hypothesis is not restrictive since the results
we deal with in this chapter are invariant by a ramification (x, y) → (x, yk). We
split Uε in two sets

Uη,−
ε = Uε ∩ [|x| ≤ η|y|] and Uη,+

ε = Uε ∩ [|x| ≥ η|y|].
We claim that roughly speaking the dynamics at Uη,+

ε is trivial whereas Uη,−
ε can

be subdivided to obtain a simple description of the dynamics
The remaining part of this section is devoted to prove that Re(X(λm))(x, rλ)

is dynamically similar to Re(X(λm))(x, 0) in Uη,+
ε . We consider η > 0 big enough

to guarantee that Uη,+
ε \ [y = 0] does not contain singular points.

Lemma 3.2.2. Suppose N > 0. There exists η0 > 0 such that for all η > η0 the
set T

|x|<η|y0|
X(λ0)

(y0) is composed by 2(ν̃(X) − 1) convex points for all y0 in a pointed
neighborhood of 0 and all λ0 ∈ S1.

Proof. Since fj = 0 is parameterized by y then fj/(x − gj(y)) is a unit for
some gj ∈ C{y}. Therefore, there exists a unit u ∈ C{y} such that X is of the form

X = u(x, y)ym(x− g1(y))n1 . . . (x− gN (y))nN ∂/∂x.

Up to consider the transformation{
x = yw
y = y



3.2. EXTERIOR DYNAMICS 29

the vector field (wy, y)∗X is equal to ym+n1+...+nN−1Y where

Y = u(yw, y)(w − g1(y)/y)n1 . . . (w − gN (y)/y)nN ∂/∂w.

Thus (rλ,w)∗X(λ0)|y=rλ = rn1+...nN−1Y (λ0λ
n1+...nN−1)|y=rλ. We have

lim
w→∞

(w − g1(y)/y)n1 . . . (w − gN (y)/y)nN

wn1+...nN
= 1.

The limit is uniform in y ∈ B(0, δ). The derivative of

arg[u(yw, y)(w − g1(y)/y)n1 . . . (w − gN (y)/y)nN ]|(|w|=η)∩(y=y0)

with respect to arg(w) tends to ν̃(X) − 1 if η → ∞ and y0 → 0. Since we have
(|x| = η|y|) ≡ (|w| = η) then the result is a consequence of applying proposition
3.1.1 and corollary 3.1.1 to Y (λ0λ

n1+...+nN−1)|y=rλ. ¤

From now on we suppose that η > 0 is big enough. Next we provide a qualitative
description of the dynamics of Re(X(λ0)) in Uη,+

ε .

Lemma 3.2.3. Suppose N ≥ 1. Consider λ0 ∈ S1 and a point (x0, y0) in
T
|x|<ε
X(λ0)

. Then, for s ∈ {+,−} the closure of Γη|y0|≤|x|≤ε
ξ(X(λ0)),s

[x0, y0] contains a unique
point (x′0, y0) in (|x| = η|y0|)∪ (|x| = ε) different than (x0, y0). Moreover (x′0, y0) ∈
(|x| = η|y0|).

Proof. If y0 = 0 the lemma is true (see remark 3.2.3). Suppose y0 6= 0; we
denote A = [η|y0| ≤ |x| ≤ ε] ⊂ [y = y0] and ξ = ξ(X(λ0), y0, ε). Consider the set
H = ∪P∈T ε

X(λ0)(y0)Γ
A
ξ [P ]. Intuitively , the set H is the union of the critical trajec-

tories of Re(X) in A. With respect to A the points of T
|x|<ε
ξ are convex (corollary

3.1.1) whereas the points of T
|x|<η|y0|
ξ are concave (lemma 3.2.2). Moreover, we

have
]T ε

X(λ0)
(y0) = ]T

η|y0|
X(λ0)

(y0) = 2(ν̃(X)− 1)

by proposition 3.1.1 and lemma 3.2.2.
We proceed like in proposition 3.2.2. Since A ∩ SingX = ∅ then

A ⊂ (αξ, ωξ)
−1
A (∞,∞).

For P ∈ T
|x|<η|y0|
ξ we denote by CP the unique connected component of A \ H

such that P ∈ CP . We can define end+
A(S) = ΓA

ξ,+[S] ∩ ∂A for S ∈ CP ; the
definition of end−A is analogous. The sets end+

A(CP ) and end−A(CP ) are connected
and contained in ∂A \ (T |x|<ε

ξ ∪ T
|x|<η|y0|
ξ ). There are two connected components

of ∂A \ T
|x|<η|y0|
ξ whose closure contains P . Since P ∈ ∂CP the set end+

A(CP ) is
contained in one of those components whereas end−A(CP ) is contained in the other
one. As a consequence of this discussion CP ∩ CQ = ∅ for Q ∈ T

|x|<η|y0|
ξ \ {P}.

The set ∂CP \ (end+
A(CP ) ∪ end−A(CP )) has two connected components. One

of them is {P} and since CP ∩ (T |x|<η|y0|
ξ \ {P}) = ∅ we deduce that the other

component is contained in H. As a consequence we obtain that CP ∩ T
|x|<ε
ξ 6= ∅.

Moreover, the latter set is a singleton since ]T
|x|<ε
ξ = ]T

|x|<η|y0|
ξ . We deduce that

for (x0, y0) ∈ T
|x|<ε
ξ ∩ CP and s ∈ {+,−} the set

ΓA
ξ(X(λ0),s)

[x0, y0] ∩ (∂A \ {(x0, y0)})
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is a singleton contained in ends
A(CP ) and then in [|x| = η|y0|]. ¤

Since ]T
|x|<ε
X(λ0)

(y0) = ]T
|x|<η|y0|
X(λ0)

(y0) = 2(ν̃(X)−1) then the dynamics of Re(X(λ0))|y=y0

in η|y0| ≤ |x| ≤ ε is as represented in figure 3. The dynamics in the exterior zone of

Figure 3. Dynamics of Re(X(λ0)) in Uη,+
ε

ξ(X(λ0), y, ε) is qualitatively equal to the dynamics of ξ(X(λ0), 0, ε). We are also
interested in a quantitative comparison.

Let X0 = (f/ym)(x, 0)∂/∂x. The series (f/ym)(x, 0) is of the form aν̃(X)x
ν̃(X)+

h.o.t where aν̃(X) 6= 0. We define X00 = aν̃(X)x
ν̃(X)∂/∂x. For (y0, λ0) ∈ B(0, δ)×S1

we consider the set

[η|y0| < |x| < ε] \
(
∪

P∈T
|x|<ε

X(λ0)(y0)
Γη|y0|≤|x|≤ε

ξ(X(λ0),y0)
[P ]

)

An exterior region at (y0, λ0) is the closure Rε,η
X(λ0)

(y0) of a component of the pre-
vious set. The exteriors regions depend continuously on (y0, λ0); a priori we can
have Rε,η

X(λ0)
(y0) 6= Rε,η

X(e2πiλ0)
(y0) but anyway the monodromy is finite since we have

Rε,η
X(λ0)

(y0) = Rε,η
X(e2πi(ν̃(X)−1)λ0)

(y0). We denote (λν̃(X)−1)
∗S1 by S1

ν̃(X). Fix a region

Rε,η
X(λ)(y). If the set T

|x|<ε
X(λ) (y)∩Rε,η

X(λ)(y) is a singleton for all (y, λ) ∈ B(0, δ)×S1
ν̃(X)

we denote its element by T ε,1
X(λ)(y); we say that Rε,η

X(λ)(y) is an ”a” exterior region.

Otherwise Rε,η
X(λ)(y) is a ”b” exterior region. It satisfies T

|x|<ε
X(λ) (y) ∩ Rε,η

X(λ)(y) =

{T ε,1
X(λ)(y), T ε,2

X(λ)(y)}.
We have that

T
|x|<ε
X00(λ)(y) = ε ν̃(X)−1

√
i|aν̃(X)|
λaν̃(X)

{e iπ0
ν̃(X)−1 = 1, . . . , e

iπ[2(ν̃(X)−1)−1]
ν̃(X)−1 },

in particular T
|x|<ε
X00(λ)(y) depends on λ but it does not depend on y.
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Lemma 3.2.4. Suppose N ≥ 1. Let 0 < ζ ≤ π/[2(ν̃(X)− 1)]. For ε << 1 and
δ(ε) << 1 we have that there is exactly one point of T

|x|<ε
X(λ) (y) in ei(−ζ,ζ)z for all

z ∈ T
|x|<ε
X00(λ) and λ ∈ S1.

Proof. Consider the function argε
X : ∂Uε × S1 → R defined in the proof of

proposition 3.1.1. Since (f/ym)(x, 0) = aν̃(X)x
ν̃(X)(1 + h.o.t) then for all (x, 0) ∈

∂Uε and λ ∈ S1 we have

| argε
X((x, 0), λ)− argε

X00
((x, 0), λ)| ≤ h(ε),

where h : (R+, 0) → R+ satisfies limε→0 h(ε) = 0. We also have that the de-
rivative of argε

X((x, 0), λ) with respect to arg(x) tends to ν̃(X) − 1 > 0 when
ε → 0; the limit is uniform in λ ∈ S1. We choose ε0 such that for ε < ε0 we have
∂(argε

X((x, 0), λ))/∂(arg(x)) > (ν̃(X) − 1)/2 and h(ε) < ζ(ν̃(X) − 1)/4. These
properties imply that there is exactly one point of T

|x|<ε
X(λ) (0) in ei(−ζ/2,ζ/2)z for all

z ∈ T
|x|<ε
X00(λ) and λ ∈ S1. We can extend the result to y ∈ B(0, δ) by continuity. ¤

Let 0 < ζ ≤ π/[2(ν̃(X) − 1)]. Consider a region R = Rε,η
X(λ)(y). For (y0, λ0) ∈

B(0, δ) × S1
ν̃(X) we have T ε,1

X(λ0)
(y0) ∈ ei(−ζ,ζ)T ε,1

X00(λ0)
for a unique T ε,1

X00(λ0)
in

T
|x|<ε
X00(λ0)

. If Rε,η
X(λ)(y) is of ”a” type we define

Dε,η
R (λ0) = Dε,η

R (y0, λ0) = (η|y| ≤ |x| ≤ ε) \ (T ε,1
X00(λ0)

R−).

If the type is ”b” then T ε,2
X(λ0)

(y0) ∈ eiπ/(ν̃(X)−1)ei(−ζ,ζ)T ε,1
X00(λ0)

. We define

Dε,η
R (λ0) = Dε,η

R (y0, λ0) = (η|y| ≤ |x| ≤ ε) \ (T ε,1
X00(λ0)

eiπ/[2(ν̃(X)−1)]R−).

The shape of Dε,η
R (λ) is as presented in picture 4.

Figure 4. Dε,η
R (λ)

3.2.4. Behavior of the integral of the time form. We denote by ψ00 a
meromorphic integral of the time form of X00; that is possible because ResX00(0, y) ≡
0. We denote by ψR

0 and ψR integrals of the time forms of X0 and X(1) respectively
defined in the set

Dε,η
R ≡ [(x, y, λ) ∈ Dε,η

R (λ)× {λ}] ∩ [λ ∈ S1
ν̃(X)].
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Fix ε0 << 1; we choose ψR and ψR
0 such that

ψR(T ε0,1
X00(λ), y) = ψR

0 (T ε0,1
X00(λ), y) = ψ00(T

ε0,1
X00(λ), y)

for all (y, λ) ∈ B(0, δ) × S1
ν̃(X). Our approach is proving that the dynamics of

Re(X(λ)) and Re(X00(λ)) are similar by comparing ψR and ψ00 in Uη,+
ε .

Lemma 3.2.5. Suppose N ≥ 1. Let ζ > 0. Consider any exterior region
R(y, λ) = Rε,η

X(λ)(y). Then |ψR
0 /ψ00−1| < ζ in Dε,η

R for ε << 1. Moreover, we have
∣∣∣∣
ψR

ψ00
− 1

∣∣∣∣ < ζ

in Dε,η
R for ε << 1, η >> 0 and δ << 1.

Proof. We denote ν = ν̃(X). We choose a determination for ln x in the
simply connected set Dε,η

R (1) and then we extend ln x analytically to Dε,η
R . Since

S1
ν̃(X) ≡ S1 is compact there exists a constant J > 0 such that |Img(ln x)| ≤ J if

(x, y, λ) belongs to Dε,η
R . The function ψ00(x, y, λ) is equal to −1/(aν(ν − 1)xν−1)

and

ψR
0 (x, y, λ) = ψ00 + b ln x +

1
xν−2

H(x) + C(λ)

where b = ResX0(0); the continuous functions C(λ) and H(x) are defined in S1
ν̃(X)

and a neighborhood of B(0, ε) respectively. The function C is a continuous function
defined in a compact set and then bounded. We obtain

ψR
0

ψ00
− 1 = −aν(ν − 1)[bxν−1 ln x + xH(x) + C(λ)xν−1]

Since |Img(ln x)| ≤ J then the right hand side is a o(1).
Let us focus on ψR/ψR

0 . We define K(x, y, λ) : Dε0,η
R → C such that K(x, y, λ) =

ψR(x, y, λ) − ψR
0 (x, y, λ). We have K(T ε0,1

X00(λ), y, λ) ≡ 0 by choice. Consider the
decomposition u(x, y)ym(x− g1(y))n1 . . . (x− gN (y))nN of f in irreducible factors.
Since

∂ψR

∂x
=

ym

f(x, y)
and

∂ψR
0

∂x
=

1
u(x, 0)xn1+...+nN

then K satisfies
f(x, y)

ym

∂K

∂x
= 1− u(x, y)(x− g1(y))n1 . . . (x− gN (y))nN

u(x, 0)xn1+...+nN
.

For η >> 0 and δ << 1 we have |(f/ym)∂K/∂x| ≤ A1|y/x| in Dε0,η
R for some

A1 > 0. That leads us to ∣∣∣∣
∂K

∂x
(x, y, λ)

∣∣∣∣ ≤ A2
|y/x|

|x|n1+...nN

in Dε0,η
R for some A2 > 0. We denote x0(λ) = T ε0,1

X00(λ). For any point (x, y, λ) ∈
Dε0,η

R we can express x as x = (r/ε0)eiθx0(λ) for r ∈ [η|y|, ε0] and |θ| < 2π. Let
x1 = x0(λ)eiθ; we obtain

|K(x1, y, λ)−K(x0(λ), y, λ)| ≤
∣∣∣∣∣
∫ x1

x0(λ)

∂K

∂x
dx

∣∣∣∣∣ ≤
2πA2|y|

εn1+...+nN
0

.
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Consider the path γ : [0, 1] → DR(y, λ) defined by

γ(t) = (x1[(1− t) + tr/ε0], y, λ).

We obtain

|K(x, y, λ)−K(x1, y, λ)| ≤
∣∣∣∣
∫

γ

∂K

∂x
dx

∣∣∣∣ ≤
∣∣∣∣
∫ 1

0

∂K

∂x
(γ(t))γ′(t)dt

∣∣∣∣
The previous expression implies

|K(x, y, λ)−K(x1, y, λ)| ≤ A2(ε0 − r)
η

∫ 1

0

1
[(1− t)ε0 + tr]n1+...+nN

dt.

By integration we obtain

|K(x, y, λ)−K(x1, y, λ)| ≤ A3

η

(
1

rn1+...+nN−1
− 1

ε0n1+...+nN−1

)

where A3 = A2/(n1 + . . . + nN − 1). As a consequence

|K(x, y, λ)| ≤ A4

(
|y|+ 1

η

)
1

|x|n1+...+nN−1

in Dε,η
R for A4 = max(2πA2, A3). By the first part of the lemma we have A5 ≤

|ψR
0 ||x|n1+...+nN−1 for some A5 > 0 and ε << 1. Therefore

∣∣∣∣
ψR

ψR
0

− 1
∣∣∣∣ =

∣∣∣∣
K

ψR
0

∣∣∣∣ ≤
A4

A5

(
|y|+ 1

η

)
<

A4

A5

(
δ +

1
η

)
.

¤

For N = 1 the behavior of Re(X(λ)) in Uε is analogous to the one we obtain
in the exterior regions.

Lemma 3.2.6. Suppose f = ymxn for some n > 0. Let ζ > 0. Consider any
exterior region R(y, λ) = Rε,0

X(λ)(y). Then |ψR
0 /ψ00 − 1| < ζ in Dε,0

R for ε << 1.
Moreover, we have ∣∣∣∣

ψR

ψ00
− 1

∣∣∣∣ < ζ

in Dε,0
R for ε << 1 and δ << 1.

Proof. The first part of the proof is analogous to the first part of the proof
of lemma 3.2.5. For the second part of the proof we proceed as in lemma 3.2.5
but with improved inequalities. It is straightforward to check out that the function
K(x, y, λ) satisfies ∣∣∣∣

∂K

∂x
(x, y, λ)

∣∣∣∣ ≤ A1
|y|

|x|n1+...nN

in Dε,0
R ∩ [y ∈ B(0, δ)] for some A1 > 0 and δ << 1. As a consequence there exists

A > 0 such that ∣∣∣∣
ψR

ψR
0

− 1
∣∣∣∣ =

∣∣∣∣
K

ψR
0

∣∣∣∣ ≤ A|y|

in Dε,0
R for ε << 1 and δ << 1. ¤
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3.2.5. Variation. The exterior region Rε,η
X(λ0)

(y0) ⊂ [y = y0] is simply con-
nected. Therefore the function ln x is uni-valuated in Rε,η

X(λ0)
(y0) and it is unique

up to an additive constant. We define

V ar(Rε,η
X(λ0)

(y0)) = max
x0,x1∈Rε,η

X(λ0)(y0)
|Img(ln x1)− Img(lnx0)|.

The function V ar(Rε,η
X(λ)(y)) : B(0, δ)×S1

ν̃(X) → R+ is well-defined and continuous.
By controlling the variation we assure that the trajectories in the exterior zone do
not spiral around the singular points of X. In next lemma we find an analogue of
V ar(Rε,η

X00(λ)(y)) ≤ π/(ν̃(X)− 1) valid for V ar(Rε,η
X(λ)(y)).

Proposition 3.2.3. Suppose N ≥ 1. Let ζ > 0. Consider an exterior region
Rε,η

X(λ)(y). For ε << 1, δ << 1 and η >> 1 we have

V ar(Rε,η
X(λ)(y)) ≤ π

ν̃(X)− 1
+ ζ

for all (y, λ) ∈ B(0, δ) × S1
ν̃(X). In particular Rε,η

X(λ)(y) ⊂ DR(λ) for all (y, λ) ∈
B(0, δ)× S1

ν̃(X).

Proof. Let ζ < π. Let (y0, λ0) ∈ B(0, δ) × S1
ν̃(X). We denote ν = ν̃(X) and

T ε,1
X(λ0)

(y0) by z1(y0, λ0). We also define

γ(y0, λ0) = Γη|y0|≤|x|≤ε
ξ(X(λ0),y0)

[z1(y0, λ0), y0].

Suppose RX(λ) is an ”a” exterior region. The function Img(lnx) is harmonic in
Rε,η

X(λ0)
(y0); therefore the minimum and the maximum are attained in ∂[Rε,η

X(λ0)
(y0)].

The set of extrema of Img(ln x) restricted to the arc Rε,η
X(λ0)

(y0) ∩ [|x| = η|y0|] is
∂[Rε,η

X(λ0)
(y0) ∩ [|x| = η|y0|]]. As a consequence we have

V ar(Rε,η
X(λ0)

(y0)) = max
x0,x1∈γ(y0,λ0)

|Img(ln x1)− Img(lnx0)|.

We denote h(λ0) = T ε,1
X00(λ0)

; this point satisfies

λ0aνxν

x
(h(λ0)) ∈ iR =⇒ λ0aν(h(λ0))

ν−1 ∈ iR.

We obtain
ψ00

λ0
(h(λ0)) =

−1
ν − 1

1
λ0aν(h(λ0))

ν−1 ∈ iR.

Therefore Img[ln(ψ00/λ0)(h(λ0))] ∈ {−π/2, π/2}; we can suppose it is π/2 because
otherwise we would replace X with −X. If (ε, δ, η) is close enough to (0, 0,∞)
lemmas 3.2.4 and 3.2.5 imply that

Img ◦ ln
[
ψR

λ0
(z1(y0, λ0), y0)

]
∈ [−ζ/4 + π/2, ζ/4 + π/2].

Let t0 ∈ R+ such that γ(y0, λ0)[0, t0) ⊂ Dε,η
R (λ0). Let t1 ∈ [0, t0); we have

Img ◦ ln
[
ψR

λ0
(z1(y0, λ0), y0) + t1

]
∈ (0, ζ/4 + π/2].

The equation

(3.2)
ψ00

λ0
(γ(y0, λ0)(t1)) =

[
ψR

λ0
(z1(y0, λ0), y0) + t1

]
ψ00

ψR
(γ(y0, λ0)(t1))
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and lemma 3.2.5 imply that

Img ◦ ln
[
ψ00

λ0
(γ(y0, λ0)(t1))

]
∈ (−ζ/2, ζ/2 + π/2]

if (ε, δ, η) is close enough to (0, 0,∞). We deduce that

Img ◦ ln x ◦ γ(y0, λ0)(t1)− Img ◦ ln(h(λ0)) ∈
[ −ζ

2(ν − 1)
,

ζ + π

2(ν − 1)

)
.

Since ζ < π and ν ≥ 2 we deduce that γ(y0, λ0)(t0) ∈ DR(λ0). We just proved that
Γη|y0|≤|x|≤ε

ξ(X(λ0)),+
[z1(y0, λ0), y0] is contained in DR(λ0). In an analogous way we obtain

Γη|y0|≤|x|≤ε
ξ(X(λ0)),− [z1(y0, λ0), y0] ⊂ DR(λ0); moreover if γ(y0, λ0)[−t0, 0] is contained in

[η|y0| ≤ |x| ≤ ε] for some t0 ∈ R+ then

Img ◦ ln x(γ(y0, λ0)(−t0))− Img ◦ ln(h(λ0)) ∈
(−(ζ + π)

2(ν − 1)
,

ζ

2(ν − 1)

]
.

Therefore, the variation function satisfies

V ar(Rε,η
X(λ0)

(y0)) <
π

ν̃(X)− 1
+

ζ

ν̃(X)− 1
.

Suppose ][Rε,η
X(λ)(y)∩T ε

X(λ)(y)] ≡ 2. We proceed in a similar way, we stress the
main steps of the proof. We consider the arc

arc(y0, λ0) = Rε,η
X(λ0)

(y0) ∩ ∂Uε.

Suppose Re(X(λ0)) points towards Uε in the interior of arc(y0, λ0); otherwise we
replace X with −X. The arc arc(y0, λ0) satisfies

arc(y0, λ0) ⊂ T ε,1
X00(λ0)

ei[ −ζ
4(ν−1) , ζ

4(ν−1)+
π

ν−1 ]

for (ε, δ, η) in the neighborhood of (0, 0,∞) by lemma 3.2.4. As a consequence

Img ◦ ln x ◦ ψ00

λ0
(arc(y0, λ0)) ⊂ [−ζ/4− π/2, ζ/4 + π/2].

Again we use equation 3.2 and lemma 3.2.5 to prove that

Img ◦ ln x ◦ ψ00

λ0
(Rε,η

X(λ0)
(y0)) ⊂ [−ζ/2− π/2, ζ/2 + π/2]

for (ε, δ, η) near (0, 0,∞). The last equation implies

V ar(Rε,η
X(λ0)

(y0)) ≤ π

ν̃(X)− 1
+

ζ

ν̃(X)− 1
.

That implies Rε,η
X(λ0)

(y0) ⊂ DR(λ0). ¤

We can adapt the proof of proposition 3.2.3 to obtain

Lemma 3.2.7. Suppose N = 1 and f = ymxn. Consider an exterior region
Rε,0

X(λ)(y). For ε << 1 and δ << 1 we have

V ar(Rε,0
X(λ)(y)) ≤ π

ν̃(X)− 1
+ ζ

for all (y, λ) ∈ B(0, δ)× S1
ν̃(X).

Next proposition implies that the trajectories in the exterior zone do not spiral
around the singular points of X.
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Proposition 3.2.4. Let N ≥ 1 and ζ > 0. Let fj = 0 be an irreducible
component of f/ym = 0. Consider an exterior region Rε,η

X(λ)(y). For ε << 1,
δ << 1 and η >> 1 we have

|Img ◦ lnfj(x1, y0)− Img ◦ lnfj(x0, y0)| ≤ π

ν̃(X)− 1
+ ζ

for (x0, y0), (x1, y0) ∈ Rε,η
X(λ0)

(y0) and for all (y0, λ0) ∈ B(0, δ)× S1
ν̃(X).

Proof. We have fj = uj(x, y)(x− gj(y)) for some unit uj ∈ C{x, y}. We can
suppose that uj(0, 0) = 1 by replacing fj with fj/uj(0, 0). Since |gj(y)| < D|y| for
y ∈ B(0, δ) and δ << 1 we have that

ln fj − ln x = ln uj(x, y) + ln
(

1− gj(y)
x

)

tends to 0 if (ε, δ, η) → (0, 0,∞). The result of the lemma is then a consequence of
proposition 3.2.3. ¤

3.3. The magnifying glass

We want to understand the behavior of Re(X(λ)) in Uε. We consider the sets
Uη,+

ε and Uη,−
ε for suitable ε > 0 and η > 0. We pointed out in lemma 3.2.5

and proposition 3.2.3 that the dynamics of Re(X(λ)) and Re(X00(λ)) in Uη,+
ε

are analogous. As a consequence, we can focus in the dynamical behavior in the
magnifying glass Uη,−

ε .
Let (x, y) = (wy, y); we consider Y = [(yw, y)∗X]/ym+n1+...+nN−1. More

precisely, if X = u(x, y)ym(x− g1(y)n1 . . . (x− gN (y)nN ∂/∂x then

Y = u(wy, y)
(

w − g1(y)
y

)n1

. . .

(
w − gN (y)

y

)nN ∂

∂w
.

Moreover, we have

(yw, y)∗X(λ) = |y|n1+...+nN−1
Y (ei(n1+...+nN−1) arg(y)λ).

The set Uη,−
ε \[y = 0] is equal to [|w| ≤ η]\[y = 0]. As a consequence to describe the

behavior of Re(X(λ)) in Uη,−
ε for all λ ∈ S1 it is enough to describe the behavior

of Re(Y (λ)) in [|w| ≤ η] for all λ ∈ S1. The curve w = gj(y)/y intersects y = 0 at
the point (w, y) = ((∂gj/∂y)(0), 0) for 1 ≤ j ≤ N . We consider the set

F =
{

∂g1

∂y
(0), . . . ,

∂gN

∂y
(0)

}
.

We choose η > 0 such that F ⊂ [|w| < η].
Let c ∈ F ; there are two cases depending whether or not

Nc
def
= ]{j ∈ {1, . . . , N} : (c, 0) ∈ [w − gj(y)/y = 0]}

is equal to 1. If Nc > 1 we consider Vc,k(c) = [|w − c| ≤ k(c)] for some k(c) > 0
small enough. Otherwise c = (∂gj0/∂y)(0) for a unique 1 ≤ j0 ≤ N and we define
Vc,k(c) = [|w − gj0(y)/y| ≤ k(c)] for some k(c) > 0 small enough. The dynamics of
Re(Y (λ)) in Vc,k(c) is simple for Nc = 1 and k(c) << 1 because of lemmas 3.2.6
and 3.2.7.

Between the exterior zone and the sets Vc,k(c) (c ∈ F ) there is a set V C such
that V C is the closure of [|w| ≤ η] \ ∪c∈F Vc,k(c) deprived of y = 0. Since [|w| ≤
η] \ ∪c∈F Vc,k(c) is compact in (w, y) coordinates we say that V C is a compact-like
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basic set. The set V C does not contain singular points of X; hence the dynamics
of Re(Y (λ)) is simple in V C. Then, we are down to the point of describing the
dynamics of Re(Y (λ)) in Vc,k(c) for Nc > 1; this task is pretty much the original one
just replacing (X, Uε) with (Y, Vc,k(c)). Fortunately, the latter goal is easier because
we can separate all the components of f/ym = 0 by repeating this process a finite
number of times. Indeed, we are just desingularizing the curve f1 . . . fN = 0. At
the end of the process we have only exterior sets, compact-like sets and domains of
the form [|w| < k] such that [|w| < k]∩SingX = [w = 0] in some coordinates (w, y)
. These latter sets behave like exterior sets and then the domain Uε is partitioned
in exterior and compact-like sets. All the sets in the partition are called basic sets;
they are dynamically simple.

Example: Let f = x2(x− y)2(x− y2)2. The first exterior zone is of the form
Uη,+

ε for some η > 1. We have F = {0, 1}. The curves w = 0 and w = y pass
through (w, y) = (0, 0) whereas w = 1 pass through (w, y) = (1, 0). Thus, for
k(0) > 0 and k(1) > 0 small enough we have

V0,k(0) = [|w| ≤ k(0)] and V1,k(1) = [|w − 1| ≤ k(1)]

We have V C = [|w| ≤ η] \ ([|w| < k(0)] ∪ [|w − 1| < k(1)]). Since V0,k0 contains
two irreducible components of SingX then we consider the exterior zone (Uη′,+

ε )′ =
[|y|η′ ≤ |w| ≤ k(0)] for some η′ >> 0. For k′(0) > 0 and k′(1) > 0 small enough we
define the sets

V ′
0,k′(0) = [|w′| ≤ k′(0)] and V ′

1,k′(1) = [|w′ − 1| ≤ k′(1)].

in the system of coordinates (w′, y) given by (w, y) = (w′y, y). We also define
V C ′ = [|w′| ≤ η′] \ ([|w′| < k′(0)] ∪ [|w′ − 1| < k′(1)]). The basic sets are

Uη,+
ε , V C , V1,k(1) , (Uη′,+

ε )′ , V C ′ , V ′
0,k′(0) and V ′

1,k′(1).

The picture 5 corresponds to this example.

Figure 5. Partition of Uε ∩ [y = s] in basic sets

3.3.1. Dynamical finiteness of the partition. Any trajectory

Γ|x|≤ε
ξ(X(λ))[x, y][t0, t] ⊂ Uε
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is divided in several sub-trajectories entirely contained in the basic sets. More
precisely there exists a sequence t0 < t1 < . . . < tk = t such that

• Γ|x|≤ε
ξ(X(λ))[x, y][tj , tj+1] ⊂ Bj for a basic Bj and all 0 ≤ j ≤ k − 1.

• Bj 6= Bj+1 for all 0 ≤ j ≤ k − 2.

We denote split(Γ|x|≤ε
ξ(X(λ))[x, y][t0, t]) = k. The definition implies that Re(X(λ)) is

transversal to ∂Bj at Γ|x|≤ε
ξ(X(λ))[x, y](tj) for 1 ≤ j ≤ k − 1.

Lemma 3.3.1. Suppose N ≥ 1. There exists K > 0 such that

split(Γ|x|≤ε
ξ(X(λ))[x, y][t0, t]) ≤ K

for all possible trajectories of ξ(X(λ)) in Uε ∩ [y ∈ B(0, δ)].

Proof. We have split(Γ|x|≤ε
ξ(X(λ))[x, 0][t0, t]) = 1 since there is only one basic set

at y = 0. Consider a connected component C of the boundary of a basic set B.
The set C ∩ [y = y0] for y0 6= 0 encloses some singular points, namely (gj1(y0), y0),
. . ., (gjr (y0), y0). The indexes j1, . . ., jr do not depend on y0. Now consider
Tg(C) = 2(nj1 + . . . + njr

− 1). By construction the set C ∩ [y = y0] is tangent
to Re(X(λ)) in Tg(C) points for all y0 ∈ B(0, δ) \ {0} and all λ ∈ S1. We define
Tg =

∑
C∈J Tg(C) where J is the sets of boundaries of basic sets except ∂Uε. For

all (y0, λ) ∈ (B(0, δ)\{0})×S1 the set ∪C∈JC is a union of Tg points and Tg open
arcs which are transversal to Re(X(λ)). Therefore

split(Γ|x|≤ε
ξ(X(λ))[x, y0][t0, t]) ≤ Tg + 1

by the Rolle property. ¤
3.3.2. The variation is uniformly bounded. We define XV

g (y0, λ) the set
of couples of the form ((x0, y0)(x1, y0)) such that (x0, y0) ∈ V \[g = 0] and (x1, y0) ∈
Γ[|x|≤ε]∩V

ξ(X(λ)),+[x0, y0]. We define

V arg((x0, y), (x1, y)) = |Img ◦ ln ◦g(x1, y)− Img ◦ ln ◦g(x0, y)|
and

V arV
g (X)(y0, λ) = sup

((x0,y),(x1,y))∈XV
g (y0,λ)

V arg((x0, y), (x1, y)).

Finally we define V arV
g (X) = sup(y0,λ)∈B(0,δ)×S1 V arV

g (X)(y0, λ). We denote V arV
g (X)

by V arε,δ
g (X) if V = Uε∩ [y ∈ B(0, δ)]. The decomposition of the dynamics in basic

sets provides the basis to bound the variation V arε,δ
fj

(X).

Proposition 3.3.1. Suppose N ≥ 1. Let 1 ≤ j ≤ N ; then we have V arε,δ
fj

(X) <

∞ for ε << 1 and δ(ε) << 1.

Proof. By proposition 3.2.4 we have that V arε,δ
fj

(X)(0, λ) is bounded by any
constant greater than π/(ν̃(X)− 1) if we make ε > 0 small enough. It is enough to
bound V arε,δ

fj
(X)(y, λ) in (B(0, δ) \ {0})× S1.

We have fj = uj(x, y)(x− gj(y)) for some unit uj ∈ C{x, y}. Since ln uj(x, y)
is a holomorphic function in Uε,δ for ε << 1 and δ << 1 then we can suppose that
fj = x− gj(y).

Consider (x1, y0) = Γ|x|≤ε
ξ(X(λ))[x0, y0](t) for some t > 0 and y0 6= 0. There exists

0 = t0 < . . . < tk = t such that Γ|x|≤ε
ξ(X(λ))[x, y0][tj , tj+1] is contained in a basic
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set for 0 ≤ j ≤ k − 1. Moreover, we can suppose k < K for a constant K > 0
only depending on X by lemma 3.3.1. As a consequence it is enough to prove
V arfj

(X)((x0, y0), (x1, y0)) < DB for a constant DB > 0 depending only on X if
Γ|x|≤ε

ξ(X(λ))[x0, y0][0, t] is contained in a basic set B.
If B is the first exterior set then we can choose DB to be any positive number

greater than π/(ν̃(X) − 1) by proposition 3.2.4. Otherwise, we define the vector
field Y = (wy, y)∗X/ym+n1+...+np−1 and f ′j = w − g′j(y) = w − gj(y)/y. Since

ln(x− gj(y))(wy, y) = ln y + ln(w − gj(y)/y)

then V arfj
((x0, y0), (x1, y0)) = V arf ′j ((w0, y0)(w1, y0)) where we denote wl = xl/y0

for l ∈ {0, 1}. Moreover, we have

(w1, y0) ∈ Γ|x|≤ε

ξ(Y (ei(n1+...nN−1) arg(y0)λ))
[w0, y0][0, t|y0|n1+...+nN−1] ⊂ B.

As a consequence it is enough to bound V arB
f ′j

(Y )(y, λ) for all (y, λ) in B(0, δ)×S1.
If B is the first compact-like set V C we remark that SingY ∩ V C = ∅ and that
V C = [|w| ≤ η] \ ∪c∈F

o

V c,k(c) is compact. Therefore V arB
f ′j

(Y )(y, λ) is un upper

semi-continuous function and then bounded in the compact set B(0, δ/2)× S1.
If c ∈ F \ {g′j(0)} then f ′j is a unit in the simply connected set Vc,k(c) and then

ln f ′j is holomorphic. We can choose

DB = max
P∈Vc,k(c)∩[y∈B(0,δ)]

Img ◦ ln f ′j(P )− min
P∈Vc,k(c)∩[y∈B(0,δ)]

Img ◦ ln f ′j(P )

for all B ⊂ Vc,k(c).
If c = g′j(0) and B ⊂ Vc,k(c) then we just iterate the process. In this way we

find a bound DB for all basic set B. ¤
We just proved that spiraling wildly around the singular points is excluded for

Re(X) if X is a (NSD) vector field. Because of the absence of irregular behavior
the topological type of X can be characterized in terms of the residue functions.

3.3.3. The compact-like sets. The only basic sets which can support non
topologically trivial dynamics (with respect to y) are the compact-like sets. These
sets are the places where the interesting phenomena regarding the evolution of the
dynamics are located.

Let X = u(x, y)ym(x− g1(y))n1 . . . (x− gN (y))nN ∂/∂x. We denote cj = (∂gj/∂y)(0).
Let X00 = u(0, 0)(x− c1y)n1 . . . (x− cNy)nN ∂/∂x. Since

T
|x|<ε

X00(ei(arg(y0)+θ)m)
= e−

m
ν̃(X)−1 iθT

|x|<ε

X00(ei arg(y0)m)

then the points in T
|x|<ε

X00(ei arg(y)m)
move at speed −m/(ν̃(X) − 1) with respect to

arg(y). We have X = |y|mX(ei arg(y)m); hence the situation for T
|x|<ε
X (y) is very

similar because the derivative of argε
X with respect to arg x at ((x, y), λ) tends to

ν̃(X) − 1 if (ε, y) → 0. As a consequence the points in T
|x|<ε
X (y) move at a speed

tending to −m/(ν̃(X)− 1) with respect to arg(y) if (ε, y) → 0.
We consider

Y = u(wy, y)(w − g1(y)/y)n1 . . . (w − gN (y)/y)nN ∂/∂w

and
Y0 = Y00 = u(0, 0)(w − c1)

n1 . . . (w − cN )nN
∂

∂w
.
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The vector field Y (ei(m+n1+...+np−1) arg(y)) is equal to (wy, y)∗X up to a positive
multiplicative function. Since the limit of the dynamics of Y (ei(m+ν̃(X)−1) arg(y))
when y → 0 is Y00(ei(m+ν̃(X)−1) arg(y)) we will focus in the latter vector field. We
remark that (wy, y)∗X00(eim arg(y)) is equal to Y00(ei(m+ν̃(X)−1) arg(y)) up to a mul-
tiplicative positive function. Therefore, studying the behavior of Y00 and X00 in
the first compact-like zone V C are equivalent goals.

For y1 = y0e
(iπk)/(m+ν̃(X)−1) we have that

Y00(ei(m+ν̃(X)−1) arg(y1)) = (−1)k
Y00(ei(m+ν̃(X)−1) arg(y0)).

We have that Re(Y00(ei(m+ν̃(X)−1) arg(y1))) and Re(Y00(ei(m+ν̃(X)−1) arg(y0))) are
topologically equivalent by the mapping

Hk : (w, y) 7→ (w, ei πk
m+ν̃(X)−1 y).

This mapping is equal to

Hk : (x, y) 7→ (xei πk
m+ν̃(X)−1 , ei πk

m+ν̃(X)−1 y).

expressed in (x, y) coordinates. Suppose k = 1. We have

H1(T
ε,j

X00(eim arg(y0))
(y0)) = ei π

m+ν̃(X)−1 T ε,j

X00(eim arg(y0))
(y0).

We also have

T ε,j

X00(eim arg(y1))
(y1) ∼ ei −mπ

(ν̃(X)−1)(m+ν̃(X)−1) T ε,j

X00(eim arg(y0))
(y0)

since the speed of the tangent points of T
|x|<η|y|
X00(eim arg(y))

(y) move at speed close to
−m/(ν̃(X)− 1) with respect to arg(y) for η >> 0. Then

T ε,j+1

X00(eim arg(y1))
(y1) ∼ ei( −mπ

(ν̃(X)−1)(m+ν̃(X)−1)+
π

ν̃(X)−1 )T ε,j

X00(eim arg(y0))
(y0)

implies
T ε,j+1

X00(eim arg(y1))
(y1) = H1(T

ε,j

X00(eim arg(y0))
(y0)).

By iteration we obtain

T ε,j+k

X00(eim arg(y1))
(y1) = Hk(T ε,j

X00(eim arg(y0))
(y0)).

for k ≥ 0. The application Hk changes the roles of the tangent points, forcing
dynamics to rotate. The dynamics is not topologically trivial in V C with respect
to the parameter y except if all the tangent points in T

|x|<η|y|
X00(eim arg(y))

(y) play the
same role, i.e. ca = cb for all a, b ∈ {1, . . . , N}. Since the irreducible components
of f = 0 are separated by the desingularization process then for N > 1 there are
compact-like basic sets supporting non topologically trivial dynamics.



CHAPTER 4

The T-sets

4.1. Unstable set and bi-tangent cords

We define UN ε
X ⊂ B(0, δ) such that y0 ∈ B(0, δ) \ UN ε

X if there exists a
continuous family σy : [|x| ≤ ε] → [|x| ≤ ε] of oriented homeomorphisms for y in a
neighborhood W of y0 such that

• σy0 ≡ Id
• ξ(X, y0, ε) and ξ(X, s, ε) are topologically equivalent by σs.

Consider the projections πS and πT obtained by restraining to SingX and T ε
X

respectively the mapping (x, y) 7→ y. The mappings πS and πT are ramified cov-
erings in their domains of definition. Their ramification places satisfy (ram(πS) ∪
ram(πT )) ∩ (B(0, δ) \ {0}) = ∅ by the choice of the domain Uε,δ and proposition
3.1.2. As a consequence we obtain

SingX ∩ [y = reiθ] ∩ Uε = {S1
X(r, θ), . . . , SN

X (r, θ)}
T ε

X ∩ [y = reiθ] = {T ε,1
X (r, θ), . . . , T ε,2(ν̃(X)−1)

X (r, θ)}
for 0 ≤ r << 1 and θ ∈ R. The sections Sj

X and T ε,k
X are real analytic. The list

Lε
X(s) associated to ξ(X, s, ε) is composed of sets of the types

{Sa(s), T ε,b(s)} , {T ε,a,a+1(s), T ε,b(s)} and {T ε,a(s), T ε,b(s)}.
When we vary the parameter s the first two types persist locally. On the other
hand, the sets of type {T ε,a, T ε,b} are unstable. We call bi-tangent cords the critical
trajectories containing two tangent points. We will describe the set of parameters
containing a bi-tangent cord; this set is the natural candidate to be UN ε

X \ {0}.
4.1.1. Partitions of the singular points and the basic formula. We

suppose SingX 6⊂ [y = 0]; otherwise there are no singular points to deal with.
Let 0 < ε′ < ε; there exists a small c(ε′) > 0 such that SingX and [ε′/2 ≤
|x| ≤ ε] × [0 < |y| ≤ c(ε′)] are disjoint. Let (x0, y0, λ) be an element of the set
[ε′ ≤ |x| ≤ ε]×B(0, c(ε′))×S1; we define ML(x0, y0, λ) the maximum non negative
number such that

Γε′≤|x|≤ε
ξ(X(λ)),+[x0, y0][0,ML(x0, y0, λ)] ⊂ [ε′ ≤ |x| ≤ ε].

It is straightforward to check out that ML is upper semi-continuous and then it
attains its maximum in [ε′ ≤ |x| ≤ ε]×B(0, c(ε′))× S1. We denote this maximum
by MX(ε′).

Consider a trajectory γ : [0, t] → Uε∩ [y = y0] of Re(X(λ0)) for some (y0, λ0) ∈
B(0, c(ε′))× S1. Suppose also that γ(0), γ(t) ∈ [|x| ≥ ε′] and that t > MX(ε′). We
claim that γ splits the singular points. We notice that γ intersects |x| = ε′ since
otherwise we would have t ≤ MX(ε′). Moreover ](γ ∩ [|x| = ε′]) ≥ 2, this is a
consequence of the convexity of the tangent points. Suppose ](γ ∩ [|x| = ε′]) = 2,

41
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let γ(a) and γ(b) (0 ≤ a < b ≤ t) be the points in γ ∩ [|x| = ε′]. We denote
βε′ = γ[a, b]. Let κγ be a path in ∂Uε′ ∩ [y = y0] going from γ(a) to γ(b) in
counter clock wise sense. The path βε′κ

−1
γ encloses a connected component C−(y0)

of (Uε′ ∩ [y = y0]) \ βε′ , the latter set has another connected component that we
denote by C+(y0). We define

E−(y0) = C−(y0) ∩ SingX and E+(y0) = C+(y0) ∩ SingX.

Since SingX ∩ [y = y0] ⊂ Uε′ then (E−(y0), E+(y0)) induces a partition of the
singular points. We can extend continuously E− and E+ to the set [0 ≤ r ≤
c(ε′)]∩ [θ ∈ R]; more precisely if E−(r0e

iθ0) is equal to {Sj1
X (r0, θ0), . . . , S

jd

X (r0, θ0)}
then E−(r, θ) = {Sj1

X (r, θ), . . . , Sjd

X (r, θ)}.
We can play basically the same game if ](γ ∩ [|x| = ε′]) > 2; let a = t1 ≤ . . . ≤

t2k = b the sequence of times in which γ[0, t] intersects ∂Uε′ . For 1 ≤ j < k we
choose t2j = t2j+1 if γ(t2j) ∈ T ε′

X(λ0)
(r0, θ0). We choose t2j−1 < t2j for all 1 ≤ j ≤ k.

Consider a couple (t2j , t2j+1) for 1 ≤ j < k. We have γ[t2j , t2j+1] ⊂ |x| ≥ ε′; we
define γ(t′l) as

{γ(t′l)} = Γε′/2≤|x|≤ε

ξ(X(λ0),y0),(−1)l+1 [γ(tl)] ∩ ∂Uε′/2

for l ∈ {2j, 2j + 1}. The trajectory γ[t′2j , t
′
2j+1] is homotopic in the set Uε \ SingX

to a path γj contained in ∂Uε′/2 and whose initial and ending points are γ(t′2j) and
γ(t′2j+1) respectively (see picture 1). The path βε′ = γ[t1, t′2]γ

1γ[t′3, t
′
4] . . . γ

k−1γ[t′2k−1, t2k]

Figure 1. Changing γ[t2j , t2j+1] by γj

is contained in Uε′ ; moreover β′ε \ {γ(a), γ(b)} ⊂ Uε′ . We stress that γ does not
cut twice any exterior region in ε′/2 ≤ |x| ≤ ε because of the Rolle property. As a
consequence the path βε′ is simple. We can nowdefine C−, C+, E− and E+ in an
analogous way than for the case ](γ ∩ [|x| = ε′]) = 2.

If we consider ε′ < ε′′ < ε then the partitions of the singular points induced by
βε′ is the same one than the partition induced by βε′′ . Of course, the same result
holds for ε′′ < ε′ if |y0| < c(ε′′).

We introduce the formula that is going to allow us to make a qualitative de-
scription of the dynamics of Re(X). We remind the reader that m is the only
non-negative integer such that ym|f but ym+1 6 |f . Let ψ0(., y0) be an integral of
the time form of X(1) defined in a neighborhood of γ(0) in y = y0; we extend ψ0
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analytically along the path γ[0, a]κγγ[b, t] to obtain an integral ψ1(., y0) of the time
form of X(1) defined in the neighborhood of γ(t) in y = y0. Let ψ′1(., y0) be the
integral of the time form of X(1) defined in the neighborhood of γ(t) and obtained
by analytic continuation along γ[0, t]. By the properties of the integral of the time
form we have

t =
ψ′1
λ0

(γ(t))− ψ0

λ0
(γ(0)).

The theorem of residues implies that

t =
ψ1

λ
(γ(t))− 2πi

∑

P∈E−(y0)

ResX(λ)(P )− ψ0

λ
(γ(0)).

We will use the right hand side of the previous formula to calculate the time that
Re(X(λ)) spends to join two points in the same trajectory.

There is a reason to replace ψ′1 with ψ1. Suppose we have a sequence of trajec-
tories γn[0, tn] ⊂ Uε ∩ [y = yn] such that yn 6= 0 for all n ∈ N and limn→∞ yn = 0.
We also ask γn to fulfill that I = limn→∞ γn(0) and L = limn→∞ γn(tn) exist and
that they are both different than (0, 0). Consider 0 < ε′ < ε such that Uε′ contains
neither I nor L. The limit of the paths γn[0, tn] does not necessarily exist, moreover
if it exists it can be non-simple. Despite of this, the limit of γ[0, an]κγnγ[bn, tn] has
always a limit; the limit is a path σ. We can now define ψ0 to be an integral of the
time form of X(1) defined in the neighborhood of I in C2 whereas we define ψ1 to
be the analytic continuation along σ. The formula

Time =
ψ1

λ
(final pt.)− 2πi

∑

P∈E−(r,θ)

ResX(λ)(P )− ψ0

λ
(initial pt.)

involves holomorphic functions ψ0 and ψ1 whereas ψ′1 can not be chosen holomor-
phic in the neighborhood of L. In this way we relate the complexity of the dynamics
with the residue functions.

4.1.2. Cords. We consider sections of the form S : (R≥0, 0)× R such that

• S(r, θ) ∈ Uε ∩ [y = reiθ] for all (r, θ) ∈ (R≥0, 0)× R.
• S(0, θ) 6= (0, 0) for all θ ∈ R.
• S(r, θ + 2πk) = S(r, θ) ∀(r, θ) ∈ (R≥0, 0)× R and some k ∈ N.
• S(r, θ) is real analytic in (R≥0, 0)× R.

We call them nice sections for X in Uε.
Example: A trivial example is S′(r, θ) = (x0, re

iθ) for some x0 6= 0. The stan-
dard example is S(r, θ) = T ε,j

X (r, θ); in this case θ → θ + 2π induces a permutation
in T ε

X(reiθ). We obtain S(r, θ) = S(r, θ + 2πk) for some k ∈ N; moreover, we can
choose k = |ν̃(X)− 1|.

For two nice sections S0(r, θ) and S1(r, θ) we say that they have no finite con-
nection on H ⊂ R if

• ωξ(X(eiθm)),([|x|<ε]∪{S0(0,θ)})(S0(0, θ)) = (0, 0) for all θ ∈ H.
• αξ(X(eiθm)),([|x|<ε]∪{S1(0,θ)})(S1(0, θ)) = (0, 0) for all θ ∈ H.
• S1(0, θ) 6∈ Γ|x|≤ε

ξ(X(eiθm)),+
[S0(0, θ)] for all θ ∈ H.

We will always suppose that H is closed and invariant by θ → θ + 2πk for some
k ∈ Z \ {0}. We say that S0 and S1 have no finite connection if they have no finite
connection on R. As a consequence we obtain
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Lemma 4.1.1. Let S0 and S1 be two nice sections for X in Uε with no finite
connection on H. Then, for all C > 0 there exists K(C) > 0 such that

S1(r, θ) 6∈ Γ|x|≤ε

ξ(X(eiθm)),+
[S0(r, θ)][0, C]

for all (r, θ) ∈ B(0,K(C))× [∪θ′∈HB(θ′,K(C))].

Remark 4.1.1. By last lemma the trajectories of Re(X) from S0(r, θ) to S1(r, θ)
induce a partition of SingX for (r, θ) close to {0} ×H.

Consider two nice sections S0 and S1 with no finite connection on H for X in
Uε. We can define a holomorphic integral ψ0 of the time form of X(1) in an open
set containing S0(r, θ) for r << 1 and θ ∈ R; we just define ψ0 in a neighborhood
of S0(0, 0) and then we make analytic continuation. We choose ε′ > 0 such that
Sj(0, θ) 6∈ Uε′ for j ∈ {0, 1}; by lemma 4.1.1 we can use the process in subsection
4.1.1 to define a holomorphic ψ1 for parameters in the neighborhood of {0} × H.
We consider a continuous partition (E−(r, θ), E+(r, θ)) of the singular points. We
define

IS0,S1,E(r, θ) =
ψ1

eiθm
(S1(r, θ))− 2πirm

∑

P∈E−(s)

ResX(P )− ψ0

eiθm
(S0(r, θ)).

The function IS0,S1,E(r, θ) is real analytic outside r = 0 where it is maybe not
defined because

∑
P∈E−(s) ResX(P ) is the ramification of a meromorphic function.

We denote by TS0,S1,E the set of parameters (r0, θ0) such that there exists a tra-
jectory γ[0, t] in Uε ∩ [y = r0e

iθ0 ] of Re(X) satisfying γ(0) = S0(r0, θ0), γ(1) =
S1(r0, θ0) and inducing the partition (E−(r0, θ0), E+(r0, θ0)). We have (r0, θ0) 6∈
{0} ×H by the no finite connection hypothesis. We obtain t = IS0,S1,E(r0, θ1)/rm

0

since we have X = |y|mX(eiθm). The next lemma is an immediate consequence of
the previous discussion.

Lemma 4.1.2. Let S0 and S1 be nice sections for X in Uε with no finite con-
nection on H and let E = (E−, E+) be a continuous partition of SingX. Then the
germ of TS0,S1,E at {0} ×H is contained in I−1

S0,S1,E(R+).

We define TS0,S1 = ∪E∈JTS0,S1,E where J is the set of continuous partitions
(E−, E+) of SingX.

Proposition 4.1.1. If µ(
∑

P∈E−(s) ResX(P )) ≤ m then the germ of the set
TS0,S1,E at {0} ×H is empty.

Proof. We choose 0 < ε′ < ε such that ε′ < min(j,θ)∈{0,1}×R Sj(0, θ). Since the
length of the trajectories of Re(X(eiθm)) is bounded by MX(ε′) on ε′ ≤ |x| ≤ ε and
[|x| = ε′]∩ [|y| ≤ c(ε′)] is compact then [ψ1(S1(r, θ))−ψ0(S0(r, θ))]/eiθm is bounded
for (r, θ) belonging to TS0,S1,E ∩V for some neighborhood V of {0}×H. Therefore,
the hypothesis implies that there exists C > 0 such that IS0,S1,E(r, θ) < C if
(r, θ) ∈ TS0,S1,E ∩ V ′ for some neighborhood V ′ of {0} × H. We deduce that
TS0,S1,E = ∅ by lemma 4.1.1. ¤

We can focus on the partitions satisfying µ(
∑

P∈E−(s) ResX(P )) > m.

Lemma 4.1.3. Suppose µ(
∑

P∈E−(s) ResX(P )) > m. Then I−1
S0,S1,E(R+) is a

finite union of branches of analytic sets.
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Proof. We denote IS0,S1,E by I. The hypothesis of the lemma is invariant
under ramification as well as the real analytic sets. Hence, up to ramify by R =
(x, yN1...Np) we can suppose that

∑
P∈E−(y) ResX(P ) is a meromorphic function.

We have

−2πi
∑

P∈E−(y)

ResX(P ) =
C

yd
+

∑

j∈Z>−d

Cjy
j =

C

yd
+ O

(
1

yd−1

)
.

for some d ∈ Z>m and C ∈ C∗. Hence, we obtain

I(r, θ)rd−m = Ce−iθd + O(r).

Moreover, the function I(r, θ)rd−m is real analytic. Since I ∈ R+ coincides with
Ird−m ∈ R+ the set I−1(R+) adheres to the set

DL =
{

j ∈ Z :
(

0,
arg C

d
+

2πj

d

)}
.

Since S0 and S1 are nice we have Sj(r, θ + 2πk) = Sj(r, θ) for some k ∈ N and all
j ∈ {0, 1}. As a consequence I−1(R+) is invariant by (r, θ) → (r, θ + 2πk). We
deduce that I−1(R+) is also the union of the irreducible components of I−1(R+)
adhering the finite set

DL′ = {0 ≤ j < kd : (0, arg(C)/d + (2πj)/d}.
Then it is enough to prove that in the neighborhood of a point (0, θ0) in DL the
set I−1(R+) is a branch of a real analytic set. Since

I(r, θ)rd−m = |C|e−i(θ−θ0)d + O(r)

then Re(I(r, θ)rd−m) ∈ R+ in the neighborhood of (0, θ0). Moreover, we obtain

Img(I(r, θ)rd−m) = −|C|(θ − θ0)d + O(r + (θ − θ0)
2)

and then Img(I(r, θ)rd−m) = 0 is a smooth real analytic curve parameterized by r.
It is still smooth in the y plane since it is transversal to the divisor r = 0. Moreover,
its branch [Img(I(r, θ)rd−m) = 0] ∩ [r > 0] coincides with the germ of I−1(R+) at
(0, θ0). ¤

Remark 4.1.2. If all the components of SingX different than y = 0 are pa-
rameterized by the coordinate y then I−1

S0,S1,E(R+) is a finite union of branches of
smooth real analytic sets.

4.1.3. Definition, analyticity and finiteness of the T-sets. Let S0, S1 be
two nice sections (for X in Uε) with no finite connection on H. We consider the set
of curves IB

S0,S1
= {βj}j∈J such that βj ∈ IB

S0,S1
if there exists a triple (L0, L1, E)

such that
• Lj ∈ {Sj} ∪2|ν̃(X)−1|

l=1 {T ε,l
X } for j ∈ {0, 1}.

• µ(
∑

P∈E−(s) ResX(P )) > m.
• βj is an irreducible component of I−1

L0,L1,E(R+).
The nice sections L0 and L1 do not have finite connections on H; this is a conse-
quence of the definition of no finite connection for S0, S1 and the remark 3.2.3. If
we restrict (L0, L1) to be (S0, S1) in the previous definition we obtain the set IS0,S1 ;
it clearly satisfies IS0,S1 ⊂ IB

S0,S1
. Since the tangent sections and the continuous

partitions of SingX are both finite sets then J is a finite set.
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Lemma 4.1.4. Consider two nice sections S0, S1 for X in Uε with no finite
connection on H and a continuous partition E = (E−, E+) of SingX. Let β be a

semi-analytic curve such that (reiθ)−1(β) ∩ [r = 0] is contained in {0} ×H. Then
β ∩ TS0,S1,E 6= ∅ implies β ⊂ TS0,S1,E.

Proof. We can suppose that β∩βj 6= ∅ implies β ⊂ βj by considering Uε,δ for
a smaller δ > 0. We can suppose µ(

∑
P∈E−(s) ResX(P )) > m by proposition 4.1.1.

Since β∩I−1
S0,S1,E(R+) 6= ∅ then β ⊂ I−1

S0,S1,E(R+). Let (r0, θ0) ∈ β∩TS0,S1,E . Con-
sider the piece of trajectory γ[t0, t1] of Re(X) in Uε ∩ [y = r0e

iθ0 ] such that γ(tj) =
Sj(r0, θ0) for j ∈ {0, 1} and γ[t0, t1] induces the partition (E−(r0, θ0), E+(r0, θ0))
of the equilibrium points. We consider the finite set γ(t0, t1)∩ ∂Uε whose elements
are

γ(d1) = T ε,a1
X (r0, θ) , γ(d2) = T ε,a2

X (r0, θ0) , . . . , γ(dh) = T ε,ah

X (r0, θ0)

for some h ≥ 0. We suppose t0 = d0 < d1 < . . . < dh < dh+1 = t1. The no
finite connection hypothesis implies that γ[ak, ak+1] induces a partition Ek of the
equilibrium points for 0 ≤ k ≤ h. We denote A0 = S0, Ah+1 = S1 and Ak = T ε,ak

X

for 1 ≤ k ≤ h.
For all k ∈ {0, . . . , h} we define the set Hk ⊂ TAk,Ak+1,Ek

composed by the
lines y1 ∈ β such that there exists a trajectory γk[c, d] of Re(X) in Uε ∩ [y = y1]
satisfying

γk(c) = Ak(y1) , γk(d) = Ak+1(y1) and γk(c, d) ∩ ∂Uε = ∅.
We have r0e

iθ0 ∈ Hk ⊂ TAk,Ak+1,Ek
⊂ I−1

Ak,Ak+1,Ek
(R+) for all 0 ≤ k ≤ h.

By proposition 4.1.1 we have that µ(
∑

P∈Ek,−(s) ResX(P )) > m; therefore β ⊂
I−1
Ak,Ak+1,Ek

(R+) for all 0 ≤ k ≤ h. We deduce that every set Hk is open in β by
continuity of the flow. As a consequence TS0,S1,E is open in β.

It is enough to prove that Hk is closed in β for all 0 ≤ k ≤ h because then
TS0,S1,E ⊂ β by connectedness. Suppose there exists y1 in β ∩ [Hk \ Hk], then
Uε ∩ [y = y1] contains a trajectory γ′k[c, d] of Re(X) satisfying

γ′k(c) = Ak(y1) , γ′k(d) = Ak+1(y1) and γ′k(c, d) ∩ ∂Uε 6= ∅.
We choose a point γ′k(e) = T

ε,ak+1/2

X (y1) in γ′k(c, d) ∩ ∂Uε. We denote T
ε,ak+1/2

X by
Ak+1/2. We denote by F and G the partitions of the equilibrium points induced by
γ′k[c, e] and γ′k[e, d] respectively. By the first part of the proof the sets TAk,Ak+1/2,F

and TAk+1/2,Ak+1,G are open in βj . Hence y1 6∈ Hk, that is a contradiction. ¤

Corollary 4.1.1. Let S0, S1 be nice sections with no finite connection on
H for Re(X) in Uε. Then, the germ of TS0,S1 at {0} × H is a finite union of
semi-analytic sets.

Proof. The set IS0,S1 is a finite union of branches of real analytic sets by
lemma 4.1.3. We are done, since by lemma 4.1.4 the germ of TS0,S1 at {0} ×H is
the union of some branches of IS0,S1 . ¤

Corollary 4.1.2. Let S0, S1 be nice sections with no finite connection for
Re(X) in Uε. Then TS0,S1 is a finite union of semi-analytic sets.

By definition a T-set is a connected component of the set of parameters ∪j 6=kTT ε,j
X ,T ε,k

X

containing a bi-tangent cord. The results in this section imply
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Proposition 4.1.2. Let X = f∂/∂x be a germ of vector field defined in Uε,δ

and satisfying the (NSD) conditions. Every T -set is a branch of real analytic curve.
Moreover, there are finitely many T -sets.

Corollary 4.1.3. UN ε
X \ {0} is the union of the T -sets

4.2. Dynamical instability

So far we did not prove the existence of a (NSD) vector field X having at least
one T -set; this is the aim of this section.

4.2.1. Definition and properties of zones. We call zones the connected
components of B(0, δ) \ UN ε

X . We can enumerate the T-sets β1, . . ., βl, βl+1 = β1

by using a counter clock wise order. If UN ε
X \ {0} = ∅ then there is only one zone

Zε
X,1. Otherwise there are exactly l zones; we denote by Zε

X,j (1 ≤ j ≤ l) the zone
whose boundary contains the set βj ∪ βj+1. We will use the notation Zε

j if the
vector field X is implicitly known.

A zone Zε
j adheres to either a point or to a closed arc of directions. In the

former case it is a narrow zone, otherwise it is a wide zone.

Lemma 4.2.1. Suppose ν̃(X) > 0. Let Zε
X be a wide zone. Then for all y0 ∈ Zε

X

we have
(αξ(X,y0), ωξ(X,y0))

−1

|x|<ε
(∞,∞) = ∅.

Proof. We define

D(y1) = (αξ(X,y1), ωξ(X,y1))
−1

|x|<ε
(∞,∞)

for y1 ∈ B(0, δ). Suppose that there exists y0 ∈ Zε such that D(y0) 6= ∅. In such a
case D(y1) 6= ∅ for all y1 ∈ Zε because Zε ∩ UN ε

X = ∅. We replace X with −X if
necessary to obtain a point T ε,a

X (y) such that

γy def
= Γ(|x|<ε)∪{T ε,a

X (y)}
ξ(X),+ [T ε,a

X (y)]

is a critical tangent cord (see subsection 2.1.4) for all y ∈ Zε. The continuous curve
y → γy induces a continuous partition E(y) of the equilibrium points. Let Q(y) be
the only point in (γy ∩ ∂Uε) \ {T ε,a

X (y)} for all y ∈ Zε. We define

I(y) =
ψ1

eiθm
(Q(y))− 2πirm

∑

P∈E−(y)

ResX(P )− ψ0

eiθm
(T ε,a

X (y))

for y = reiθ ∈ Zε. Let d = µ(
∑

P∈E−(s) ResX(P )). We proceed as in the proof
of proposition 4.1.1 to show that [ψ1(Q(y)) − ψ0(T

ε,a
X (y))]/eiθm is bounded in Zε.

Moreover, we can also obtain that if d ≤ m then there exists D > 0 such that
I < D in Zε. Since ∂Uε ∩ γy(0, D] = ∅ by continuity of the flow and remark 3.2.3
then d > m. We obtain I(y)|y|d−m = Ce−iθd +O(r1/q) for some C ∈ C∗ and q ∈ N
like in the proof of lemma 4.1.3. The set I−1(R+) adheres to the d directions in
Cλ−d ∈ R+. Hence Zε adheres to a finite set of directions; since Zε is connected
then it is a narrow zone. ¤

We explain now that the graph G|x|<ε
ξ(X,y0)

is connected for most of the parameters.

Corollary 4.2.1. Let Zε
X be a wide zone. Then for all y0 ∈ Zε

X the graph
G|x|<ε

ξ(X,y0)
is connected.
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Proof. If ν̃(X) = 0 then the graph has no vertexes and it is clearly connected.
Otherwise, lemma 4.2.1 and proposition 2.1.3 imply that the graph is connected. ¤

4.2.2. The graph does not have permanent edges. Since G|x|<ε
ξ(X,y) is con-

nected for most of the parameters the absence of permanent edges will imply the
existence of T -sets for ν̃(X) > 0.

Proposition 4.2.1. There is not an edge Sj
X(y) → Sk

X(y) in G|x|<ε
ξ(X,y) for all

y ∈ B(0, δ) \ {0}.
We clarify the statement. We consider a point r0e

iθ0 ∈ B(0, δ) \ {0} and an
edge Sj

X(r0, θ0) → Sk
X(r0, θ0). The equilibrium points Sj

X(r, θ) and Sk
X(r, θ) are

obtained by analytical prolongation. Hence, the proposition only makes real sense
in [0 < r < δ] ∩ [θ ∈ R].

Proof. Up to ramify by R we can suppose that all the components of SingX
different than y = 0 are parameterized by y. Suppose there is a permanent edge
(∆1(y), y) → (∆2(y), y) for all y ∈ B(0, δ)\{0}. The vector field X can be expressed
in the form

X = (x−∆1(y))l1(x−∆2(y))l2h(x, y)
∂

∂x
where lj ≥ 2 and gcd(h(x, y), x −∆j(y)) = 1 for all j ∈ {1, 2}. We denote by Xj

the germ of X at x = ∆j(y) for j ∈ {1, 2}. We have that

Θ−1 (y)
def
= Θ−(ξ(X1, y)) = ζ1(y){1, e(2πi)/(l1−1), . . . , e(2πi)(l1−2)/(l1−1)}

where

ζ1(y) = l1−1

√
|∆1(y)−∆2(y)|l2 |h(∆1(y), y)|
(∆1(y)−∆2(y))l2h(∆1(y), y)

.

The directions in Θ−1 (y0) turn

−C1 = −ν((∆2(y)−∆1(y))l2h(∆1(y), y))
l1 − 1

times (in counter clock wise sense) when y travels along θ 7→ y0e
2πiθ (θ ∈ [0, 1]). By

convention to turn a negative amount of radians in counter clock wise sense is the
same thing than turning in clock wise sense. In an analogous way the directions in
Θ+(ξ(X2, y0)) turn

−C2
def
= −ν((∆2(y)−∆1(y))l1h(∆2(y), y))

l2 − 1

times around x = ∆2(y0) when y goes along the path θ 7→ y0e
2πiθ (θ ∈ [0, 1]). We

define
D(y0) = (αξ(X), ωξ(X))

−1

|x|<ε
((∆1(y0), y0), (∆2(y0), y0)).

We denote by D′(y0) the set of trajectories of ξ(X, y0, ε) contained in D(y0). The
set D(y0) is connected for all y0 ∈ B(0, δ) \ {0} by lemma 2.1.7. Thus D(y0)
adheres to unique directions λ1(y0) ∈ Θ−(ξ(X1, y0)) and λ2(y0) ∈ Θ+(ξ(X2, y0))
by proposition 2.2.1.

Consider the real blow-up ρ of the curves x = ∆1(y) and x = ∆2(y). If
γ ∈ D′(y0) we define γ̃ = ρ−1(γ). The starting point of γ̃ is λ1(y0) whereas the
ending point of γ̃ is λ2(y0). Let γ1, γ2 in D′(y0); by lemma 2.1.9 there exists an
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homotopy γ̃1+c (c ∈ [0, 1]) where γ1+c ∈ D′(y0) for all c ∈ [0, 1]. We denote by γ̃(y)
the unique homotopy class induced by the liftings of the elements of D′(y).

Fix y0 ∈ B(0, δ) \ {0} and consider the path θ 7→ y0e
2πiθ (θ ∈ [0, 1]). Since

the starting points of γ̃(y0) and γ̃(y0e
2πi) are equal then C1 ∈ N. In an analogous

way we obtain that C2 ∈ N. For j ∈ {1, 2} we choose a loop σj in ρ−1(∆j(y0), y0)
turning once in counter clock wise sense; we also ask σj for having λj(y0) as initial
and ending point. We define Dj = Cj + ν(∆1(y)−∆2(y)) for j ∈ {1, 2}. We travel
along the path θ → γ̃(y0e

2πiθ) (θ ∈ [0, 1]) to obtain

γ̃(y0e
2πi) = σD1

1 γ̃(y0)σD2
2 .

We also know that γ̃(y0) = γ̃(y0e
2πi). This is a contradiction, since the topological

type of ρ−1(y = y0) is a figure eight and D1 6= 0 6= D2. ¤

Figure 2. X = x2(x− y)2∂/∂x. Parameters θ = 0, 1/8, 1/4

Figure 3. Parameters θ = 1/2 and θ = 1

Example: We consider X = x2(x− y)2∂/∂x. For all y0 ∈ R+ the real line

is invariant by ξ(X, y0, ε). Moreover (0, y0) → (y0, y0) belongs to G|x|<ε
ξ(X,y0)

. The
pictures 2 and 3 illustrate the evolution of γ̃(e2πθiy0) supposed (0, y) → (y, y) is a



50 4. THE T-SETS

permanent edge of the graph. We have γ̃(e2πiy0) = σ3
1 γ̃(y0)σ3

2 and as a consequence
the paths γ̃(e2πiy0) and γ̃(y0) are not homotopic.

We defined N as ](SingX ∩ Uε ∩ [y = y0]) for y0 ∈ B(0, δ) \ {0}; the number
N does not depend on y0.

Corollary 4.2.2. Let X be a (NSD) vector field defined in Uε,δ. If N > 1
then there is at least a T-set, i.e. UN ε

X ∩ (B(0, δ) \ {0}) 6= ∅.
Proof. If there are no T-sets then the only zone is UN ε

X \ {0}. Since it is
wide the graph is connected. Therefore, there is at least a permanent edge in the
graphs G|x|<ε

ξ(x,y). That contradicts proposition 4.2.1. ¤

Next lemma focuses on the evolution of the dynamics in the neighborhood of
a point in the limit fiber y = 0.

Lemma 4.2.2. Suppose that N > 1 and (y = 0) 6⊂ SingX. Let (x0, 0) be a
point contained in Uε \ {(0, 0)} such that ωξ(X),|x|<ε(x0, 0) = (0, 0). Then the set

{y ∈ B(0, δ) : ωξ(X),|x|<ε(x0, y) = ∞}
adheres to 0.

Proof. Suppose the result is false. Then (∆(y), y) = ωξ(X),|x|<ε(x0, y) belongs
to SingX for y in some neighborhood B(0, η) of 0. The mapping ∆ is continuous by
remark 2.2.1; hence ∆ is an analytic function. The vector field X can be expressed
in the form

X = (x−∆(y))l
h(x, y)

∂

∂x
.

We consider the real blow-up ρ of the curve x = ∆(y). We define

γ̃(y) = ρ−1
(
Γ|x|<ε

ξ(X),+[x0, y]
)
.

for all y ∈ B(0, η). The curve γ̃(y) intersects ρ−1(∆(y), y) at a point λ(y). Fix
y0 ∈ B(0, η) \ {0}. Let σ[0, 1] be the loop obtained by turning once in counter
clock wise sense in ρ−1(∆(y0), y0) and such that σ(0) = σ(1) = λ(y0). We define
C = −ν(h(∆(y), y))/(l− 1). We can proceed as in the proof of proposition 4.2.1 to
obtain that C ∈ Z; we have

γ̃(y0)σC ∼ γ̃(y0e
2πi) = γ̃(y0).

On the one hand N > 1 implies C < 0, on the other hand ρ−1(∆(y0), y0) has
the homotopical type of S1, thus γ̃(y0)σC ∼ γ̃(y0) implies C = 0. That is a
contradiction. ¤

4.3. Disassembling the graph

Let G be an oriented graph. We denote by Sing(G) and Γ(G) the sets of vertexes
and edges of G respectively. By definition G ⊂ G′ if Sing(G) ⊂ Sing(G′) and
Γ(G) ⊂ Γ(G′). We define a graph G&G′ such that Sing(G&G′) = Sing(G)∩Sing(G′)
and Γ(G&G′) = Γ(G) ∩ Γ(G′).

Let G be an oriented graph such that Sing(G) ⊂ Singξ(X, y0, ε). We can
associate a graph G(s) to any s contained in the universal covering of B(0, δ) \ {0}.
By definition the vertex Sj

X(s) is in Sing(G(s)) if Sj
X(y0) is in Sing(G(y0)). In an

analogous way Sj
X(s) → Sk

X(s) is in Γ(G(s)) if Sj
X(y0) → Sk

X(y0) is in Γ(G).
We define Gy0 = G|x|<ε

ξ(X,y0)
. Next result is a consequence of remark 2.2.1.
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Lemma 4.3.1. Let y0 ∈ B(0, δ) \ {0}. Let G be an oriented graph whose set of
vertexes is Singξ(X, y0, ε). Then G ⊂ Gy0 implies

G(s) ⊂ Gs

for all s in some neighborhood of y0.

Remark 4.3.1. By considering G = Gy0 in the previous lemma we obtain that
the mapping y 7→ Gy is lower semicontinuous.

Lemma 4.3.2. Let λ : [0, 1] → B(0, δ) \ {0} be a path such that λ[0, 1] is
completely contained in either B(0, δ)\UN ε

X or in UN ε
X . Then Gλ(0)(λ(1)) = Gλ(1).

Proof. We define the set UNλ ⊂ [0, 1] such that t0 6∈ UNλ if there is a
continuous family of oriented homeomorphisms σt : [|x| ≤ ε] → [|x| ≤ ε] for t in a
neighborhood W of t0 in [0, 1] satisfying that

• σt0 ≡ Id
• ξ(X, λ(t0), ε) and ξ(X, λ(t), ε) are topol. equivalent by σt.

We have that t0 ∈ UNλ if there exists {T ε,a(λ(t0)), T ε,b(λ(t0))} in Lε
X(λ(t0)) but

{T ε,a(λ(t)), T ε,b(λ(t))} does not belong to Lε
X(λ(t)) for all t in a neighborhood of

t0 in [0, 1]. By hypothesis UNλ = ∅, thus the list Lε
X(λ(t)) is constant for t ∈ [0, 1].

Since the list determines the graph (proposition 2.1.4) then NGλ(0)(λ(t)) = NGλ(t)

for all t ∈ [0, 1]. Hence Gλ(0)(λ(0)) = Gλ(0) implies Gλ(0)(λ(t)) = Gλ(t) for all
t ∈ [0, 1] since the orientation of an edge remains constant in connected sets. ¤

We enumerate the T -sets β1, . . ., βl and the zones Zε
X,1, . . ., Zε

X,l as in section
4.2. Let y0 ∈ Zε

1, we define the graph

G1(s) = Gy0(s)

for all s ∈ Zε
1 \ {0}. This definition does not depend on y0 by lemma 4.3.2. If l = 0

we define
G1(s) = G2(s) = G3(s) = . . .

for all s ∈ B(0, δ) \ {0}. For l ≥ 1 we provide an inductive definition. Suppose
we already defined Gj(s) for s ∈ Zε

j \ {0}. Let y1 ∈ βj+1. We define Gj+1(y1) =
Gy1&Gj(y1). For y ∈ Zε

j+1 \ {0} the graph Gj+1(y) is obtained by continuous
prolongation of Gj+1(y1). The definition does not depend on y1 by lemma 4.3.2.

Lemma 4.3.3. For all j > 1 and y ∈ βj we have Gj(y) ⊂ Gy. For all j ≥ 1 and
y ∈ Zε

j we have Gj(y) ⊂ Gy.

Proof. The first statement is a direct consequence of the construction. The
second statement is trivial for j = 1. Suppose j > 1 and let y1 ∈ βj ; we have
Gj(y1) ⊂ Gy1 . Since y1 ∈ Zε

j there exists y2 ∈ Zε
j such that Gj(y2) ⊂ Gy2 by lemma

4.3.1. Thus we obtain

Gj(y) = [Gj(y2)](y) ⊂ [Gy2 ](y) = Gy

for all y ∈ Zε
j by lemma 4.3.2. ¤

Consider the sequence of graphs {Gjl+1(y0)}j≥0. We have

Proposition 4.3.1. There exists M ∈ N ∪ {0} such that GMl+1(y0) does not
have any edge.
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Proof. We denote by Mj the number of edges of the graph Gjl+1(y0); by
construction we have Mj ≥ Mj+1 for all j ≥ 0. Suppose the lemma is false, then
there exists k ≥ 0 such that Mj = D > 0 for all j ≥ k. Since

(Sa
X(y0) → Sb

X(y0)) ∈ Gkl+1(y0) ⇒ (Sa
X(s) → Sb

X(s)) ∈ G|x|<ε
ξ(X,s)

for all s in the universal covering of B(0, δ)\{0} our assumption contradicts propo-
sition 4.2.1. ¤

The next couple of lemmas is devoted to study what kind of splitting induces
Gy in Gj(y) when y ∈ βj+1.

Lemma 4.3.4. Suppose UN ε
X \ {0} 6= ∅. Let j ≥ 1 and y1 ∈ βj+1. Let

C be a connected component of Gj(y1). Then ξ(X, y1, ε) separates the connected
components of Gj+1(y1) whose sets of vertexes are contained in Sing(C).

Proof. Let C1 ⊂ C and C2 ⊂ C be two non-empty connected components
of Gj+1(y1). We have Ck ⊂ Gy1 for all k ∈ {1, 2} since Gj+1(y1) ⊂ Gy1 . Suppose
ξ(X, y1, ε) does not separate C1 and C2, then there exists a connected subgraph D
of Gy1 such that Ck ⊂ D for k ∈ {1, 2}. We ask D for having as few vertexes as
possible. The graph D is unique because of the absence of cycles in NGy1 (lemma
2.1.11). We have D(y) ⊂ Gy for all y in a neighborhood of y1 by lemma 4.3.1. Since
NGy has no cycles then D(y) ⊂ C(y) for all y in Zε

j sufficiently close to y1. We
deduce that D ⊂ C. Since D ⊂ C ⊂ Gj(y1) and D ⊂ Gy1 we obtain D ⊂ Gj+1(y1).
The connectedness of D implies C1 = C2 = D. ¤

Lemma 4.3.5. Suppose UN ε
X \ {0} 6= ∅. Let j ≥ 1 and y1 ∈ βj+1. Let γ be

a critical tangent cord of ξ(X, y1, ε). Then for every connected component C of
Gj(y1) except at most one, the set Sing(C) is contained in a connected component
of (|x| < ε) \ γ.

Proof. Let E = SX
b (y1) → SX

c (y1) be an edge of Gj(y1). We have E(y) ⊂ Gy

for all y ∈ Zε
j by lemma 4.3.3. We define the set

D(y0) = (αξ(X), ωξ(X))
−1

|x|<ε
(SX

b (y0), SX
c (y0))

for all y0 ∈ Zε
j . The set ∂D(y0) ∩ ∂Uε contains a convex tangent point T ε,a

X (y0) for
all y0 ∈ Zε

j . We have

(αξ(X), ωξ(X))|x|≤ε
(T ε,a

X (y1)) = (SX
b (y1), SX

c (y1))

by continuity of the flow.
Let C be a connected component of Gj(y1) such that Sing(C) is not con-

tained in a connected component of (|x| < ε) \ γ. We choose E to be an edge
SX

d (y1) → SX
e (y1) joining two points of Sing(C) located in different connected

components of (|x| < ε)\γ. By our previous discussion we have (α, ω)(Γ|x|≤ε
ξ(X) [Q]) =

(SX
d (y1), SX

e (y1)) for some Q ∈ ∂Uε∩(y = y1). Since (|x| ≤ ε)\γ has two connected
components then Γ|x|≤ε

ξ(X) [Q] ∩ γ 6= ∅. We deduce that γ ⊂ Γ|x|≤ε
ξ(X) [Q] because γ is a

piece of trajectory. We obtain

(αξ(X), ωξ(X))|x|≤ε
(γ) ∈ Sing(C)× Sing(C).

The last relation implies the uniqueness of C among the connected components of
Gj(y1) divided by γ. ¤



CHAPTER 5

The L-limits

The previous chapter provides the first glimpse of a more general phenomenon:
the limit of trajectories γn passing through the points (xn, yn) → (ζ, 0) is not
necessarily the trajectory passing through (ζ, 0). We will prove that for N > 1 the
limit of the dynamics of Re(X)|y=s when s → 0 is the complex flow of X|y=0. This
chapter is devoted to make rigorous the previous statement as well as to prove it.

5.1. Setup and non-oscillation properties

Throughout this section we define some concepts we will use to define the
L-limits and to prove their main properties. We denote y = a + ib.

Let β1, β2 be semi-analytic curves; indeed they are branches of real analytic
curves. The curve βj adheres to a unique direction λ = λ(βj). Next, we define the
order of contact I(β1, β2). If λ(β1) 6= λ(β2) then we define I(β1, β2) = 1. Otherwise,
up to linear change of coordinates we have λ(β1) = λ(β2) = 1. There exists a
Puiseux expantion b = Pj(a) for j ∈ {1, 2}. We define I(β1, β2) = ν(P1(a)−P2(a)),
this is a positive rational number. Since λj = 1 then ν(Pj) > 1 for j ∈ {1, 2}; as a
consequence I(β1, β2) > 1 if β1 and β2 adhere to the same direction.

We will deal with meromorphic functions A(y) up to a ramification y 7→ yk.
Such a function does not oscillate when restricted to a semi-analytic curve.

Lemma 5.1.1. Let β be a connected real semi-analytic curve in a neighborhood
of y = 0 in C. Consider a meromorphic complex analytic function A(yk) in a
neighborhood of y = 0. For all d ∈ N ∪ {0} we have

lim
y∈β, y→0

|y|d|A(y)| 6= ∞ =⇒ lim
y∈β, y→0

|y|dA(y) ∈ C,

lim
y∈β, y→0

|Img(|y|dA(y))| 6= ∞ =⇒ lim
y∈β, y→0

Img(|y|dA(y)) ∈ R.

Proof. If A ≡ 0 the result is obvious. Otherwise A = αyc + o(yc) for some
c ∈ Q and α ∈ C \ {0}. If c + d < 0 then limy∈β, y→0 |y|d|A(y)| = ∞ whereas if
c + d > 0 then limy∈β, y→0 |y|dA(y) = 0. If c + d = 0 we obtain

lim
y∈β, y→0

|y|dA(y) = αλ(β)−d
.

Let us prove the second property. There exists a sequence yk ∈ β such that
limk→∞ yk = 0 and limk→∞ Img(|yk|dA(yk)) exists; we denote this limit by c. We
define e = max(µ(A(y)), d). Let η be any positive real number. The curves

I = [Img(|y|eA(y)) = (c− η)|y|e−d], D = [Img(|y|eA(y)) = (c + η)|y|e−d]

are real-analytic in coordinates (r1/k, λ). The curve β does not cut neither I nor D
in a neighborhood of (r, λ) = (0, λ(β)); otherwise we obtain two semi-analytic curves

53
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intersecting each other infinitely many times. That implies |Img(|y|dA(y))− c| < η

for all y ∈ β close to 0. Hence, we obtain limy∈β, y→0 Img(|y|dA(y)) = c. ¤

We focus now on evolution properties. Consider a meromorphic function A(yk)
such that µ(A) > d. Suppose that limy∈β, y→0 Img(|y|dA(y)) exists. For C ∈ R
we define the set of contact curves ΥC

A as the set of semi-analytic curves such that
β′ ∈ ΥC

A if λ(β′) = λ(β) and

lim
y∈β, y→0

Img(|y|dA(y))− lim
y∈β′, y→0

Img(|y|dA(y)) = C.

A compact wedge W of width M ≥ 0 is by definition a connected, simply connected
set W containing β such that W = ∪C∈[−M,M ]σ

C
A where σC

A ∈ ΥC
A for all C ∈

[−M, M ].
We prove next the existence of contact curves and compact wedges. We suppose

λ(β) = 1 up to a linear change of coordinates. As a consequence the Puiseux
expansion b = P (a) of β satisfies ν(P ) > 1. For ∆ ∈ R we consider the curves
β(∆) : R+ → C such that

β(∆, a) = a + i[P (a) + ∆aµ(A)−d+1].

Proposition 5.1.1. Let d < µ(A). Suppose limβ3y→0 Img(|y|dA(y)) ∈ R.
Then, there exists K ∈ R \ {0} such that β(CK) belongs to ΥC

A for all C ∈ R. Let
M > 0. The set ∪L∈[−M,M ]β(LK) is a compact wedge of width M . Moreover, the
function

(∆, a) 7→ [|y|dA(y)] ◦ β(0, a)− [|y|dA(y)] ◦ β(∆, a)

is continuous in [−M |K|,M |K|]× [0 ≤ a < δ′] for δ′ > 0 small enough.

Proof. We have

A =
h−µ(A)

yµ(A)
+

∑

j∈J

h−j

yj
+ H(y) + . . . (hµ(A) 6= 0)

where J ⊂ [d, µ(A))∩Q is a finite set and H is a sum of monomials of degree bigger
than −d. Let Fj = h−j/yj for d ≤ j ≤ µ(A); we have

|y|dFj(y) =
( |y|

y

)d
h−j

yj−d
.

By simple calculations we obtain

h−j

yj−d
◦ β(0, a)− h−j

yj−d
◦ β(∆, a) = ih−j∆(j − d)aµ(A)−j + o(aµ(A)−j)

where lim∆∈E, a→0o(aµ(A)−j)/aµ(A)−j = 0 for any compact set E ⊂ R.
We have limy→0 |y|dH(y) = 0, thus (|y|dH(y)) ◦ β(∆, a) is continuous in E ×

(R≥0, 0) for any compact set E ⊂ R. The analysis of A implies that (|y|dA(y)) ◦
β(0, a)− (|y|dA(y)) ◦ β(∆, a) is of the form

i∆[h−µ(A)(µ(A)− d)] + o(1)

for ∆ in a compact set E. It is a continuous function in E×(R≥0, 0) for all compact
set E ⊂ R. We define K = 1/(h−µ(A)[µ(A) − d]); we have that β(CK) belongs to
ΥC

A for all C ∈ R. ¤
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Remark 5.1.1. Suppose that besides limy∈β, y→0 Img(|y|dA(y)) ∈ R we have
limy∈β, y→0 Re(|y|dA(y)) = +∞ As a consequence we have

h−µ(A) = limy→0|y|µ(A)
A(y) ∈ R+ ∪ {0}.

Since h−µ(A) 6= 0 we obtain h−µ(A) ∈ R+ and then K ∈ R+.

5.2. Definition of the L-limit

Let X = f∂/∂x be a (NSD) vector field defined in a neighborhood of Uε. Con-
sider a semi-analytic curve β and a point 0 < x0 ≤ ε such that ωξ(X),|x|≤ε(x0, 0) =
(0, 0). We are interested on describing the limit of Γξ(X),+[x0, y] when y ∈ β and
y → 0. Consider the decomposition ymfn1

1 . . . f
np
p of f in irreducible factors. Let

0 < |x1| ≤ ε be a point satisfying that there exists a sequence {(xj
1, yj)}j∈N con-

tained in C× β and such that
• (x1, 0) = limj→∞(xj

1, yj).
• (x1, 0) 6∈ Γ|x|≤ε

ξ(X(λ(β)m)),+[x0, 0].
• For all η > 0 there exists j(η) ∈ N such that for all j ≥ j(η) we have

(xj
1, yj) ∈ Γ|x|<ε+η

ξ(X,yj ,ε+η),+[x0, yj ].

The set of points satisfying the previous conditions will be denoted by L+,ε
β,x0

; it is
the positive L-limit associated to x0, ε and β. We can define L−,ε

β,x0
by replacing

in the definition the positive trajectories with the negative ones. Next lemma is
obvious.

Lemma 5.2.1. A L-limit L+,ε
β,x0

is contained in Uε ∩ [y = 0]. Moreover L+,ε
β,x0

is
invariant by ξ(X(λ(β)m), 0, ε), more precisely

Q ∈ L+,ε
β,x0

=⇒ Γ|x|≤ε
ξ(X(λ(β)m))[Q] ⊂ L+,ε

β,x0
.

5.2.1. True sections and virtual sections.
5.2.1.1. Existence of virtual sections. A L-limit is so far a definition. Through-

out this section we justify the term. In order to achieve this goal we define the
virtual sections. We denote by AE− the function −2πi

∑
P∈E−(y) ResX(P ).

Proposition 5.2.1. Let β be a semi-analytic curve. Consider x1 ∈ L+,ε
β,x0

.
There exists a compact wedge β ⊂ W (width(W ) > 0), a continuous section σ :
W → C2, a sequence {yk}k∈N ⊂ β, yk → 0 and a continuous partition E =
(E−, E+) of the equilibrium points such that

(1) W is associated to |y|mAE−(y) and β.
(2) µ(AE−) > m.
(3) σ(s) ∈ (y = s) for all s ∈ W and limy∈β, y→0 σ(y) = (x1, 0).

(4) T (s)
def
= ψ1(σ(s))/sm + AE−(s)− ψ0(x0, s)/sm ∈ R+ for s ∈ W .

(5) Γ|x|<ε+η
ξ(X),+ [x0, yk](T (yk)) = σ(yk) for all η > 0 and k > k(η).

(6) Γ|x|<ε+η
ξ(X),+ [x0, yk][0, T (yk)] induces the partition E(yk) for all η > 0 and

k > k(η).

As usual ψ0 is an integral of the time form of X(1) defined in a neighborhood
of (x0, 0) whereas ψ1 is obtained from ψ0 by applying the method in subsection
4.1.1. By definition a section σ satisfying the conditions in proposition 5.2.1 is
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called a virtual section. Roughly speaking for a virtual section σ the points (x0, y)
and σ(y) are candidates to be connected by a trajectory spending time T (y) to go
from (x0, y) to σ(y). If that connection really exists, i.e. if conditions (5) and (6)
are satisfied for all y ∈ W close to 0 then σ is a true section.

Proof. Let λ0 = λ(β)m. Let (xj
1, yj) be the sequence provided in the definition

of the L-limit. Consider a transversal Tr to Re(X(λ)) passing through (x, y, λ) =
(x1, 0, λ(β)m). We can suppose that Tr contains the point (xj

1, yj , (yj/|yj |)m) for
all j >> 0 by replacing (xj

1, yj) with a point in the same trajectory of Re(X). We
have that (xj

1, yj) ∈ Γ|x|<ε+η
ξ(X),+ [x0, yj ] for all η > 0 and j ≥ j(η). For j > 0 big

enough the piece of trajectory of ξ(X, yj , ε + η) from (x0, yj) to (xj
1, yj) induces a

partition of the singular points. By taking a sub-sequence we can suppose that the
partition is always the same, we denote it by E. We have

Ix0,j,E
def
= |yj |m

(
ψ1

ym
(xj

1, yj) + AE−(yj)− ψ0

ym
(x0, yj)

)
∈ R+

for all j ≥ 0. As a consequence µ(AE−) > m because otherwise

lim
j→∞

Ix0,j,E(yj) = (ψ1(x1, 0) + h−m − ψ0(x0, 0))λ−1
0 ∈ R+ ∪ {0}

implies that (x1, 0) ∈ Γ|x|≤ε
ξ(X(λ0))

[x0, 0](α) for some α ≥ 0. That contradicts x1 ∈
L+,ε

β,x0
. We have

lim
j→∞

Img(|yj |mAE−(yj)) = −Img(ψ1(x1, 0)λ−1
0 − ψ0(x0, 0)λ−1

0 ).

Hence limy∈β, y→0 Img(|y|mAE−(y)) ∈ R by lemma 5.1.1. By proposition 5.1.1 and
the implicit function theorem we obtain σ : W ∪ {0} → Tr such that

ψ1(σ(s))/sm + AE−(s)− ψ0(x0, s)/sm ∈ R+

for all y ∈ W . By the uniqueness obtained from the implicit function theorem we
have σ(yk) = (xk

1 , yk) for all k >> 0. Therefore σ is a virtual section. ¤

Propositions 5.1.1 and 5.2.1 imply immediately the next remarks.

Remark 5.2.1. If width(M) > 0 then the section σ : W ∪ {0} → C2 is not
continuous at 0. In fact for β′ ∈ ΥC

AE−
we have

lim
y∈β′, y→0

Img(ψ1(σ(y))λ(β)−m)− lim
y∈β, y→0

Img(ψ1(σ(y))λ(β)−m) = C.

Remark 5.2.2. We have limy∈W, y→0 |y|mT (y) = +∞.

Remark 5.2.3. Let M > 0. Suppose ξ(iX(λ(β)m), 0, ε)[x1, 0][−M, M ] is con-
tained in Uε. Then W can be chosen in proposition 5.2.1 to have width at least
M .

5.2.1.2. Existence of true sections of zero width. There is no difference between
virtual and true sections when the width of the wedge is 0.

Proposition 5.2.2. A virtual section σ : β ∪ {0} → C2 associated to a semi-
analytic β and points 0 < |x0| ≤ ε, x1 ∈ L+,ε

β,x0
is a true section.
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Proof. Let λ0 = λ(β)m. Fix η > 0. We define

F = {y ∈ β : σ(y) = Γ|x|<ε+η
ξ(X) [x0, y](T (y))}.

We have yj ∈ F for all j > 0 big enough. The set F is open. If the germs of F and
β at 0 coincide then we are done. Otherwise, consider the connected component
Fk of F containing yk. There exists a sequence sk → 0 such that sk ∈ ∂Fk. The
points sk satisfy that

σ(sk) = Γ|x|≤ε+η
ξ(X) [x0, sk](T (sk))

for all k >> 0 but Γ|x|≤ε+η
ξ(X) [x0, sk][0, T (sk)) contains a tangent point T ε+η,a

X (sk).
A priori a depends on k but we can suppose that a is constant by taking a sub-
sequence. Consider the set

G = {y ∈ β : T ε+η,a
X (y) ∈ Γ|x|≤ε+η

ξ(X),+ [x0, y]}.
We have sk ∈ G for all k >> 0. The lemma 4.1.4 applied to S0 = (x0, y), S1 =
T ε+η,a

X (y) and H = {λ(β)} implies G = β. By Rolle’s property there exists a unique
function T ′ : β → R+ such that

T ε+η,a
X (y) = Γ|x|≤ε+η

ξ(X),+ [x0, y](T ′(y))

and T ′(sk) < T (sk) for all k >> 0. The function T ′ is of the form

T ′(y) =
ψ′1
ym

(T ε+η,a
X (y)) + AE′−(y)− ψ0

ym
(x0, y)

for ψ′1 defined in the neighborhood of limy∈β, y→0 T ε+η,a
X (y) ∈ T ε+η

X(λ0)
(0). By lemma

5.1.1 we have that

c
def
= lim

y∈β, y→0
|y|m(T (y)− T ′(y)) ∈ R≥0 ∪ {+∞}.

If c = 0 then (x1, 0) = limy∈β, y→0 T ε+η,a
X (y) ∈ (|x| = ε + η); that is not possible.

Therefore c > 0; as a consequence T ′(yk) < T (yk) for all k >> 0. We deduce that
the trajectory

Γ|x|<ε+η
ξ(X) [x0, yk][0, T (yk)] ⊂ Uε+η

contains a point in ∂Uε+η for all k >> 0. That is a contradiction. ¤

The existence of true sections defined over β justifies the term limit for the
L-limit. The set {0} ∪ Γ|x|≤ε

ξ(X(λ(β)m)),+[x0, 0] ∪ L+,ε
β,x0

is the limit of the trajectories
passing through (x0, y) when y ∈ β tends to 0.

5.3. Structure of the L-limit

5.3.1. Dynamics supporting non-empty L-limits. Roughly speaking the
L-limit phenomenon appears when the limit of trajectories passing through some
points is not the trajectory passing through the limit point. Therefore, the existence
of L-limits is associated with complicated dynamics. We claim that the complexity
of the dynamics depends on whether N ≤ 1 or N > 1. We remind the reader that
N is the generic number of points in Uε ∩ [y = c] ∩ SingX.

Proposition 5.3.1. Suppose N ≤ 1. For any choice of the data we have
L+,ε

β,x0
= ∅.
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Proof. Consider a partition E of the singular points. We claim that ymAE−(y) =
ym(−2πi)

∑
P∈E−(y) ResX(P ) is a holomorphic function. If E−(y) = ∅ then AE− ≡

0, otherwise X(1) = u(x, y)(x− g(y))ν
∂/∂x and X = ymX1 for u ∈ C{x, y}\(x, y).

The order of X(1) along x = g(y) is constant and equal to ν; thus−2πiResX(1)(g(y), y) =
ymAE−(y) is a holomorphic function. By remark 5.2.2 we obtain L+,ε

β,x0
= ∅ . ¤

Proposition 5.3.2. Suppose N > 1. There exists a semi-analytic β and 0 <
|x0| ≤ ε such that L+,ε

β,x0
6= ∅.

Proof. We know that UN ε
X \ {0} 6= ∅ by corollary 4.2.2. We choose β

to be a T-set. Let λ0 = λ(β)m. There exist T ε,a
X , T ε,b

X and T : β → R+

such that Γ|x|≤ε
ξ(X),+[T ε,a

X (s)](T (s)) = T ε,b
X (s) for all s ∈ β. The limit (cj , 0) =

limy∈β, y→0 T ε,j
X (y) exists and it is contained in T ε

X(λ0)
(0) for all j ∈ {a, b}. We

have (cb, 0) ∈ L+,ε
β,ca

by proposition 3.2.2. ¤

Lemma 5.3.1. Suppose N > 1 and m = 0. Let x0 ∈ (0 < |x| ≤ ε). Then there
exists a semi-analytic β such that L+,ε

β,x0
∪ L−,ε

β,x0
6= ∅.

Proof. We have that either

αξ(X),|x|≤ε(x0, 0) = (0, 0) or ωξ(X),|x|≤ε(x0, 0) = (0, 0).

Suppose without lack of generality that we are in the latter case. We can suppose
that ωξ(X),|x|<ε(x0, 0) = (0, 0) by replacing (x0, 0) with Γ|x|≤ε

ξ(X) [x0, 0](t) for some
t >> 0 if necessary. We define

F = {y ∈ B(0, δ) \ {0} : Γ|x|≤ε
ξ(X),+[x0, y] ∩ T ε

X(y) 6= ∅}.
The set F is a finite union of semi-analytic curves by corollary 4.1.2. Let β be
a semi-analytic curve contained either in F or in a zone Z of B(0, δ) \ (F ∪ {0})
such that ωξ(X),|x|<ε(x0, y) = ∞ for all y ∈ Z. Such a curve exists by lemma
4.2.2. Since Γ|x|≤ε

ξ(X),+[x0, y] ∩ ∂Uε 6= ∅ for all y ∈ β and Γ|x|≤ε
ξ(X),+[x0, 0] ⊂ Uε then

L+,ε
β,x0

∩ (|x| = ε) 6= ∅. ¤

5.3.2. Nature of the L-limit. A L-limit satisfies the Rolle property. Let β
be a semi-analytic germ of curve.

Lemma 5.3.2. Let (x1, 0) 6= (x2, 0) in L+,ε
β,x0

∪ Γ|x|≤ε
ξ(X(λ(β)m))[x0, 0]. Then there

is no a connected transversal I ⊂ Uε ∩ (y = 0) to ξ(X(λ(β)m), 0, ε) containing both
(x1, 0) and (x2, 0).

Proof. Let λ0 = λ(β)m and η > 0 small enough. Suppose the result is
false. The set I × V × W is a transversal to Re(X(λ)) for some neighborhood
V of 0 and some neighborhood W of λ0. For y ∈ β sufficiently close to 0 the
trajectory Γ|x|≤ε+η

ξ(X) [x0, y] cuts I × {y} at points (x1(y), y) and (x2(y), y) such that
limy∈β, y→0(xj(y), y) = (xj , 0) for all j ∈ {1, 2}. As a consequence the Rolle
property is violated for y ∈ β sufficiently close to 0. ¤

Next we describe the structure of a particular L-limit.

Proposition 5.3.3. The L-limit L+,ε
β,x0

is a finite collection ρ1 < . . . < ρl

of trajectories of ξ(X(λ(β)m), 0, ε) in (|x| ≤ ε) × {0}. The number of connected
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components of L+,ε
β,x0

is at most ν̃(X)− 1. The order is provided by the time of the
flow.

Let (xl, 0) be a point of ρl. By propositions 5.2.1 and 5.2.2 there exists
a true section σl : β ∪ {0} → C2 such that σl(y) = Γ|x|<ε+η

ξ(X),+ [x0, y](Tl(y)) for
all y ∈ β and σl(0) = (xl, 0). The function Tl : β → R+ is continuous and
limy∈β, y→0 |y|mTl(y) = ∞. We say that ρl < ρl+1 if limy∈β, y→0 |y|m(Tl+1(y) −
Tl(y)) = ∞. This order does not depend on the choice of the sections σl and
σl+1. Indeed, for a different choice σ′l the function T ′l : β → R+ satisfies that
|y|m|Tl′(y)− Tl(y)| is bounded.

Proof. Let λ0 = λ(β)m. We claim that the order is a total one. Let ρ1, ρ2 be
two connected components of L+,ε

β,x0
. Let Ej(s) be the partition of SingX induced

by Γ|x|<ε+η
ξ(X),+ [x0, s][0, Tj(s)] for any η > 0. If

lim
y∈β, y→0

|y|m|T2(y)− T1(y)| = ∞
then either ρ1 < ρ2 or ρ2 < ρ1. Otherwise the limit

limy∈β, y→0


2πi|y|m


 ∑

P∈E1
−(y)

ResX(P )−
∑

P∈E2
−(y)

ResX(P )







exists by lemma 5.1.1. Hence c = limy∈β, y→0 |y|m(T2(y)−T1(y)) exists. We deduce
that (x2, 0) = Γ|x|≤ε

ξ(X(λ0)),+
[x1, 0](c) and then ρ1 = ρ2.

a

a

a

a

b b

b b

Figure 1.

Consider H|x|<ε
ξ(X(λ0),0)

(see picture 1) and the sequence

Γ|x|≤ε
ξ(X(λ0))

[x0, 0] = ρ0 < ρ1 < . . . < ρl

of connected components of L+,ε
β,x0

. For every 1 ≤ j ≤ l we have αξ(X(λ0)),|x|≤ε(ρj) =
{0}; otherwise there is no component lesser than ρj . Moreover, for all 0 ≤ j < l we
have ωξ(X(λ0)),|x|≤ε(ρj) = {0}.

We call ”aba” set a union of three contiguous regions labeled ”a”, ”b” and ”a”
respectively. There are 2(ν̃(X)− 1) ”aba” sets. It is straightforward to prove that
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the trajectories in ”aba” sets can be connected by connected transversals. Hence
an ”aba” set can not contain more than one component of L+,ε

β,x0
∪ ρ0. For all

1 ≤ j < l − 1 the component ρj is contained in an ”a” set and then in two ”aba”
sets. The components ρ0 and ρl are contained in at least one ”aba” set. Hence, we
obtain 2 + 2(l − 1) ≤ 2(ν̃(X)− 1) =⇒ l ≤ ν̃(X)− 1. ¤

The first component of a L-limit is the only one which is invariant by reduction
of the domain of definition.

Lemma 5.3.3. Consider 0 < |x0| ≤ ε. Suppose L+,ε
β,x0

6= ∅ and let ρ be a
component of L+,ε

β,x0
. Suppose that for all 0 < ε′ < ε there exist points (x′0, 0) ∈

Γ|x|≤ε
ξ(X(λ(β)m)),+[x0, 0] ∩Uε′ and (x1, 0) ∈ ρ ∩Uε′ such that x1 ∈ L+,ε′

β,x′0
. Then ρ is the

first component of L+,ε
β,x0

.

Proof. Let ρ1 be the first component of L+,ε
β,x0

. Let ε′ > 0 be a constant such
that Uε′ does not contain ρ1. As a consequence Uε′ ∩ ρ1 has more than a connected
component. Therefore L+,ε′

β,x′0
⊂ ρ1 for all (x′0, 0) in Γ|x|≤ε

ξ(X(λ(β)m)),+[x0, 0] ∩Uε′ . That
implies ρ ∩ ρ1 6= ∅ and then ρ = ρ1. ¤

5.4. Evolution of the L-limit

5.4.1. Virtual evolution. Up to a linear change of coordinates we suppose
λ(β) = 1. Let ρ1 < . . . < ρl be the connected components of the L-limit L+,ε

β,x0
and

consider ρ0 = Γ|x|≤ε
ξ(X(1))[x0, 0].

Let σ0(y) = (x0, y). For 1 ≤ j ≤ l the couple (ρ0, ρj) has associated a true
section σj : β ∪{0} → C2, a partition Ej of the singular points and a time function
Tj : β → R+ such that σj(0) ∈ ρj and

Tj(y) =
ψj

1

ym
(σj(y)) + AEj,−(y)− ψj

0

ym
(x0, y).

Since σk(0) ∈ L+,ε
β,σj(0)

for j < k then (ρj , ρk) has associated a partition Ej,k of
Sing(X) and a time function Tj,k : β → R+ such that

Tj,k(y) =
ψj,k

1

ym
(σk(y)) + AEj,k,−(y)− ψj,k

0

ym
(σj(y)).

We denote Ej by E0,j and Tj by T0,j .
Fix L ∈ Q>m. Let co(Ej,k, L) be the coefficient of y−L in AEj,k,− .

Lemma 5.4.1.
co(Ej,k, L) + co(Ek,r, L) = co(Ej,r, L) for all 0 ≤ j < k < r ≤ l.
µ(AEj,k,−) ≤ µ(AEj′,k′,−) if j′ ≤ j and k ≤ k′.
co(Ej,k, L) ≥ 0 if µ(AEj,k,−) ≤ L.
co(Ej,k, L) > 0 if µ(AEj,k,−) = L for all 0 ≤ j < k ≤ l.

Proof. The first relation is a consequence of Tj,k + Tk,r = Tj,r.
Suppose j′ ≤ j, k ≤ k′ and (j, k) 6= (j′, k′), thus |y|m(Tj′,k′ − Tj,k) tends to ∞

when y ∈ β tends to 0. As a consequence

|y|m|AEj,k,−(y)| < |y|m|AEj′,k′,−(y)|
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in β since y 7→ |y|mTa,b(y) − |y|m|AEa,b,−(y)| is a bounded function of β for 0 ≤
a < b ≤ l. Therefore, we obtain µ(AEj,k,−) ≤ µ(AEj′,k′,−).

If µ(AEj,k,−) < L then co(Ej,k, L) = 0. If µ(AEj,k,−) = L then we obtain
co(Ej,k, L) > 0 by remarks 5.1.1 and 5.2.2. ¤

By lemma 5.4.1 we have µ(AE1,−) ≤ . . . ≤ µ(AEl,−). We consider the compo-
nents ρ1 < . . . < ρq such that

µ(AE1,−) ≤ . . . ≤ µ(AEq,−) ≤ L.

Let a 7→ (a, P (a)) the Puiseux parametrization of β. We define

β(∆, a) = a + i[P (a) + ∆aL−m+1]

and let us consider W (M) = ∪∆∈[−M,M ]β(∆). Our aim is describing the evolution
of the L-limit L+,ε

β(∆),x0
. We denote by widthj,k(W (M)) the width of W (M) as

a compact wedge relative to (ρj , ρk), or in other words relative to the function
|y|mAEj,k,− .

Lemma 5.4.2. The curve β(∆) belongs to Υco(Ej,k,L)(L−m)∆
AEj,k,−

if we have 0 ≤ j <

k ≤ q. Then, widthj,k(W (M)) = co(Ej,k, L)(L−m)M .

If co(Ej,k, L) = 0 the statement of the lemma means that W (M) does not
contain a compact wedge relative to (ρj , ρk) of positive width. We will not prove
explicitly the lemma because we are just rephrasing some of the results in proposi-
tion 5.1.1.

For 1 ≤ j ≤ q the curves ρj belongs to α−1
ξ(X(1)),|x|≤ε(0, 0) whereas ρk belongs to

ω−1
ξ(X(1)),|x|≤ε(0, 0) for 0 ≤ k ≤ q−1. If ρj ⊂ α−1

ξ(X(1)),|x|≤ε(0, 0) then ρj is contained
in a repulsive petal Vl−j

for some l−j ∈ Θ−(X(1)|y=0). There is an integral ψ−j,0 of
the time form of X(1)|y=0 defined in Vl−j

. We define the curve

ρ∆
j,− =

(
ψ−j,0

)−1
(ψ−j,0(ρj) + R+ i∆(L−m)co(E0,j , L)).

If ρj ⊂ ω−1
ξ(X(1)),|x|≤ε(0, 0) we can use the same construction with the attractive

petal Vl+j
containing ρ and the integral ψ+

j,0 of the time form of X(1) defined in Vl+j
.

We define

ρ∆
j,+ =

(
ψ+

j,0

)−1
(ψ+

j,0(ρj) + R+ i∆(L−m)co(E0,j , L)).

Let hL
∆ = inf({j ∈ {1, . . . , q − 1} : ρ∆

j,− 6= ρ∆
j,+} ∪ {q}).

5.4.2. Evolution with respect to the base curve. This subsection is de-
voted to prove the next result:

Proposition 5.4.1. Let L ∈ Q>m. Consider ρ1 < . . . < ρq the components of
L+,ε

β,x0
such that µ(AEj,−) ≤ L for all 1 ≤ j ≤ q. Then, for all ∆ ∈ R the first hL

∆

components of L+,ε
β(∆),x0

are

ρ∆
1,− < . . . < ρ∆

hL
∆,−.

We will prove the result step by step. Let us define αj,k = (L−m)co(Ej,k, L).
Fix M > 0. We choose points (xj,+, 0) in ρj and (xk,−, 0) in ρk for 0 ≤ j ≤ q − 1
and 1 ≤ k ≤ q such that
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(1) S+
j

def
= Γ|x|<ε

ξ(iX(1))[xj,+, 0][−Mα0,j − 1,Mα0,j + 1] is well defined.

(2) S−k
def
= Γ|x|<ε

ξ(iX(1))[xk,−, 0][−Mα0,k − 1,Mα0,k + 1] is well defined.
(3) ωξ(X(1)),|x|<ε(P ) = {(0, 0)} for all P ∈ S+

j .
(4) αξ(X(1)),|x|<ε(P ) = {(0, 0)} for all P ∈ S−k .

To obtain (xj,+, 0) we can try at first with any (xj,+, 0) ∈ ρj . If it does not
hold the previous conditions then we replace (xj,+, 0) with Γ|x|<ε

ξ(X(1))[xj,+, 0](t) for
some t >> 0. A similar method provides (xj+1,−, 0). Let y = reλ. The previous
properties imply that

• Tr+
j (y)

def
= Γ|x|<ε

ξ(iX(λm))[xj,+, y][−Mα0,j − 1,Mα0,j + 1] is well defined for
(r, λ) in a neighborhood of (0, 1).

• Tr−k (y)
def
= Γ|x|<ε

ξ(iX(λm))[xk,−, y][−Mα0,k − 1,Mα0,k + 1] is well defined for
(r, λ) in a neighborhood of (0, 1).

Let ψj,+ be an integral of the time form of X(1) defined in a neighborhood of Tr+
j

whereas ψj+1,− is an integral of the time form of X(1) defined in a neighborhood
of Tr−j+1 obtained by prolongating ψj,+ (see subsection 4.1.1). For any point zj,+

in Tr+
j (0); we define

∆(zj,+) = ψj,+(zj,+, 0)− ψj,+(xj,+, 0) = ψ+
j,0(zj,+, 0)− ψ+

j,0(xj,+, 0).

Let zj,+ be a point in Tr+
j (0) such that |∆(zj,+)| ≤ Mα0,j . We define

ρ∆
j,j+1(zj,+) =

(
ψ−j+1,0

)(−1)
(ψ−j+1,0(xj+1,−, 0) + ∆(zj,+) + i∆αj,j+1 + R).

Lemma 5.4.3. Let zj,+ be a point in Tr+
j (0) such that |∆(zj,+)| ≤ Mα0,j. If

∆ ∈ [−M, M ] then ρ∆
j,j+1(zj,+) is the first component of L+,ε

β(∆),zj,+
.

Proof. There is a virtual section σj+1,− : W (M) → Tr−j+1 such that

Tj+1,−(y) =
ψj+1,−

ym
(σj+1,−(y)) + AEj,j+1,−(y)− ψj,+

ym
(xj,+, y)

and limy∈β, y→0 σj+1,−(y) = (xj+1,−, 0). We know that σj+1,−|β is a true section
by proposition 5.2.2. Let η ≥ 0; we consider the trajectory

γ(y) = Γ|x|<ε+η
ξ(X) [xj,+, y][0, Tj+1,−(y)]

for all y = rλ ∈ β. We have

lim
y∈β, y→0

γ(y) = Γ|x|≤ε
ξ(X(1))),+[xj,+, 0] ∪ Γ|x|≤ε

ξ(X(1))),−[xj+1,−, 0].

Since limy∈β, y→0 γ(y) does not contain points in ∂Uε by the choice of xj,+ and
xj+1,− then γ(y) is contained in Uε′ for some ε′ < ε and y = rλ ∈ β in a neighbor-
hood of 0. Moreover

(5.1) Γ|x|<ε
ξ(iX(λm))[γ(y)](C) ⊂ Uε′′

for all C ∈ [−Mα0,j − 1,Mα0,j +1], some ε′′ < ε and y ∈ β in a neighborhood of 0;
it is a consequence of the conditions on xj,+ and xj+1,−. Hence ρ0

j,j+1(zj,+) is the
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first component of L+,ε
β,zj,+

. There exists a virtual section σ′j+1,− : W (M) → Tr−j+1

such that

T ′j+1,−(y) =
ψj+1,−

ym
(σ′j+1,−(y)) + AEj,j+1,−(y)− ψj,+

ym
(zj,+, y)

and limy∈β, y→0 σ′j+1,−(y) ∈ ρ0
j,j+1(zj,+). By proposition 5.1.1 we have that

lim
y∈β(∆), y→0

σ′j+1,−(y) ∈ ρ∆
j,j+1(zj,+)

for all ∆ ∈ [−M, M ]. We prove next that σ′j+1,− is a true section. Let us define
the set

G = {rλ ∈ W (M) : Γ|x|≤ε
ξ(X) [zj,+, rλ][0, T ′j+1,−(rλ)] ⊂ Uε}.

Then β is contained in the open set G because of the relation 5.1 applied to C =
Img(ψj,+(zj,+, rλ) − ψj,+(xj,+, rλ)). Let F be the connected component of G
containing β; we denote by ∂F the boundary of F in W (M). If y ∈ ∂F then
Γ|x|≤ε

ξ(X) [zj,+, y][0, T ′j+1,−(y)] is contained in Uε but its intersection with ∂Uε is not
empty. We deduce that ∂F is contained in the set

H = {y ∈ B(0, δ) \ {0} : Γ|x|≤ε
ξ(X),+[zj,+, y] ∩ T ε

X 6= ∅}.
By corollary 4.1.1 the restriction of H to a neighborhood of (r, λ) = (0, 1) is a finite
union of semi-analytic curves.

Let ξ be a connected component of H such that ξ ∩ ∂F contains infinitely
many points in every neighborhood of 0. Thus there exists T ε,a

X and T ′ : ξ → R+

such that T ε,a
X (y) = Γ|x|≤ε

ξ(X) [zj,+, y](T ′(y)) for all y ∈ ξ and T ′(yk) < T ′j+1,−(yk)
for a subsequence {yk} ⊂ ξ ∩ ∂F such that limk→∞ yk = 0. We denote (c, 0) =
limy∈ξ,y→0 T ε,a

X (y) and (d, 0) = limy∈ξ, y→0 σ′j+1,−(y). We have (d, 0) ∈ S−j+1 since

|ψj+1,−(d, 0)− ψj+1,−(xj+1,−, 0)| ≤ α0,jM + αj,j+1M = α0,j+1M.

By the condition on S−j+1 we deduce that d ∈ L+,ε
ξ,c . As a consequence we obtain

|y|m(T ′j+1,−(y) − T ′(y)) → +∞ when y ∈ ξ and y → 0. The point (zj,+, 0) is in
S+

j ; that implies limy∈ξ, y→0 |y|mT ′(y) = +∞. Since T ′(y) < T ′j+1,−(y) for y ∈ ξ
we deduce that ξ ⊂ ∂F . As a consequence the set ∂F is a union of at most 2
semi-analytic curves.

Let ξ ⊂ ∂F . Consider a transversal Trc passing through the point (x, y, λ) =
(c, 0, 1). There exists a virtual section σc : F → Trc such that limy∈ξ, y→0 σc(y) =
(c, 0). The section σc has associated a function Tc : F → R+ and a partition Ec of
the singular points such that

Tc(y) =
ψc

ym
(σc(y)) + AEc,−(y)− ψj,+

ym
(zj,+, y).

Moreover, we have Tc(y) = T ′(y) for all y ∈ ξ. By lemma 5.4.1 we have µ(Ec) ≤
µ(Ej,j+1) ≤ L. By proposition 5.1.1

(|y|mAE,−) ◦ β(0, a)− (|y|mAE,−) ◦ β(∆, a)

is bounded in [−M, M ]× R≥0 for E ∈ {Ec, Ej,j+1}. Then

lim
y∈F, y→0

|y|m(T ′j+1,−(y)− Tc(y)) = lim
y∈ξ, y→0

|y|m(T ′j+1,−(y)− Tc(y)) = ∞



64 5. THE L-LIMITS

and
lim

y∈F, y→0
|y|mTc(y) = lim

y∈ξ, y→0
|y|mTc(y) = ∞.

We define (e, 0) = limy∈β, y→0 σc(y). Since limy∈β,y→0 |y|mTc(y) = ∞ then e ∈
L+,ε

β,zj,+
. Moreover limy∈β,y→0 |y|m(T ′j+1,−(y) − Tc(y)) = ∞ implies ρ0

j,j+1(zj,+) ⊂
L+,ε

β,e . We proved that ρ0
j,j+1(zj,+) is not the first component of L+,ε

β,zj,+
. Since we

also proved the opposite statement then ∂F = ∅ and G = F = W (M). Therefore
σ′j+1,− is a true section.

We claim that ρ∆
j,j+1(zj,+) is the first component of L+,ε

β(∆),zj,+
. Let 0 < ε1 < ε.

For t >> 0 we replace S+
j and S−j+1 with

Γ|x|<ε
ξ(X(λm))[S

+
j ](t) and Γ|x|<ε

ξ(X(λm))[S
−
j+1](−t)

respectively. The choice of t > 0 is intended to satisfy the four conditions on S+
j

and S−j+1 for ε1 instead of ε. We define

(z′j,+, 0) = Γ|x|<ε
ξ(X(λm))[zj,+, 0](t).

We already proved that ∅ 6= L+,ε1
β(∆),z′j,+

⊂ ρ∆
j,j+1(zj,+). We are done by lemma

5.3.3. ¤
We can now prove the main result in this subsection.

proof of proposition 5.4.1. Let M = |∆|; for 0 ≤ j ≤ hL
∆ − 1 we choose

xj,+, xj+1,− satisfying the four conditions on (xj,+, 0) in ρj and (xj+1,−, 0) in ρj+1.
We also consider the transversals Tr+

j , Tr−j+1 and the integrals ψj,+, ψj+1,− of the
time form of X(1) for all 0 ≤ j ≤ hL

∆ − 1.
By lemma 5.4.3 the first component of L+,ε

β(∆),x0
is ρ∆

1,−. Moreover, the only
point (z1,−, 0) in ρ∆

1,− ∩ Tr−1 (0) satisfies

ψ−1,0(z1,−, 0)− ψ−1,0(x1,−, 0) = ψ1,−(z1,−, 0)− ψ1,−(x1,−, 0) = i∆α0,1.

Suppose now that for 1 ≤ j < h∆ we have that the first j components of L+,ε
β(∆),x0

are ρ∆
1,− < . . . < ρ∆

j,−. We also suppose that there is a unique point (zj,−, 0) in
ρ∆

j,− ∩ Tr−j (0) such that

ψ−j,0(zj,−, 0)− ψ−j,0(xj,−, 0) = ψj,−(zj,−, 0)− ψj,−(xj,−, 0) = i∆α0,j .

Since ρ∆
j,− = ρ∆

j,+ there exists a unique point (zj,+, 0) ∈ ρ∆
j,− ∩ Tr+

j (0). This point
satisfies that ∆(zj,+) = i∆α0,j and then |∆(zj,+)| = Mα0,j . By lemma 5.4.3
the next component of L+,ε

β(∆),x0
is ρ∆

j,j+1(zj,+). Since α0,j+1 = α0,j + αj,j+1 then
ρ∆

j+1,− = ρ∆
j,j+1(zj,+). The proposition is proved by induction. ¤

Remark 5.4.1. Suppose N > 1 and m = 0. Let 0 < |x1| < ε. Then either
we have αξ(X),|x|<ε(x1, 0) = (0, 0) or ωξ(X),|x|<ε(x1, 0). Suppose without lack of
generality that we are in the former case. There exists a semi-analytic β such that
L−,ε

β,x1
6= ∅ by the proof of lemma 5.3.1. Let (x0, 0) be a point in the first component

of L−,ε
β,x1

, thus x1 belongs to the first component ρ1 of L+,ε
β,x0

. Let L = µ(AE1,−). For
any neighborhood V ⊂ R we have that ∪∆∈V ρ∆

1,− is a neighborhood in C of x1. As
a consequence the real flow of X generates the complex flow of X|y=0 at every point
of Uε ∩ [y = 0].



CHAPTER 6

Topological Conjugation of (NSD) Vector Fields

We described so far the behavior of a (NSD) vector field X. From now on
we will use this information to compare two different (NSD) vector fields and to
characterize whether or not they are topologically conjugated.

Our aim is comparing two (NSD) vector fields in a set

Hf = {uf∂/∂x / u is a unit}.
In order to assure that the elements of Hf are (NSD) vector fields we ask f for
fulfilling the (NSD) conditions. We are going to describe whether the real flows of
X1 = u1f∂/∂x and X2 = u2f∂/∂x are topologically conjugated by a homeomor-
phism σ such that

• σ|[(SingX)\(y=0)] ≡ Id.
• y ◦ σ ≡ y.

A mapping σ satisfying the two previous conditions will be called special. We
impose the special conditions because we are interested in comparing the dynamics
of Re(X1) and Re(X2); whether they are topologically conjugated for a certain
fiber in a neighborhood of a singular point and if the evolution of the dynamics
with respect to the parameter is compatible.

We say that X1
sp∼ X2 if there exists a special germ of homeomorphism σ such

that σ conjugates Re(X1) and Re(X2).

6.1. Orientation

Consider f ∈ C{x, y} satisfying the (NSD) conditions. Let X1, X2 in Hf .
Suppose X1

sp∼ X2 by a homeomorphism σ defined in a neighborhood of Uε,δ. For
every s ∈ B(0, δ) there exists a mapping

σ(s)∗ : π1((Uε ∩ [y = s]) \ (f = 0)) → π1((σ(Uε) ∩ [y = s]) \ (f = 0))

induced by σ|y=s. Since σ|f=0 ≡ Id then the fundamental groups

π1((Uε,δ ∩ [y = s]) \ (f = 0)) and π1((σ(Uε,δ) ∩ [y = s]) \ (f = 0))

are canonically identified. We claim that the mapping σ|y=s preserves the orienta-
tion for s ∈ B(0, δ).

Proposition 6.1.1. Suppose N > 1. The mapping σ(s)∗ is the identity for all
s ∈ B(0, δ).

Proof. The result is invariant under a ramification (x, y) 7→ (x, yk), so we
can suppose that the irreducible components of the set f = 0 are x = g1(y), . . .,
x = gN (y) and maybe y = 0. We consider a loop ξ[0, 1] : θ 7→ re2πiθ for 0 < r < δ.
We define κ(x, y) = y. Let

σj : π1(κ−1(ξ) \ (x = gj(y))) → π1(κ−1(ξ) \ (x = gj(y)))

65
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be the mapping induced by σ|κ−1(ξ)\(x=gj(y)). It is enough to prove that σj ≡ Id

for all 1 ≤ j ≤ p. The space κ−1(ξ) \ [x = gj(y)] is homotopic to a torus whose
fundamental group is isomorphic to Z×Z. We choose a loop α1,0 ⊂ κ−1(ξ)\(f = 0)
such that α1,0 ∼ 0 in π1(Uε,δ \(f = 0)) and κ(α1,0) turns once around 0. Let α0,1 be
a loop in κ−1(r)\[x = gj(y)] turning once around (gj(r), r). The choice of generators
α1,0 and α0,1 induces an isomorphism from Z× Z to π1(κ−1(ξ) \ [x = gj(y)]). The
isomorphism σj is of the form

σj : Z× Z → Z× Z
(a, b) 7→ (a, cja + djb)

because σ preserves the fibration y = cte. Moreover, we have cj ∈ Z and dj ∈
{−1, 1}. Fix k ∈ {1, . . . , p} \ {j}, we denote ν(gj(y)− gk(y)) by ν. Let us consider
ξ1[0, 1] : θ 7→ (gk(re2πiθ), re2πiθ). The loop ξ1 is contained in κ−1(ξ) \ [x = gj(y)]
and since σ|f=0 ≡ Id then σj(ξ1) = ξ1. Therefore, we have σj(1, ν) = (1, ν).

Consider a continuous function lj1[0, 1] : θ → Θ(Xj
1(re2πiθ)) where Xj

1(s) is the
germ of X1|y=s at (gj(s), s). The function lj1 is determined by lj1(0). The direction
lj1(θ) turns t ∈ Q<0 times around {0} × S1 (see proof of proposition 4.2.1). The
number t does not depend on lj1(0); moreover, it does not depend on X1 but on f
(see proof of proposition 4.2.1 for a explicit calculation). Since σ preserves basins
of attraction and repulsion then σ induces a mapping from Θ(Xj

1(s)) to Θ(Xj
2(s)).

We define lj2(θ) = σ(lj1(θ)). The function lj2 is determined by lj2(0); it turns t times
around {0} × S1 since t depends on f . Let u ∈ N such that −tu ∈ N. Then
lj2 = σ(lj1) implies σj(u, tu) = (u, tu). We have

{
σj(u, tu) = (u, tu)
σj(1, ν) = (1, ν)

It is straightforward to prove that the previous system can only be satisfied if cj = 0
and dj = 1. As a consequence σj ≡ Id. ¤

Remark 6.1.1. Suppose N > 1. Let X1, X2 ∈ Hf be vector fields such that
X1

sp∼ X2 by a special homeomorphism σ. A priori, if a trajectory γ of ξ(X, y, ε) in-
duces a partition (E−, E+) the trajectory σ(γ) induces either (E−, E+) or (E+, E−)
depending on whether the orientation is preserved or reversed. We are in the for-
mer case by proposition 6.1.1. Therefore γ and σ(γ) induce the same partition of
the singular points.

6.2. Comparing residues

Let X1
sp∼ X2 be conjugated by σ. We can suppose that X1, X2 and σ are

defined in the neighborhood of both Uε,σ and σ(Uε,δ). This section is devoted to
prove that the existence of σ forces the residue functions of X1 and X2 to be related.

Lemma 6.2.1. Let X1, X2 ∈ Hf such that X1
sp∼ X2 by a special germ of

homeomorphism σ. Consider a non-empty L-limit L+,ε
β,x0

associated to X1 and a
component ρ of L+,ε

β,x0
. Let E be the partition induced by (x0, ρ); then

µ


 ∑

P∈E−(y)

[ResX1(P )−ResX2(P )]


 ≤ m.
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Proof. Throughout this proof the L-limits and sections will be referred to X1.
Let x1 ∈ ρ. There exists a true section S : β ∪ {0} → C2 such that S(0) = x1. We
have T : β → R+ such that

T (y) =
ψ1,X1

ym
(S(y)) + AE−,X1(y)− ψ0,X1

ym
(x0, y).

Let η > 0 such that X1 and σ are defined in Uε+η,δ. We define

γ(y) = Γ|x|<ε+η
ξ(X1),+

[x0, y][0, T (y)]

for y ∈ β. By remark 6.1.1 the partition induced by γ(y) and σ(γ(y)) is the same.
Therefore, we have

T (y) =
ψ1,X2

ym
(σ(S(y))) + AE−,X2(y)− ψ0,X2

ym
(σ(x0, y))

for all y ∈ β. This relation implies

lim
y∈β, y→0

ym(AE−,X1(y)−AE−,X2(y)) ∈ C.

Finally, we obtain µ(AE−,X1(y)−AE−,X2(y)) ≤ m. ¤
Remark 6.2.1. The result in the previous lemma is also true if we replace E−

with E+ because for any (NSD) vector field X the function

sm
∑

P∈SingX∩(y=s)

ResX(P ) = sm
∑

P∈E−(s)

ResX(P ) + sm
∑

P∈E+(s)

ResX(P )

is holomorphic in a neighborhood of s = 0. This statement is a consequence of the
formula

sm
∑

P∈SingX∩(y=s)

ResX(P ) =
∑

P∈SingX(1)∩(y=s)

ResX(1)(P ) =
∫

εS1×{s}
ψ

where ψ is a multi-valuated integral of the time form of X(1) defined in the neighbor-
hood of ∂Uε. The function

∫
εS1×{s} ψ is holomorphic because SingX(1) ∩ ∂Uε = ∅.

Let X1, X2 ∈ Hf such that X1
sp∼ X2. Fix s ∈ B(0, δ)\{0}. The graph G|x|<ε

ξ(X1,s)

has several connected components G1, . . ., Gl whose singular points we denote by
E1, . . ., El respectively.

Lemma 6.2.2.

µ(AEj ,X1(y)−AEj ,X2(y)) ≤ m for all 1 ≤ j ≤ l.

Proof. The T-sets, zones, L-limits and sections in this proof are referred to
X1. If TC

|x|<ε
ξ(X1,s) = ∅ then the result is true by the remark 6.2.1. Otherwise we

consider the set Ξ(Gj) ⊂ TC
|x|<ε
ξ(X1,s),∼ (see subsection 2.1.4 for definitions). We

choose a ∈ Ξ(Gj); the lemma 2.1.12 implies

AEj ,X1(y)−AEj ,X2(y) =

= (A
E

Gj,1
a ,X1

(y)−A
E

Gj,1
a ,X2

(y))−
∑

b∈Ξ(G)\{a}
(A

E
Gj,2
b ,X1

(y)−A
E

Gj,2
b ,X2

(y)).

It is enough to prove that the right hand side is a summation of functions whose
order is less or equal than m. Either s belongs to a T-set β or it belongs to a
zone Zε

X1
; in the latter case we choose a semi-analytic curve β contained in Z. A
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critical tangent cord c(y) ∈ Ξ(Gj(y)) contains a point T ε,d
X1

(y) and another point
P (y) ∈ ∂Uε. Since S1 is compact there exists (x1, 0) and a sequence yk ∈ β,
yk → 0 such that (x1, 0) = limk→∞ P (yk). We denote (x0, 0) = limy∈β,y→0 T ε,d

X1
(y).

We have that x1 ∈ L+,ε
β,x0

∪ L−,ε
β,x0

. Moreover, the partition induced by (x0, x1) is
the same partition induced by c(s). Therefore, by lemma 6.2.1 we deduce that
µ(A

E
Gj,k
c ,X1

(y)−A
E

Gj,k
c ,X2

(y)) ≤ m for k ∈ {1, 2}. ¤

We consider the T-sets β1, . . ., βl and the zones Zε
X1,1, . . ., Zε

X1,l associated
to the vector field X1. We consider the sequence of graphs G1, G2, . . . associated
to X1 (see section 4.3). Let Gj

1, . . ., Gj
lj

be the connected components of Gj . We

define Ej
k = Sing(Gj

k). We have

Lemma 6.2.3. For all j ≥ 1 and all 1 ≤ k ≤ lj we have

µ(AEj
k,X1

(y)−AEj
k,X2

(y)) ≤ m.

Proof. In this proof T-sets, zones and graphs are referred to X1. If there are
no T-sets the result is obvious. The result for j = 1 is implied by lemma 6.2.2.
Suppose it is true for j = j0. Consider s ∈ βj0+1. Let C be a connected component
of Gj0 . By varying C it is enough to prove the result for the connected components
of Gj0+1 contained in C. By lemma 4.3.4 the critical tangent cords in TC

|x|<ε
ξ(X1,s,ε),∼

separate the connected components of Gj0+1 contained in C. Let γ ⊂ [y = s] be
a critical tangent cord dividing C; it induces a partition (Eγ,−, Eγ,+) in Sing(C)
and a partition (E′

γ,−, E′
γ,+) in f = 0. It is enough to prove that

µ(AEγ,−,X1(y)−AEγ,−,X2(y)) ≤ m, µ(AEγ,+,X1(y)−AEγ,+,X2(y)) ≤ m

because then we can proceed as we did in lemma 6.2.2. Since γ does not split any
component Gj0 other than C (lemma 4.3.5) then we have

AEγ,−,X1(y)−AEγ,−,X2(y) =

(AE′γ,−,X1(y)−AE′γ,−,X2(y))−
∑

d∈J

(ASing(Cd),X1(y)−ASing(Cd),X2(y))

for a certain subset {Cd}d∈J of components of Gj0 other than C. We obtain
µ(AEγ,−,X1(y) − AEγ,−,X2(y)) ≤ m by lemmas 6.2.1, 6.2.2 and hypothesis of in-
duction. The proof for the + case is analogous. ¤

Proposition 6.2.1. Let X1, X2 ∈ Hf such that there exists a special germ of
homeomorphism conjugating Re(X1) and Re(X2). Consider a continuous multi-
valuated section S : B(0, δ) \ {0} → (f = 0) such that S(s) ∈ [y = s] for all
s ∈ B(0, δ) \ {0}. Then

µ(ResX1(S(y))−ResX2(S(y))) ≤ m.

Proof. By proposition 4.3.1 we can apply lemma 6.2.3 to the graph with no
edges. Since the connected components are singletons we are done. ¤

6.2.1. Rigidity of the special conjugation at y = 0. Let X1
sp∼ X2 be

conjugated by σ. We argued in remark 5.4.1 that the real flow generates the complex
flow at y = 0. We make rigorous that statement in order to prove that σ|Uε∩[y=0]

is complex analytic if N > 1 or m > 0.
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Lemma 6.2.4. Let X1, X2 ∈ Hf such that X1
sp∼ X2 by a special germ of

homeomorphism σ. If [y = 0] ⊂ SingX1 then σ|Uε∩[y=0] is holomorphic, moreover
it conjugates X1(1)|y=0 and X2(1)|y=0.

For t ∈ C we define exp(tX)(x0, y0) the point obtained by following the vector
field X from (x0, y0) during time t. For t close to 0 we have exp(tX)(x0, y0) =
Γξ(ei arg(t)X,y0,ε)[x0, y0](|t|).

Proof. We have X1 = ymX1(1) and X2 = ymX2(1). Let η > 0 such
that X1 and σ are defined in Uε+η,δ whereas X2 is defined in σ(Uε+η,δ). Let
(x0, 0) ∈ Uε; there exists A > 0 such that the complex flows exp(tX1)(x0, 0) and
exp(tX2)(σ(x0, 0)) are well defined for |t| < 2A. Our goal is proving

σ(exp(tX1)(x0, 0)) = exp(tX2)(σ(x0, 0))

for all t ∈ B(0, A). This statement implies that σ|Uε∩[y=0] is holomorphic except
maybe at 0 and then Riemann’s theorem implies that σ|Uε∩[y=0] is holomorphic.

Let t ∈ B(0, A) \ {0} and consider λ0 ∈ S1 such that t/|t| = λm
0 . We restrict

our parameters to the line y ∈ λ0R+. In y = rλ0 the vector fields Re(X1) and
Re(X2) are topologically conjugated. We obtain

Re(λm
0 X1(1))|y=rλ0

∼ Re(λm
0 X2(1))|y=rλ0

By making r → 0 we have

σ(exp(hλm
0 X1(1))(x0, 0)) = exp(hλm

0 X2(1))(σ(x0, 0))

for all 0 ≤ h < A. Therefore

σ(exp(tX1(1))(x0, 0)) = exp(tX2(1))(σ(x0, 0)).

¤

We remind the reader that N is the generic number of points in [f = 0]∩[y = s].

Lemma 6.2.5. Let X1, X2 ∈ Hf such that X1
sp∼ X2 by a special germ of

homeomorphism σ. Suppose N > 1. Then σ|Uε∩[y=0] is holomorphic, moreover it
conjugates X1|y=0 and X2|y=0.

This lemma is a consequence of the evolution of the L-limits.

Proof. In this proof the L-limits, virtual and true sections are referred to X1.
By lemma 6.2.4 we can suppose that [y = 0] 6⊂ Sing(X1). Let x1 ∈ B(0, ε) \ {0}.
We proceed as in remark 5.4.1. Consider M > 0 such that exp(B(0, 2M)X1)(x1, 0)
is contained in ∪∆∈Rρ∆

1,−. There exists a true section

Σ : W (M/[(L−m)co(E1, L)]) → C2

and a function T : W → R+ such that

T (y) = ψ1,X1(Σ(y)) + AE1,−,X1(y)− ψ0,X1(x0, y).

Moreover, we know that

Img

(
ψ1,X1

(
lim

y∈β(∆), y→0
Σ(y)

)
− ψ1,X1(x1, 0)

)
= ∆(L−m)co(E1, L).

Let (x2, 0) = exp(KX1)(x1, 0) for K ∈ B(0,M); we define

∆0 = Img(K)/[(L−m)co(E1, L)].
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and r = ψ1,X1(x2, 0)− ψ1,X1(limy∈β(∆0), y→0 Σ(y)). We have r ∈ R. Now consider
Σx2(y) = exp(rX1)(Σ(y)). We use that σ is a conjugation between the real flows
to obtain

(6.1)
ψ1,X2(σ(Σx2(y))) + AE1,−,X2(y)− ψ0,X2(σ(x0, y)) =

= ψ1,X1(Σx2(y)) + AE1,−,X1(y)− ψ0,X1(x0, y).

Since by proposition 6.2.1 the function AE1,−,X1(y) − AE1,−,X2(y) is holomorphic
up to a finite ramification then there exists C ∈ C such that

C = lim
y→0

(AE1,−,X1(y)−AE1,−,X2(y)).

We define D = C+ψ0,X2(σ(x0, 0))−ψ0,X1(x0, 0). By taking y ∈ β(∆0) and making
y → 0 we obtain

ψ1,X2(σ(exp(KX1)(x1, 0)))− ψ1,X1(exp(KX1)(x1, 0)) = D

for all K ∈ B(0,M). We substract from the previous one the expression we have
for K = 0. Therefore, the expression

ψ1,X2(σ(exp(KX1)(x1, 0)))− ψ1,X2(σ(x1, 0)) = K

is satisfied for all K ∈ B(0,M). The last equation is equivalent to

σ(exp(KX1)(x1, 0)) = exp(KX2)(σ(x1, 0))

for all K ∈ B(0,M). As a consequence σ|y=0 is holomorphic in the neighborhood of
(x1, 0). By changing (x1, 0) we deduce that σ|Uε∩[y=0] is holomorphic except maybe
at 0. By Riemman’s theorem the mapping σ|Uε∩[y=0] is holomorphic. ¤

Let fn1
1 . . . f

np
p ym be the decomposition of f in irreducible factors. The previous

lemmas imply

Proposition 6.2.2. Let X1, X2 ∈ Hf such that X1
sp∼ X2 by a special germ

of homeomorphism σ. Suppose (N,m) 6= (1, 0). Then σ|Uε∩[y=0] is holomorphic,
moreover it conjugates X1(1)|Uε∩[y=0] and X2(1)|Uε∩[y=0].

6.2.2. Comparing the residues revisited. We can improve the results we
obtained early in this section. The rigidity of the special conjugation at y = 0
implies a stronger relation on the residues.

Lemma 6.2.6. Let X1, X2 ∈ Hf such that X1
sp∼ X2 by a special germ of

homeomorphism σ. Consider a L-limit L+,ε
β,x0

6= ∅ associated to X1. Consider a
component ρ of L+,ε

β,x0
and let E be the partition induced by (x0, ρ). Then

lim
y→0

ym


 ∑

P∈E−(y)

[ResX1(P )−ResX2(P )]


 = 0.

Proof. We use the same notations than in the proof of lemma 6.2.1. There
exists C ∈ C such that

C = lim
y∈β, y→0

ym(AE−,X1(y)−AE−,X2(y)).

We have

C = [ψ1,X2(σ(S(0)))− ψ1,X1(S(0))]− [ψ0,X2(σ(x0, 0))− ψ0,X1(x0, 0)].

Since σ|y=0 is holomorphic (prop. 6.2.2) then ψ0,X2 ◦σ|y=0−ψ0,X1|y=0 ≡ D for some
D ∈ C. The function ψ1,X1 is the prolongation of ψ0,X1 along a path γ ⊂ C∗ ×{0}



6.3. TOPOLOGICAL INVARIANTS 71

going from (x0, 0) to S(0) in counter clock wise sense. The function ψ1,X2 is the
prolongation of ψ0,X2 along σ(γ). Hence, the prolongation of ψ0,X2 ◦ σ|y=0 =
ψ0,X1|y=0 + D along γ is ψ1,X2 ◦ σ|y=0 and then ψ1,X2 ◦ σ|y=0 = ψ1,X1|y=0 + D. As
a consequence the constant C is equal to D −D = 0. ¤

Proposition 6.2.3. Suppose (N, m) 6= (1, 0). Let X1, X2 ∈ Hf such that
X1

sp∼ X2 by a special germ of homeomorphism. Consider a continuous multi-
valuated section S : B(0, δ) \ {0} → (f = 0) such that we have S(s) ∈ [y = s] for
all s ∈ B(0, δ) \ {0}. Then

lim
y→0

ym(ResX1(S(y))−ResX2(S(y))) = 0.

Proof. The lemma 6.2.1 is the key to prove proposition 6.2.1. Lemmas 6.2.2
and 6.2.3 are intended to prove that the partitions can be chosen to be singletons.
In an analogous way the lemma 6.2.6 leads us to prove the proposition 6.2.3 for
N > 1. If N = 1 and m > 0 then we have ResX1(1)(0, 0) = ResX2(1)(0, 0) by
proposition 6.2.2. That implies [ym(ResX1(S(y))](0) = [ym(ResX2(S(y))](0) for
the unique continuous section S of f = 0. ¤

6.3. Topological invariants

Let X ∈ Hf . The set of topological invariants SP (X) of X for the
sp∼ conjuga-

tion is by definition
• SP (X) = ∅ if N = 0 or (N, m) = (1, 0).
• Otherwise we consider the parts of degree less or equal than 0 of every

function ym(ResX(S(y))) associated to some continuous section S : B(0, δ)\
{0} → SingX.

We say that X
ana∼ Y for X, Y ∈ Hf if X and Y are conjugated by a special

analytic diffeomorphism. By definition we denote X
ana∼ Y if X, Y ∈ H(C, 0) are

analytically conjugated.

Lemma 6.3.1. Let X, Y ∈ Hf . Suppose (N, m) 6= (1, 0); then

SP (X) = SP (Y ) =⇒ X(1)|y=0
ana∼ Y (1)|y=0.

Moreover, if N = 1 and m > 0 we have

SP (X) = SP (Y ) ⇔ X(1)|y=0
ana∼ Y (1)|y=0.

Proof. If N = 0 the result is obvious because X(1)|y=0 and Y (1)|y=0 are both
regular. Otherwise, since for Z = X or Z = Y we have

ResZ(1)(0, 0) = lim
s→0

sm
∑

P∈[f=0]∩[y=s]

ResZ(P ).

Then SP (X) = SP (Y ) implies ResX(1)(0, 0) = ResY (1)(0, 0). As a consequence
X(1)|y=0

ana∼ Y (1)|y=0 since the only analytic invariants are the order and the
residue and ν(X(1)|y=0) = ν(Y (1)|y=0) = ν((f/ym)(x, 0)). For N = 1 and m > 0
the part of degree less or equal than 0 of ymResZ(S(y)) associated to the unique
continuous section S(y) is equal to ResZ(1)(0, 0) for Z ∈ Hf . As a consequence
X(1)|y=0

ana∼ Y (1)|y=0 implies SP (X) = SP (Y ). ¤
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Theorem 6.1. Let f ∈ C{x, y} satisfying the (NSD) conditions. Let X,Y ∈
Hf . Then

X
sp∼ Y ⇔ SP (X) = SP (Y ).

proof of the implication ⇒. The invariants coincide by proposition 6.2.3.
¤

Our next goal is proving the ⇐ implication in theorem 6.1.

6.3.1. Proof of theorem 6.1 for the case N = 0, m > 0.

Proposition 6.3.1. Let Xj = uj(x, y)ym∂/∂x ∈ Hym for j ∈ {1, 2} and
m ≥ 0. Then X

ana∼ Y .

Proof. It is enough to prove the existence of an analytic diffeomorphism
(ξ(x, y), y) conjugating X1(1) and X2(1). The mapping

expZ(t, y) = expZ(tZ(1))(0, y)

is a germ of analytic diffeomorphism for all Z ∈ Hym . Moreover expZ conjugates
∂/∂x and Z(1). As a consequence (ξ(x, y), y) = expY ◦ exp−1

X conjugates X(1) and
Y (1). ¤

6.3.2. Case N ≥ 1. Strips. Let x = x1 + ix2. Consider X1, X2 in Hf such
that SP (X1) = SP (X2). A good candidate to be a special conjugation is

(ψ−1
2 (x, y), y) ◦ (ψ1(x, y), y)

where ψj is an integral of the time form of Xj for j ∈ {1, 2}. This conjugation is
well-defined only if ResX1(P ) = ResX2(P ) for all P in [(f = 0) \ (y = 0)] and then
it is analytic. We will modify the integral of the time form of X1 in order to make
this strategy works.

Consider the decomposition X1 = (1/2)(<X1 − i=X1) in real and imaginary
parts. We have <X1(ψ1) = 1 and =X1(ψ1) = i whereas an integral ψ′1 of the time
form of <X1 only satisfies <X1(ψ′1) = 1. That provides a motivation to replace ψ1

with ψ′1 such that

(1) ymψ′1 is multi-valuated and continuous in V \ (f/ym = 0) for some set V .
Moreover ψ′1 is C∞ in V \ (yf = 0).

(2) <X1(ψ′1) = 1 and =X1(ψ′1) is uni-valuated and bounded.
(3) f(ψ2−ψ′1) is a complex uni-valuated continuous function defined in V . It

satisfies [f(ψ2 − ψ′1)]|(f/ym)=0 ≡ 0.
(4) If N + m > 1 then f(ψ2 − ψ′1)|V ∩[y=0] = f(ψ2 − ψ1)|V ∩[y=0].
(5) If N + m > 1 then limη→0 supP∈B(0,η) |=X1(ψ′1)(P )− i| = 0.
(6) ∂(f [ψ2 − ψ′1])/∂xj is continuous in V \ (f/ym = 0) for j ∈ {1, 2}.

We say that ψ′1 is a modification of ψ1 with respect to X2. The set V is typically
of the form Uε ∩ [y ∈ W ∪ {0}]; the set W ⊂ B(0, δ) is always a simply connected
open set such that 0 ∈ W . The modification will take effect in strips. Consider a
continuous section T ε,a

X1
: W → T ε

X1
and a circular arc arc(s) = T ε,a

X1
(s)T ε,a+1

X1
(s)

such that

ωξ(X),(|x|<ε)∪{x0}(x0, y0) ∈ (f = 0), ∀(x0, y0) ∈ arc(y0) and ∀y0 ∈ W.
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We have ωξ(X),|x|≤ε(arc(s)) = F (s) where F (s) is a continuous section of SingX1

defined over W . We say that S = ∪s∈W Γ|x|≤ε
ξ(X),+[arc(s)] is a positive strip over W

with vertex at F .
We define a C∞ function H defined over C such that
• H : C→ [0, 1] is an increasing function of Img(z).
• H(z) = 0 if Img(z) ≤ 0 whereas H(z) = 1 if Img(z) ≥ 1.

We define MS(x, y)/(2πi) as

(ResX2(F (y))−ResX1(F (y)))H

(
ψ1(x, y)− ψ1(T

ε,a
X (y))

Img(ψ1(T
ε,a+1
X (y))− ψ1(T

ε,a
X (y)))

)

for (x, y) ∈ S. The function MS can be extended to a C∞ multi-valuated function
defined in (Uε ∩ [y ∈ W ]) \ (f = 0). We define <X1(MS) ≡ 0 and =X1(MS) ≡ 0
outside of S. Since

=X1(0) ≡ <X1(=X1(MS))
then we use the couple <X1, =X1 to obtain MS by C∞ prolongation.

In next lemma W is a neighborhood of 0 if (N, m) = (1, 0); otherwise we
suppose 0 6∈ W . Anyway [(f/ym) = 0] ∩ [y ∈ W ] is composed by N continuous
sections (gj(y), y) : W → SingX1 for 1 ≤ j ≤ N . Suppose there exists a positive
strip Sj over W with vertex at (gj(y), y) for all 1 ≤ j ≤ N . Then, we define

ψ′1 = ψ1 +
N∑

j=1

MSj .

Lemma 6.3.2. Let X1, X2 ∈ Hf such that SP (X1) = SP (X2). Then ψ′1 is a
modification of ψ1 in Uε ∩ [y ∈ W ∪ {0}] with respect to X2.

Proof. Up to ramify by (x, y) 7→ (x, yk) we can suppose that (f/ym) = 0 is
the union of N curves x = gj(y) for 1 ≤ j ≤ N . It is enough to prove the lemma
in this setting because conditions (1) through (6) are invariant by (x, y) 7→ (x, yk).

Let V = Uε ∩ [y ∈ W ∪ {0}]. The function ψ′1 is C∞ in V \ [yf = 0] by
construction. The construction also implies that <X1(ψ′1) = 1. We define ψ′1 such
that ψ′1(ε, y) = ψ1(ε, y) for all y ∈ W . There exists K > 0 such that V arε,δ

x−gj(y) < K

for all 1 ≤ j ≤ N by proposition 3.3.1. Proposition 3.2.4 implies that

|Img ln(x1 − gj(y))− Img ln(x0 − gj(y))| < 2π + K

for all (x0, y), (x1, y) ∈ Sk and all 1 ≤ j, k ≤ N .
We define Rj

1,2(y) = ResX2(gj(y), y) − ResX1(gj(y), y). We have that D =
ψ2 − ψ1 −

∑N
j=1 Rj

1,2(y) ln(x− gj(y)) is a solution of

∂D

∂x
=

1
u2f

− 1
u1f

−
N∑

j=1

∂(Rj
1,2(y) ln[x− gj(y)])

∂x
.

This equation is free of residues. Moreover, the right hand side is of the form h/f
for some h ∈ C{x, y}. By lemma 3.2.1 the function ψ2−ψ1 can be expressed in the
form

β(x, y)
(x− g1(y))n1−1

. . . (x− gN (y))nN−1
ym

+
N∑

j=1

Rj
1,2(y) ln(x− gj(y))
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for some β ∈ C{x, y}.
Let (x, y0) ∈ Uε \ [yf = 0]. We can obtain (ψ2 − ψ′1)(x, y0) by continuous

extension of a path γ : [0, 1] → Uε ∩ [y = y0] such that γ(0) = (ε, y0) and γ(1) =
(x, y0). Consider the universal covering Ũε(y0) of (Uε ∩ [y = y0]) \ [f = 0]. We
can choose γ such that the lifting γ̃ of γ cuts at most one connected component of
S̃j(y0) for all 1 ≤ j ≤ N . As a consequence

|Img ln(x− gj(y))(γ(t))− Img ln(x− gj(y))(ε, y)| < 2π + (2π + K)

for all 1 ≤ j ≤ N and all t ∈ [0, 1]. We deduce that for δ << 1 the choice of γ
satisfies

Img ln(x− gj(y))(γ[0, 1]) ∈ [−(6π + K), 6π + K]

for all (x, y0) ∈ Uε \ [yf = 0] and all 1 ≤ j ≤ N .
By continuous extension we obtain

|ym
0 (ψ1 − ψ′1)γ(1)| ≤ 2π

∑

1≤j≤N

|ym
0 Rj

1,2(y0)|

for all y0 ∈ W . If SP (X1) = SP (X2) the right hand side is bounded when y0 →
0. Hence [ym(ψ′1 − ψ1)](γ(1)) is bounded independently of (x, y0). Moreover, if
(N, m) 6= (1, 0) the right hand side is a O(y).

We have that ∣∣∣∣∣∣
f(x, y)

N∑

j=1

Rj
1,2(y) ln(x− gj(y))

∣∣∣∣∣∣
(γ(1))

is less or equal than
∣∣∣∣∣∣
f(x, y0)

N∑

j=1

Rj
1,2(y0) ln |x− gj(y0)|

∣∣∣∣∣∣
+ (6π + K)

∣∣∣∣∣∣
f(x, y0)

N∑

j=1

Rj
1,2(y0)

∣∣∣∣∣∣
As a consequence

[f(x, y)(ψ2 − ψ′1)](x, y) = O((x− g1(y)) . . . (x− gN (y)))

in Uε ∩ [y ∈ W ]. We have ymRj
1,2 ∈ (y) for N + m > 1 and all 1 ≤ j ≤ N since

SP (X) = SP (Y ). As a consequence for N + m > 1 we have that

[f(x, y)(ψ2 − ψ′1)](x, y)− β(x, y)(x− g1(y)) . . . (x− gN (y))

is a O((x− g1(y))n1−1
. . . (x− gN (y))nN−1

y) in Uε ∩ [y ∈ W ]. We extend the func-
tion f(ψ2 − ψ′1) to [f/ym = 0] as 0 whereas for N + m > 1 we extend f(ψ2 − ψ′1)
to Uε ∩ [y = 0] as β(x, 0)xN . This definition implies conditions (3) and (4). Since
ymψ′1 = ym(ψ′1 − ψ2) + ymψ2 the proof of condition (1) is now complete.

Since =X1(ψ1) ≡ i then

=X1(ψ′1)− i =
N∑

j=1

=X1(MSj ).

By making calculations in the system of coordinates provided by ψ1 we obtain

|=X1(ψ′1)− i| ≤ D

N∑

j=1

|ResX2(gj(y), y)−ResX1(gj(y), y)|
|Img(ψ1(T

ε,aj+1
X (y))− ψ1(T

ε,aj

X (y)))|
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where D = 2π supz∈C |∂H/∂Img(z)|. The function

Gap(a, λ)
def
=

∣∣∣Img
(
(|y|mψ1)(T

ε,a+1
X(λ) (0))− (|y|mψ1)(T

ε,a
X(λ)(0))

)∣∣∣
is defined over J = {1, . . . , 2(ν̃(X1) − 1)} × S1. It is strictly positive; hence C =
inf(a,λ)∈J Gap(a, λ) belongs to R+. We have

|=X1(ψ′1)(x, y)− i| ≤ 2D

C

N∑

j=1

|ymResj
1,2(y)|

for all x ∈ B(0, ε) and y ∈ W close to 0. This equation is analogous to the one
we obtained for |ym(ψ′1 − ψ1)|. We deduce that =X1(ψ′1) is bounded. Moreover
=X1(ψ′1) extends continuously to V ∩ [y = 0]; for (N, m) = (1, 0) is obvious,
otherwise we define =X1(ψ′1)(x, 0) ≡ i. As a consequence =X1(ψ′1) is continuous,
uni-valuated and bounded in V \ [f/ym = 0]. Condition (5) is a consequence of
ymResj

1,2 ∈ (y) for N + m > 1 and all 1 ≤ j ≤ N .
The only condition still to prove is (6). We suppose (N, m) 6= (1, 0), otherwise it

is trivial. Condition (6) is equivalent to the function ∂(ym[ψ1 − ψ′1])/∂xj extending
continuously to (V ∩ [y = 0]) \ {0} as the zero function for j ∈ {1, 2}. Since
<X1(ψ1 − ψ′1) ≡ 0 and |=X1(ψ1 − ψ′1)| ≤ η|y| for some η > 0 we have

Re(u1f)∂(ψ1 − ψ′1)/∂x1 + Img(u1f)∂(ψ1 − ψ′1)/∂x2 = 0
−Img(u1f)∂(ψ1 − ψ′1)/∂x1 + Re(u1f)∂(ψ1 − ψ′1)/∂x2 = η1

where |η1(x, y)| ≤ η|y|. By solving the system we deduce that∣∣∣∣
∂(ym[ψ1 − ψ′1])

∂xj

∣∣∣∣ ≤
η|y|

|u1||f/ym|
for all j ∈ {1, 2}. The inequalities imply condition (6). ¤

Remark 6.3.1. The constant C depends on ε and limε→0 C(ε) = ∞. As a
consequence we can choose =X1(ψ′1) as close to i as desired just by taking (ε, δ)
close to (0, 0).

6.3.3. Existence of strips. Case N = 1. In this case the set f/ym = 0 is
equal to a curve x = f1(y).

Lemma 6.3.3. Let N = 1, m = 0 and X ∈ Hf . There exists a strip over
B(0, δ) with vertex at x = f1(y).

Proof. We claim there exists an arc arc(0) = T ε,a
X (0)T ε,a+1

X (0) such that

ωξ(X),(|x|<ε)∪{x0}(x0, 0) = (0, 0), ∀(x0, 0) ∈ arc(0).

We choose 1 ≤ a ≤ 2(ν̃(X)− 1) such that in the interior of arc(0) the vector field
Re(X) points towards the interior of |x| ≤ ε. By Rolle property the trajectory
Γ(|x|<ε)∪{x0}

ξ(X),+ [x0, 0] for (x0, 0) ∈ arc(0) is contained in the bounded region enclosed
by the curve

Γ|x|≤ε
ξ(X),+[T ε,a

X (0)] ∪ Γ|x|≤ε
ξ(X),+[T ε,a+1

X (0)] ∪ arc(0) ∪ {(0, 0)}.
It is a Jordan curve by remark 3.2.3. Then

ωξ(X),(|x|<ε)∪{x0}(x0, y) ∈ (f = 0), ∀(x0, y) ∈ arc(y) and ∀y ∈ B(0, δ)

since the basins of attraction and repulsion of x = f1(y) are open by remark 2.2.1.
¤
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The same proof implies the existence of strips for N = 1 and m > 0.

Lemma 6.3.4. Suppose N = 1 and m > 0. Consider X ∈ Hf . There exists a
strip over B(0, δ) \ (λ0R+ ∪ {0}) with vertex at x = f1(y) for all λ0 ∈ S1.

Next we prove the existence of modifications for N = 1.

Lemma 6.3.5. Fix η > 0. Let N = 1. Consider X1, X2 ∈ Hf such that
SP (X1) = SP (X2). There exists a modification ψ′1 of ψ1 in Uε,δ with respect to
X2. If m = 0 we can choose ψ′1 to be C∞ in Uε,δ \ [f = 0]; moreover, for ε > 0 and
δ(ε) > 0 small we have |=X1(ψ′1)− i| < η.

Proof. If m = 0 the lemma 6.3.3 guarantees the existence of strips. Then
we use lemma 6.3.2 to build a modification in Uε,δ by taking W = B(0, δ). The
function ψ′1 is C∞ in Uε,δ \ [f = 0] by construction. Moreover |=X1(ψ′1)− i| can be
made as small as desired by remark 6.3.1.

If m > 0 we define W+ = B(0, δ) \ R≤0 and W− = B(0, δ) \ R≥0. By lemmas
6.3.4 and 6.3.2 there exists a modification ψ1,+ of ψ1 with respect to X2 in Uε ∩
[y ∈ W+ ∪ {0}]. By replacing + with − in the previous argument we obtain
ψ1,−. Consider a partition of the unit ξ+, ξ− of B(0, δ) \ {0} with respect to the
covering W+∪W−. It is straightforward to check that ψ′1(x, y) = ξ+(y)ψ1,+(x, y)+
ξ−(y)ψ1,−(x, y) is a modification of ψ1 with respect to X2 in Uε,δ. ¤

Remark 6.3.2. The properties <X1(ψ′1) = 1 and |=X1(ψ′1)− i| < 1 imply that
ψ′1 is locally injective. That is a necessary condition in order to make

(ψ2(x, y), y)−1 ◦ (ψ′1(x, y), y)

well-defined.

6.3.4. Existence of strips. Case N > 1. Let X ∈ Hf . We have UN ε
X \

{0} 6= ∅ by corollary 4.2.2. We denote by β1, . . ., βl the T-sets and by Zε
X,1, . . .,

Zε
X,l the zones as we did in section 4.2. If l = 1 we choose a semi-analytic fake

T-set β2 such that β2 6= β1. Then we can suppose that l ≥ 2. As a consequence
the set

Zε,j
X

def
= Zε

X,j ∪ βj+1 ∪ Zε
X,j+1

is contained in B(0, δ) \ {0} and it is simply connected; then there are N sections
x = gj(y) in Zε,j

X of SingX for 1 ≤ j ≤ N .

Lemma 6.3.6. Let 1 ≤ k ≤ l. For all 1 ≤ j ≤ N there is a strip Sj
k over Zε,k

X

with vertex at x = gj(y).

Proof. Fix s ∈ βk+1. There exists a connected component D of

(α, ω)−1
ξ(X),|x|<ε((gj(s), s), (gj(s), s)) ⊂ [|x| < ε]

by lemma 2.2.1. The set ∂D is of the form γ0 ∪{(gj(s), s)} where γ0 is a trajectory
of ξ(X) in |x| ≤ ε. There exist times t0, t1 ∈ R such that γ0(tq) ∈ T ε

X(s) for
q ∈ {0, 1} and [γ0(−∞, t0) ∪ γ0(t1,∞)] ∩ T ε

X(s) = ∅. The sub-trajectory γ0(t1,∞)
is the boundary of two connected components of (|x| < ε) \ H|x|<ε

ξ(X,s), namely D

and a component D0 contained in (α, ω)−1
ξ(X),|x|<ε(∞, (gj(s), s)). Let arc0(s) =

T ε,a0
X (s)T ε,a0+1

X (s) be the unique arc containing end−ξ(X,s,ε)(D0). We have that
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γ0(t1) is either T ε,a0
X (s) or T ε,a0+1

X (s). We suppose without lack of generality that
we are in the former case. Then either

ωξ(X),(|x|<ε)∪{x0}(x0, s) ∈ (f = 0) for all (x0, s) ∈ arc0(s)

or there exists Q1/2 ∈ arc0(s) \ {T ε,a0
X (s)} such that γ1 = Γ|x|≤ε

ξ(X,s,ε),+[Q1/2] contains
a point T ε,a1

X (s) different than Q1/2. Let t11 be the unique real number such that
γ1(t11) = T ε,a1

X (s) for some 1 ≤ a1 ≤ 2(ν̃(X) − 1) and γ1(t11,∞) ∩ T ε
X(s) = ∅.

The sub-trajectory γ1(t11,∞) is in the boundary of two connected components of
(|x| < ε) \ H|x|<ε

ξ(X,s), namely D0 and a component D1 ⊂ (α, ω)−1(∞, (gj(s), s)).
We can iterate the process; we claim that at some point we obtain some arc(s) =

T ε,a
X (s)T ε,a+1

X (s) such that

ωξ(X),(|x|<ε)∪{x0}(x0, s) ∈ (f = 0) for all (x0, s) ∈ arc0(s).

Otherwise we build an infinite sequence D0, D1, . . . of components of (|x| < ε) \
H|x|<ε

ξ(X,s) contained in (α, ω)−1
ξ(X),|x|<ε(∞, (gj(s), s)) (see picture 1). This sequence

Figure 1.

is periodic, in particular ∪q∈NDq is a neighborhood of (gj(s), s). But that is a
contradiction since [∪q∈NDq] ∩D = ∅.

We consider arc(y) = T ε,a
X (y)T ε,a+1

X (y) for y ∈ Zε,k
X . We claim that

E = {z ∈ Zε,k
X : ωξ(X),(|x|<ε)∪{x0}(x0, z) ∈ (f = 0) ∀(x0, z) ∈ arc(z)}

is equal to Zε,k
X . We already proved that s ∈ E. If E 6= Zε,k

X then the set of
parameters containing a bitangent cord joining a point in {T ε,a

X (s), T ε,a+1
X (s)} with

another tangent point is a non-empty union of T-sets intersecting Zε,k
X and disjoint

from Zε,k
X \ βk+1; therefore it contains βk+1. Since s ∈ βk+1 ∩ E we obtain a

contradiction. As a consequence the set Sj
k = ∪y∈Zε,k

X
Γ|x|≤ε

ξ(X),+[arc(y)] is a strip over

Zε,k
X with vertex at x = gj(y). ¤

Lemma 6.3.7. Let N > 1. Let X1, X2 ∈ Hf be vector fields such that SP (X1) =
SP (X2). There exists a modification ψ′1 of ψ1 in Uε,δ with respect to X2.
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Proof. By lemma 6.3.6 we can define

ψ1,k = ψ1 +
N∑

j=1

MSj
k

for 1 ≤ k ≤ l. The function ψ1,k is a modification of ψ1 with respect to X2 defined
in Uε,δ ∩ [y ∈ Zε,k

X ∪ {0}] by lemma 6.3.2. Now we can define a modification ψ′1
of ψ1 with respect to X2 in Uε,δ. We just have to consider a partition of the unit
associated to the covering ∪1≤k≤lZ

ε,k
X of B(0, δ) \ {(0, 0)} and then to proceed like

in lemma 6.3.5. ¤

6.3.5. End of the proof of theorem 6.1.

Proof. Let X1 = X and X2 = Y . We have Xj = ujf∂/∂x for all j ∈ {0, 1}.
If N = 0 the result is true by proposition 6.3.1. We define

X1+ξ = u1+ξf
∂

∂x
=

u1u2

u2(1− ξ) + u1ξ
f

∂

∂x
.

Let ξ0 = u2(0, 0)/(u2(0, 0) − u1(0, 0)); we have ξ0 ∈ C ∪ {∞}. The vector field
X1+ξ belongs to Hf if ξ ∈ C \ {ξ0}. The integral of the time form of X1+ξ is
(1 − ξ)ψ1 + ξψ2. As a consequence any couple of vector fields X1+ξ and X1+ξ′

satisfy that SP (X1+ξ) = SP (X1+ξ′). Suppose we can prove X1
sp∼ X2 under the

hypothesis ξ0 6∈ [0, 1]. Then we are done because if ξ0 ∈ [0, 1] we consider the
families

X1
1+ξ =

u1u1+i

u1+i(1− ξ) + u1ξ
f

∂

∂x
and X2

1+ξ =
u1+iu2

u2(1− ξ) + u1+iξ
f

∂

∂x
.

Since u1+i(0, 0)/(u1+i(0, 0) − u1(0, 0)) and u2(0, 0)/(u2(0, 0) − u1+i(0, 0)) do not
belong to [0, 1] we obtain X1

sp∼ X1+i
sp∼ X2.

We choose Uε,δ such that C0 < |u1+ξ(x, y)| < C1 for (x, y, ξ) in Uε,δ× [0, 1] and
some positive constants C0 and C1. Let x = x1 + ix2. Let ψ′1 be the modification
of ψ1 with respect to X2 provided by lemmas 6.3.5 and 6.3.7. We can choose Uε,δ

and ψ′1 to satisfy |=X1(ψ′1 − ψ1)| < η for some 0 < η < 1 we will precise later on.
We want to find a vector field Z = ∂/∂ξ + a∂/∂x1 + b∂/∂x2 such that

(
∂

∂ξ
+ a(x, y, ξ)

∂

∂x1
+ b(x, y, ξ)

∂

∂x2

)
((1− ξ)ψ′1 + ξψ2) = 0.

We want a and b to be continuous functions satisfying
• a and b are real continuous functions defined in Uε,δ × [0, 1].
• a|(f/ym=0)×[0,1] = b|(f/ym=0)×[0,1] ≡ 0.

Supposed Z exists then the mapping

σ(x, y) = exp
(

∂

∂ξ
+ a(x, y, ξ)

∂

∂x1
+ b(x, y, ξ)

∂

∂x2

)
(x, y, 0)

is a special germ of homeomorphism such that ψ′1 = ψ2 ◦ σ. Therefore we obtain
that X1

sp∼ X2 by σ.
Let us find Z. The equation for Z is equivalent to

(
a

∂

∂x1
+ b

∂

∂x2

)
((1− ξ)ψ′1y

m + ξψ2y
m) = ψ′1y

m − ψ2y
m.
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Let f ′ = f/ym. We define ψ′1,m = ψ′1y
m and ψj,m = ψjy

m for j in {1, 2}. We
define H = H1 + iH2 = (1 − ξ)ψ′1,m + ξψ2,m. We remark that ψ′1,m − ψ2,m and
∂((1− ξ)ψ′1,m + ξψ2,m)/∂xj (j ∈ {1, 2}) are uni-valuated and continuous in (Uε,δ \
[f ′ = 0])× [0, 1]. We obtain a system

a∂H1/∂x1 + b∂H1/∂x2 = Re(ψ′1,m − ψ2,m)
a∂H2/∂x1 + b∂H2/∂x2 = Img(ψ′1,m − ψ2,m)

whose solutions

a =

∣∣∣∣
Re(ψ′1,m − ψ2,m) ∂H1/∂x2

Im(ψ′1,m − ψ2,m) ∂H2/∂x2

∣∣∣∣
∣∣∣∣

∂H1/∂x1 ∂H1/∂x2

∂H2/∂x1 ∂H2/∂x2

∣∣∣∣
b =

∣∣∣∣
∂H1/∂x1 Re(ψ′1,m − ψ2,m)
∂H2/∂x1 Im(ψ′1,m − ψ2,m)

∣∣∣∣
∣∣∣∣

∂H1/∂x1 ∂H1/∂x2

∂H2/∂x1 ∂H2/∂x2

∣∣∣∣
satisfy that the numerators and denominator in the previous expressions are con-
tinuous in (Uε,δ \ [f ′ = 0]) × [0, 1]. We denote ψ′1,m − ψ1,m by ρ = ρ1 + iρ2 and
(1− ξ)ψ1,m + ξψ2,m by h = h1 + ih2. The denominator of the previous expressions
can be developed as

4∑

j=1

Dj
def
=

∣∣∣∣
∂h1/∂x1 ∂h1/∂x2

∂h2/∂x1 ∂h2/∂x2

∣∣∣∣ + (1− ξ)
∣∣∣∣

∂h1/∂x1 ∂ρ1/∂x2

∂h2/∂x1 ∂ρ2/∂x2

∣∣∣∣ +

+(1− ξ)
∣∣∣∣

∂ρ1/∂x1 ∂h1/∂x2

∂ρ2/∂x1 ∂h2/∂x2

∣∣∣∣ + (1− ξ)2
∣∣∣∣

∂ρ1/∂x1 ∂ρ1/∂x2

∂ρ2/∂x1 ∂ρ2/∂x2

∣∣∣∣ .

Since h is holomorphic we can use the Cauchy-Riemann’s equation to obtain
∣∣∣∣

∂h1/∂x1 ∂h1/∂x2

∂h2/∂x1 ∂h2/∂x2

∣∣∣∣ =
(

∂h1

∂x1

)2

+
(

∂h2

∂x1

)2

=
∣∣∣∣
∂h

∂x

∣∣∣∣
2

We have ∂h/∂x = ym/(u1+ξf), therefore D1 = |D1| ≥ 1/(|f ′|2C2
1 ) in Uε,δ × [0, 1].

We have ∣∣∣∣
∂hj

∂xk

∣∣∣∣ ≤
∣∣∣∣
∂h

∂x

∣∣∣∣ ≤
1

|f ′|C0

for all j ∈ {1, 2} and k ∈ {1, 2}. We want to estimate |∂ρj/∂xk|, the relations
<X1(ρj) = 0 and |=X1(ρj)| ≤ |y|mη provide the system

Re(u1f)∂ρj/∂x1 + Img(u1f)∂ρj/∂x2 = 0
−Img(u1f)∂ρj/∂x1 + Re(u1f)∂ρj/∂x2 = η1

where |η1(x, y)| ≤ |y|mη for (x, y) ∈ Uε,δ. By using Kramer’s rule we deduce that
|∂ρj/∂xk| ≤ η/(|f ′|C0). Therefore, we can choose η > 0 to have

∣∣∣∣
∣∣∣∣

∂H1/∂x1 ∂H1/∂x2

∂H2/∂x1 ∂H2/∂x2

∣∣∣∣
∣∣∣∣ ≥

1
|f ′|2C2

1

− 4η

|f ′|2C2
0

− 2η2

|f ′|2C2
0

≥ 1
2|f ′|2C2

1

.

As a consequence a and b are continuous in (Uε,δ \ [f ′ = 0])× [0, 1]. It is enough to
prove that

(f ′)2
∣∣∣∣

Re(ψ′1,m − ψ2,m) ∂H1/∂xk

Im(ψ′1,m − ψ2,m) ∂H2/∂xk

∣∣∣∣
is a continuous function in Uε,δ for k ∈ {1, 2} whose restriction to f ′ = 0 is identi-
cally 0. We have ∣∣∣∣

∂Hj

∂xk

∣∣∣∣ ≤
1

|f ′|C0
+

η

|f ′|C0
=

1 + η

|f ′|C0
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for (x, y, ξ) ∈ Uε,δ× [0, 1] and j, k ∈ {1, 2}. Condition (3) on ψ′1 concludes the proof
since f ′(ψ′1,m − ψ2,m) = f(ψ′1 − ψ2). ¤

Corollary 6.3.1. Let f ∈ C{x, y} satisfying the (NSD) conditions. Let
X, Y ∈ Hf . If SP (X) = SP (Y ) then Re(X) and Re(Y ) are conjugated by a
germ of special homeomorphism σ such that

• σ is analytic in a neighborhood of (0, 0) if N = 0.
• σ and σ(−1) are C∞ outside f = 0 if (N, m) = (1, 0).
• σ and σ(−1) are C∞ outside yf = 0 if N ≥ 1 and N + m > 1.

Proof. The result for N = 0 is a consequence of proposition 6.3.1. The
proof of theorem 6.1 has a modification ψ′1 as an input and a special continuous
conjugation σ as an output. For (N, m) = (1, 0) the modification ψ′1 is C∞ in
Uε,δ \ [f = 0]; therefore σ is C∞ in a neighborhood of (0, 0) minus f = 0. For
N + m > 1 the modification ψ′1 is C∞ in the complementary of yf = 0, this
property is shared by σ. ¤



CHAPTER 7

Families of Diffeomorphisms without Small
Divisors

We already classified the topological behavior of the (NSD) vector fields. By
definition ϕ ∈ Diff (C2, 0) is a (NSD) diffeomorphism if it can be expressed in the
form ϕ(x, y) = (x + f(x, y), y) for a (NSD) function f . We will show that a (NSD)
diffeomorphism has a flow-like behavior.

7.1. Normal form and residues

By definition ϕ ∈ Diff (Cn, 0) is unipotent if for all k ∈ N the linear isomorphism

ϕk : m/mk+1 → m/mk+1

g + mk+1 7→ g ◦ ϕ + mk+1

is unipotent where m is the maximal ideal of C[[x1, . . . , xn]]. We denote by Diff u(Cn, 0)
the subgroup of Diff (Cn, 0) of unipotent diffeomorphisms. It is easy to check out
that ϕ is unipotent if and only if ϕ1 is unipotent. Since a (NSD) diffeomorphism
ϕ satisfies j1ϕ = (x + ρy, y) for some ρ ∈ C then the (NSD) diffeomorphisms are
unipotent.

We consider the set of formal vector fields Ĥ(Cn, 0) whose elements are of the
form

∑n
j=1 âj(x1, . . . , xn)∂/∂xj where âj ∈ C[[x1, . . . , xn]] and âj(0) = 0 for all

1 ≤ j ≤ n. We denote by Ĥn(Cn, 0) the set of nilpotent formal vector fields. The
set of formal diffeomorphisms D̂iff (Cn, 0) is composed of elements ϕ̂ = (ϕ̂1, . . . , ϕ̂n)
where ϕ̂j ∈ C[[x1, . . . , xn]], ϕ̂j(0) = 0 for 1 ≤ j ≤ n and j1ϕ̂ is a linear isomorphism.

By definition

exp(tX̂) =




∞∑

j=0

tj
X̂j(x1)

j!
, . . . ,

∞∑

j=0

tj
X̂j(xn)

j!




is the exponential of X̂ ∈ Ĥn(Cn, 0). We have X̂0(xk) = xk whereas X̂j+1(xk) =
X̂(X̂j(xk)) for all j ≥ 0. The components xk ◦ exp(X̂) (1 ≤ k ≤ n) converges in
the Krull topology for X̂ ∈ Ĥn(Cn, 0). Moreover, we obtain the next well known
result:

Proposition 7.1.1. The exponential mapping exp(1·) establishes a bijection
from Ĥn(Cn, 0) onto D̂iff u(Cn, 0). Moreover, for all X̂ ∈ Ĥn(Cn, 0) and 1 ≤ k ≤ n

we have xk ◦ exp(tX̂) ∈ C[t][[x1, . . . , xn]].

We denote by log ϕ the unique nilpotent formal vector field such that ϕ =
exp(log ϕ).

Proposition 7.1.2. Let ϕ = (x+f(x, y), y) be a (NSD) diffeomorphism. Then
log ϕ is of the form ûf∂/∂x for some formal unit û ∈ C[[x, y]].

81
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Proof. Since y ◦ ϕ = y we obtain y ◦ exp(t log ϕ) = y for all t ∈ Z. The
series y ◦ exp(t log ϕ) − y belongs to C[t][[x, y]] and it vanishes at Z; therefore
y ◦ exp(t log ϕ) ≡ y. We have

log ϕ(y) = lim
t→0

y ◦ exp(t log ϕ)− y

t
= 0;

that implies log ϕ = ĝ∂/∂x for some ĝ ∈ C[[x, y]]. We can develop exp(log ϕ)
to obtain that ϕ is of the form (x + v̂ĝ, y) where v̂(0) = 1. As a consequence
log ϕ = v̂−1f∂/∂x. ¤

We provide next a convergent normal form for the logarithm of a (NSD) dif-
feomorphism.

Proposition 7.1.3. Let ϕ = exp(ûf∂/∂x) be a (NSD) diffeomorphism. Then
there exists uk ∈ C{x, y} such that û− uk ∈ (fk) for all k ∈ N.

Proof. Let f = ymfn1
1 . . . f

np
p be the decomposition of f in irreducible com-

ponents. It is enough to prove that there exists ug
k ∈ C{x, y} such that û−ug

k ∈ (gk)
for g ∈ {f1, . . . , fp, y} and k ∈ N. Fix g; the result is obviously true for k = 0.
Suppose it is true for k = a; we have

ϕ = exp
(

(ug
a + gaĥ)f

∂

∂x

)

where ĥ ∈ C[[x, y]] by hypothesis. Since g2| log ϕ(g) we obtain

x ◦ ϕ− x ◦ exp(ug
af∂/∂x)− gafĥ ∈ (ga+1f).

As a consequence the series (x ◦ ϕ− x ◦ exp(ug
af∂/∂x))/(gaf) belongs to C{x, y};

we denote it by v. We have ĥ − v ∈ (g); thus we obtain û − ug
a+1 ∈ (ga+1) for

ug
a+1 = ug

a + gav. ¤

Let exp(ûf∂/∂x) be a (NSD) diffeomorphism. Then X = uf∂/∂x is a conver-
gent normal form of exp(ûf∂/∂x) if û− u ∈ (f2). Proposition 7.1.3 implies

Proposition 7.1.4. Every (NSD) diffeomorphism has a convergent normal
form.

The normal form is not unique. It can be proved that ϕ is formally conjugated
to every convergent normal form; the proof is beyond the scope of this work.

Let ϕ be a (NSD) diffeomorphism; we define Resϕ(P ) = ResX(P ) for P ∈ Fixϕ
where X is a convergent normal form of ϕ. The residues are well defined since

Lemma 7.1.1. Let Xj = ujf∂/∂x ∈ Hf for j ∈ {1, 2}. If u1 − u2 ∈ (f) then
ResX1(1)(P ) = ResX2(1)(P ) for all P ∈ [f = 0].

Proof. Let f = ymfn1
1 . . . f

np
p be the decomposition of f in irreducible com-

ponents. Fix (x0, y0) ∈ [f = 0]; let ν = νx0(f
n1
1 . . . f

np
p (x, y0)). The residue

ResXj(1)(x0, y0) is a function of the jet of order 2ν − 1 of Xj(1)|y=y0 at the point
x = x0. Since

(u1f
n1
1 . . . fnp

p )(x, y0)− (u2f
n1
1 . . . fnp

p )(x, y0) ∈ ((x− x0)
2ν)

we have ResX1(1)(P ) = ResX2(1)(P ) for all P ∈ [f = 0]. ¤
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7.2. Comparing a diffeomorphism and its normal form

Throughout this section let ϕ be a (NSD) diffeomorphism; consider a convergent
normal form X(ϕ) whose exponential exp(X(ϕ)) we denote by αϕ. Let ψX(ϕ) be an
integral of the time form of X. We claim that ϕ and α have very similar dynamics.
Indeed, we want to prove

Theorem 7.1. Let ϕ be a (NSD) diffeomorphism. There exist open neighbor-
hoods V ⊂ W of (0, 0) and a constant C > 0 such that

{α(0)(x, y) = (x, y), . . . , α(j)(x, y)} ⊂ V

for j ∈ Z implies {ϕ(0)(x, y), . . . , ϕ(j)(x, y)} ⊂ W and

|ψX(ϕ) ◦ ϕ(j)(x, y)− [ψX(ϕ)(x, y) + j]| ≤ C.

Moreover, we can make C arbitrarily small by shrinking V .

This theorem is very powerful. We are claiming that the orbits by ϕ are very
close to the orbits by αϕ, regardless of the number of iterations. Apparently the
function ψX(ϕ) ◦ϕ(j)− (ψX(ϕ) + j) is not well defined since ψX(ϕ) is multi-valuated
but it is. Let ∆ = ψX(ϕ) ◦ ϕ− (ψX(ϕ) + 1); we define

∆j = ψX(ϕ) ◦ ϕ(j) − (ψX(ϕ) + j).

Then ∆j =
∑j−1

k=0 ∆ ◦ ϕ(k) if j > 0 and ∆j =
∑|j|

k=1 ∆ ◦ ϕ(−k) if j < 0.

Lemma 7.2.1. The function ∆ does not depend on the choice of ψX(ϕ). More-
over ∆ is a holomorphic function in Uε,δ which belongs to (f2).

Proof. The function ymψX(ϕ) is unique up to an additive holomorphic func-
tion depending only on the variable y. As a consequence ∆ is a holomorphic function
in defined U \ [f = 0] for some neighborhood U of (0, 0). Since

x ◦ ϕ− x ◦ α ∈ (f3) and ∆ = ψX(ϕ) ◦ ϕ− ψX(ϕ) ◦ α

then ∆ = O(y2m) in the neighborhood of the points in [y = 0] \ {(0, 0)}. As a
consequence ∆ is holomorphic outside f/ym = 0. Consider a point P in the set
[f = 0] \ [y = 0]. Up to a change of coordinates in the neighborhood of P we can
suppose that f = xn and ϕj = (x+v1x

n, y) for j ∈ {1, 2}. Moreover u1−u2 ∈ (f2)
implies v1 − v2 ∈ (x2n). We obtain

∆ ∈ O(x(3n−1)−(n−1)) = O(f2)

in the neighborhood of P since ψX(ϕ) = O(1/xn−1). We deduce that ∆/f2 is a
bounded function in the neighborhood of [f = 0] \ {(0, 0)}; hence ∆/f2 is holo-
morphic in a pointed neighborhood of (0, 0). Since compact singularities can be
removed then ∆/f2 is holomorphic in the neighborhood of (0, 0). ¤

The previous lemma implies immediately the following corollary:

Corollary 7.2.1. If {ϕ(0)(P ), . . . , ϕ(j)(P )} ⊂ Uε,δ then

ψX(ϕ) ◦ ϕ(j)(P )− (ψX(ϕ)(P ) + j)

is well defined.
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7.2.1. Comparing ϕ and αϕ in an exterior basic set. In order to prove
theorem 7.1 we will use the division in basic sets that we introduced in chapter 3.
Throughout subsections 7.2.1 and 7.2.2, and up to ramify we will suppose that the
components of f/ym = 0 are parameterized by y.

Let X = X(ϕ). We study next the behavior of ∆j in the exterior sets. We will
use the concepts and notations defined in section 3.2. Suppose N ≥ 1 and let λ(y) =
ym/|y|m. Every trajectory exp([0, j]X)(Q) contained in Uη,+

ε is also contained in
some exterior region Rε,η

X(λ)(y). We have Rε,η
X(λ)(y) ⊂ Dε,η

R (λ) by proposition 3.2.3.
There exists an uni-valuated determination ψR = ψR

X(ϕ) of ψX(ϕ)(1) in Dε,η
R (λ). We

define
ψR

X(ϕ)(T
ε0,1
X00(λ), y) = ψR

0 (T ε0,1
X00(λ), y) = ψ00(T

ε0,1
X00(λ), y)

for some 0 < ε0 << 1 like in subsection 3.2.4.

Lemma 7.2.2. Suppose N ≥ 1; let ∆ = O(ya−mbf b). Fix Rε,η
X(λ)(y). Then

∆ = O(ya/(ψR
X(ϕ))

b) in Dε,η
R (λ) for all ε << 1, δ << 1 and η >> 0.

Proof. Let ν = ν̃(X(ϕ)); the hypothesis N ≥ 1 implies ν ≥ 2. Since Dε,η
R ⊂

Uη,+
ε then ∆ = O(yaxbν). Moreover ψR ∼ ψ00 ∼ 1/xν−1 by lemma 3.2.5; hence

∆ = O(ya/(ψR)be) for e = ν/(ν − 1). ¤

Let f = ymf ′ = ym(x− g1(y))n1 . . . (x− gN (y))nN be the decomposition of f
in irreducible factors. In the first exterior basic set X(ϕ)/ym never vanishes and
∆ = O(y2mf ′2) by lemma 7.2.1. For each point c in

F1 = {∂g1/∂y(0), . . . , ∂gN/∂y(0)}
there exists an exterior basic set Ec enclosing (w, y) = (c, 0) where x = wy. Let
F c

1 be the set of indexes such that j ∈ F c
1 if ∂gj/∂y(0) = c. Let ν0 = ν̃(X) =

n1 + . . . + nN . We have that X(ϕ)/ym+ν0−1 is never singular in Ec whereas

∆ = O(y2m+2ν0
∏

j∈F c
1

(w − gj(y)/y)2nj ).

If ]F c
1 6= 1 we have to continue the process; let νc =

∑
j∈F c

1
nj . For any next

exterior basic set Ecc′ we have that X(ϕ)/ym+ν0+νc−2 is never singular and ∆ =
O(y2m+2ν0+2νcf2

cc′) where fcc′ is the strict transform of the curves in f ′ = 0 enclosed
by Ecc′ . It is easy to obtain expressions for X(ϕ) and ∆ in every basic set by
induction. Fix an exterior basic set E; let νE

y (X) and νE
y (∆) be the non negative

integers such that X(ϕ)/yνE
y (X) and ∆/yνE

y (∆) are holomorphic and never vanishing
in E. The previous discussion implies:

Lemma 7.2.3. Suppose N ≥ 1. In any exterior basic set E we have ∆ =
O(yνE

y (∆)f2
E) where fE = 0 is the strict transform of the curves in f ′ = 0 enclosed

by E. Moreover νE
y (∆)− νy(X(ϕ)) ≥ 0; the inequality is strict if E is not the first

exterior set or m > 0.

We can now bound ∆j in any exterior basic set. For simplicity we formulate
the proposition for the first one.

Proposition 7.2.1. Suppose N ≥ 1. Let ν = νy(∆) − νy(X). Fix M > 0
and η >> 0. Suppose ∆ = O(f2). For any ξ > 0 there exists Uε,δ such that the
conditions
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• |ψX(ϕ)(w, y)− ψX(ϕ)(x, y)| ≤ M where (x, y) ∈ Uε.
• exp([0, j]X(ϕ))(x, y) ⊂ Uε,δ ∩ Uη,+

ε for some j ∈ N ∪ {0}
imply

|ψX ◦ ϕ(j+1)(w, y)− ψX ◦ α(j+1)(x, y)| ≤ |ψX(w, y)− ψX(x, y)|+ ξ|y|ν .

The condition |ψX(ϕ)(w, y)−ψX(ϕ)(x, y)| ≤ D for some constant D > 0 means
that (w, y) ∈ exp(B(0, D)X(ϕ))(x, y). The statement in the proposition is not
completely rigorous. Technically, it would be necessary to say that there exists
Uε′,δ ⊃ Uε,δ where X(ϕ), ψX(ϕ), αϕ and ϕ are defined and such that α(j)(x, y) ∈
Uε,δ ∩ Uη,+

ε implies ϕ(j)(w, y) ∈ Uε′,δ. We think that this formulation is more
natural. There is an analogous statement for j < 0, we omit the details.

Proof. Let ξ < M . We define γ = exp([0, j]X(ϕ))(x, y) ⊂ Uη,+
ε . Then γ is

contained in some Rε,η
X(λ) ⊂ Dε,η

R . The integral ψR
X(ϕ) of the time form of X(ϕ)(1)

is defined in D
2ε,η/2
R for ε << 1 and η >> 0. We denote ψR

X(ϕ) by ψ for simplicity.
We remark that ψX(ϕ) = ψ/yνy(X). For every C > 0 we can choose εC > 0 such
that |ψ| > C in Uη,+

ε ∩Dε,η
R for 0 < ε ≤ εC .

We have |∆| ≤ K|y|νy(∆)
/|ψ|2 in D

2ε,η/2
R for some K > 0 by lemma 7.2.2.

Suppose Q1 ∈ Uη,+
ε(C) and |ψ(P1)− ψ(Q1)| < 2M |y|νy(X); we obtain

|ψ(Q1)|
|ψ(P1)| ≤ 1 +

2M |y|νy(X)

|ψ(P1)| ≤ 1 +
2M |y|νy(X)

C − 2M |y|2νy(X)
.

If C ≥ C1 for some C1 > 0 then P1 ∈ D
2ε,η/2
R and

|∆(P1)| ≤ K
|y|νy(∆)

|ψ(P1)|2
< 2K

|y|νy(∆)

|ψ(Q1)|2
.

Now consider C2 ≥ C1 such that C ≥ C2 implies

2K

(
6δνy(X)

C2
+

(
4
√

2
C

+
2

C2

))
< ξ

We choose ε = ε(C) for some C ≥ C2. We will prove the proposition by induction.
The result is true for j = 0 since 2Kδνy(X)/C2 < ξ. Suppose the result is true for
0, 1, . . ., j − 1; thus

|ψX ◦ ϕ(k)(w, y)− ψX ◦ α(k)(x, y)| ≤ |ψX(w, y)− ψX(x, y)|+ ξ|y|ν < 2M

for all 0 ≤ k ≤ j and δ < 1. As a consequence we obtain

|∆ ◦ ϕ(k)(w, y)| ≤ 2K
|y|νy(∆)

|ψ(x, y) + kyνy(X)|2

for all 0 ≤ k ≤ j. We have |ψ(x, y) + kyνy(X)| ≥ C for 0 ≤ k ≤ j by the choice of
ε. We define τ = ψ(x, y)|y|νy(X)

/yνy(X); we have
∣∣∣∣∣

j∑

k=0

∆ ◦ ϕ(k)(w, y)

∣∣∣∣∣ ≤ 2K|y|νy(∆)
j∑

k=0

1

|τ + k|y|νy(X)|2
.
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We divide C ∩ [|z| > C] in three sets, namely E1 = [Re(z) ≥ |Img(z)|], E2 =

[|Re(z)| ≤ |Img(z)|] and E3 = −E1. Let Sl be an upper bound of
∑j′

k=0 1/|τ ′ + k|y|νy(X)|2

supposed τ ′ + k|y|νy(X) ∈ El for 0 ≤ k ≤ j′. Let S = S1 + S2 + S3; we obtain

|ψX ◦ ϕ(j+1)(w, y)− ψX ◦ α(j+1)(x, y)| ≤ |ψX(w, y)− ψX(x, y)|+ 2K|y|νy(∆)
S.

We can calculate explicit values for S1, S2 and S3. If τ ′ ∈ E1 then Re(τ ′) ≥
C/
√

2 > 0; that implies

|τ ′ + k|y|νy(X)|2 ≥ (Re(τ ′) + k|y|νy(X))
2 ≥ (C/

√
2 + k|y|νy(X))

2
.

As a consequence we have

S3 = S1 ≤
∞∑

k=0

1

(C/
√

2 + k|y|νy(X))
2 .

The right hand side is smaller or equal than
∫ ∞

0

dr

(C/
√

2 + r|y|νy(X))
2 +

1

(C/
√

2)
2 ≤

2
C2

+
√

2
C

1

|y|νy(X)

If τ ′ ∈ E2 then τ ′ + 2|Img(τ ′)| + 1 ∈ E1 \ E2; moreover Img(τ ′) ≥ C/
√

2. We
obtain

j′∑

k=0

1

|τ ′ + k|y|νy(X)|2
≤ (2|Img(τ ′)|+ 1)/|y|νy(X) + 1

|Img(τ ′)|2

and then

S2 ≤
(

2
√

2
C

+
2

C2

)
1

|y|νy(X)
+

2
C2

.

The inequality

2K|y|νy(X)
S ≤ 2K

(
6δνy(X)

C2
+

4
√

2
C

+
2

C2

)
< ξ

implies

|ψX ◦ ϕ(j+1)(w, y)− ψX ◦ α(j+1)(x, y)| ≤ |ψX(w, y)− ψX(x, y)|+ |y|νξ.

¤

7.2.2. Comparison in a compact-like basic set. We can proceed like in
the exterior sets. For the first compact-like set V C1 we have

ν1 = νV C1
y (∆)− νV C1

y (X(ϕ)) ≥ m + ν̃(X) + 1 > 0.

For any other compact-like basic set V Cl we obtain

νl = νV Cl
y (∆)− νV Cl

y (X(ϕ)) > νV C1
y (∆)− νV C1

y (X(ϕ)) > 0.

Proposition 7.2.2. Fix M > 0 and a compact-like basic set V Cl. There exists
a constant Kl > 0 such that

• |ψX(ϕ)(P )− ψX(ϕ)(Q)| ≤ M where {P,Q} ⊂ Uε,δ ∩ [y = s].
• exp([0, j]X(ϕ))(Q) ⊂ Uε,δ ∩ V Cl for some j ∈ N ∪ {0}.

imply |ψX ◦ ϕ(j+1)(P )− ψX ◦ α(j+1)(Q)| ≤ |ψX(P )− ψX(Q)|+ Kl|s|ν
l

.
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Proof. Let τ = νV Cl
y (∆), ζ = νV Cl

y (X(ϕ)). We define

V C ′l = exp(B(0, 2M)X(ϕ))(V Cl).

There exists D > 0 such that |∆| ≤ D|y|τ in V C ′l . Since V Cl is compact and
X(ϕ)/yζ does not have singular points then j ≤ D′/|y|ζ for some D′ > 0. Suppose
that we have ϕ(k)(P ) ∈ V C ′l for all 0 ≤ k ≤ j′ and some 0 ≤ j′ ≤ j. We deduce
that |ψX ◦ ϕ(j′+1)(P )− ψX ◦ α(j′+1)(Q)| is smaller or equal than

|ψX(P )− ψX(Q)|+ D|s|τ
(

D′

|s|ζ
+ 1

)
.

We choose δ > 0 such that DD′δτ−ζ + Dδτ ≤ M . That implies ϕ(j′+1)(P ) ∈ V C ′l ;
we obtain ϕ(k)(P ) ∈ V C ′l for all 0 ≤ k ≤ j + 1 by induction. We define Kl =
DD′ + Dδζ ; it clearly satisfies the thesis of the proposition. ¤

7.2.3. Proof of theorem 7.1. Suppose N = 0. We can consider Uε,δ as a
compact-like set since there are no fixed points outside y = 0. Since νy(∆)−νy(X) ≥
m for N = 0 then proposition 7.2.2 implies theorem 7.1 for some neighborhood Uε,δ

of (0, 0).
Suppose N ≥ 1 from now on. The hypotheses and theses in theorem 7.1 are

invariant under ramification. As a consequence we can suppose that the components
of Fixϕ different than y = 0 are parameterized by y. We can apply the results in
subsections 7.2.1 and 7.2.2.

We suppose j > 0 without lack of generality. Fix M > 0. For {R,Q} ⊂
Uε,δ ∩ [y = s] there exists K > 0 such that

(7.1)
∣∣∣ψX ◦ ϕ(j′+1)(R)− ψX ◦ α(j′+1)(Q)

∣∣∣ ≤ |ψX(R)− ψX(Q)|+ K|s|m+1

if |ψX(R) − ψX(Q)| ≤ M and exp([0, j′]X(ϕ))(Q) ⊂ B for a basic set B different
than the first exterior one E1 and some j′ ≥ 0. This claim is a consequence of

νB
y (∆)− νB

y (X) > νE1
y (∆)− νE1

y (X) ≥ m

for every basic set B 6= E1 and propositions 7.2.1 and 7.2.2. We can choose the
same K > 0 for every basic set because there are only finitely many such sets. Any
trajectory of ξ(X, s, ε) splits in at most D sub-trajectories contained in the basic
sets; the number D > 0 is provided by lemma 3.3.1. Let C ∈ (0,M ]; the correction
term |∑j′

k=0 ∆◦ϕ(k)(P )| for E1 can be made smaller than C|y|m/(2D) by shrinking
Uε,δ, making η bigger and using proposition 7.2.1.

Let 0 = j0 < j1 < . . . < jd = j − 1 be the only sequence satisfying that

• exp([jb, jb+1]X)(P ) ⊂ Bb+1 for all 0 ≤ b ≤ d− 1
• Bb is a basic set for 1 ≤ b ≤ d and Bb 6= Bb+1 for all 1 ≤ b ≤ d− 1

We point out that d ≤ D. Since jk can be non-integer if 0 < k < d then we have
to tweak a little bit the sequence. We define k0 = −1, k1 = [j1] where [] stands for
integer part. Suppose we have defined

0 = k0 + 1 ≤ k1 < k1 + 1 ≤ k2 < k2 + 1 ≤ . . . ≤ kl

such that exp([kj + 1, kj+1]X)(P ) is contained in a basic set for all 0 ≤ j ≤ l − 1.
If kl 6= j − 1 we define kl+1 = inf{[jb] : jb ≥ kl + 1}. The sequence −1 = k0 < k1 <
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. . . < kd′ = j − 1 satisfies d′ ≤ d. Now we apply the equation 7.1 or its analogue
for E1 to the 3-uples

(R,Q, j′) = (ϕ(kb+1)(P ), α(kb+1)(P ), kb+1 − (kb + 1))

for 0 ≤ b ≤ d′ − 1. By plugging each inequality in the following one we obtain∣∣∣ψX(ϕ) ◦ ϕ(j)(P )− ψX(ϕ) ◦ α(j)(P )
∣∣∣ ≤ C|y|m (1/2 + O(y)) ≤ C|y|m

for δ > 0 small enough.

7.2.4. Some consequences of theorem 7.1. Basically the dynamics of a
(NSD) diffeomorphism and its normal form are the same. For instance, we have

Lemma 7.2.4. Let ϕ be a (NSD) diffeomorphism and let X(ϕ) be one of its
normal forms. There exist Uε,δ and ε′ > ε such that

ωξ(X(ϕ),y,ε),|x|≤ε(x, y) ∈ [f = 0] =⇒ {ϕ(j)(x, y)}j∈N∪{0} ⊂ Uε′ .

Moreover, we have limj→∞ ϕ(j)(x, y) = ωξ(X(ϕ),y,ε),|x|≤ε(x, y)

In other words the basins of repulsion and attraction for a (NSD) diffeomor-
phism and its normal form can be considered to be the same.

Proof. Fix C > 0. We can choose the domains V and W provided by the-
orem 7.1 in the form V = Uε,δ and W = Uε′,δ for some 0 < ε < ε′. We also
want exp(tX(ϕ))(P ) to be well-defined in t ∈ B(0, 2C) and such that Uε contains
exp(B(0, 2C)X(ϕ))(P ) ⊂ Uε′ . That is possible by choosing a smaller ε > 0. Since

|ψX(ϕ) ◦ ϕ(j)(P )− ψX(ϕ) ◦ exp(jX(ϕ))(P )| ≤ C

then {P,ϕ(P ), ϕ(2)(P ), . . .} ⊂ Uε′ . Moreover

lim
j→∞

ϕ(j)(P ) ∈ exp(B(0, C)X(ϕ))( lim
j→∞

α(j)
ϕ (P )) = { lim

j→∞
α(j)

ϕ (P )};

the last equality holds because limj→∞ α
(j)
ϕ (P ) is a fixed point. ¤

We know that the analytic class of X(1)|y=0 is a special invariant of a (NSD)
vector field X if (N, m) 6= (1, 0) by lemma 6.3.1. That motivates us to look for the
underlying complex structure associated to a (NSD) diffeomorphism ϕ at y = 0. If
m > 0 we define log ϕ0(1) = X(ϕ)(1)|y=0; the definition does not depend on the
choice of X(ϕ). For N > 0 and m > 0 we can define ϕ0(1) = exp(log ϕ0(1)) since
log ϕ0(1) is singular at 0. For N > 0 and m = 0 we define ϕ0(1) = ϕ|y=0.

The L-limit phenomenon has a similar behavior for (NSD) diffeomorphisms and
vector fields. Consider ϕ, ε, ε′ and δ like in lemma 7.2.4. Let β be a semi-analytic
curve and x0 ∈ [0 < |x| ≤ ε]. Suppose for simplicity that the direction λ(β) of
β at 0 is 1. Let x1 ∈ Uε be a point in the first component ρ1 of L+,ε

β,x0
. There

exists a continuous partition (E−, E+) of Fixϕ and a true section χ : W (M) → Uε′

(0 < M << 1) such that for y ∈ W we have

T (y) =
ψ1

ym
(χ(y)) + AE−(y)− ψ0

ym
(x0, y) ∈ R+

where W = ∪r∈[−M,M ]βr and βr ∈ Υr
AE−

for r ∈ [−M, M ]. If we choose the section
χ like in the proof of proposition 5.4.1 we obtain

lim
y∈βr,y→0

exp(sX(1))χ(y) = exp((s + ir)X(1))(x1, 0)
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for all (s, r) ∈ [−M, M ]× [−M,M ].
Fix z = s + ir ∈ [−M,M ] + i[−M, M ]. We define Tz : βr → R+ as Tz(y) =

T (y)+s/|y|m. Since limy→0 Tz(y) = ∞ we consider the sequence of points {yz
n}n∈N

in βr such that the germ of T−1
z (N) at 0 coincides with ∪n∈N{yz

n}; we have limn→∞ yz
n =

0. The question is what we can say about the sequence

ϕ(Tz(yn))(x0, y
z
n).

The point (x0, 0) is in ω−1
ξ(X(1),0,ε)(0, 0) whereas (x1, 0) is in α−1

ξ(X(1),0,ε)(0, 0). We
defined in subsection 5.4.1 the integral ψ+

0,0 of the time form of X(1)|y=0 defined
in the attractive petal Vl+ ⊂ [y = 0] containing (x0, 0). In an analogous way we
define ψ−1,0 in the repulsive petal Vl− ⊂ [y = 0] containing (x1, 0). By lemma 7.2.4
the domains Vl+ and Vl− are still basins of attraction and repulsion respectively for
ϕ0(1). By the one variable theory there exists an integral of the time form ψ+,ϕ

0,0 of
ϕ0(1) in Vl+ , in other words ψ+,ϕ

0,0 satisfies

ψ+,ϕ
0,0 ◦ ϕ0(1) = ψ+,ϕ

0,0 + 1.

By definition ψ+,ϕ
0,0 = ψ+

0,0 +
∑∞

j=0 ∆ ◦ ϕ(j). There is also an integral ψ−,ϕ
1,0 of the

time form of ϕ in Vl− ; by definition ψ−,ϕ
1,0 = ψ−1,0 −

∑∞
j=1 ∆ ◦ ϕ(−j).

Proposition 7.2.3. The limit limn→∞ ϕ(Tz(yn))(x0, y
z
n) exists for all complex

number z = s + ir ∈ [−M, M ] + i[−M,M ]. Moreover

lim
n→∞

|yz
n|m(Tz(yz

n)−AE−(yz
n)) = ψ−,ϕ

1,0 ( lim
n→∞

ϕ(Tz(yz
n))(x0, y

z
n))− ψ+,ϕ

0,0 (x0, 0)

and
ψ−,ϕ

1,0 ( lim
n→∞

ϕ(Tz(yz
n))(x0, y

z
n))− ψ−,ϕ

1,0 ( lim
n→∞

ϕ(T0(y
0
n))(x0, y

0
n)) = z.

The first formula allows to estimate how much time ϕ spends to go from (x0, y
z
n)

to ϕ(Tz(yn))(x0, y
z
n). The second formula is the analogue of

lim
n→∞

exp(Tz(yz
n)X)(x0, y

z
n) = exp(zX(1))(x1, 0)

for (NSD) diffeomorphisms. As a consequence the complex flow of ϕ0(1) is gener-
ated by ϕ for N > 1.

Proof. Since∣∣∣ψX(ϕ)(ϕ(Tz(yz
n))(x0, y

z
n))− ψX(ϕ)(α(Tz(yz

n))(x0, y
z
n))

∣∣∣ ≤ C

then the accumulation points of the sequence ϕ(Tz(yz
n))(x0, y

z
n) are contained in

exp(B(0, C)X(ϕ))(exp(zX(1))(x1, 0)). In particular

lim
n→∞

ϕ(Tz(yn))(x0, y
z
n) = exp(zX(1))(x1, 0)

for m > 0; since for m > 0 we also have ψ+,ϕ
0,0 = ψ+

0,0 and ψ−,ϕ
1,0 = ψ−1,0 then

there is nothing to prove. We suppose m = 0 from now on. We can suppose
that ϕ(Tz(yz

n))(x0, y
z
n) is convergent up to take a subsequence; we denote the limit

by (x1,z, 0). Later on we will prove that (x1,z, 0) is the limit and not only an
accumulation point. We have

Tz(yz
n) = ψ1(α(Tz(yz

n))(x0, y
z
n)) + AE−(yz

n)− ψ0(x0, y
z
n).
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We want to rewrite the previous expression in terms of ϕ(Tz(yz
n))(x0, y

z
n) instead of

α(Tz(yz
n))(x0, y

z
n). We obtain that Tz(yz

n) is equal to

ψ1(ϕ(Tz(yz
n))(x0, y

z
n)) + AE−(yz

n)− ψ0(x0, y
z
n)−

Tz(yz
n)−1∑

j=0

∆ ◦ ϕ(j)(x0, y
z
n).

We are interested in calculating the limit of the series in the previous expression
when n → ∞. Let an arbitrary 0 < ε1 < |x1|. We claim that for n >> 0 there
exists 0 < a1 < a2 < Tz(yz

n) such that
• exp([0, a1]X)(x0, y

z
n) ∪ exp([a2, Tz(yz

n)]X)(x0, y
z
n) ⊂ [|x| ≥ ε1].

• exp([a1, a2]X)(x0, y
z
n) ⊂ Uε1 .

This is a consequence of exp(zX)(x1, 0) belonging to the first component of Lε,+
βr,x0

.
By theorem 7.1 we have ∣∣∣∣∣∣

[a2]∑

j=[a1]+1

∆ ◦ ϕ(j)(x0, y
z
n)

∣∣∣∣∣∣
< D(ε1)

for a constant D(ε1) > 0 such that limε1→0 D(ε1) = 0. As a consequence
Tz(yz

n)−1∑

j=0

∆ ◦ ϕ(j)(x0, y
z
n) →

∞∑

j=0

∆ ◦ ϕ(j)(x0, 0) +
∞∑

j=1

∆ ◦ ϕ(−j)(x1,z, 0)

when n →∞. We obtain

lim
n→∞

(Tz(yz
n)−AE−(yz

n)) = ψ−,ϕ
1,0 (x1,z, 0)− ψ+,ϕ

0,0 (x0, 0).

A different expression for the same limit provides

ψ−,ϕ
1,0 (x1,z, 0)− ψ+,ϕ

0,0 (x0, 0) = ψ−1,0(x1, 0)− ψ+
0,0(x0, 0) + z.

Since every accumulation point of ϕ(Tz(yz
n))(x0, y

z
n) satisfies the previous expres-

sion then (x1, z) is the only accumulation point, aka the limit. Substracting the
expression for z = 0 we obtain

ψ−,ϕ
1,0 (x1,z, 0)− ψ−,ϕ

1,0 (x1,0, 0) = z

as we wanted to prove. ¤
Morally, the orbit ϕ(j)(x0, y

z
n) (0 ≤ j ≤ Tz(yz

n)) induces the same partition of
the fixed points than exp([0, Tz(yz

n)]X)(x0, y
z
n). We explain how this is possible.

Let C > 0; let V and W be the domains provided by theorem 7.1; we can suppose
V = Uε,δ and W = Uε′,δ without lack of generality. Moreover, we can suppose
t 7→ exp(tX)(P ) is well defined in t ∈ B(0, 3C) and its image is contained in Uε′,δ
for all P ∈ Uε,δ. We stress that if t 7→ exp(tX)(P ) is well-defined in B(0, 3C) and
P does not belong to [f = 0] then it is injective by the Rolle property.

First of all, we want to draw some sort of continuous path joining ϕ(0)(P ) and
ϕ(1)(P ) for P ∈ Uε′,δ. We define

κ′0(P, a) = (1− a)ψX(ϕ)(P ) + aψX(ϕ)(ϕ(P ))

for a ∈ [0, 1]. Since |κ′0(P, a) − ψX(ϕ)(α(a)(P ))| ≤ C then we define κ0(P, a) =
ψ−1

X(ϕ)(κ
′
0(P, a)). We define κj(x0, y

z
n) = ϕ(j)(κ0(x0, y

z
n)) for all 1 ≤ j ≤ T (yz

n)− 1.
A possible choice for a path joining the points of the orbit is

κ = κ0(x0, y
z
n)κ1(x0, y

z
n) . . . κTz(yz

n)−1(x0, y
z
n)
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Let κTz(yz
n)(P, a) ⊂ [y = y(P )] be the path

a → ψ−1
X(ϕ)

(
(1− a)ψX(ϕ)(ϕ(Tz(yz

n))(P )) + aψX(ϕ)(α(Tz(yz
n))(P ))

)

for all a ∈ [0, 1]. We have

Lemma 7.2.5. The paths κκTz(yz
n)(x0, y

z
n) and exp([0, Tz(yz

n)]X)(x0, y
z
n) are ho-

motopic in [y = yz
n] \ [f = 0].

Proof. By construction we have

κ0((x0, y
z
n), a) ∈ exp(B(0, C)X)(α(a)(x0, y

z
n))

for all a ∈ [0, 1]. That implies

κl((x0, y
z
n), a) ∈ exp(B(0, 2C)X)(α(a+l)(x0, y

z
n))

for all 1 ≤ l ≤ T (yz
n)− 1 and all a ∈ [0, 1]. Finally

κTz(yz
n)((x0, y

z
n), a) ∈ exp(B(0, C)X)(α(Tz(yz

n))(x0, y
z
n))

for all a ∈ [0, 1]. Since ∪b∈[0,Tz(yz
n)]B(0, 2C) is simply connected we are done. ¤

The last lemma implies that κ and exp([0, Tz(yz
n)]X)(x0, y

z
n) induce the same

partition in the fixed points set. Next, we are going to study the topological conju-
gation of diffeomorphisms. Since those conjugations do not conjugate normal forms
we have to interpret partitions in terms of long orbits instead of long trajectories
of the normal form.





CHAPTER 8

Topological Invariants of (NSD) Diffeomorphisms

We define the set

Df = {(x + u(x, y)f(x, y), y) / u is a unit}
for any f ∈ C{x, y} satisfying the (NSD) conditions. The set Df is the analogous
of the set Hf for diffeomorphisms. We want to study when two elements of Df are
conjugated by a special homeomorphism.

Suppose that ϕ1, ϕ2 ∈ Df are conjugated by the special homeomorphism σ. Fix
convergent normal forms X1 = X(ϕ1) and X2 = X(ϕ2) respectively. Let αj = αϕj

and ψj = ψX(ϕj) for j ∈ {1, 2}. Fix C > 0. For j ∈ {1, 2} there exist 0 < τj < τ ′j
such that {P, . . . , α

(k)
j (P )} ⊂ Uτj for some k ∈ Z implies {P, . . . , ϕ

(k)
j (P )} ⊂ Uτ ′j

and ∣∣∣ψj(ϕ
(k)
j (P ))− (ψj(P ) + k)

∣∣∣ ≤ C.

The objects ϕj , αj and ψj are defined in Uτ ′j . By making τ1 > 0 smaller we can
suppose that

• σ is defined in the neighborhood of Uτ1 .
• t 7→ exp(tX1)(P ) is well-defined in B(0, 3C) for P ∈ Uτ1 .

By replacing (τ1, σ,X1) with (τ2, σ
(−1), X2) in the previous conditions we obtain

an analogous condition for τ2. We choose ε < κ1 < τ1 and κ2 < τ2 such that

• exp(B(0, 6C)X1)(Uε) ⊂ Uκ1 ⊂ Uτ1 .
• exp(B(0, 6C + 1)X2)(σ(Uκ1)) ⊂ Uκ2 ⊂ Uτ2 .

8.1. Topological invariants

8.1.1. Orientation. We remind the reader that the mapping

σ(s)∗ : π1((Uτ1 ∩ [y = s]) \ (f = 0)) → π1((σ(Uτ1) ∩ [y = s]) \ (f = 0))

is the one induced by σ|y=s for s ∈ B(0, δ).

Proposition 8.1.1. Suppose N > 1. The mapping σ(s)∗ is the identity for all
s ∈ B(0, δ).

Proof. We can just copy the proof of proposition 6.1.1. In that proof we did
not use that σ conjugates X1 and X2 but only that σ|f=0 ≡ Id and that it satisfies

σ(ω−1
ξ(X1,y,ε1),|x|<ε1

(x, y)) ⊂ ω−1
ξ(X2,y,ε2),|x|<ε2

(x, y)

for some 0 < ε1 ≤ ε, 0 < ε2 and ∀(x, y) ∈ (Uε1,δ ∩ [f = 0]) \ [y = 0] (ditto for the α
limit); the last result is a consequence of lemma 7.2.4. ¤

93
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8.1.2. Partition of the fixed points. Let x0 ∈ B(0, ε) \ {0} and let β be
a semi-analytic curve. Suppose L+,ε

β,x0
(X1) 6= ∅; let x1 ∈ Uε be a point in the

first component ρ1,1 of L+,ε
β,x0

(X1). There exists a continuous partition (E−, E+) of
SingX1 and a true section χ : β → Uκ1 such that for y ∈ β we have

T (y) =
ψ1,1

ym
(χ(y)) + AE−,X1(y)− ψ1,0

ym
(x0, y) ∈ R+

and limy∈β,y→0 χ(y) = (x1, 0). We remind the reader that ψ1,1 and ψ1,0 are integrals
of the time form of X1(1). Consider the sequence {yn} of points in T−1(N). The
orbit ϕ

(j)
1 (x0, yn) (0 ≤ j ≤ T (yn)) is mapped onto ϕ

(j)
2 (σ(x0, yn)) (0 ≤ j ≤ T (yn))

since σ conjugates ϕ1 and ϕ2. Then

Proposition 8.1.2. We have that limy∈β,y→0 exp(T (y)X2)(σ(x0, y)) exists.
Let (x′1, 0) be such a limit. Then x′1 belongs to the first component ρ2,1 of L+,κ2

β,σ(x0,0)(X2).
Moreover, the partition of the fixed points induced by ρ2,1 is (E−, E+).

Proof. We suppose λ(β) = 1 without lack of generality. We denote γn =
exp([0, T (yn)]X2)(σ(x0, yn)) and an = γn(T (yn)). We have that ϕ

(j)
1 (x0, yn) ∈

exp(B(0, C)X1)(Uε) for all 0 ≤ j ≤ T (yn). Therefore ϕ
(j)
2 (x0, yn) ∈ σ(Uκ1) for all

0 ≤ j ≤ T (yn) and then γn is contained in exp(B(0, 1 + C)X1)(σ(Uκ1)). We define

b = lim
n→∞

ϕ
(T (yn))
2 (σ(x0, yn)) = σ

(
lim

n→∞
ϕ

(T (yn))
1 (x0, yn)

)
;

the limit exists by proposition 7.2.3. The set of accumulation points of {an}
is contained in exp(B(0, C)X2)(b). Up to take a subsequence we can suppose
that {an} converges; we denote the limit by (x′1, 0). Since x1 ∈ L+,ε

β,x0
(X1) then

limn→∞ |yn|mT (yn) = ∞; as a consequence x′1 ∈ L+,κ2
β,σ(x0,0)(X2). Let (E′

−, E′
+) the

division induced by γn; we can suppose it is the same for all n ∈ N by refining the
subsequence. We have that limn→∞ |yn|m(AE−,X1(yn)−AE′−,X2(yn)) is equal to

(ψ2,1(x′1, 0)− ψ1,1(x1, 0))− (ψ2,0(σ(x0, 0))− ψ1,0(x0, 0))

by comparing the formulas for exp([0, T (yn)]X1)(x0, yn) and γn. By lemma 5.1.1
the limit limy∈β,y→0 |ym|(AE−,X1(y)−AE′−,X2(y)) exists. That implies the existence
of a true section ζ : β ∪ {0} → C2 such that

|y|mT (y) ≡ ψ2,1(ζ(y))λ−m + |y|mAE′−,X2 − ψ2,0(σ(x0, y))λ−m

where λ = y/|y|. Moreover we obtain ζ(0) = (x′1, 0) and ζ(yn) = an for all n >> 0.
Suppose x′1 is not in the first component of ρ2,1. Then there exists a function

T ′ : β → R+ such that

lim
y∈β

|y|mT ′(y) = lim
y∈β

|y|m(T (y)− T ′(y)) = ∞

and such that limy∈β,y→0 exp(T ′(y)X2)(σ(x0, y)) exists. Let {y′n} the sequence of
points in T ′−1(N). By analogous arguments to the already exposed we can prove
that ϕ

(T ′(y′n))
2 (σ(x0, y

′
n) has an accumulation point different than (0, 0). By ap-

plying σ(−1) we obtain that ϕ
(T ′(y′n))
1 (x0, y

′
n) enjoys the same property and then

exp(T ′(y′n)X1)(x0, y
′
n). But such an accumulation point is in a component of

L+,ε
β,x0

(X1) smaller than ρ1,1 since limy∈β |y|m(T (y) − T ′(y)) = ∞. That is im-
possible by hypothesis.
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We still have to prove (E−, E+) = (E′
−, E′

+). We consider the path κ1(n) =
κ1

0(x0, yn) . . . κ1
T (yn)−1(x0, yn) associated to the couple (ϕ1, X1) and defined in sub-

section 7.2.4. We also consider the path κ2(n) = κ2
0(σ(x0, yn)) . . . κ2

T (yn)−1(σ(x0, yn))
associated to (ϕ2, X2). Since (E−, E+) is induced by κ1(n) then it is also induced
by σ(κ1(n)) because σ preserves the orientation. Then it is enough to prove that
σ(κ1(n)) is homotopic to κ2(n) in [y = yn]\ [f = 0] because the latter path induces
the partition (E′

−, E′
+). We remark that ϕ2(σ(κ1

j )) = σ(κ1
j+1) and ϕ2(κ2

j ) = κ2
j+1.

It is enough to prove σ(κ1
j0

(x0, yn)) ∼ κ2
j0

(σ(x0, yn)) for one 0 ≤ j0 ≤ T (yn) − 1
since ϕ2 preserves the fixed points and the orientation. We define

Hj(a) = ψ2 ◦ σ ◦ κ1
j (a)− ψ2 ◦ κ2

j (a)

for 0 ≤ j ≤ T (yn) − 1 and a ∈ [0, 1]. The function H0 is bounded since [0, 1]
is compact. Moreover, we have |Hj(a) − H0(a)| ≤ 2C for 1 ≤ j ≤ T (yn) − 1.
Therefore, we can suppose |Hj(a)| < D for some D > 0 and all 0 ≤ j ≤ T (yn)− 1
and a ∈ [0, 1]. Since

κ2
j (σ(x0, yn))(a) ∈ exp(B(0, 2C)X2)(αa+j(σ(x0, yn)))

we deduce that σ(κ1
j (x0, yn)) ∪ κ2

j (σ(x0, yn)) belongs to

exp(B(0, 1 + 2C + D)X2)(αj(σ(x0, yn))).

Let ε′ > 0 such that ε′ ≤ min(|x| ◦ σ(x0, 0), |x′1|) and t → exp(tX2)(P ) is well
defined in t ∈ B(0, 1 + 2C + D) for all P ∈ Uε′ . For all n >> 0 there exists j0(n)
such that αj0(n)(σ(x0, yn)) ∈ Uε′ ; otherwise we obtain L+,κ2

β,σ(x0,0)(X2) = ∅, that is a
contradiction. Since B(0, 1 + 2C + D) is simply connected then σ(κ1

j0(n)(x0, yn)) ∼
κ2

j0(n)(σ(x0, yn)) for n >> 0; we are done. ¤

Last proposition and proposition 7.2.3 will be the key tools in order to prove
that the topological invariants for the special conjugation of (NSD) diffeomorphisms
are basically the same than for vector fields.

8.1.3. Rigidity of the special conjugation when [y = 0] ⊂ [f = 0]. In
this subsection we prove that σ|f=0 is analytic for m > 0 through the study of
sectorial convergent logarithms.

A set Va,b(υ1, υ2) = [|x| < υ1] ∩ {y ∈ B(0, υ2) \ {0} : a < arg y < b} is called a
sectorial domain; its aperture is θ = θ(V ) = b− a.

Proposition 8.1.3 (Voronin (see [I+92])). Consider ϕ = exp(ûym∂/∂x) in
Dym and X(ϕ) = uym∂/∂x. Let a < b in R such that b − a < π/m. Then, there
exist a sectorial domain S = Va,b(υ1, υ2) and a vector field Y defined in S such that

• Y is of the form ymu′(x, y)∂/∂x where u− u′ = O(y2m).
• û is the asymptotic development of u′ in S.
• ϕ = exp(Y ).

The vector field Y is not unique. Anyway, any vector field fulfilling the previous
properties will be called a sectorial logarithm of ϕ. Its existence implies:

Lemma 8.1.1. Let σ be a special germ of homeomorphism conjugating ϕ1, ϕ2 ∈
Dym for m > 0. Then σ|y=0 is a germ of analytic biholomorphism. Moreover σ|y=0

conjugates log ϕ1,0(1) and log ϕ2,0(1).
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Proof. Let ϕj = exp(ûjy
m∂/∂x) and Xj = ujy

m∂/∂x for j ∈ {1, 2}. There
exist 2m + 1 sectorial domains Vaj ,bj

(υ1, υ2) (1 ≤ j ≤ 2m + 1) such that bj − aj <
π/m for 1 ≤ j ≤ 2m + 1 and

∪1≤j≤2m+1Vaj ,bj
(υ1, υ2) = [|x| < υ1] ∩ [0 < |y| < υ2].

Moreover we can suppose that ϕj has a sectorial logarithm Y k
j in the domain

Vak,bk
(υ) for j ∈ {1, 2} and 1 ≤ k ≤ 2m+1. Let ζ > 0 such that exp(B(0, ζ)X1(1))(0, 0))

is contained in Uυ1 . Consider ζ ′ ∈ B(0, ζ); we define θ0 = arg(ζ ′)/m and rn =
(|ζ ′|/n)1/m. There exists k0 such that (0, υ2)eiθ0 ⊂ πy(Vak0 ,bk0

(υ1, υ2)). Let
yn = rneiθ0 ; we have

σ(ϕ(n)
1 (0, yn)) = ϕ

(n)
2 (σ(0, yn)).

By developing ϕ
(n)
1 and ϕ

(n)
2 we obtain

ϕ
(n)
1 (0, yn) = exp(nY k0

1 )(0, yn) = exp

(
ζ ′

Y k0
1

ym

)
(0, yn)

and

ϕ
(n)
2 (σ(0, yn)) = exp(nY k0

2 )(σ(0, yn)) = exp

(
ζ ′

Y k0
2

ym

)
(σ(0, yn)).

We have
σ(exp(ζ ′X1(1))(0, 0)) = exp(ζ ′X2(1))(σ(0, 0))

by making n →∞. Since X1(1)|y=0 and X2(1)|y=0 are regular then σ|y=0 is analytic
in the neighborhood of (0, 0). ¤

Proposition 8.1.4. Let σ be a special germ of homeomorphism conjugating
ϕ1, ϕ2 ∈ Df . Suppose m > 0. Then σ|y=0 is a germ of analytic biholomorphism.
Moreover σ|y=0 conjugates log ϕ1,0(1) and log ϕ2,0(1).

Proof. Let (x0, 0) ∈ Uε \ {(0, 0)} and x′0 = x ◦ σ(x0, 0). The mapping σ(x, 0)
is analytic in a neighborhood of (x0, 0) if and only if the mapping

χ(x, y) = (x ◦ σ(x + x0, y)− x′0, y)

satisfies that χ(x, 0) is a analytic in a neighborhood of (0, 0). Moreover χ conjugates

(x− x0, y) ◦ ϕ1 ◦ (x + x0, y) and (x− x′0, y) ◦ ϕ2 ◦ (x + x′0, y);

both of these diffeomorphisms belong to Dym . By lemma 8.1.1 the diffeomorphism
χ(x, 0) is analytic in a neigborhood of (0, 0). As a consequence σ(x, 0) is holomor-
phic in [0 < |x| < ε] ∩ [y = 0]. Since σ is continuous then σ(x, 0) is holomorphic in
[|x| < ε] ∩ [y = 0]. ¤

8.1.4. Definition of the Topological Invariants. Let ϕ ∈ Df . The set of
topological invariants SP (ϕ) of ϕ for the

sp∼ conjugation is by definition empty if
N = 0 or (N, m) = (1, 0). Otherwise SP (ϕ) contains

• The parts of degree less or equal than 0 of every function ym(Resϕ(S(y)))
associated to some continuous section

S : B(0, δ) \ {0} → Fixϕ.

• The analytic class of ϕ0(1).
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These invariants are analogous to the (NSD) vector fields ones. Even the analytic
class of X(1)|y=0 is a topological invariant for (NSD) vector fields (lemma 6.3.1).

The analytic class of ϕ0(1) can be replaced with the analytic class of ϕ|y=0. If
m = 0 it is clear since ϕ0(1) ≡ ϕ|y=0. Otherwise it is still true since ϕ|y=0 ≡ Id and
the analytic class of ϕ0(1) is determined by the invariants attached to the residue
functions (lemma 6.3.1).

8.2. Theorem of topological conjugation

Theorem 8.1. Let f ∈ C{x, y} satisfying the (NSD) conditions. Let ϕ1, ϕ2 ∈
Df . Then

ϕ1
sp∼ ϕ2 ⇔ SP (ϕ1) = SP (ϕ2).

8.2.1. Theorem 8.1. Proof of the sufficient condition. We will prove
first the sufficient condition. We will proceed in an analogous way than for proving
the sufficient condition in theorem 6.1.

Lemma 8.2.1. Let ϕ1, ϕ2 ∈ Df such that ϕ1
sp∼ ϕ2 by a special germ of homeo-

morphism σ. Consider a non-empty L-limit L+,ε
β,x0

(X(ϕ1)). Consider a component
ρ of L+,ε

β,x0
(X(ϕ1)) and let E be the partition induced by (x0, ρ). Then

µ


 ∑

P∈E−(y)

[ResX(ϕ1)(P )−ResX(ϕ2)(P )]


 ≤ m.

Proof. The proof is analogous to the proof of lemma 6.2.1. Suppose λ(β) = 1
without lack of generality. Suppose ρ is the first component of L+,ε

β,x0
(X1). Let

x1 ∈ ρ. There exists a true section χ : β ∪ {0} → C2 such that χ(0) = (x1, 0) and

T (y) =
ψ1,1

ym
(χ(y)) + AE−,X1(y)− ψ1,0

ym
(x0, y)

for a function T : β → R+. We consider the sequence of points {yn} contained
in T−1(N). The limit (z1, 0) = limn→∞ ϕ

(T (yn))
1 (x0, yn) exists by proposition 7.2.3.

Moreover, proposition 7.2.3 also implies

lim
n→∞

|yn|m(T (yn)−AE−,X1(yn)) = ψ−,ϕ1
1,0 (z1, 0)− ψ+,ϕ1

0,0 (x0, 0).

By proposition 8.1.2 the limit (x′1, 0) = limn→∞ exp(T (yn)X2)(σ(x0, yn)) exists and
it is in the first component of L+,κ2

β,σ(x0,0)(X2). Since

lim
n→∞

ϕ
T (yn)
2 (σ(x0, yn)) = σ( lim

n→∞
ϕ

T (yn)
1 (x0, yn)) = σ(z1, 0)

we can proceed like we did previously to obtain

lim
n→∞

|yn|m(T (yn)−AE−,X2(yn)) = ψ−,ϕ2
1,0 (σ(z1, 0))− ψ+,ϕ2

0,0 (σ(x0, 0));

the partition of the fixed points coincide by proposition 8.1.2. Hence

lim
n→∞

|yn|m(AE−,X1(yn)−AE−,X2(yn)) ∈ C;

that clearly implies µ(AE−,X1 −AE−,X2) ≤ m.
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Let ρ1 < . . . < ρk = ρ < . . . be the decomposition of L+,ε
β,x0

(X1) in connected
components. By the first part of the proof the partition of the fixed points (Ej

−, Ej
+)

associated to (ρj , ρj+1) satisfies

µ(AEj
−,X1

−AEj
−,X2

) ≤ m and µ(AEj
+,X1

−AEj
+,X2

) ≤ m

for all 0 ≤ j ≤ k − 1. Let (F1, F2, . . . , Fl) be the partition whose elements are the
sets of the form

E0
s0
∩ . . . ∩ Ek−1

sk−1

where (s0, . . . , sk−1) ∈ {+,−}k. We can obtan µ(AFj ,X1 − AFj ,X2) ≤ m for 1 ≤
j ≤ l by proceeding like in lemma 6.2.2. Since

AE−,X1 −AE−,X2 =
∑

j∈J

(AFj ,X1 −AFj ,X2)

for some subset J ⊂ {1, . . . , l} then the result is proved. ¤

Proposition 8.2.1. Let ϕ1, ϕ2 ∈ Df such that there exists a special germ
of homeomorphism conjugating ϕ1 and ϕ2. Consider a continuous multi-valuated
section S : B(0, δ)\{0} → (f = 0) such that S(s) ∈ [y = s] for all s ∈ B(0, δ)\{0}.
Then

µ(Resϕ1(S(y))−Resϕ2(S(y))) ≤ m.

The proof of proposition 8.2.1 is obtained by copying the proofs of lemmas
6.2.2, 6.2.3 and proposition 6.2.1 with no change.

Proposition 8.2.2. Suppose N 6= 0 and (N, m) 6= (1, 0). Let σ be a germ
of special homeomorphism conjugating elements ϕ1 and ϕ2 in Df . Then σ|y=0 is
analytic, moreover it conjugates ϕ1,0(1) and ϕ2,0(1).

Proof. If m > 0 then σ|y=0 is analytic by proposition 8.1.4. Moreover σ|y=0

conjugates exp(log ϕ1,0(1)) and exp(log ϕ2,0(1)).
If m = 0 then N > 1. Let (x1, 0) ∈ Uε \ {(0, 0)}. Suppose αξ(X1),|x|<ε(x1, 0) =

(0, 0) without lack of generality. Hence, there exists a L-limit L−,ε
β,x1

(X1) 6= ∅. We
can suppose λ(β) = 1. There exist (see proof of proposition 7.2.3) a point (x0, 0),
a compact wedge W = ∪r∈[−M,M ]βr (βr ∈ Υr

AE−
), a true section χ : W → C2 and

a function T : W → R+ such that
• T (y) = ψ1,1(χ(y)) + AE−,X1(y)− ψ1,0(x0, y).
• limn→∞ α

(−T (yn))
ϕ1 (x1, yn) is in the first component of L−,ε

β,x1
(X1).

• (x1, 0) = limn→∞ ϕ
(T (yn))
1 (x0, 0).

• limy∈βr,y→0 χ(y) = exp(irX1)(limy∈β,y→0 χ(y)) for r ∈ [−M, M ].
For these conditions {yn} is the sequence of points in T−1(N)∩ β. We proceed like
in the proof of proposition 7.2.3. Let z = s + ir in the set [−M,M ] + i[−M, M ];
we define Tz = T + s, then we choose the sequence {yz

n} of points in T−1
z (N) ∩ βr.

By proposition 7.2.3 the limit (x1,z, 0) = limn→∞ ϕ
(Tz(yz

n))
1 (x0, y

z
n) exists, moreover

we have

lim
n→∞

(Tz(yz
n)−AE−,X1(y

z
n)) = ψ−,ϕ1

1,0 (x1,z, 0)− ψ+,ϕ1
0,0 (x0, 0).

Since

σ(x1,z, 0) = lim
n→∞

σ(ϕ(Tz(yz
n))

1 (x0, y
z
n)) = lim

n→∞
ϕ

(Tz(yz
n))

2 (σ(x0, y
z
n))
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proposition 8.1.2 allows to apply the same method to ϕ2 to obtain

lim
n→∞

(Tz(yz
n)−AE−,X2(y

z
n)) = ψ−,ϕ2

1,0 (σ(x1,z, 0))− ψ+,ϕ2
0,0 (σ(x0, 0)).

The limit D = limy→0(AE−,X1(y) − AE−,X2(y)) exists, it is a consequence of
µ(AE−,X1(y)−AE−,X2(y)) = 0. Therefore

ψ−,ϕ2
1,0 (σ(x1,z, 0))− ψ−,ϕ1

1,0 (x1,z, 0) = D + (ψ+,ϕ2
0,0 (σ(x0, 0))− ψ+,ϕ1

0,0 (x0, 0)).

Since ψ−,ϕ1
1,0 (x1,z, 0) = ψ−,ϕ1

1,0 (x1,0, 0) + z the mapping z → x1,z is a local biholo-
morphism. We deduce that σ(x, 0) is holomorphic in the neighborhood of (x1, 0).
That implies σ(x, 0) to be holomorphic in (Uε ∩ [y = 0]) \ {(0, 0)}. Indeed, it is
holomorphic in Uε ∩ [y = 0], we can remove the singularity. ¤

Let V be a petal (either attracting or repelling) V ⊂ [y = 0] associated to
ϕ|y=0. We denote by ψX

V,0 the integral of the time form of X(ϕ)(1) in V . We
denote by ψϕ

V,0 the integral of the time form of ϕ|y=0 in V defined by

ψϕ
V,0 = ψX

V,0 +
∞∑

j=0

∆ ◦ ϕ(j) or ψϕ
V,0 = ψX

V,0 −
∞∑

j=1

∆ ◦ ϕ(−j)

depending on whether V is attracting or repelling.

Lemma 8.2.2. Let ϕ1, ϕ2 ∈ Df such that ϕ1
sp∼ ϕ2 are conjugated by a special

germ of homeomorphism σ. Suppose N 6= 0 and (N, m) 6= (1, 0). Let V be a petal
for ϕ1(x, 0) in |x| < ε. Then, we have

ψϕ2
σ(V ),0 ◦ σ − ψϕ1

V,0 ≡ L

for some constant L ∈ C which does not depend on V .

Proof. If m > 0 then ψϕ
V,0 = ψX

V,0 for every petal V ⊂ [y = 0]; as a conse-
quence the result is a trivial consequence of proposition 8.1.4. Suppose m = 0. Let
V ⊂ B(0, ε) \ {0} be a petal for ϕ1(x, 0). We can suppose V is repelling without
lack of generality. Since there exists a non-empty L−,ε

β,x1
(X1) for some semi-analytic

β then we can proceed like in proposition 8.2.2 to obtain

ψ−,ϕ2
1,0 (σ(x1,z, 0))− ψ−,ϕ1

1,0 (x1,z, 0) ≡ cte

for ψ−,ϕ1
1,0 ≡ ψϕ1

V,0, ψ−,ϕ2
1,0 ≡ ψϕ2

σ(V ),0 and z in a neighborhood of 0. We deduce that
ψϕ2

σ(V ),0 ◦ σ(x, 0)− ψϕ1
V,0(x, 0) is locally constant; therefore

ψϕ2
σ(V ),0 ◦ σ(x, 0)− ψϕ1

V,0(x, 0) ≡ LV

in V for some constant LV ∈ C. Let V ′ be a petal next to V and let xn ∈ [|x| < ε/n]
such that xn ∈ V ∩ V ′ and

(αξ(X1,0,ε/n), ωξ(X1,0,ε/n))|x|<ε/n
(xn, 0) = ((0, 0), (0, 0)).

By theorem 7.1 there exists C(ε/n) > 0 such that limn→∞ C(ε/n) = 0 and

|(ψϕ2
σ(V ),0 ◦ σ(xn, 0)− ψϕ1

V,0(xn, 0))− (ψX2
σ(V ),0 ◦ σ(xn, 0)− ψX1

V,0(xn, 0))|
is lesser or equal than 2C(ε/n). Since we can consider ψX1

V,0 ≡ ψX1
V ′,0 and ψX2

σ(V ),0 ≡
ψX2

σ(V ′),0 in V ∩ V ′ we deduce that LV ≡ LV ′ by making n → ∞. Therefore LV

does not depend on V . ¤



100 8. TOPOLOGICAL INVARIANTS OF (NSD) DIFFEOMORPHISMS

Lemma 8.2.3. Let ϕ1, ϕ2 ∈ Df such that ϕ1
sp∼ ϕ2 by a special germ of home-

omorphism σ. Consider a component ρ of a non-empty L-limit L+,ε
β,x0

(X(ϕ1)). Let
E be the partition induced by (x0, ρ). Then

lim
y→0

ym


 ∑

P∈E−(y)

[ResX(ϕ1)(P )−ResX(ϕ2)(P )]


 = 0.

Proof. It is enough the proposition supposed ρ is the first component of
L+,ε

β,x0
(X1); otherwise we proceed like in lemma 8.2.1 to extend the result to all

the partitions induced by L-limits.
There exists D ∈ C such that

D = lim
y∈β,y→0

|y|m(AE−,X1(y)−AE−,X2(y)))

by lemma 8.2.1. Let x1 ∈ ρ; we have

ψ−,ϕ2
1,0 (σ(x1,z, 0))− ψ−,ϕ1

1,0 (x1,z, 0) = D + (ψ+,ϕ2
0,0 (σ(x0, 0))− ψ+,ϕ1

0,0 (x0, 0))

as we see in the proof of proposition 8.2.2. Let L be the constant provided by
lemma 8.2.2; we obtain L = D + L and then D = 0. ¤

To end the proof we just need

Proposition 8.2.3. Suppose N 6= 0 and (N,m) 6= (1, 0). Let ϕ1, ϕ2 ∈ Df

such that they are conjugated by a special germ of homeomorphism. Consider S :
B(0, δ)\{0} → (f = 0) a continuous multi-valuated section such that S(s) ∈ [y = s]
for all s ∈ B(0, δ) \ {0}. Then

lim
y→0

ym(Resϕ1(S(y))−Resϕ2(S(y))) = 0.

We do not explicit the proof. It is completely analogous to the proof of propo-
sition 6.2.3.

8.2.2. Proof of the necessary condition in theorem 8.1 when N = 0.
Let ϕ = exp(ûym∂/∂x) ∈ Dym . Let X(ϕ) = uym∂/∂x its convergent normal form.
By theorem 6.1 it is enough to prove that ϕ is specially conjugated to exp(X(ϕ)).
Consider a sectorial domain S = Va,b(υ1, υ2) whose aperture b−a is less than π/m.
Let u′S be the unit provided by proposition 8.1.3. An integral ψS of the time form
of u′S∂/∂x in S is characterized by the equation

∂(ψS − ψ)
∂x

=
1

u′Sym
− 1

uym
=

1
ym

(
u− u′S
uu′S

)
.

Since the right hand side is a O(ym) there exists an integral ψS of the time form of
u′∂/∂x such that ψS − ψ = O(ym). Moreover, the equation ϕ = exp(u′Sym∂/∂x)
implies ψS ◦ϕ = ψS +1. Now consider 2m+1 sectorial domains Sj = Vaj ,bj (υ1, υ2)
(1 ≤ j ≤ 2m + 1) such that their union is [|x| < υ1] ∩ [0 < |y| < υ2]. Let
{ξj(y)}j∈{1,...,2m+1} be a partition of the unity associated to the covering ∪πy(Sj).
We define

ψϕ =
2m+1∑

j=1

ξj(y)ψSj (x, y).

The following properties are straightforward:
• ψϕ is a C∞ function in [|x| < υ1] ∩ [0 < |y| < υ2].
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• ψϕ ◦ ϕ = ψϕ + 1.
• ∂(ψϕ − ψ)/∂xj =

∑2m+1
j=1 ξj(y)∂(ψSj

− ψ)/∂xj = O(ym).
• ψϕ − ψ = O(ym).

The last two properties imply that ψϕ, ∂ψϕ/∂x1 and ∂ψϕ/∂x2 admit a continuous
extension to Uυ1,υ2 . We look for a vector field

Z = a(x, y, ξ)
∂

∂x1
+ b(x, y, ξ)

∂

∂x2
+

∂

∂ξ

such that Z((1− ξ)ψ + ξψϕ) = 0; we also require a and b to be continuous and to
satisfy a(0, 0) = b(0, 0) = 0. If such a and b exist then exp(Z)(x, y, 1) conjugates
exp(X(ϕ)) and ϕ. We proceed like in the proof of theorem 6.1. For instance, we
have

a =

∣∣∣∣
Re(ym[ψ − ψϕ]) ∂H1/∂x2

Im(ym[ψ − ψϕ]) ∂H2/∂x2

∣∣∣∣
∣∣∣∣

∂H1/∂x1 ∂H1/∂x2

∂H2/∂x1 ∂H2/∂x2

∣∣∣∣
where H = H1 + iH2 = (1 − ξ)ymψ + ξymψϕ. The denominator is of the form
1/|u|2 + O(y2m) whereas the numerator is a O(y2m). As a consequence a is a
O(y2m) and then a(x, 0) ≡ 0. We can prove that b is continuous and it satisfies
b(x, 0) ≡ 0 in an analogous way. The special mapping exp(Z)(x, y, 1) conjugates
exp(X(ϕ)) and ϕ; moreover exp(Z)(x, y, 1) is the identity by restriction to y = 0.





CHAPTER 9

Tangential Special Conjugations

9.1. The general plan

The remainder of the paper is devoted to prove the necessary condition in
theorem 8.1 for N > 0. To conjugate ϕ1 and ϕ2 such that SP (ϕ1) = SP (ϕ2) we
consider a composition of special mappings

σ2 ◦ σ′ ◦ σ
(−1)
1

where σ′ is a homeomorphism conjugating Re(X(ϕ1)) and Re(X(ϕ2)) and σj con-
jugates αϕj and ϕj for j ∈ {1, 2}. If the mapping σj is a germ of homeomorphism
and m = 0 then ϕj,0(1) ana∼ exp(X(ϕj)|y=0). That is not always possible since
ϕj,0(1) is not in general the exponential of a convergent vector field (or in other
words ϕj,0(1) is not always analytically trivial). This approach is hopeless if we do
not enlarge the class of mappings we are considering.

We say that a mapping σ is tangential special (or tg-sp for shortness) if it
satisfies that

• σ is a germ of homeomorphism defined in (Uε,δ \ [y = 0]) ∪ {(0, 0)} for
some ε, δ > 0.

• y ◦ σ = y and σ|f/ym=0 ≡ Id.

Suppose SP (ϕ1) = SP (ϕ2); we will prove the existence of a special analytic bi-
holomorphism τ such that τ|y=0 ◦ ϕ1,0(1) = ϕ2,0(1) ◦ τ|y=0. That will allow us to
suppose that ϕ1,0(1) and ϕ2,0(1) coincide.

The diffeomorphisms αϕj and ϕj are conjugated by a tg-sp mapping σj . The
mapping σ = σ2 ◦ σ′ ◦ σ

(−1)
1 is a tg-sp conjugation between ϕ1 and ϕ2. If N = 1 or

m > 0 the conjugating mappings σj can be chosen to be defined in a neighborhood
of (0, 0). In other words, for N = 1 or m > 0 a (NSD) diffeomorphism is conjugated
to its normal form by a special germ of homeomorphism. That implies theorem
8.1.

Suppose N > 1 and m = 0. Since ϕ1,0(1) = ϕ2,0(1) then the mapping σ′|y=0

can be chosen to be the identity map. We will provide a method to construct σj

for j ∈ {1, 2} such that σ can be extended to y = 0 as the identity map.

9.1.1. Preparation of ϕ1 and ϕ2. This subsection is of technical type; its
purpose is showing that we can suppose ϕ1,0(1) = ϕ2,0(1) when proving theorem
8.1. Moreover, in such a case X(ϕ1) = u1f∂/∂x and X(ϕ2) = u2f∂/∂x can be
chosen such that u1 − u2 ∈ (y).

103
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Proposition 9.1.1. Let ϕ1, ϕ2 ∈ Df such that SP (ϕ1) = SP (ϕ2). Suppose
N > 0 and (N, m) 6= (1, 0). Then, there exists an analytic special germ of biholo-
morphism τ such that

τ−1
|y=0 ◦ ϕ2,0(1) ◦ τ|y=0 = ϕ1,0(1).

Proof. Suppose N = 1; that implies f = ym(x− g(y))n. There exists h ∈
Diff (C, 0) conjugating ϕ1,0(1) and ϕ2,0(1). We can define

τ = (h(x− g(y)) + g(y), y).

Suppose N > 1. Let ϕj = exp(ûjf∂/∂x) and X(ϕj) = ujf∂/∂x for j ∈ {1, 2}.
There exists k ∈ N such that

f(x, yk) = ymk(x− g1(y))a1 . . . (x− gN (y))aN .

We define

B =
N∑

j=1

ymk(Res(x,y1/k)◦ϕ1◦(x,yk) −Res(x,y1/k)◦ϕ2◦(x,yk))(gj(y), y)
ymk(x− gj(y))

.

Since SP (ϕ1) = SP (ϕ2) all the numerators in the previous expression belong to
(y). Moreover B(x, e(2πi)/ky) ≡ B(x, y) and then the function f(x, y)B(x, y1/k) is
holomorphic in the neighborhood of the origin and it belongs to (y). We consider
the unit v2 ∈ C{x, y} satisfying

1
v2f

=
1

u1f
−B(x, y1/k).

By construction ResX(ϕ2)(P ) = Resv2f∂/∂x(P ) for P ∈ [f/ym = 0]. Since no
modification is required the special mapping ρ conjugating v2f∂/∂x and X(ϕ2)
and provided by theorem 6.1 is in fact analytic. Therefore, we can suppose that

1
u1(x, y)

− 1
u2(x, y)

= f(x, y)B(x, y1/k)

up to replace ϕ2 with ρ(−1) ◦ ϕ2 ◦ ρ. Thus u1(x, 0) ≡ u2(x, 0) and then

(û1 − û2)(x, 0) = [(û1 − u1)− (û2 − u2)](x, 0) ∈ (f(x, 0)2).

For m > 0 we are done, the identity conjugates ϕ1,0(1) and ϕ2,0(1). Otherwise
(f2(x, 0)) = (x2ν̃(X(ϕ1))). As a consequence there exists h in Diff (C, 0) such that
h ◦ ϕ1,0(1) = ϕ2,0(1) ◦ h and h(x)− x ∈ (x2ν̃(X(ϕ1))+1). We define

H(x, λ1, . . . , λN ) =
N∑

j=1

(h(λj)− λj)
∏

k∈{1,...,N}\{j}

x− λk

λj − λk
.

We can express it in the form

H =
H ′(x, λ1, . . . , λN )∏
1≤j<k≤N (λj − λk)2

where H ′ ∈ C[x]{λ1, . . . , λN} and the degree of H ′ as a polynomial in x is at
most N − 1. It is clear that (λj − λk)|H ′ for all j 6= k. Since H(x, λ1, . . . λN ) =
H(x, λb(1), . . . , λb(n)) for every b ∈ Sn then the same property holds when we replace
H with H ′. As a consequence (λj − λk)2|H ′ for j 6= k. We deduce that H belongs
to C[x]{λ1, . . . , λN}. We can express H in the form

H = H0(λ1, . . . , λN ) + . . . + HN−1(λ1, . . . , λN )xN−1.
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We have ν(Hj) ≥ ν(h(x) − x) − j for all 0 ≤ j < N . Since ν̃(X(ϕ1)) > N then
Hj ∈ (λ1, . . . , λN ) for all 0 ≤ j < N . We define

τ = (h(x)−H(x, g1(y1/k), . . . , gN (y1/k)), y).

By construction we obtain τ|y=0 ≡ h whereas τ is the identity over the fixed points.
Moreover H(x, g1(y1/k), . . . , gN (y1/k)) ∈ C{x, y} ∩ (y) since H is symmetric in
(λ1, . . . , λN ) and H ∈ (λ1, . . . , λN ). ¤

Lemma 9.1.1. Let ϕ1, ϕ2 be elements of Df such that SP (ϕ1) = SP (ϕ2) and
ϕ1,0(1) ≡ ϕ2,0(1). Then, we can choose X(ϕj) = ujf∂/∂x for j in {1, 2} such that
u1 − u2 ∈ (y).

Proof. We denote ϕj = exp(ûjf∂/∂x) for j ∈ {1, 2}. By hypothesis we have
û1 − û2 ∈ (y). We choose X(ϕj) = vjf∂/∂x for j ∈ {1, 2}. Since ûj − vj ∈ (f2) for
1 ≤ j ≤ 2 we define u1 = v1 and

u2(x, y) = v2(x, y) + h2(x, y)
[
û2 − v2

h2
− û1 − v1

h2

]
(x, 0)

where h = f/ym. It is clear that u2− v2 ∈ (f2) and then we obtain û2−u2 ∈ (f2).
Moreover u2(x, 0) ≡ u1(x, 0) as we wanted to prove. ¤

9.2. Shaping the domains

9.2.1. Prerequisites. We will construct a tg-sp conjugation between a dif-
feomorphism ϕ and its normal form X(ϕ). At first we will solve the problem in the
neighborhood of y = y0 for y0 ∈ B(0, δ) \ {0}; then we will use a partition of the
unity to obtain the tg-sp conjugation.

Let X be a (NSD) vector field defined in Uε′,δ. Fix 0 < µ < 1. We can suppose
that 0 < ε′ < 1 and δ > 0 satisfy that whether

{α(0)
ϕ (P ), . . . , α(j)

ϕ (P )} ⊂ Uε′,δ

then |∆j(P )| = |ψX(ϕ)(ϕ(j)(P )) − (ψX(ϕ)(P ) + j)| ≤ µ. We consider 0 < ε1 < ε′

such that exp([−3, 3]X(ϕ))(Uε1) ⊂ Uε′ .
We fix a number M > 32 from now on. We remind the reader that NT is equal

to 2(ν̃(X)− 1). Let ε < ε′ < 1; consider a section T ε,j
X (r, θ). We define

Trε,j(r, θ, H) = exp([−H, H]irmX(eimθ))(T ε,j
X (r, θ)).

There exists 0 < ε0 < ε1 such that for κ = 6(2M + 1)NT + 3 the transversal
Trε,j(r, θ, κ) is well-defined and it is contained in Uε′ for all 1 ≤ j ≤ NT and
all ε ≤ ε0. Moreover, we choose ε0 > 0 small enough such that Trε0,j(0, θ, κ) is
contained in

(αξ(X(eimθ)), ωξ(X(eimθ)))
−1

|x|<ε′
((0, 0), (0, 0))

for all 1 ≤ j ≤ NT and θ ∈ R.

9.2.2. Eared domains. Fix y0 ∈ B(0, δ) \ {0}. The construction of the tg-
sp conjugation between αϕ and ϕ relies in dynamical study of Re(X(ϕ)). The
construction is simpler if y0 6∈ UN ε

X(ϕ) since the vector field ξ(X(ϕ), y, ε) is locally
trivial in the neighborhood of y0. Otherwise, we will add some ”ears” in order to
break the bi-tangent cords.

Let ε ≤ ε0; there exists a > 0 and b > 0 such that

exp({−a, b}X(eiθm))(Trε,j(0, θ, κ)) ⊂ Uε
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for all 1 ≤ j ≤ NT and θ ∈ R. Let 0 ≤ D ≤ κ; we define

OD
j (r, θ) = exp([−a, b]X(eiθm))(Trε,j(r, θ,D)) \ Uε.

By definition the set OD
j (r, θ) is an ”ear” of width D over the tangent point

T ε,j
X(eimθ)

(r, θ). The set Trε,j(r, θ, D) has exactly one end which does not belong to
Uε; we denote it by vD

j (r, θ). It is the vertex of the ear. For K = (K1, . . . , KNT
) ∈

[0, κ)NT we define Uε(K) such that Uε(K) ∩ [(r, θ) = (r0, θ0)] is the interior of

[|x| ≤ ε] ∪OK1
1 (r0, θ0) ∪ . . . ∪O

KNT

NT
(r0, θ0).

We define Uε,δ(K) = Uε(K)∩ [y ∈ B(0, δ)]. The set Uε is a domain with zero width
ears. The topological behavior of Re(X) in domains of type Uε(K) and Uε is totally
analogous. Let

U ′
ε(K) = Uε(K) \ ∪(j,r,θ)∈{1,...,NT }×[0,δ)×R{vKj

j (r, θ)};
we define the positive critical trajectory passing through vKk

k (r, θ) as

ΓU ′ε(K)∪{vKk
k (r,θ)}

ξ(X(eimθ)),+
[vKk

k (r, θ)].

Analogously we define negative critical trajectories. The critical tangent cords are
still the critical trajectories not containing singular points and the bi-tangent cords
are the critical trajectories containing two vertexes. The bi-tangent cords can be
removed by adding ears.

Lemma 9.2.1. Let X be a (NSD) vector field. Fix r0 in [0, δ) and θ0 in R. For
all υ > 0 there exists η = (η1, . . . , ηNT ) ∈ [0, υ)NT such that Re(X(eimθ0)) does not
have bi-tangent cords in Uε(η) ∩ [y = r0e

iθ0 ].

Proof. Let ζ ∈ [0, κ)NT . We define H(ζ) ⊂ {1, . . . , NT }2 as the set such that
(j, k) ∈ H(ζ) if j 6= k and there exists a bi-tangent cord joining v

ζj

j (r0, θ0) and
vζk

k (r0, θ0) in Uε(ζ). It is enough to prove that for all υ > 0 there exists ξ ∈ [0, υ)NT

such that ]H(ζ + ξ) ≤ max(]H(ζ) − 1, 0); this property implies the lemma by an
induction process.

Consider (j, k) ∈ H(ζ). We define ξl = 0 for l 6= j. We claim that (j, k) does
not belong to H(ζ + ξ) if 0 < ξj << 1; otherwise there would be a trajectory of
Re(X(eimθ0)) cutting twice Trε,j(r0, θ0, κ). Moreover, we have that (j′, k′) 6∈ H(ζ)
implies (j′, k′) 6∈ H(ζ + ξ) for ξj << 1 by continuity of the flow. Now, we just
choose ξj < υ small enough. ¤

Remark 9.2.1. From now on we will always consider sets Uε(η) such that
0 ≤ ηj < 1 for all 1 ≤ j ≤ NT .

9.2.3. Changing the boundary of Uε(η). Consider two consecutive sec-
tions T ε,j

X (r, θ) and T ε,j+1
X (r, θ). We denote by Sj(r, θ) the closed circular segment

between T ε,j
X (r, θ) and T ε,j+1

X (r, θ). We define cj = 1 if Re(X) points towards
the interior of Uε in Sj(r, θ); otherwise we have cj = −1. Let ψj/ym be an in-
tegral of the time form of X defined in a neighborhood of Sj(r, θ). We define
hk(r, θ) = ψj(T

ε,k
X (r, θ))e−imθ. We consider the set Trε,j

S (r, θ, 0, 0) whose image by
ψje

−imθ is

cjK + Re
hj + hj+1

2
+ i[min(Imhj , Imhj+1),max(Imhj , Imhj+1)].
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We define Trε,j
S (r, θ, a, b) = exp(i[−a, b]X)(Trε,j

S (r, θ, 0, 0)). We have

Lemma 9.2.2. There exists K > 0 such that Trε,j
S (r, θ, κ, κ) is contained in Uε

for all 1 ≤ j ≤ NT and (r, θ) ∈ [0, δ)× R.

Proof. Since T ε,k
X (r, θ) = T ε,k

X (r, θ + πNT ) we can suppose that θ belongs to
[0, πNT ]. As a consequence

K = 1 + 2 sup
(j,r,θ)∈{1,...,NT }×[0,δ)×[0,πNT ], P∈Sj(r,θ)

|Re[ψj(P )e−imθ − hj(r, θ)]|

satisfies K < ∞. The choice of K guarantees that

(9.1) K > cj [Re(ψje
−imθ)(P )−Re((hj(r, θ) + hj+1(r, θ))/2)]

for all (j, r, θ) ∈ {1, . . . , NT } × [0, δ)× R and every P ∈ Sj(r, θ). The situation for
cj = 1 is represented in picture 1. Proposition 3.2.2 implies that Γ|x|<ε′

ξ(X(eimθ))
[P ](cjw)

Figure 1. Picture of Trε,j
S (r, θ, a, b) in coordinates ψje

−imθ

belongs to Uε for all P ∈ Sj(0, θ) and all (j, θ, w) in {1, . . . , NT } ×R×R+. There-
fore, equation 9.1 implies that Trε,j

S (r, θ, 0, 0) is contained in Uε for all (j, r, θ) in
{1, . . . , NT } × [0, δ)× R and δ > 0 small enough.

We have that Trε,j
S (0, θ, κ, κ) \ Trε,j

S (0, θ, 0, 0) is contained in

(αξ(X(eimθ)), ωξ(X(eimθ)))
−1

|x|<ε
((0, 0), (0, 0)).

Hence Trε,j
S (r, θ, κ, κ) ⊂ Uε for all (j, r, θ) ∈ {1, . . . , NT }× [0, δ)×R and δ > 0 small

enough. ¤

Fix y0 ∈ B(0, δ) \ {0}. We can just change Uε(η) by a domain with very
similar properties. We consider L(s) = ∪1≤j≤NT Trε,j

S (s, aj , bj) where (aj , bj) =
(−ηj ,−ηj+1) if Im(hj(y0) < Im(hj+1(y0)); otherwise we have (aj , bj) = (−ηj+1,−ηj).
The set L(s) is not connected for s in a neighborhood of y0; indeed L(s) has NT con-
nected components. Anyway, for 1 ≤ j ≤ NT there exists cj(s) > 0 and dj(s) > 0
such that exp(tX)(vj(s)) does not belong to L(s) for t ∈ (−cj(s), dj(s)) but it does
for t ∈ {−cj(s), dj(s)}. We consider the domain Wε(η) whose boundary is equal to

∪s∈V [L(s) ∪1≤j≤NT
exp([−cj(s), dj(s)]X)(vj(s))]
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Uµδ Re(iX)
trajectories of

trajectories of
Re(X)

Figure 2. Picture of a domain Wµ(0)

for some neighborhood V of y0. The domain Wε(η) has a very simple boundary; it
is composed by a union of trajectories of Re(X) and Re(iX). We define

IR
ε (η, s) = [Iε(η) ∩ [y = s]] \ ∪1≤j≤NT

ΓUε(η)
ξ(X) [vηj

j (s)]

for I ∈ {U,W}. The mapping (αξ(X,s), ωξ(X,s))Iε(η)
is constant in the connected

components of IR
ε (η, s) for I ∈ {U,W}. We call these components regions as usual.

There is a bijection between the regions in WR
ε (η, s) and the regions in UR

ε (η, s).
Moreover, for every region ZW (s) in WR

ε (η, s) there exists a unique region ZU (s) in
UR

ε (η, s) such that ZW (s) ∩ ZU (s) 6= ∅ for s in a neighborhood of 0. Indeed those
regions satisfy ZW (s) ⊂ ZU (s) for all s in a neighborhood of 0. As a consequence
the dynamical properties of Uε(η) and Wε(η) are the same.

Remark 9.2.2. Clearly Trε,j
S (r, θ, κ, κ) ⊂ Wε(η) for all 1 ≤ j ≤ NT and (r, θ) ∈

[0, δ)× R.

9.3. Base transversals

For constructing a special conjugation between αϕ and ϕ in a neighborhood of
y = y0 there are two basic steps.

For the first step we choose a trajectory

Tr(s) ⊂ Wε(η + κ− 3) ∩ [y = s]

of Re(iX) and we construct a special conjugation σTr between αϕ and ϕ; it is
defined in

∪s∈V DTr(s) = ∪s∈V exp([−1, 1]X)
(
ΓWε(η+κ−3)

ξ(X) [Tr(s)] ∩Wε(η)
)

for some neighborhood V of y = y0. The second step is a process of interpolation
for conjugations obtained by considering different base transversals. In this section
we focus on the first step.
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Uµδ

boundaries
of ears

trajectories of 
Re(iX)

Figure 3. Picture of a domain Wµ(C1, . . . , Cta)

The set ψX(ϕ)(Tr(s)) is of the form z ∈ c(s)+ i[d(s), e(s)]; thus ψX(ϕ)(DTr(s))
can be expressed as

[Imz ∈ [d(s), e(s)]] ∩ [Rez ∈ [c(s)− q1(Imz, s), c(s) + q2(Imz, s)]]

where qj is upper semi-continuous and defined in ∪s∈V [d(s), e(s)]×{s} for j ∈ {1, 2}.
We will define σTr in

∪s∈V ([Im(ψX(ϕ)) ∈ [d(s), e(s)]] ∩ [Re(ψX(ϕ)) ∈ (c(s)− 1/3, c(s) + 4/3)])

and then we will extend to DTr(s) by using σTr ◦ αϕ = ϕ ◦ σTr. In order to assure
that such a extension is well-defined it is enough to prove the following lemma:

Lemma 9.3.1. Let (x0, s), (x1, s) ∈ Tr(s). Suppose

tj − c(s) ∈ [−q1(Img(ψX(ϕ)(xj , s)), s), q2(Img(ψX(ϕ)(xj , s)), s)]

for j ∈ {1, 2}. Then exp(t0X)(x0, s) = exp(t1X)(x1, s) implies x0 = x1 and t0 = t1.

Proof. If Img(ψX(ϕ)(x0, s)) 6= Img(ψX(ϕ)(x1, s)) then the trajectory of Re(X)
passing trough exp(t0X)(x0, s) cuts twice Tr(s). That is impossible by the Rolle
property. Hence x0 = x1; moreover t0 = t1 since otherwise there is a cycle and that
violates the Rolle property. ¤

Next we explain how to construct σTr. Last lemma justifies the use of ψX(ϕ)

as a coordinate in DTr(s). Therefore, we consider the system of coordinates given
by (z, s) = (ψX(ϕ)(x, s), s). We want (σTr)|Tr(s) ≡ Id, i.e. σ(z, s) = (z, s) for
z ∈ c(s) + i[d(s), e(s)]. That choice implies

σ(c(s) + iξ + 1, s) = (c(s) + iξ + 1 + ∆ ◦ (ψX(ϕ), s)
(−1)(c(s) + iξ, s), s)

for all ξ ∈ [d(s), e(s)]. We denote A = (ψX(ϕ), y) ◦ ϕ ◦ α
(−1)
ϕ ◦ (ψX(ϕ), y)(−1). Since

ε ≤ ε0 (see subsection 9.2.1) then exp([−2, 2]X)(Wε(η)) ⊂ Uε′ . We deduce that
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A(., s) is defined in

z ∈ c(s) + [−1/3, 4/3] + i[d(s), e(s)].

Consider the partition I1 = (−1/3, 2/3), I2 = (1/3, 4/3) of (−1/3, 4/3). Let h1, h2

be a partition of the unity associated to the covering I1 ∪ I2. We define

B(c + iξ, s) = h1(c− c(s))(c + iξ, s) + h2(c− c(s))A(c + iξ, s)

for c + iξ ∈ c(s) + (−1/3, 4/3) + i[d(s), e(s)]. By choice B is the identity in the
neighborhood of Tr(s) whereas B = A in the neighborhood of σTr(Tr(s)). We
define σTr = (ψX(ϕ), y)(−1) ◦B ◦ (ψX(ϕ), y). We obtain

|ψX(ϕ) ◦ σTr − ψX(ϕ)| = |z ◦B ◦ (ψX(ϕ), y)− ψX(ϕ)| ≤ µ.

The inequality is a consequence of |∆(x, y)| ≤ µ in Uε′ . The conjugation σTr can be
extended to DTr(s) by applying the formula σ ◦αϕ = ϕ ◦σ. We define DσTr(x0, s)
the jacobian matrix of (σTr)|y=s at x = x0. Then DσTr(x0, s) is a 2×2 real-valued
matrix.

Proposition 9.3.1. For µ < 1 there exists a universal µuv > 0 such that
• σTr is C∞ in the interior of ∪s∈V DTr(s).
• |ψX(ϕ) ◦ σTr − ψX(ϕ)| ≤ 2µ in ∪s∈V DTr(s).
• ||D((ψX(ϕ), y) ◦ σTr ◦ (ψX(ϕ), y)(−1))− Id|| ≤ µuvµ.

The last inequality holds in ∪y∈V [ψX(ϕ)(DTr(y))]×{y}. The latter properties
express that σTr ∼ Id and DσTr ∼ Id.

Proof. The mapping σTr is C∞ by construction. Suppose that α
(j)
ϕ (x0, s)

belongs to exp([0, 1]X)(Tr(s)) for some j ∈ Z. We have

σTr(x0, s) = ϕ(−j) ◦ σTr ◦ (α(j)
ϕ (x0, s)).

Since |ψX(ϕ)◦σTr−ψX(ϕ)| < 1 in exp([0, 1]X)(Tr(s)) then the point σTr◦(α(j)
ϕ (x0, s))

belongs to exp([−2, 2]X)(Wε(η))∪Wε(η+κ−2) ⊂ Uε′ . As a consequence we obtain

|ψX(ϕ)(σTr(x0, s))− ψX(ϕ)(x0, s)| ≤ µ + |∆−j ◦ σTr ◦ α(j)
ϕ (x0, s)| ≤ 2µ.

Let h(x, y) = (ψX(ϕ)(x, y), y); we have

∂(∆j ◦ h(−1))
∂z

(z0, s) = 0

and
∂(∆j ◦ h(−1))

∂z
(z0, s) =

∣∣∣∣∣
1

2πi

∫

|z−z0|=1

∆j ◦ h(−1)

(z − z0)
2 dz

∣∣∣∣∣ ≤ µ.

for (z0, s) ∈ DTr(s) and j ∈ Z. For the second inequality we need ∆j defined in
exp(B(0, 1)X)(z0, s). Such a property can be fulfilled by requiring

exp([−3, 3]X)(Wε(η)) ∪Wε(η + κ− 1) ⊂ Uε′ .

That is the case, since Wε(η + κ− 1) ⊂ Wε(κ) ⊂ Uε′ and exp([−3, 3]X)(Uε) ⊂ Uε′

(see subsection 9.2.1). By making j = 1 we deduce that ||DA − Id|| ≤ µ. As a
consequence we obtain

||DB − Id|| ≤ ||DA− Id||+ µ sup
υ∈R

∣∣∣∣
∂h2

∂υ
(υ)

∣∣∣∣ ≤ µµ1
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for µ1 = 1 + supυ∈R |∂(h2)/∂υ| and (z, s) ∈ h(exp([0, 1]X(ϕ))(Tr(s))). If (z + j, s)
belongs to the latter domain then

B(z, s) = h ◦ ϕ(−j) ◦ h(−1) ◦B(z + j, s).

By simplifying we obtain

z ◦B(z, s)− z = (z ◦B(z + j, s)− (z + j)) + ∆−j ◦ h(−1) ◦B(z + j, s).

That leads us to

||DB − Id||(z, s) ≤ µµ1 + ||D(∆−j ◦ h(−1) ◦B(z + j, s))||.
We develop the previous expression to obtain

||DB − Id||(z, s) ≤ µµ1 + ||D(∆−j ◦ h(−1))||(1 + ||DB(z + j, s))− Id||);
we can still simplify to have

||DB − Id||(z, s) ≤ µµ1 + µ(1 + µ1µ) ≤ µuvµ

for (z, s) ∈ ψX(ϕ)(DTr(s))× {s} and µuv = 1 + 2µ1. Therefore

||D((ψX(ϕ), y) ◦ σTr ◦ (ψX(ϕ), y)(−1))(z, y)− Id|| ≤ µuvµ

for (z, y) ∈ ψX(ϕ)(DTr(y))× {y}. ¤

9.4. The M-interpolation process

Since a single transversal can not intersect all the trajectories of Re(X) then
somehow we have to interpolate conjugations obtained by taking different transver-
sals. Throughout this section we consider strips ∪s∈V Bζ(s) such that

ψX(ϕ)(Bζ(s)) = [z ∈ [a←(s)− ζ, a→(s) + ζ] + i[c↓(s), c↑(s)]]

where c↑ − c↓ ≡ M . The functions a←, a→, c↓ and c↑ are continuous in V . These
functions are real-valued but we allow a← ≡ −∞ and a→ ≡ ∞. We denote the
curve Bζ(s)∩ [Img(ψX(ϕ)) = cj(s)] by γζ

j (s) for j ∈ {↑, ↓}. Let σ↓ and σ↑ be special
mappings defined in the neighborhood of ∪s∈V B1(s) and conjugating αϕ and ϕ.
Let h = (ψX(ϕ)(x, y), y); suppose that the inequalities |z ◦ h ◦ σj − z ◦ h| ≤ 2µ and

||D(h ◦ σj ◦ h(−1))− Id||(h(x, s)) ≤ µjµ

are fulfilled in the neighborhood of ∪s∈V B1(s) for some µj > 0 and every j ∈ {↑, ↓}.
Let g be a mapping defined in the neighborhood of a curve γ; we denote by (g, γ)
the germ of g in the neighborhood of γ. We want to prove

Proposition 9.4.1. For some C(µ↑, µ↓) > 0 and all 0 < µ < C(µ↑, µ↓) there
exists a C∞ special diffeomorphism σl defined in ∪s∈V B0(s) such that we have
σl ◦ αϕ = ϕ ◦ σl and (σl, γ0

j (s)) = (σj , γ
0
j (s)) for (s, j) ∈ V × {↑, ↓}. Moreover, we

obtain

• |ψX(ϕ) ◦ σl − ψX(ϕ)|(x, y) ≤ 2µ

• ||D((ψX(ϕ), y) ◦ σl ◦ (ψX(ϕ), y)(−1))− Id||(x, y) ≤ µlµ

for all (x, y) ∈ ∪s∈V B0(s). Moreover µl depends only on µ↑ and µ↓.
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Let h = (ψX(ϕ)(x, y), y); we define Aζ
j (s) = σj(γ

ζ
j (s)). Let µ > 0 small enough;

since ||D(h ◦ σj ◦ h(−1)) − Id|| ≤ µjµ we have that h(Aζ
j (s)) is parameterized by

Re(z) for (j, ζ, s) in the set {↑, ↓} × [0, 1] × V . We obtain that Re(z ◦ h(A1
j (s)))

contains [a←(s)−1/2, a→(s)+1/2] for j ∈ {↑, ↓} and s ∈ V by considering µ < 1/4.
We denote

τj(s) = A1
j (s) ∩ [Re(ψX(ϕ)) ∈ [a←(s)− 1/2, a→(s) + 1/2]]).

Let u(←) = −1, u(→) = 1, v(↑) = 1 and v(↓) = −1; we define

Pj,k(s) = A1
j (s) ∩ [Re(ψX(ϕ)) = ak(s) + u(k)/2]

for (j, k) ∈ {↑, ↓} × {←,→}. Consider the curve τk(s) such that

ψX(τk(s)) = ak(s) + u(k)/2 + i[Img(ψX(P↓,k(s))), Img(ψX(P↑,k(s)))]

for k ∈ {←,→} and s ∈ V . We define

τ(s) = τ←(s) ∪ τ↑(s) ∪ τ→(s) ∪ τ↓(s);

it is a Jordan curve. We denote by D(s) the closure of the bounded component of
[y = s] \ τ(s). We define

Bj(s) = B1(s) ∩ [Img(ψX(ϕ)) ∈ [c↓ + (1 + v(j))M/8, c↑ − (1− v(j))M/8]]

for j ∈ {↑, ↓}.
Lemma 9.4.1. We have D(s) ⊂ σ↓(B↓(s)) ∪ σ↑(B↑(s)) for all s ∈ V .

Proof. Let j ∈ {↑, ↓}; we define

τ ′′j (s) = σ(B1(s) ∩ [Im(ψX(ϕ)) = cj − v(j)3M/4]).

We consider

τ ′j(s) = τ ′′j (s) ∩ [Re(ψX(ϕ)) ∈ [a←(s)− 1/2, a→(s) + 1/2]]

for j ∈ {↑, ↓}. As τ↑(s) and τ↓(s) the curve ψX(ϕ)(τ ′j(s)) is parameterized by
Rez ∈ [a← − 1/2, a→ + 1/2]. We denote by Dj(s) the closure of the only bounded
connected component in

[y = s] \ (τ←(s) ∪ τ→(s) ∪ τj(s) ∪ τ ′j(s))

for j ∈ {↑, ↓}.
We claim that Dj(s) ⊂ σj(Bj(s)) for j ∈ {↑, ↓}. That is a consequence of

∂Dj(s) ⊂ σj(Bj(s))

which we obtain by construction since σj ∼ Id and Dσj ∼ Id. As a consequence
it is enough to prove that D(s) = D↓(s) ∪ D↑(s) for s ∈ V . Then the inequality
|ψX(ϕ) ◦ σj − ψX(ϕ)| < 1/2 for j ∈ {↑, ↓} implies

inf Im[ψX(ϕ)(τ ′↓(s))] ≥ c↓(s) + 3M/4− 1/2

and
sup Im[ψX(ϕ)(τ ′↑(s))] ≤ c↓(s) + M/4 + 1/2.

Since M > 32 by choice then 3M/4− 1/2 > M/4 + 1/2. That implies

ψX(ϕ)(D(s)) = ψX(ϕ)(D↑(s)) ∪ ψX(ϕ)(D↓(s))

which is equivalent to D(s) = D↓(s) ∪D↑(s) for s ∈ V . ¤
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We want to define a cut-off function in D(s). Let η : C 7→ [0, 1] be a C∞

function such that

• η(z) = η(iImgz), i.e. η only depends in the imaginary part.
• η(ib) = 1 for b ∈ R and b ≤ M/4 + 2.
• η(ib) = 0 for b ∈ R and b ≥ 3M/4− 2.

We define ηD : ∪s∈V D(s) → [0, 1] such that

• ηD(x, s) = η((ψX(ϕ) ◦ σ
(−1)
↓ )(x, s)− ic↓(s)) if (x, s) ∈ σ↓(B↓(s)).

• ηD(x, s) ≡ 0 in D(s) \ σ↓(B↓(s)).

Since ηD is 0 in the neighborhood of τ ′↓(s) then the function ηD is C∞ in the interior
of ∪s∈V D(s). Let us define an integral ψl of the time form of ϕ in ∪s∈V D(s) as
follows:

• ψl(x, s) = (ηD(ψX(ϕ) ◦ σ
(−1)
↓ ) + (1− ηD)(ψX(ϕ) ◦ σ

(−1)
↑ ))(x, s) for (x, s) in

D(s) ∩ σ↓(B↓(s)) ∩ σ↑(B↑(s)).
• ψl(x, s) = ψX(ϕ) ◦ σ

(−1)
↑ (x, s) if ηD(x, s) = 0.

• ψl(x, s) = ψX(ϕ) ◦ σ
(−1)
↓ (x, s) if ηD(x, s) = 1.

Lemma 9.4.2. The function ψl is defined in ∪s∈V D(s) and it is C∞ in the
interior. Moreover, it satisfies ψl ◦ ϕ = ψl + 1.

Proof. The second property is an immediate consequence of the construction.
Since |ψX(ϕ)◦σj−ψX(ϕ)| < 1/2 for j ∈ {↑, ↓} and µ < 1/4 then the set ψX(ϕ)(D(s))
contains

z ∈ [a←(s)− 1/2, a→(s) + 1/2] + i[c↓(s) + 1/2, c↑(s)− 1/2].

We have that

Img(ψX(ϕ)(x, s)) ≤ c↓(s) + M/4 + 2− 1/2 =⇒ ηD(x, s) = 1

and
Img(ψX(ϕ)(x, s)) ≥ c↓(s) + 3M/4− 2 + 1/2 =⇒ ηD(x, s) = 0

by |ψX(ϕ) ◦ σj − ψX(ϕ)| < 1/2. As a consequence ψl is well-defined and C∞ in the
interior of ∪s∈V D(s). ¤

Lemma 9.4.3. We have ψX(ϕ)(B0(s)) ⊂ ψl(D(s)) for all s ∈ V .

Proof. Since |ψX(ϕ) ◦ σ
(−1)
j − ψX(ϕ)| < 1/2 in σj(Bj(s)) then

[z ∈ [a←(s), a→(s)] + icj(s)]] ⊂ ψl(τj(s)) for j ∈ {↑, ↓}.

Then |ψX(ϕ) ◦σ
(−1)
j −ψX(ϕ)| < 1/2 (j ∈ {↑, ↓}) implies |ψl−ψX(ϕ)| < 1/2 in D(s).

Hence, we obtain ψX(ϕ)(B0(s)) ⊂ ψl(D(s)). ¤

Lemma 9.4.4. There exists C ′(µ↑, µ↓) > 0 such that 0 < µ < C ′(µ↑, µ↓) implies

• |ψl − ψX(ϕ)| ≤ 2µ

• ||D((ψl, y) ◦ (ψX(ϕ), y)(−1))− Id|| ◦ (ψX(ϕ), y) ≤ µ0µ

in ∪s∈V D(s). The constant µ0 > 0 depends only on µ↑ and µ↓. The mapping ψl
is injective in D(s) for all s ∈ V .
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Proof. Since |ψX(ϕ) ◦ σ
(−1)
j − ψX(ϕ)| ≤ µ for j ∈ {↑, ↓} and ψl is a convex

combination of ψX(ϕ)◦σ(−1)
↓ and ψX(ϕ)◦σ(−1)

↑ then |ψl−ψX(ϕ)| ≤ 2µ in ∪s∈V D(s).

We want to estimate ||D((ψl, y) ◦ (ψX(ϕ), y)(−1)) − Id||. If ηD ≡ 0 in the
neighborhood of P ∈ ∪s∈V (ψX(ϕ), y)(D(s)) then

D((ψl, y) ◦ (ψX(ϕ), y)(−1)) = D((ψX(ϕ), y) ◦ σ
(−1)
↑ ◦ (ψX(ϕ), y)(−1))

in the neighborhood of P . Since

A−1 = Id− (A− Id) + (A− Id)2 − (A− Id)3 + . . .

for real squared matrices such that ||A− Id|| < 1 then we deduce that

||D((ψl, y) ◦ (ψX(ϕ), y)(−1))− Id|| ≤ 2µ↑µ

in a neighborhood of P supposed µ↑µ < 1/2. Analogously, if µ↓µ < 1/2 and ηD ≡ 1
in a neighborhood of P then

||D((ψl, y) ◦ (ψX(ϕ), y)(−1))− Id|| ≤ 2µ↓µ

in a neighborhood of P .
Now, we focus on the interior of D(s) ∩ σ↓(B↓(s)) ∩ σ↑(B↑(s)). We denote

h = (ψX(ϕ), y) and H = (ψl, y) ◦ (ψX(ϕ), y)(−1); we have

H = (ηD ◦ h(−1))h ◦ σ
(−1)
↓ ◦ h(−1) + (1− ηD ◦ h(−1))h ◦ σ

(−1)
↑ ◦ h(−1).

For µ > 0 small enough we obtain

||DH − Id|| ≤ 2(µ↑ + µ↓)µ + ||J ||
where JT is equal to

(
∂(ηD◦h(−1))

∂Rez [ψX(ϕ) ◦ σ
(−1)
↓ ◦ h(−1) − ψX(ϕ) ◦ σ

(−1)
↑ ◦ h(−1)]

∂(ηD◦h(−1))
∂Imz [ψX(ϕ) ◦ σ

(−1)
↓ ◦ h(−1) − ψX(ϕ) ◦ σ

(−1)
↑ ◦ h(−1)]

)
.

Let K = supb′∈R |(∂η(ib)/∂b)(b′)|; we have
∣∣∣∣
∂(ηD ◦ h(−1))

∂Rez

∣∣∣∣ ≤ K

∣∣∣∣∣
∂(Img[ψX(ϕ) ◦ σ

(−1)
↓ ◦ h(−1)])

∂Rez

∣∣∣∣∣ .

Therefore, we obtain |∂(ηD ◦ h(−1))/∂Rez| ≤ 2Kµ↓µ. In a similar way we have
|∂(ηD ◦ h(−1))/∂Imgz| ≤ K(1 + 2µ↓µ). All the previous calculations lead us to

||DH − Id|| ≤ 2(µ↑ + µ↓)µ + 4µ
√

2K(1 + 2µ↓µ).

By plugging µ↓µ < 1/2 into the previous inequality we obtain

||DH − Id|| ◦ (ψX(ϕ), y) ≤ 2(µ↓ + µ↑ + 4
√

2K)µ

in ∪s∈V D(s). We define µ0 = 2µ↓ + 2µ↑ + 8
√

2K.
We denote D′(s) = ψX(ϕ)(D(s)). Suppose µ0µ < 1/4. The foliations Rez = cte

and Img(H) = cte are transversal in D′(s) since ∂Img(H)/∂Im(z) > 1−1/4 = 3/4.
Moreover Img(H) = ck contains ψX(ϕ)(τk(s)) and Rez = aj(s) + u(j)1/2 contains
ψX(ϕ)(τj(s)) for j ∈ {←,→} and k ∈ {↑, ↓}. As a consequence (Rez, Img(H))
is injective in D′(s). Suppose H(z0, s) = H(z1, s) and z0 6= z1; we deduce that
Re(z0) 6= Re(z1). We consider the connected curve

γ ≡ [Img(H) = Img(H(z0, s)) = Img(H(z1, s))].
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The tangent vector to γ at any point belongs to 1 + i(−1/3, 1/3). Since we also
have ∂Re(H)/∂Rez > 3/4 and ∂Re(H)/∂Im(z) < 1/4 then

2|Re(z1 − z0)|/3 ≤ |Re(H)(z1, s)−Re(H)(z0, s)| 6= 0.

We deduce that H is injective in ∪s∈V D′(s). Thus ψl is injective in D(s) for all
s ∈ V . ¤

proof of proposition 9.4.1. We define

σl = (ψl(x, y), y)(−1) ◦ (ψX(ϕ)(x, y), y).

Thus σl is C∞ by lemma 9.4.2. By lemmas 9.4.3 and 9.4.4 the mapping σl is
well-defined in ∪s∈V B0(s). Moreover, it is injective. By extending σl by σj in the
neighborhood of γ0

j (s) we obtain

(σl, γ0
j (s)) = (σj , γ

0
j (s))

for all (s, j) ∈ V × {↑, ↓}. We have

ψl ◦ (σl ◦ αϕ) = ψX(ϕ) ◦ αϕ = ψX(ϕ) + 1 = ψl ◦ (ϕ ◦ σl).

That implies σl ◦ αϕ = ϕ ◦ σl in ∪s∈V B0(s) ∩ ∪s∈V α
(−1)
ϕ (B0(s)). The inequality

|ψl − ψX(ϕ)| ≤ 2µ is equivalent to |ψX(ϕ) ◦ σ
(−1)
l − ψX(ϕ)| ≤ 2µ. Therefore, we

obtain |ψX(ϕ) ◦ σl − ψX(ϕ)| ≤ 2µ. Since

(ψX(ϕ), y) ◦ σ
(−1)
l ◦ (ψX(ϕ), y)(−1) = (ψl, y) ◦ (ψX(ϕ), y)(−1)

then we deduce that

||D((ψX(ϕ), y) ◦ σ
(−1)
l ◦ (ψX(ϕ), y)(−1))− Id|| ≤ µ0µ

by lemma 9.4.4. By considering µ0µ < 1/2 we have

||D((ψX(ϕ), y) ◦ σl ◦ (ψX(ϕ), y)(−1))− Id|| ≤ µlµ

for µl = 2µ0. We are done since µ0 just depends on µ↑ and µ↓. ¤

9.5. Regions and their limiting curves

Fix y0 ∈ B(0, δ) \ {0}. Consider a region Z(s) ⊂ WR
ε (η, s) associated to

Re(X(ϕ)). The number of connected components of ∂Z(s) \ SingX(ϕ) is either 1
or 2. Moreover, it is equal to 1 if and only if

αξ(X),Wε(η)(Z(s)) = ωξ(X),Wε(η)(Z(s)) ∈ SingX(ϕ).

Every connected component of ∂Z(s)\SingX(ϕ) is contained in a trajectory γ(s) =

ΓWε(η)
ξ(X) [x′, s]. We say that γ(s) is a limiting trajectory of Z(s). We denote by LZ(s)

the set of limiting trajectories of Z(s). We have LZ(s) = {γZ
0 (s), γZ

1 (s)} where
γZ

j (s) depends continuously on s ∈ V for j ∈ {0, 1} since Z(s) and ∂Z(s) do so.

Each curve in LZ(s) contains exactly one vertex of Wε(η). A curve ΓWε(η)
ξ(X) [vηj

j (s)]
limits exactly three regions (see picture 4). Let γ(s) ∈ LZ(s). Either we have

Img[ψX(ϕ)(γ(s))] = inf
(x,s)∈Z(s)

Img[ψX(ϕ)(x, s)]

or
Img[ψX(ϕ)(γ(s))] = sup

(x,s)∈Z(s)

Img[ψX(ϕ)(x, s)].
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Figure 4.

In the former case we define

Bγ
Z(s)′ = Z(s) ∩ [Img(ψX(ϕ)) ≤ Img(ψX(ϕ)(γ(s))) + M ]

whereas the definition is

Bγ
Z(s)′ = Z(s) ∩ [Img(ψX(ϕ)) ≥ Img(ψX(ϕ)(γ(s)))−M ]

in the latter case. We define Bγ
Z(s) = exp([−1, 1]X)(Bγ

Z(s)′) for both cases. By
construction ψX(ϕ)(B

γ
Z(s)) is of the form

[a←(s)− 1, a→(s) + 1] + i[c↓(s), c↑(s)]

for some functions a←, a→, c↑ and c↓ depending on Z and γ. Moreover we have
c↑ − c↓ ≡ M . We define the width WZ(s) of a region Z(s) by the formula

WZ(s) = sup
(x,s)∈Z(s)

Img[ψX(ϕ)(x, s)]− inf
(x,s)∈Z(s)

Img[ψX(ϕ)(x, s)].

The width WZ is either a positive function in V or WZ ≡ ∞ in V . The latter case
corresponds to ]LZ ≡ 1.

9.5.1. The game. Here we define a game; the goal is building a special home-
omorphism σ conjugating αϕ and ϕ in Uε ∩ [y ∈ V ]. There are several steps in this
game. For a step j and a region Z ⊂ WR

ε (η) we attach a label labj(Z) ⊂ LZ ∪{Ξ}.
The labels satisfy

• lab0(Z) = ∅ for all region Z ⊂ WR
ε (η).

• If Ξ ∈ labj(Z) then labj(Z) = LZ ∪ {Ξ}.
The meaning of the labels is related to the existence of conjugating mappings.

• If γ ∈ labj(Z) ∩ LZ there exists a special continuous conjugation σγ
Z

defined in Bγ
Z .

• If Ξ ∈ labj(Z) then there exists a special continuous conjugation σZ de-
fined in Z.

• If Ξ ∈ labj(Z) and γ ∈ LZ then σZ = σγ
Z in a neighborhood of γ in Z.

The mappings σγ
Z and σZ do not depend on j. For a region Z in WR

ε (η) and a curve
γ ∈ LZ we denote by Z1(Z, γ) and Z2(Z, γ) the other regions of WR

ε (η) limiting
with γ. Next, we introduce some compatibility conditions that the conjugations
have to fulfill.
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• If γ ∈ labj(Z) then γ ∈ labj(Z1(Z, γ)) ∩ labj(Z2(Z, γ)).
• If γ ∈ labj(Z) then σγ

Z = σγ
Zk

in ∂Z ∩ ∂Zk for all k ∈ {1, 2}.
• If γ ∈ labj(Z) the mapping defined by gluing σγ

Z and σγ
Zk

is C∞ in the
neighborhood of ∂Z ∩ ∂Zk ∩Wε(η).

There is also a technical condition regarding the M -interpolation process.
• If WZ(y0) ≤ 2M then either labj(Z) = ∅ or Ξ ∈ labj(Z).

We define µuv = max(µuv, µl(µuv, µuv)). The next set of conditions assures that
σZ ∼ Id and DσZ ∼ Id.

• If γ ∈ labj(Z) then |ψX(ϕ) ◦ σγ
Z − ψX(ϕ)| ≤ 2µ in Bγ

Z .
• If Ξ ∈ labj(Z) then |ψX(ϕ) ◦ σZ − ψX(ϕ)| ≤ 2µ in Z.
• ||D(ψX(ϕ) ◦ σγ

Z ◦ (ψX(ϕ), y)(−1))− Id|| ≤ µuvµ in Bγ
Z if γ ∈ labj(Z).

• ||D(ψX(ϕ) ◦ σZ ◦ (ψX(ϕ), y)(−1))− Id|| ≤ µuvµ in Z for Ξ ∈ labj(Z).
We introduce a condition making explicit the goal of the game.

• There exists j ∈ N such that Ξ ∈ labj(Z) for all Z ⊂ WR
ε (η).

The numbers ε, δ, µ and the domain V can be interpreted as the initial data of the
game. We ask these objects to fulfill some prerequisites that we introduce next.
We fix 0 < µ < min(1, C(µuv, µuv)). Let ε0 > 0 as described in subsection 9.2.1; we
choose 0 < ε ≤ ε0 and a small enough δ > 0. The choice of (ε, δ, µ) is independent
of y0.

The success in solving the game will imply

Proposition 9.5.1. Let ϕ be a (NSD) diffeomorphism. Consider a 3-uple
(µ, ε, δ) ∈ R+ × R+ × R+ fulfilling the prerequisites of the game. Then, for all
y0 ∈ B(0, δ) \ {0} there exists a neighborhood V ⊂ C of y0 and a special mapping
σV defined in Wε,δ ∩ [y ∈ V ] such that

• σV is C∞ in (Wε,δ \ [f = 0]) ∩ [y ∈ V ]
• σV ◦ αϕ = ϕ ◦ σV

• |ψX(ϕ) ◦ σV − ψX(ϕ)| ≤ 2µ

• ||D((ψX(ϕ), y) ◦ σV ◦ (ψX(ϕ), y)(−1))− Id||(ψX(ϕ), y) ≤ µuvµ

in Wε,δ ∩ [y ∈ V ].

Roughly speaking the proof goes as follows: since the goal of the game is
achieved then we obtain a conjugation σZ for each region Z and all of them paste
together by the compatibility conditions.

It looks like difficult to achieve the thirteen properties (plus the goal property)
we ask the game for. In despite of this we will introduce a process to solve the
game such that most of the properties can be trivially checked out.

9.5.2. The algorithm solving the game. The algorithm has several steps.
In each step of the game exactly one step of the algorithm is applied. The steps of
the algorithm are ranked in a priority list. If the correspondent condition is satisfied
then we apply the first step; otherwise we try to apply the second step and so on.

Prerequisites: Fix y0 ∈ B(0, δ)\{0}. We select η ∈ [0, 1)NT such that there are
no bi-tangent cords in Uε(η) ∩ [y = y0]. We have to choose a neighborhood V in
B(0, δ)\{0} of y0. We suppose that there are no bi-tangent cords in Wε(η)∩[y ∈ V ].
Moreover, we can also suppose that WZ(s) > 2M for all s ∈ V if WZ(y0) > 2M
whereas otherwise WZ(s) ≤ 2M + 1 for all s ∈ V . That choice is possible since
WZ(s) is a continuous function.
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First step: This step is applied if there exists a region Z ⊂ WR
ε (η) such that

LZ ⊂ labj(Z) but Ξ 6∈ labj(Z). The M -interpolation process condition implies that
WZ(s) > 2M for all s ∈ V . Let us denote (αξ(X,s), ωξ(X,s))Wε(η)

by (α, ω). Next,

we choose a transversal Tr to Z(s). If α(Z) = ∞ we choose Tr(s) = end−(Z(s)).
If α(Z) 6= ∞ and ω(Z) = ∞ we define Tr(s) = end+(Z(s)). For the remaining
case let us consider a vertex vηk

k (s) in Z(s). We choose

Tr(s) = exp(i[0, WZ(s)]X)(vηk

k (s))

if Re(iX) points towards Z at vηk

k . Otherwise we define

Tr(s) = exp(i[−WZ(s), 0]X)(vηk

k (s)).

By the choice of the domains Wε(η) the transversal Tr is a sub-trajectory of Re(iX).
We obtain σTr by proposition 9.3.1. Let γl ∈ LZ (l ∈ {1, 2}); we denote by γ′l the
curve ∂Bγl

Z ∩Wε(η) \ γl. We interpolate σTr and σγ1
Z in Bγ1

Z to obtain σ′ such that

(σ′, γ1 ∩ ∂Z) = (σγ1
Z , γ1 ∩ ∂Z) and (σ′, γ′1) = (σTr, γ

′
1).

If ]LZ = 1 we define σZ = σ′ . Otherwise we interpolate σ′ and σγ2
Z in Bγ2

Z to
obtain σZ such that

(σZ , γ2 ∩ ∂Z) = (σγ2
Z , γ2 ∩ ∂Z) and (σZ , γ′2) = (σ′, γ′2).

Let us remark that (σ′, γ′2) = (σTr, γ
′
2) since WZ > 2M . By applying proposition

9.4.1 at most twice we obtain that |ψX(ϕ) ◦ σZ − ψX(ϕ)| ≤ 2µ and

||D((ψX(ϕ), y) ◦ σZ ◦ (ψX(ϕ), y)(−1))− Id||(ψX(ϕ), y) ≤ µuvµ

in ∪s∈V Z(s).
Finally, we define labj+1(Y ) = labj(Y ) ∪ {Ξ} for all region Y in WR

ε (η) such
that LZ ⊂ labj(Y ) and Ξ 6∈ labj(Y ). Otherwise we define labj+1(Y ) = labj(Y ). By
construction all the properties (except the one regarding the goal) are preserved for
labj+1.

Second step: Suppose there exists a region Z such that γZ
0 ∈ labj(Z) but

γZ
1 6∈ labj(Z). We fix Z; let us consider a sequence

(Z, γZ
0 ) = (Z0, γ0)− (Z1, γ1)− . . .− (Zk, γk)

satisfying
• γl ∈ LZl and γl ∈ LZl−1 for all 0 < l ≤ k.
• Zl 6= Zl+1 and γl 6= γl+1 for all 0 ≤ l < k.
• γl+1 6∈ labj(Zl) for 0 ≤ l < k.
• WZl(y0) ≤ 2M for all 0 < l < k.

Such a sequence will be called a generating sequence. The element (Z, γZ
0 ) is called

the root of the sequence. Consider the vertex vη1
1 in γ1; we define

Tr(s) = exp(i[−(κ− 3), κ− 3]X)(vη1
1 (s)).

The conjugation σTr satisfies the claim in proposition 9.3.1 in the set

∪s∈V DTr(s) = ∪s∈V exp([−1, 1]X)
(
ΓWε(η+κ−3)

ξ(X) [Tr(s)] ∩Wε(η)
)

.

We claim that

Proposition 9.5.2. The mapping σTr is defined

• in a neighborhood of ∪s∈V B
γZ
1

Z (s) in Wε(η).
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• in a neighborhood of ∪s∈V Zl(s) in Wε(η) if WZl(y0) ≤ 2M .
• in a neighborhood of ∪s∈V Bγk

Zk
(s) in Wε(η) if WZk(y0) > 2M .

To prove the proposition we require the following lemma

Lemma 9.5.1. The number of regions in WR
ε (η) is at most 3NT .

Proof. Every region has at least one limiting curve. The regions limited by
a limiting curve are exactly 3. ¤

proof of proposition 9.5.2. Since κ−3 = 6(2M +1)NT > 2M the result is

clear for ∪s∈V B
γZ
1

Z (s). By splitting the original generating sequence in several ones
we can suppose (Zl, γl) 6= (Zl′ , γl′) for 0 ≤ l < l′ ≤ k without lack of generality.
Since ]LY ≤ 2 for all region Y ⊂ WR

ε (η) then k + 1 ≤ 6NT . Let vηl

l be the vertex
in γl. For 1 ≤ l ≤ k we define κl = κ− 3− (2M + 1)(l − 1) and

Trl(s) = exp(i[−κl, κl]X)(vηl

l (s)).

We claim that ∪s∈V Trl(s) is in the interior of ∪s∈V

(
ΓWε(η+κ−3)

ξ(X) [Tr(s)]
)

in the set

Wε(η + κ− 3). Since κ − 3 − (2M + 1)(6NT − 2) > 2M + 1 the proposition is a
consequence of the claim.

The claim is true for l = 1. Suppose it is true for l = l0 < k. We have
WZl0 < 2M + 1; as a consequence for all s ∈ V there exists a unique point
(x0, s) ∈ Trl0(s) such that

v
ηl0+1

l0+1 (s) ∈ ΓWε(η+κ−3)
ξ(X) [x0, s].

Moreover (x0, s) = exp(iιl0(s)X)(vηl0
l0

(s)) for some ιl0(s) in (−2M − 1, 2M + 1).
We deduce that

exp(i[−κl0 + |ιl0(s)|, κl0 − |ιl0(s)|]X)(vηl0+1

l0+1 (s)) ⊂ ΓWε(η+κ−3)
ξ(X) [Tr(s)]

for all s ∈ V . Since |ιl0(s)| < 2M + 1 and κl0+1 = κl0 − (2M + 1) we are done. ¤

The assignment of the labels is natural. If Y ⊂ WR
ε (η) is not in any generating

sequence then labj+1(Y ) = labj(Y ). If (Y, γ) is in a generating sequence then
labj(Y ) = {γY

0 , γY
1 ,Ξ} for WY (y0) ≤ 2M ; otherwise we include γ in labj+1(Y ).

We also define labj+1(Z) = {γZ
0 , γZ

1 }.
We have to prove two things. The first one is that we are not redefining any

σγ
Y or σY for any Y or γ because we claimed that these data do not depend on j.

The second one is that the conditions are fulfilled; all of them are trivial except the
compatibility conditions.

Lemma 9.5.2. Consider a region Y ⊂ WR
ε (η) and γY

0 ∈ labjY such that
(Y, γY

0 ) 6= (Z, γZ
0 ). Then (Y, γY

0 ) does not belong to any generating sequence whose
root is (Z, γZ

0 ).

Proof. Suppose we have a generating sequence

(Z, γZ
0 ) = (Z0, γ0)− (Z1, γ1)− . . .− (Zk, γk)

such that (Zk, γk) = (Y, γY
0 ) for k > 0. The curve γk belongs to LZk−1 but not

to labj(Zk−1) by the definition of generating sequence. On the other hand since
γk ∈ labj(Zk) then we obtain γk ∈ labj(Zk−1) by the compatibility conditions for
step j. That is a contradiction. ¤
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Lemma 9.5.3. The compatibility conditions are fulfilled for the step j + 1.

Proof. Let Y ⊂ WR
ε (η) be a region. If γY

0 ∈ labj(Y ) the compatibility
conditions for (Y, γY

0 ) in the step j and j + 1 are the same. Therefore, we can
suppose γY

0 ∈ labj+1(Y ) \ labj(Y ). The compatibility conditions for the step j
imply that γY

0 6∈ labj(Z1(Y, γY
0 )) ∪ labj(Z2(Y, γY

0 )).
Suppose (Y, γY

0 ) = (Zk, γk) for a generating sequence

(Z, γZ
0 ) = (Z0, γ0)− (Z1, γ1)− . . .− (Zk, γk).

The region Zk−1 is equal to Zl0(Y, γY
0 ) for some l0 ∈ {1, 2}. Suppose l0 = 1

without lack of generality. By construction we obtain that γY
0 ∈ labj+1(Z1(Y, γY

0 )).
Moreover, we can replace (Y, γY

0 ) with (Z2(Y, γY
0 ), γY

0 ) in the generating sequence.
As a consequence γY

0 is in labj+1(Z2(Y, γY
0 )).

Now, suppose (Y, γY
1 ) = (Zk, γk) but (Y, γY

0 ) does not belong to any generating
sequence whose root is (Z, γZ

0 ). In this case γY
0 ∈ labj+1(Y ) implies WY (y0) ≤ 2M .

We can append (Zj(Y, γY
0 ), γY

0 ) at the end of the series and we still have a generating
sequence. Therefore that leads us to γY

0 ∈ labj+1(Z1(Y, γY
0 )) ∩ labj+1(Z2(Y, γY

0 )).
The remaining compatibility conditions are obvious because all the σY ′ or σγ

Y ′

that we define are just restrictions of σTr. ¤

Third step: Suppose j = 0. We choose Z such that

α(Z) = ω(Z) ∈ SingX(ϕ).

We consider the generating sequences of the form

Z = Z0 − (Z1, γ1)− . . .− (Zk, γk)

where γ1 = γZ
0 . The root of the sequence is Z0. The conditions we require to

the generating sequence are the same than in the second step; we just remove the
conditions involving γ0.

The process for constructing a special conjugation between αϕ and ϕ and the
assignment of the labels lab1(Y ) are analogous to the ones in the second step.

The goal of the game:

Lemma 9.5.4. The goal of the game is achieved.

Proof. Suppose that no step of the algorithm is applicable to the step j of the
game; hence j > 0. For every region Y ⊂ WR

ε (η) we have that either labj(Y ) = ∅
or Ξ ∈ labj(Y ). We claim that Ξ ∈ labj(Y ) for all region Y ⊂ WR

ε (η). Otherwise
there exist Y0, Y1 ⊂ WR

ε (η) such that LY0∩LY1 6= ∅, Ξ ∈ labj(Y0) and labj(Y1) = ∅.
Let γ be an element of LY0 ∩ LY1; it satisfies γ ∈ labj(Y1) by the compatibility
conditions. That is a contradiction.

If for a step j of the game we apply the second step of the algorithm then for
step j + 1 we apply the first step. Since the number of regions is at most 3NT

then we have that there exists j0 ≤ 6NT such that Ξ ∈ labj0(Y ) for all region
Y ⊂ WR

ε (η). ¤

proof of proposition 9.5.1. Let (µ, ε, δ) ∈ R+ × R+ × R+ fulfilling all the
prerequisites. For every y0 ∈ B(0, δ) \ {0} we choose Vy0 ⊂ B(0, δ) \ {0} satisfying
the corresponding prerequisites for a neighborhood of y0. By applying the game
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we find σV defined in (Wε(η) \ [f = 0]) ∩ [y ∈ Vy0 ] for some η(y0) ∈ [0, 1)NT . The
properties in proposition 9.5.1 for the domain

(Wε \ [f = 0]) ∩ [y ∈ Vy0 ] ⊂ (Wε(η) \ [f = 0]) ∩ [y ∈ Vy0 ]

are deduced from the properties of the game. Moreover, by defining σV |f=0 ≡ Id
we extend σV continuously to f = 0 since |ψX(ϕ) ◦ σV − ψX(ϕ)| ≤ 2µ. ¤

9.6. Conjugating a diffeomorphism and its normal form

For each y0 ∈ B(0, δ) \ {0} there exists a neighborhood Vy0 where the claim
in proposition 9.5.1 holds. It is evident that ∪s∈B(0,δ)Vs = B(0, δ) \ {0}. Let
B(0, δ) \ {0} = ∪j∈JVj be a locally finite refinement of ∪s∈B(0,δ)Vs. We choose a
partition of the unity hj (j ∈ J) associated to the covering ∪j∈JVj . The function

ψϕ =
∑

j∈J

hj(y)(ψX(ϕ) ◦ σ
(−1)
Vj

)

is a candidate to be an integral of the time form of ϕ defined in a neighborhood of
(0, 0) deprived of the line y = 0. We have to explain the meaning of the previous
formula. So far we were dealing with simply connected sets like ∪s∈V DTr(s) or
∪s∈V B1(s). Now we want to define ψϕ in a domain Uε,δ \ [f = 0] whose intersection
with the fibers is not simply connected. Anyway, we have

ψX(ϕ) ◦ σ
(−1)
Vj

(P )− ψX(ϕ)(P ) = t ⇔ σ
(−1)
Vj

(P ) = exp(tX(ϕ))(P ).

Hence the function ψX(ϕ) ◦ σ
(−1)
Vj

− ψX(ϕ) is single valued and so ψϕ − ψX(ϕ) is a
single valued function such that |ψϕ − ψX(ϕ)| ≤ 2µ in its domain of definition.

Proposition 9.6.1. Consider (µ, ε2, δ2) ∈ (R+)3 fulfilling the prerequisites of
the game. Suppose max(µ, µµuv) < 1/4. There exist ε > 0 and δ > 0 such that for
all y0 ∈ B(0, δ) \ {0} the map σV provided by proposition 9.5.1 satisfies that σ

(−1)
V

is well-defined in Uε,δ ∩ [y ∈ V ].

Proof. Since |ψX(ϕ) ◦ σV − ψX(ϕ)| ≤ 2µ < 1/2 then

σV (P ) ∈ exp(B(0, 1/2)X(ϕ))(P )

for all P ∈ Wε2,δ2 . Thus σV (P ) = σV (Q) implies Q ∈ exp(t0X(ϕ))(P ) for some
t0 ∈ B(0, 1). We consider Uε,δ such that exp(B(0, 2)X(ϕ))(Uε,δ) is contained in
Wε2,δ2 . Since DσV ∼ Id we obtain

[ψX(ϕ) ◦ σV (Q)− ψX(ϕ) ◦ σV (P )] · t0 ≥ |t0|2/2

supposed P ∈ exp(B(0, 1)X(ϕ))(Uε,δ)\ [f = 0]. The · stands for the scalar product
in R2. Then

σV (P ) = σV (Q) =⇒ t0 = 0 =⇒ P = Q.

Thus σV (y0) is injective in exp(B(0, 1)X(ϕ))(Uε,δ) for y0 ∈ B(0, δ) \ {0}. Fix y0 ∈
B(0, δ) \ {0} and consider P ∈ (Uε,δ \ [f = 0]) ∩ [y ∈ V ]. We define the path
γ : S1 → exp(B(0, 1)X(ϕ))(Uε,δ) such that

γ(λ) = σV (exp(λX(ϕ))(P )).
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Since |ψX(ϕ) ◦ σV − ψX(ϕ)| ≤ 2µ < 1/2 then γ is not homotopic to a trivial loop in
[y = y(P )]\{P}. But clearly γ is homotopically trivial in σV (exp(B(0, 1)X(ϕ))(P ));
we deduce that

P ∈ σV (exp(B(0, 1)X(ϕ))(P )) ⊂ σV (exp(B(0, 1)X(ϕ))(Uε,δ))

and then σ
(−1)
V is well-defined in Uε,δ ∩ [y ∈ V ]. ¤

Last lemma implies the existence of an integral of the time form of ϕ in a
neighborhood of (0, 0) deprived of y = 0.

Proposition 9.6.2. Let ϕ be a (NSD) diffeomorphism. There exists (µ, ε, δ) ∈
R+ × R+ × R+ such that there exists a tg-sp mapping σ satisfying

• σ and σ(−1) are C∞ in Uε,δ \ [yf = 0].
• σ ◦ αϕ = ϕ ◦ σ.
• |ψX(ϕ) ◦ σ(j) − ψX(ϕ)| ≤ 2µ for j ∈ {−1, 1} in Uε,δ \ [yf = 0].
• ||D((ψX(ϕ), y) ◦ σ ◦ (ψX(ϕ), y)(−1))− Id||(ψX(ϕ), y) ≤ 4µuvµ.

Proof. Suppose max(µ, µµuv) < 1/4. Let Uε3,δ be the domain provided by
the previous proposition; the function ψϕ is defined in Uε3,δ. We consider Uε,δ such
that exp(B(0, 1)X(ϕ))(Uε,δ) ⊂ Uε3,δ. We define

σ = (ψϕ, y)(−1) ◦ (ψX(ϕ), y) and σ(−1) = (ψX(ϕ), y)(−1) ◦ (ψϕ, y).

By the definition of ψϕ we have |ψϕ − ψX(ϕ)| ≤ 2µ. Thus σ(−1)(P ) belongs to
exp(B(0, 2µ)X(ϕ))(P ) for all P ∈ Uε3,δ. That implies |ψX(ϕ) ◦σ(−1)−ψX(ϕ)| ≤ 2µ
in Uε3,δ. The mappings σV provided by proposition 9.5.1 satisfy

||D((ψX(ϕ), y) ◦ σ
(−1)
V ◦ (ψX(ϕ), y)(−1))− Id||(ψX(ϕ), y) ≤ 2µuvµ

in Uε3,δ \ [y = 0]. That leads us to

(9.2) ||D((ψϕ, y) ◦ (ψX(ϕ), y)(−1))− Id||(ψX(ϕ), y) ≤ 2µuvµ

in the domain Uε3,δ \ [y = 0]. Let P ∈ Uε,δ \ [y = 0]; proceeding like in proposition
9.6.1 we find a unique Q ∈ exp(B(0, 1)X(ϕ))(P ) such that ψϕ(Q) = ψX(ϕ)(P ).
Since σ(−1)(Q) = P we deduce that

|ψX(ϕ) ◦ σ − ψX(ϕ)| ≤ 2µ

in Uε,δ\[yf = 0]. The mappings σ, σ(−1) are well-defined C∞ local diffeomorphisms
in Uε,δ \ [yf = 0]. Moreover, since σ(P ), σ(−1)(P ) belong to exp(B(0, 1)X(ϕ))(P )
then σ and σ(−1) can be extended continuously to [f/ym = 0] as the identity
mapping. Finally, the inequality 9.2 and 2µuvµ < 1/2 imply

|||D((ψX(ϕ), y) ◦ σ ◦ (ψX(ϕ), y)(−1) − Id||(ψX(ϕ), y) ≤ 4µuvµ

in Uε,δ. ¤

Corollary 9.6.1. Suppose m > 0. Let ϕ be a (NSD) diffeomorphism. Con-
sider the tg-sp mapping σ conjugating αϕ and ϕ and provided by proposition 9.6.2.
Then σ and σ(−1) admit a continuous extension to y = 0 such that σ|y=0 ≡ Id.
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Proof. We define σUε,δ∩[y=0] = σ
(−1)
Uε,δ∩[y=0] ≡ Id. By prop. 9.6.2 we have

{σ(P ), σ(−1)(P )} ⊂ exp(B(0, 2µ)X(ϕ))(P )

for all P ∈ Uε,δ \ [y = 0]. Since exp(tX(ϕ))(Q) is continuous in t and Q then the
mappings σ and σ(−1) are continuous in Uε,δ ∩ [y = 0]. ¤

Remark 9.6.1. When (N,m) = (1, 0) we can choose y0 = 0 and the result in
proposition 9.5.1 is still true for some V neighborhood of 0. We can proceed as in
proposition 9.6.2 to obtain that σV is a germ of homeomorphism such that it is C∞

outside of f = 0.

9.6.1. Proof of theorem 8.1 for m > 0 and (N,m) = (1, 0). We al-
ready proved the sufficient condition. Since SP (ϕ1) = SP (ϕ2) then we obtain
SP (X(ϕ1)) = SP (X(ϕ2)). We denote by σj (j ∈ {1, 2}) the germ of homeomor-
phism conjugating αϕj

and ϕj (see proposition 9.6.2, corollary 9.6.1 and remark
9.6.1). Since Re(X(ϕ1)) and Re(X(ϕ2)) are conjugated by a germ of homeomor-
phism σ′ by theorem 6.1 then we define

σ = σ2 ◦ σ′ ◦ σ
(−1)
1 .

The mapping σ is a germ of homeomorphism (corollary 9.6.1 and remark 9.6.1)
conjugating ϕ1 and ϕ2. Since σj (j ∈ {1, 2}) and σ′ are C∞ outside of [yf = 0]
then the same property is satisfied by σ. For (N,m) = (1, 0) the mapping σ is C∞

in Uε,δ \ [f = 0].

9.7. Comparing tg-sp conjugations

We suppose from now on that N > 1 and m = 0. We already proved the exis-
tence of a tg-sp conjugation between αϕ and ϕ. Moreover, such a conjugation does
not extend continuously to y = 0 since that would imply that ϕ|y=0 is analytically
trivial.

Suppose SP (ϕ1) = SP (ϕ2); we can suppose that ϕ1,|y=0 ≡ ϕ2,|y=0 up to
an analytic change of coordinates (see proposition 9.1.1). We denote X(ϕj) and
ψX(ϕj) by Xj and ψj respectively for j ∈ {1, 2}. We denote αϕj by αj . We can
choose X1,|y=0 = X2,|y=0 by lemma 9.1.1. Let k ∈ N such that f(x, yk) = 0 is
the union of N curves x = gj(y) for 1 ≤ j ≤ N . For 1 ≤ j ≤ N we define
Resj

1,2(y) = (ResX2 − ResX1)(gj(y), y). Let (x− g1(y))c1 . . . (x− gN (y)cN be the
decomposition of f(x, yk) in irreducible factors.

Lemma 9.7.1. There is a choice of ψ1 and ψ2 such that (ψ2 − ψ1)(x, yk) is of
the form

β∏
1≤j≤N (x− gj(y))cj−1 +

N∑

j=1

Rj
1,2(y) ln(x− gj(y))

for some β ∈ C{x, y} ∩ (y).

Proof. The function β satisfies

∂

∂x

(
β∏

1≤j≤N (x− gj(y))cj−1

)
=

(
u1 − u2

u1u2f

)
(x, yk)−

N∑

j=1

Rj
1,2(y)

x− gj(y)
.
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Then X1,|y=0 ≡ X2,|y=0 implies u1−u2 ∈ (y). Moreover Rj
1,2 ∈ (y) for all 1 ≤ j ≤ N

since SP (X1) = SP (X2). As a consequence the right-hand side of the equation is
of the form h(x, y)/f(x, yk) where h ∈ (y). The equation

∂

∂x

(
β′∏

1≤j≤N (x− gj(y))cj−1

)
=

h(x, y)/y

f(x, yk)

is free of residues and then it admits a solution β′ ∈ C{x, y}. We define β = yβ′. ¤

As a consequence of the lemma we have ψ2 − ψ1 = O(y1/k) in every compact
simply connected set contained in the universal covering of Uε,δ \ [f = 0]. Let σ′

be the special homeomorphism conjugating Re(X1) and Re(X2) and constructed
in chapter 6. We have

σ′ = (ψ2, y)(−1) ◦ (ψ′1, y)
where ψ′1 is a modification of ψ1. Let f = fn1

1 . . . f
np
p be the decomposition in

irreducible factors of f . We claim that

Lemma 9.7.2. There is a choice of ψ1 and ψ2 such that the function f(ψ2−ψ′1)
is a O(f1 . . . fpy

1/k) for some k > 0.

Proof. It is enough to prove the lemma for the modifications attached to the
strips since a relation like f(ψ2−ψ′1) = O(f1 . . . fpy

1/k) is preserved by the partition
of the unity process we use to paste them. Consider the notations in lemma 6.3.2.
Let k > 0 such that f(x, yk) = 0 is the union of N curves x = gj(y) for 1 ≤ j ≤ N .
By the proof of lemma 6.3.2 we have

f [ψ2 − ψ′1](x, yk)− β(x, y)(x− g1(y)) . . . (x− gN (y))

is a O(y(x − g1(y)) . . . (x − gN (y))). The function β is the one we obtained in the
previous lemma. Therefore

f [ψ2 − ψ′1](x, yk) = O(y(x− g1(y)) . . . (x− gN (y)))

and then f [ψ2 − ψ′1] = O(y1/kf1 . . . fp). ¤
Corollary 9.7.1. There exists a special germ of homeomorphism σ′ conjugat-

ing Re(X1) and Re(X2) and such that σ′|y=0 ≡ Id.

Let Tr2(s) be a trajectory of Re(iX2); we use Tr2(s) as a base transversal
to construct a conjugation σ2

Tr between αϕ2 and ϕ2. The curve σ
′(−1)(Tr2(s)) is

transversal to Re(X1); it is contained in a level set Re(ψ′1) = h(s). The idea is
replacing ψ1 with ψ′1 and the function ∆1

j = ψ1 ◦ ϕ
(j)
1 − (ψ1 + j) with the function

∆′
j = ψ′1 ◦ ϕ

(j)
1 − (ψ′1 + j). We define ∆2

j = ψ2 ◦ ϕ
(j)
2 − (ψ2 + j) and r = ψ′1 − ψ1.

We notice that we required the function ψ1 only to fulfill three properties,
namely |ψ1 ◦ ϕ

(j)
1 − (ψ1 + j)| ≤ µ,

||D(∆1 ◦ α
(−1)
1 ◦ (ψ1, s)

(−1))|| ≤ µ and ||D(∆1
j ◦ (ψ1, s)

(−1))|| ≤ µ.

Analogous properties are also satisfied for ψ′1 and ∆′
j .

Lemma 9.7.3. Let µ > 0. There exist 0 < υ0 < υ1 and δ > 0 such that

{α(0)
ϕ1

(x0, y), . . . , α(j)
ϕ1

(x0, y)} ⊂ Uυ0 ⇒ {ϕ(0)
1 (x0, y), . . . , ϕ(j)

1 (x0, y)} ⊂ Uυ1

for j ∈ Z and (x0, y) ∈ Uυ0,δ. Moreover, we can obtain
• |∆′

j(x0, y)| ≤ µ.
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• ||D(r ◦ (ψ1, y)(−1)
, y)|| ◦ (ψ1, y) = O(y1/k) in Uυ0,δ.

• ||D(∆′ ◦ α
(−1)
1 ◦ (ψ′1, y)(−1)

, y)|| ◦ (ψ′1, y) ≤ µ in Uυ0,δ.
• |∆′

j −∆1
j |(x0, y) ≤ ι(y).

• ||D(∆′
j ◦ (ψ′1, y)(−1))||(ψ′1(x0, y), y) ≤ µ.

where ι(y) = O(y1/k) does not depend on (x0, y) or j ∈ Z.

Proof. By theorem 7.1 we can choose υ0 and υ1 such that |∆1
j | ≤ µ/2 in

exp(B(0, 2)X1)(Uυ0,δ). By Cauchy’s formula we deduce that

||D(∆1
j ◦ (ψ1, y)(−1))|| ≤ µ/2

and
||D(∆1 ◦ α

(−1)
1 ◦ (ψ1, y)(−1))|| ≤ µ/2

in exp(B(0, 1)X1)(Uυ0,δ). We remind the reader that <X1(ψ′1 − ψ1) = 0 whereas
=X1(ψ′1 − ψ1) = O(y1/k). As a consequence

∂(r ◦ (ψ1, y)(−1))
∂x1

= <X1(ψ′1 − ψ1) = 0

and
∂(r ◦ (ψ1, y)(−1))

∂x2
= =X1(ψ′1 − ψ1) = O(y1/k) = ι′(y)

for (x, y) = (x1 + ix2, y) in Uυ0,δ. Since |(ψ1 ◦ ϕ
(j)
1 − ψ1)− j| ≤ µ/2 then

|r ◦ ϕ
(j)
1 − r| ≤ (µ/2)ι′(y) = O(y1/k).

The equation ∆′
j −∆1

j = r ◦ ϕ
(j)
1 − r implies

|∆′
j −∆1

j |(x0, y) ≤ (µ/2)ι′(y) = O(y1/k).

For δ > 0 small enough we obtain |∆′
j(x0, y)| ≤ µ. Since

α
(−1)
1 ◦ (ψ′1, y)(−1) = (ψ′1, y)(−1) ◦ (z − 1, y)

then to conclude the proof is enough to bound ||D(∆′
j ◦ (ψ′1, y)(−1))|| in the set

exp(B(0, 1)X1)(Uυ0,δ). We have

∆′
j ◦ (ψ′1, y)(−1) = [(∆1

j + r ◦ ϕ
(j)
1 − r) ◦ (ψ1, y)(−1)] ◦ [(ψ1, y) ◦ (ψ′1, y)(−1)].

Since
(ψ′1, y) ◦ (ψ1, y)(−1)(z, y) = (z + r ◦ (ψ1, y)(−1)(z, y), y)

then ||D((ψ′1, y) ◦ (ψ1, y)(−1) − Id)|| = ||D(r ◦ (ψ1, y)(−1))||. We have

r ◦ ϕ
(j)
1 ◦ (ψ1, y)(−1) = (r ◦ (ψ1, y)(−1)) ◦ ((ψ1, y) ◦ ϕ

(j)
1 ◦ (ψ1, y)(−1)).

We can develop the previous expression to obtain

r ◦ ϕ
(j)
1 ◦ (ψ1, y)(−1) = (r ◦ (ψ1, y)(−1)) ◦ (z + j + ∆1

j ◦ (ψ1, y)(−1)
, y).

All the previous work lead us to

||D(∆′
j ◦ (ψ′1, y)(−1))|| ≤ [µ/2 + (1 + µ/2)O(y1/k) + O(y1/k)](1 + O(y1/k))

and then we obtain ||D(∆′
j ◦ (ψ′1, y)(−1))|| ≤ µ for δ > 0 small enough. ¤



126 9. TANGENTIAL SPECIAL CONJUGATIONS

9.7.1. Setup. We can suppose that the domains Uυ0 and Uυ1 provided by
lemma 9.7.3 satisfy |ψ2 ◦ ϕ

(j)
2 − (ψ2 + j)| ≤ µ,

||D(∆2 ◦ α
(−1)
2 ◦ (ψ2, y)(−1))|| ≤ µ and ||D(∆2

j ◦ (ψ2, y)(−1))|| ≤ µ

in Uυ0,δ by shrinking these domains if necessary.
There exists 0 < ε′ < υ0 such that

Ũε′,δ ∪ σ′(Ũε′,δ) ∪ σ
′(−1)(Ũε′,δ) ⊂ Uυ0,δ

for Ũε,δ = exp(B(0, 4)X(ϕ2))(Uε,δ). We want to choose some 0 < ε0 < ε′ satisfying
the conditions in subsection 9.2.1 with respect to the vector field X2. We will
consider domains W 2

ε (η) for ε ≤ ε0 and 0 ≤ ηj < 1 for all 1 ≤ j ≤ NT . Hence
∂W 2

ε (η) ∩ [y = s] is the union of sub-trajectories of Re(X2) and Re(iX2) = 0. We
define W 1

ε (η) = σ
′(−1)(W 2

ε (η)).
Given a sub-trajectory Tr2(s) of Re(iX2) the definition of D2

Tr(s) is the usual
one, namely

D2
Tr(s) = exp([−1, 1]X2)

(
ΓW 2

ε (η+κ−3)

ξ(X2)
[Tr2(s)] ∩W 2

ε (η)
)

.

Then Tr1(s) = σ
′(−1)(Tr2(s)) is transversal to Re(X1) even if it is not anymore a

sub-trajectory of Re(iX1). We define D1
Tr(s) = σ

′(−1)(D2
Tr(s)). For a choice of a

transversal ∪s∈V Tr2(s) we obtain that proposition 9.3.1 can be applied to obtain
conjugations σ1

Tr and σ2
Tr defined in ∪s∈V D1

Tr(s) and ∪s∈V D2
Tr(s) respectively.

9.7.2. Approaching y = 0. Next lemma is the key tool to prove that we can
find σ1 and σ2 behaving in a similar way when y → 0 and such that σj is a tg-sp
mapping conjugating αj and ϕj for j ∈ {1, 2}.

Lemma 9.7.4. Let τ > 0. There exists ζ > 0 and c0 > 0 such that for (x2, y0) ∈
Uε′,c0 and j ∈ Z satisfying

{α(0)
2 (x2, y0), . . . , α

(j)
2 (x2, y0)} ⊂ Uε′

then |∆2
j (x2, y0)−∆′

j(x1, y0)| < τ if σ′(x1, y0) ∈ exp(B(0, ζ)X2)(x2, y0). Moreover,
we have

σ′ ◦ ϕ
(j)
1 (x1, y0) ∈ exp(B(0, |ψ2(x2, y0)− ψ′1(x1, y0)|+ τ)X2)(ϕ

(j)
2 (x2, y0)).

Proof. Since

ψ2 ◦ σ′ ◦ ϕ
(j)
1 (x1, y0)− ψ2 ◦ ϕ

(j)
2 (x2, y0) = ψ′1 ◦ ϕ

(j)
1 (x1, y0)− ψ2 ◦ ϕ

(j)
2 (x2, y0)

= (ψ′1(x1, y0)− ψ2(x2, y0)) + (∆′
j(x1, y0)−∆2

j (x2, y0))
then it is enough to prove |∆2

j (x0, y0)−∆′
j(x1, y0)| < τ .

We can suppose j > 0 without lack of generality. We suppose that τ < 1 since
it is enough to prove the result for τ > 0 small. We denote |ψ2(x2, y0)−ψ′1(x1, y0)|
by d; we suppose d < 1/2. We obtain that

{α(0)
2 ◦ σ′(x1, y0), . . . , α

(j)
2 ◦ σ′(x1, y0)} ⊂ exp(B(0, 1/2)X2)(Uε′,δ).

That leads us to

{α(0)
1 (x1, y0), . . . , α

(j)
1 (x1, y0)} ⊂ σ′(−1)(exp(B(0, 1/2)X2)(Uε′,δ)) ⊂ Uυ0 .

As a consequence |∆2
j (x0, y0)−∆′

j(x1, y0)| is well defined for d < 1/2.
To prove the lemma we split Uυ0 in two sets Uυ and Uυ0 \ Uυ. The value

of υ > 0 will be determined later on. Our idea is splitting exp([0, j]X2)(x2, y0) in
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pieces contained in either Uυ or Uυ0 \Uυ. Depending on the set we will use different
methods in order to bound |∆2

j (x2, y0)−∆′
j(x1, y0)| .

Let υ > 0 such that exp([a, b]X2)(P ) ⊂ Uυ for {a, b} ⊂ [0, j] ∩ Z with a ≤ b
implies ∣∣∣∣∣

h∑

l=a−1

∆2 ◦ ϕ
(l)
2 (P )

∣∣∣∣∣ <
τ

2C0
for a− 1 ≤ h ≤ b− 1.

We will choose a precise value for C0 > 0 later on.
For exp([a, b]X2)(x2, y0) ⊂ Uυ we have

exp([a, b]X1)(x1, y0) ⊂ σ
′(−1)[exp(B(0, 1/2)X2)(Uυ,δ)] ⊂ Uυ′,δ

where lim(υ,δ)→(0,0) υ′(υ, δ) = 0 since σ′ is a homeomorphism. We can choose υ

such that exp([a′, b′]X1)(Q) ⊂ Uυ′ implies

|∆1
h−a′+2(ϕ

(a′−1)
1 (Q))| =

∣∣∣∣∣
h∑

l=a′−1

∆1 ◦ ϕ
(l)
1 (Q)

∣∣∣∣∣ <
τ

4C0

for a′ − 1 ≤ h ≤ b′ − 1. By lemma 9.7.3 we obtain that
∣∣∣∣∣

h∑

l=a′−1

∆′ ◦ ϕ
(l)
1 (Q)

∣∣∣∣∣ <
τ

2C0
for a′ − 1 ≤ h ≤ b′ − 1

if y(Q) is close to 0.
Now suppose that exp([a, b]X2)(x2, y0) ⊂ Uε′ \ Uυ. Such a thing implies that

[exp([a− 1, b]X1)(x1, y0) ∪ {ϕ(a−1)
1 (x1, y0), . . . , ϕ

(b)
1 (x1, y0)}] ∩ Uυ2 = ∅

for some υ2 > 0 independent of the choices of a, b, (x0, y0) and (x1, y0).
The sub-trajectory exp([0, j]X2)(x0, y0) splits in at most NT + 1 trajectories

contained in either Uυ or Uυ0 \ Uυ since the number of tangent points between
Re(X2)|y=s and ∂Uυ ∩ [y = s] is exactly NT . The sub-trajectories exp([0, l]X2)(P )
contained in Uυ0 \ Uυ satisfy that l is uniformly bounded by a constant C > 0
independent of P . We define

τh =
τ

(1 + µ)2(NT +1−h)(C+1)

for 1 ≤ h ≤ NT + 1. We choose C0 > 0 such that τh+1 − τh > τ/C0 for all
1 ≤ h ≤ NT . Let a0 = −1; we define recursively

γh+1 = exp([ah + 1, ah+1]X2)(x2, y0) ({ah, ah+1} ⊂ Z)

such that γh+1 ⊂ Uυ or γh+1 ⊂ Uε′ \Uυ but the respective condition is not fulfilled
for exp([ah + 1, ah+1 + 1]X2)(x2, y0). We obtain a curve γh for all 1 ≤ h ≤ L and
some L ≤ NT + 1; we also have aL = j. We define Db = ∆2

b(x2, y0) − ∆′
b(x1, y1)

and D0 = 0; we have

Db = Db−1 + [∆2 ◦ ϕ
(b−1)
2 (x2, y0)−∆′

j ◦ ϕ
(b−1)
1 (x1, y1)].

Our goal is proving that for d close to 0 we have

|D1| < τ1, . . . , |Da1 | < τ1, . . . , |DaL−1+1| < τL, . . . , |DaL
| < τL.

That would prove the lemma since τ1 < . . . < τL ≤ τ .
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We will proceed by induction. Suppose |D1| < τ1, . . ., |Dal
| < τl for d < dl and

y0 ∈ B(0, cl
0). If γl+1 ⊂ Uυ then

|Dh| ≤ |Dal
|+

∣∣∣∣∣
h−1∑
q=al

∆2 ◦ ϕ
(q)
2 (x2, y0)

∣∣∣∣∣ +

∣∣∣∣∣
h−1∑
q=al

∆′ ◦ ϕ
(q)
1 (x1, y0)

∣∣∣∣∣ .

for all al + 1 ≤ h ≤ al+1. We have |Dh| < τl + 2τ/(2C0) < τl+1 for d < dl+1 < dl

and |y0| < cl+1
0 < cl

0 by our choice of C0 > 0. Suppose now γl+1 ⊂ Uε′ \ Uν . We
have

|Dal+h+1| ≤ |Dal+h|+ |∆2 ◦ ϕ
(al+h)
2 (x2, y0)−∆′ ◦ ϕ

(al+h)
1 (x1, y0)|

for 0 ≤ h ≤ al+1 − al − 1 ≤ C. The difference ∆′ − ∆1 is a O(y1/k) by lemma
9.7.3. On the other hand ∆1 −∆2 is a holomorphic function whose value at y = 0
is identically 0; therefore ∆′ −∆2 is a O(y1/k). We obtain

|Dal+h+1| ≤ |Dal+h|+ |∆2 ◦ ϕ
(al+h)
2 (x2, y0)−∆2 ◦ ϕ

(al+h)
1 (x1, y0)|+ O(y1/k

0 ).

We have

|ψ2 ◦ ϕ
(al+h)
2 (x2, y0)− ψ2 ◦ σ′ ◦ ϕ

(al+h)
1 (x1, y0)| ≤ d + |Dal+h|.

We also have that ψ2 ◦σ′−ψ2 = o(1) in the complementary of Uυ2 since σ′|y=0 ≡ Id

(the notation o(1) stands for a function tending to 0 when y → 0). That implies

|ψ2 ◦ ϕ
(al+h)
2 (x2, y0)− ψ2 ◦ ϕ

(al+h)
1 (x1, y0)| ≤ d + |Dal+h|+ o(1).

Since ||D(∆2 ◦ (ψ2, y)(−1))|| ≤ µ then

|Dal+h+1| ≤ |Dal+h|+ µ(d + |Dal+h|+ o(1)) + O(y1/k
0 )

for 0 ≤ h ≤ al+1 − al − 1 ≤ C. Now suppose

|Dal+h| ≤ τl+1
1

(1 + µ)2(C+1−h)

for d < dh
l+1 ≤ dl and |y0| < cl+1,h

0 ≤ cl
0; that result is clearly true for h = 0,

d0
l+1 = dl and cl+1,0

0 = cl
0 by the choice of τl and τl+1. Then

|Dal+h+1| ≤ 1
1 + µ

τl+1
1

(1 + µ)2(C+1−(h+1))
+ µd + o(1).

We obtain

|Dal+h+1| ≤ τl+1
1

(1 + µ)2(C+1−(h+1))
.

for d < dh+1
l+1 ≤ dh

l and |y0| < cl+1,h+1
0 ≤ cl+1,h

0 . The proof is complete; we just
define dl+1 = min0≤h≤al+1−al

dh
l+1 and cl+1

0 = min0≤h≤al+1−al
cl+1,h
0 . ¤

9.7.3. Constructing a special conjugation. Consider y0 ∈ B(0, δ) and
a domain W 2

ε (η) such that W 2
ε (η) ∩ [y = y0] does not have bi-tangent cords. We

consider a neighborhood V of y0 fulfilling the pre-requisites of the algorithm solving
the game with respect to X2. Let ∪s∈V Tr2(s) one of the transversals we use
throughout the game to build a special conjugation σ2

Tr between α2 and ϕ2 defined
in ∪s∈V D2

Tr(s). Then
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Lemma 9.7.5. We have

|ψ2 ◦ σ2
Tr ◦ σ′ ◦ σ

1(−1)
Tr − ψ′1| ≤ H(y)

in ∪s∈V σ1
Tr(D

1
Tr(s)). Moreover H(y) is a o(1); it does not depend on y0 or V .

Proof. We denote

ψ2(Tr2(s)) = ψ′1(Tr1(s)) = c(s) + i[d(s), e(s)]

for s ∈ V . We consider the functions A2 and B2 defined as in section 9.3 with
respect to X2 and ψ2. Analogously we define A1 and B1 with respect to X1 and
ψ′1. We have

A1(z, y) = (z + ∆′ ◦ α
(−1)
1 ◦ (ψ′1, y)(−1)(z, y), y)

and
A2(z, y) = (z + ∆2 ◦ α

(−1)
2 ◦ (ψ2, y)(−1)(z, y), y);

both mappings are defined in z ∈ (c(s) + [−1/3, 4/3]) + i[d(s), e(s)]. We define

(w1, y) = α
(−1)
1 ◦ (ψ′1, y)(−1)(z, y) and (w2, y) = α

(−1)
2 ◦ (ψ2, y)(−1)(z, y).

The definition implies σ′(w1, y) = (w2, y). Since σ′|y=0 ≡ Id then w2 − w1 = o(1).
That leads us to

∆2(w2, y)−∆′(w1, y) = ∆2(w1, y)−∆′(w1, y) + o(1) = o(1)

since ∆2 − ∆′ = (∆2 − ∆1) + (∆1 − ∆′) = O(y1/k). As a consequence we have
z ◦ A1 − z ◦ A2 = o(1). Since Bl is obtained by interpolating Al and Id then
z ◦B1− z ◦B2 = o(1) in z ∈ (c(s)+ (−1/3, 4/3))+ i[d(s), e(s)]; this is equivalent to

|ψ2 ◦ σ2
Tr ◦ (ψ2, y)(−1)(z, y)− ψ′1 ◦ σ1

Tr ◦ (ψ′1, y)(−1)(z, y)| ≤ H2(y) = o(1)

in ∪s∈V ((c(s) + (−1/3, 4/3)) + i[d(s), e(s)]).
We will extend the result to the remaining part of ∪s∈V ψ2(D2

Tr(s)). Let
(w2, y) ∈ D2

Tr(y); there exists a number j ∈ Z such that

α
(j)
2 (w2, y) ∈ exp((−1/3, 4/3)X2)(Tr2(y)).

We denote the point α
(j)
2 (w2, y) by (w′2, y). We also denote

(w1, y) = σ
′(−1)(w2, y) and (w′1, y) = σ

′(−1)(w′2, y).

We have that ψ2 ◦ σ2
Tr(w2, y)− ψ′1 ◦ σ1

Tr(w1, y) is equal to

(ψ2 ◦ σ2
Tr(w

′
2, y)− ψ′1 ◦ σ1

Tr(w
′
1, y)) + (∆2

−j ◦ σ2
Tr(w

′
2, y)−∆′

j ◦ σ1
Tr(w

′
1, y)).

We have ψ2 ◦ σ2
Tr(w

′
2, y)−ψ2 ◦ σ′ ◦ σ1

Tr(w
′
1, y) = o(1) by the first part of the proof.

Lemma 9.7.4 implies that

ψ2 ◦ σ2
Tr(w2, y)− ψ′1 ◦ σ1

Tr(w1, y) = o(1)

and then
ψ2 ◦ σ2

Tr ◦ (ψ2, y)(−1) − ψ′1 ◦ σ1
Tr ◦ (ψ′1, y)(−1) = o(1)

in ∪s∈V ψ2(D2
Tr(s))× {s}. ¤
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Now, suppose that we want to paste two conjugations

σ↓ = σ2
↓ ◦ σ′ ◦ σ

1(−1)
↓ and σ↓ = σ2

↑ ◦ σ′ ◦ σ
1(−1)
↑ .

The conjugations σ2
j are constructed taking base transversals Trj

2 for j ∈ {↑, ↓}
whereas σ1

j are constructed taking base transversals σ
′(−1)(Trj

2). We suppose that
D2

Tr↑(s) ∩D2
Tr↓(s) contains a strip B2

1(s) for s ∈ V where

ψ2(B2
ζ (s)) = [z ∈ [a←(s)− ζ, a→(s) + ζ] + i[c↓(s), c↑(s)]]

and c↑ − c↓ ≡ M . We define B1
ζ (s) = σ

′(−1)(B2
ζ (s)). We use the M -interpolation

process to conjugate σj
↑ and σj

↓ to obtain σj for j ∈ {1, 2}.
Lemma 9.7.6. Suppose |ψ2 ◦ σl − ψ′1| ≤ H ′(y) = o(1) in ∪s∈V σ1

l (B1
1(s)) for

l ∈ {↑, ↓} and a function H ′ independent of l, y0 or V . Then

|ψ2 ◦ σ2 ◦ σ′ ◦ σ1(−1) − ψ′1| ≤ J(y)

in ∪s∈V σ1(B1
0(s)). Moreover J(y) is a o(1); it does not depend on y0 or V .

Proof. We use the notations in section 9.4. We choose µ > 0 such that
max(µ, µµuv) < 1/16. In D2(s) ⊂ σ2

↓(B
2
↓(s))∪ σ2

↑(B
2
↑(s)) there is an integral of the

time form ψ2
l of ϕ2 such that

ψ2
l = η2

D(ψ2 ◦ σ
2(−1)
↓ ) + (1− η2

D)ψ2 ◦ σ
2(−1)
↑

and η2
D(x, s) = η(ψ2 ◦ σ

2(−1)
↓ (x, s)− ic↓(s)). In an analogous way we define

ψ1
l = η1

D(ψ′1 ◦ σ
1(−1)
↓ ) + (1− η1

D)ψ′1 ◦ σ
1(−1)
↑

where η1
D(x, s) = η(ψ′1◦σ1(−1)

↓ (x, s)−ic↓(s)). Then we have σ2 = (ψ2
l, y)(−1)◦(ψ2, y)

whereas σ1 = (ψ1
l, y)(−1) ◦ (ψ′1, y). Since

ψ2 ◦ σ2 ◦ σ′ ◦ σ1(−1) − ψ′1 = ψ2 ◦ (ψ2
l, y)

(−1) ◦ (ψ1
l, y)− ψ′1

then it is enough to estimate the right hand side.
Let E↓(s) = σ1(B1

0(s)) ∩ [Imgψ′1 ≤ c↓(s) + 5]. Since

σ1(B1
0(s)) ⊂ σ1

↓(B
1
↓(s)) ∪ σ1

↑(B
1
↑(s))

then E↓(s) ∩ σ1
↑(B

1
↑(s)) = ∅ implies E↓(s) ⊂ σ1

↓(B
1
↓(s)). The former propriety is a

consequence of
σ1
↑(B

1
↑(s)) ⊂ [Imgψ′1 ≥ c↓(s) + M/4− 1/2]

and 5 < M/4 − 1/2. As a consequence we have ψ1
l = ψ′1 ◦ σ

1(−1)
↓ and η1

D ≡ 1 in
∪s∈V E↓(s). By definition we have η2

D ◦ σ↓ ≡ η1
D in ∪s∈V [σ1

↓(B
1
↓(s)) ∩ σ1

↓(B
1
0(s))];

moreover
ψ2 ◦ σ

2(−1)
↓ ◦ σ↓ = ψ′1 ◦ σ

1(−1)
↓

in ∪s∈V σ1
↓(B

1
↓(s)). We deduce that ψ2

l ◦ σ↓ = ψ1
l in ∪s∈V E↓(s). As a consequence

we obtain σ2 ◦ σ′ ◦ σ1(−1) = σ↓ in ∪s∈V E↓(s) and then

ψ2 ◦ σ2 ◦ σ′ ◦ σ1(−1) − ψ′1 = o(1)

in ∪s∈V E↓(s).
Consider the set E↑(s) = σ1(B1

0(s)) ∩ [Imgψ′1 ≥ c↑(s) − 5]. We can prove
E↑(s)∩σ1

↓(B
1
↓(s)) = ∅ in an analogous way than in the previous paragraph. Hence,



9.7. COMPARING TG-SP CONJUGATIONS 131

we obtain η1
D ≡ 0 in ∪s∈V E↑(s). We have σ↑(E↑(s)) ⊂ [Imgψ2 ≥ c↑(s)−5−2(1/2)];

moreover σ↑(E↑(s)) ⊂ σ2
↑(B

2
↑(s)) since

σ2
↓(B

2
↓(s)) ⊂ [Imgψ2 ≤ c↑(s)−M/4 + 1/2]

and −5 − 1/2 − 1/2 > −M/4 + 1/2. Hence, we obtain η2
D ≡ 0 in σ↑(E↑(s)).

Moreover, that implies ψ2
l ◦ σ↑ = ψ1

l in ∪s∈V E↑(s) and then

ψ2 ◦ σ2 ◦ σ′ ◦ σ1(−1) − ψ′1 = o(1) in ∪s∈V E↑(s).

Finally, consider the set

E(s) = σ1(B1
0(s)) ∩ [Imgψ′1 ∈ [c↓(s) + 4, c↑(s)− 4].

The set E(s) is contained in σ1
↓(B

1
1(s)) ∩ σ1

↑(B
1
1(s)). As a consequence σ↓ and σ↑

are defined in E(s) for s ∈ V . We have

ψ2
l ◦ σ↓ − ψ1

l = (1− η1
D)(ψ2 ◦ σ

2(−1)
↑ ◦ σ↓ − ψ′1 ◦ σ

1(−1)
↑ )

which can be expressed also as

ψ2
l ◦ σ↓ − ψ1

l = (1− η1
D)(ψ2 ◦ σ

2(−1)
↑ ◦ σ↓ − ψ2 ◦ σ

2(−1)
↑ ◦ σ↑).

The relations ψ2 ◦ σ↑ − ψ2 ◦ σ↓ = ψ′1 − ψ′1 + o(1) = o(1) and

||D(ψ2 ◦ σ
2(−1)
↑ ◦ (ψ2, y)(−1))− Id|| < 2µµuv

imply
ψ2
l ◦ σ↓ − ψ1

l = o(1).

Since ψ2
l ◦ σ2 ◦ σ′ ◦ σ1(−1) = ψ1

l we deduce that

ψ2
l ◦ σ2 ◦ σ′ ◦ σ1(−1) − ψ2

l ◦ σ↓ = o(1).

We use ||D(ψ2 ◦ (ψ2
l, y)(−1))− Id|| ≤ µµuv to prove

ψ2 ◦ σ2 ◦ σ′ ◦ σ1(−1) − ψ2 ◦ σ↓ = o(1).

Since

ψ2 ◦ σ2 ◦ σ′ ◦ σ1(−1) − ψ′1 = (ψ2 ◦ σ↓ − ψ′1) + (ψ2 ◦ σ2 ◦ σ′ ◦ σ1(−1) − ψ2 ◦ σ↓)

then we obtain

ψ2 ◦ σ2 ◦ σ′ ◦ σ1(−1) − ψ′1 = o(1) + o(1) = o(1)

in ∪s∈V E(s) as we wanted to prove. ¤

Now we consider the diffeomorphisms σj
V conjugating αj and ϕj in Uε,δ∩[y ∈ V ]

for j ∈ {1, 2}. An iterative application of the previous lemma allows to prove

Corollary 9.7.2. Let µ > 0 small enough. We have

|ψ2 ◦ σ2
V ◦ σ′ ◦ σ

1(−1)
V − ψ′1| ≤ L(y) = o(1)

for some function L not depending on V .

Let us define

ψ2 =
∑

V ∈J

hV (y)(ψ2 ◦ σ
2(−1)
V ) and ψ1 =

∑

V ∈J

hV (y)(ψ′1 ◦ σ
1(−1)
V ).

The mapping σ = (ψ2, y)(−1) ◦ (ψ1, y) is a tg-sp conjugation between ϕ1 and ϕ2.
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Lemma 9.7.7. The mapping σ extends to a germ of homeomorphism in a neigh-
borhood of (0, 0) by defining σ|y=0 ≡ Id.

Proof. We define σV = σ2
V ◦ σ′ ◦ σ

1(−1)
V . We have

ψ2 ◦ σ′ − ψ1 =
∑

V ∈J

hV (y)[ψ2 ◦ σ
2(−1)
V ◦ σ′ − ψ′1 ◦ σ

1(−1)
V ].

We can express the previous equation in the form

ψ2 ◦ σ′ − ψ1 =
∑

V ∈J

hV (y)[ψ2 ◦ σ
2(−1)
V ◦ σ′ − ψ2 ◦ σ

2(−1)
V ◦ σV ].

We consider the expression

ψ2 ◦ σ
2(−1)
V ◦ (ψ2, y)(−1) ◦ (ψ2, y) ◦ σ′ − ψ2 ◦ σ

2(−1)
V ◦ (ψ2, y)(−1) ◦ (ψ2, y) ◦ σV .

We have that |ψ2 ◦σV −ψ′1| ≤ L(y) = o(1) by hypothesis whereas ψ2 ◦σ′−ψ′1 = 0.
As a consequence we obtain

|ψ2 ◦ σV − ψ2 ◦ σ′| ≤ L(y) = o(1).

Since ||D(ψ2 ◦ σ
2(−1)
V ◦ (ψ2, y)(−1))− Id|| ≤ 2µµuv; we deduce that

|ψ2 ◦ σ′ − ψ1| ≤ (1 + 2µµuv)L(y)
∑

V ∈J

hV (y) = o(1).

We remark that ψ2 ◦ σ = ψ1, therefore we obtain ψ2 ◦ σ − ψ2 ◦ σ′ = o(1). The
mapping ψ2 ◦ (ψ2, y)(−1) satisfies ||D(ψ2 ◦ (ψ2, y)(−1))− Id|| ≤ 4µµuv and then

ψ2 ◦ σ − ψ′1 = ψ2 ◦ σ − ψ2 ◦ σ′ = o(1).

The last equation implies that σ and σ(−1) can be extended continuously to y = 0
by defining σ|y=0 ≡ σ′|y=0 ≡ Id and (σ(−1))|y=0 ≡ (σ

′(−1))|y=0 ≡ Id. ¤

The proof of theorem 8.1 is now complete. Moreover, we also proved the Main
Theorem since it is a consequence of theorem 8.1 and propositions 8.1.4 and 8.2.2.

Remark 9.7.1. We constructed a germ of special homeomorphism σ conjugat-
ing ϕ1 and ϕ2 such that SP (ϕ1) = SP (ϕ2). Since σ is the composition of three
tg-sp mappings which are C∞ at a neighborhood of (0, 0) deprived of yf = 0 then
σ is still C∞ in the complementary of yf = 0.

Corollary 9.7.3. Let f ∈ C{x, y} satisfying the (NSD) conditions. Let
ϕ1, ϕ2 ∈ Df . If SP (ϕ1) = SP (ϕ2) then ϕ1 and ϕ2 are conjugated by a germ
of special homeomorphism σ such that

• σ and σ(−1) are C∞ outside f = 0 if (N, m) = (1, 0).
• σ and σ(−1) are C∞ outside yf = 0 if (N, m) 6= (1, 0).

It is well known that a homeomorphism σ conjugating ϕ1, ϕ2 in Diff (C, 0) can
not be chosen to be C∞. Let ν = ν(ϕ1(x) − x); Martinet and Ramis [MR83]
pointed out that if ν = 2 and σ is C1 in a neighborhood of the origin then σ
is either holomorphic or anti-holomorphic. Afterwards Ahern and Rosay [AR95]
proved such a property for any order ν > 1 if σ is C3ν . Finally Rey [Rey96]
improved the previous result to obtain that a Cν conjugation is either holomorphic
or anti-holomorphic, moreover Rey’s result is the best possible. As a consequence
the conjugation σ provided in corollary 9.7.3 is not in general C∞ at the points
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of f = 0. But it could be extended in a C∞ way to y = 0? The answer is no in
general. The diffeomorphisms ϕ1 and ϕ2 in Dx3(y−x)2 such that

ϕ1 = exp

(
x3(y − x)2

1 + x2y(y − x)2
∂

∂x

)
and ϕ2 = exp

(
x3(y − x)2

∂

∂x

)

are conjugated by a special homeomorphism which can not be chosen to be C1 in
[y = 0] \ {(0, 0)}.
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[PM97] R. Pérez-Marco, Fixed points and circle maps, Acta Math. 2 (1997), no. 179, 243–294.
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